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Abstract
Summarization of scientific articles often over-
looks insights from citing papers, focusing
solely on the document’s content. To incor-
porate citation contexts, we develop a model
to summarize a scientific document using the
information in the source and citing documents.
It concurrently generates abstractive and extrac-
tive summaries, each enhancing the other. The
extractive summarizer utilizes a blend of het-
erogeneous graph-based neural networks and
graph attention networks, while the abstrac-
tive summarizer employs an autoregressive de-
coder. These modules exchange control signals
through the loss function, ensuring the creation
of high-quality summaries in both styles.

1 Introduction

Text summarization automates condensing docu-
ments while preserving key information. Most
neural summarization models, like those by Nal-
lapati et al. (2016); Zhong et al. (2019), are de-
signed for shorter texts, e.g., the CNN/Daily Mail
dataset (Hermann et al., 2015). However, applying
these models to longer documents, such as scien-
tific research papers, remains limited. In scientific
document summarization, it is common to focus
solely on abstracts, introductions, and conclusions,
as demonstrated in Yasunaga et al. (2019)’s work.

Summarizing scientific publications presents
unique challenges due to their length, complex con-
cepts, technical jargon, structured organization, and
citations. These complexities make it a more daunt-
ing task compared to summarizing other types of
documents. Additionally, the long-term impact of
a scientific article may not be fully evident when
it is first published, as its significance can evolve
over time. While an abstract provides an initial
overview from the authors’ perspective, it may not
capture the full extent of the paper’s influence on
the research community and its evolving impact
(Yasunaga et al., 2019). As an example, we can
consider the abstract from Bergsma and Lin (2006):

We present an approach to pronoun res-
olution based on syntactic paths. . . . we
learn the likelihood of coreference be-
tween a pronoun and a candidate noun
based on the path in the parse tree be-
tween the two entities. . . . Highly coref-
erent paths also allow mining of precise
probabilistic gender/number information.
We combine statistical knowledge with
well known features in a Support Vec-
tor Machine pronoun resolution classi-
fier. Significant gains in performance are
observed on several datasets.

This abstract gives insight into the methods the au-
thors used. But the citations emphasize the corpus
it presents. For example:

We use the approach of Bergsma and
Lin (2006), both because it achieves
state-ofthe-art gender classification per-
formance, and because a database of the
obtained noun genders is available on-
line. (Bergsma, 2005)

For the gender task that we study in our
experiments, we acquire class instances
by filtering the dataset of nouns and their
genders created by Bergsma and Lin
(2006). (Bergsma and Van Durme, 2013)

Jaidka et al. (Jaidka et al., 2016, 2019) have iden-
tified this missing aspect in scientific document
summarization and addressed it by introducing a
shared task. This task aims to create summaries
that take into account not only the information in
the body of the documents but also the research
community’s overview of the documents over time.
The work described here continues in this direction.

With the advancement of neural networks, there
have been a few prominent research works in re-
cent years for generating extractive (Yasunaga et al.,
2019) and abstractive (Yu et al., 2020; Zhang et al.,
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2019) summaries from scientific documents (Co-
han et al., 2018; Zhang et al., 2022). Extractive
summarization recognizes key sentences from the
source document as the summary but lack the flow
of information, whereas the abstractive summariza-
tion technique generates new phrases using lan-
guage models while preserving the semantics of
the input document but may miss some important
aspects of the text. This is a motivation for design-
ing a model to generate both summaries in parallel
and help the counterpart to achieve a performance
boost with additional guidance.

A key step in extracting brief synopsis sentences
from a manuscript is to map the cross-sentence
correlations. A lot of recent prominent works (Nal-
lapati et al., 2017) have tried to do so using recur-
rent neural networks (RNNs). However, because
of using RNNs, these models fail to capture long-
distance sentence-level dependencies. Another ap-
proach to preserve sentence-level dependencies
from long documents is using graph-based neu-
ral networks. A few recent works (e.g., (Cohan and
Goharian, 2018; Yasunaga et al., 2017)) have uti-
lized discourse information in the article along with
inter-sentence correlations for constructing graphs
and summarizing document. Another approach is
to construct a sentence-level fully connected graph.
Zhong et al. (Zhong et al., 2019) and Liu et al. (Liu
and Lapata, 2019) used transformer (Vaswani et al.,
2017) encoders to determine how sentences inter-
act with each other. Wang et al. (Wang et al., 2020)
introduced an heterogeneous graph neural network
for extractive summarization which used additional
semantic units (words) as intermediate nodes to
construct relationships between sentences.

