@inproceedings{laursen-etal-2023-benchmark,
title = "Benchmark for Evaluation of {D}anish Clinical Word Embeddings",
author = "Laursen, Martin Sundahl and
Pedersen, Jannik Skyttegaard and
Vinholt, Pernille Just and
Hansen, Rasmus S{\o}gaard and
Savarimuthu, Thiusius Rajeeth",
editor = "Derczynski, Leon",
booktitle = "Northern European Journal of Language Technology, Volume 9",
year = "2023",
address = {Link{\"o}ping, Sweden},
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/2023.nejlt-1.4",
doi = "https://doi.org/10.3384/nejlt.2000-1533.2023.4132",
abstract = "In natural language processing, benchmarks are used to track progress and identify useful models. Currently, no benchmark for Danish clinical word embeddings exists. This paper describes the development of a Danish benchmark for clinical word embeddings. The clinical benchmark consists of ten datasets: eight intrinsic and two extrinsic. Moreover, we evaluate word embeddings trained on text from the clinical domain, general practitioner domain and general domain on the established benchmark. All the intrinsic tasks of the benchmark are publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="laursen-etal-2023-benchmark">
<titleInfo>
<title>Benchmark for Evaluation of Danish Clinical Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="given">Sundahl</namePart>
<namePart type="family">Laursen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jannik</namePart>
<namePart type="given">Skyttegaard</namePart>
<namePart type="family">Pedersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pernille</namePart>
<namePart type="given">Just</namePart>
<namePart type="family">Vinholt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rasmus</namePart>
<namePart type="given">Søgaard</namePart>
<namePart type="family">Hansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiusius</namePart>
<namePart type="given">Rajeeth</namePart>
<namePart type="family">Savarimuthu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Northern European Journal of Language Technology, Volume 9</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Linköping, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In natural language processing, benchmarks are used to track progress and identify useful models. Currently, no benchmark for Danish clinical word embeddings exists. This paper describes the development of a Danish benchmark for clinical word embeddings. The clinical benchmark consists of ten datasets: eight intrinsic and two extrinsic. Moreover, we evaluate word embeddings trained on text from the clinical domain, general practitioner domain and general domain on the established benchmark. All the intrinsic tasks of the benchmark are publicly available.</abstract>
<identifier type="citekey">laursen-etal-2023-benchmark</identifier>
<identifier type="doi">https://doi.org/10.3384/nejlt.2000-1533.2023.4132</identifier>
<location>
<url>https://aclanthology.org/2023.nejlt-1.4</url>
</location>
<part>
<date>2023</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Benchmark for Evaluation of Danish Clinical Word Embeddings
%A Laursen, Martin Sundahl
%A Pedersen, Jannik Skyttegaard
%A Vinholt, Pernille Just
%A Hansen, Rasmus Søgaard
%A Savarimuthu, Thiusius Rajeeth
%Y Derczynski, Leon
%S Northern European Journal of Language Technology, Volume 9
%D 2023
%I Linköping University Electronic Press
%C Linköping, Sweden
%F laursen-etal-2023-benchmark
%X In natural language processing, benchmarks are used to track progress and identify useful models. Currently, no benchmark for Danish clinical word embeddings exists. This paper describes the development of a Danish benchmark for clinical word embeddings. The clinical benchmark consists of ten datasets: eight intrinsic and two extrinsic. Moreover, we evaluate word embeddings trained on text from the clinical domain, general practitioner domain and general domain on the established benchmark. All the intrinsic tasks of the benchmark are publicly available.
%R https://doi.org/10.3384/nejlt.2000-1533.2023.4132
%U https://aclanthology.org/2023.nejlt-1.4
%U https://doi.org/https://doi.org/10.3384/nejlt.2000-1533.2023.4132
Markdown (Informal)
[Benchmark for Evaluation of Danish Clinical Word Embeddings](https://aclanthology.org/2023.nejlt-1.4) (Laursen et al., NEJLT 2023)
ACL
- Martin Sundahl Laursen, Jannik Skyttegaard Pedersen, Pernille Just Vinholt, Rasmus Søgaard Hansen, and Thiusius Rajeeth Savarimuthu. 2023. Benchmark for Evaluation of Danish Clinical Word Embeddings. In Northern European Journal of Language Technology, Volume 9, Linköping, Sweden. Linköping University Electronic Press.