Abstractive summarizers focus heavily on form,
with the goal of producing a generalized sum-
mary, which tends to necessitate complex language-
generating models. These models are typically
based on sequence-to-sequence (seq2seq) architec-
tures, in which a source document is seen as one se-
quence whereas its summary as another. The major-
ity of previous research on neural abstractive sum-
marization depended on large-scale, high-quality
datasets of supervised document-summarization
pairings (See et al., 2017). Recently, state-of-
the-art solutions on abstractive summarization are
built upon the transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) models. These
attention-based abstractive models are being used
in different fields like clinical note summariza-

tion (Kanwal and Rizzo, 2022), scientific docu-
ment summarization (Zhang et al., 2022), and lay-
abstract generation (Yu et al., 2020).

In this paper, addressing the above-mentioned
issues, we have built a standalone summarization
model which can generate both extractive and ab-
stractive summaries from scientific documents in-
corporating the citation network. Analyzing the
citation network, citing statements from the citing
articles are accumulated with the original text doc-
ument to incorporate the research community’s ob-
servation on that particular cited manuscript. These
summaries are the abstracts of the original papers
with additional information reflecting the research
community’s view. After that, we run the Long-
Former (Beltagy et al., 2020) encoder to generate
sentence and word representations and train ex-
tractive and abstractive summarizers together. For
the extractive summarizer, an heterogeneous graph
neural network (Wang et al., 2020) is used as it has
the ability to preserve sentence-level dependencies
utilizing additional semantic units as intermediate
nodes in the graph representation. Abstractive sum-
maries are generated by the autoregressive decoder.
The loss function is defined in such a way that both
summarizers can achieve better ROUGE and ME-
TEOR scores. Furthermore, we have developed a
corpus containing 10K research articles along with
their corresponding citation statements and is a sub-
set of the Semantic Scholar Network (SSN) corpus.
The citation statements are collected utilizing the
citation graph used in the SSN corpus. In short, the
contributions of this work are:

• We have built a stand-alone summarizer model
which can produce both extractive and abstrac-
tive summaries and each counterpart helps the
other to generate better summaries.

• The summarizer model can work with long
scientific text articles

• This model considers research communities’
observations while generating the summaries

• We have proposed a new corpus containing
10K research articles along with the corre-
sponding citing statements to incorporate the
research communities’ view.

2 Related Work

Text summarization aims to distill a document’s
essence efficiently. Recent NLP research has
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yielded effective neural summarization models, par-
ticularly those using transformer and BERT-based
architectures. Work summarizing lengthy scientific
documents often focuses on specific sections rather
than the entire text (Yu et al., 2020) or citation
statements (An et al., 2021).

2.1 Extractive Text Summarization
Extractive text summarization models classify sen-
tences in a document using labels that indicate
whether or not a sentence ought to be included
in the summary. Originally, these models were de-
signed based on the encoder-decoder architecture
using RNNs (Nallapati et al., 2017). Since trans-
former and BERT-based models provide a more
enriched sentence encoding, they have become the
foundation for the majority of extractive summa-
rizer models in recent years. Liu and Lapata (2019)
fine-tuned BERT with stacked layers of transformer
to obtain the sentence vectors and then used a sig-
moid classifier for identifying the sentences that
would be included in the summary. Zhang et al.
(2019) fine-tuned an hierarchical transformer (HI-
BERT) for the extractive summarization task. An-
other prominent approach for extractive summa-
rization is using graph representations which can
preserve sentence-level correlations. Later, the
graph convolutional network (GCN) (Welling and
Kipf, 2016) has been espoused for building dif-
ferent inter-sentence correlation graphs (Yasunaga
et al., 2017) for this task. Wang et al. (2020) built an
heterogeneous graph neural network for extractive
summarization (HeterSumGraph) which takes into
account additional semantic units at the word level
for building the sentence-level correlation graph.

2.2 Abstractive Text Summarization
Abstractive text summarization models, unlike the
extractive summarizers which work like classifiers,
are intended to generate summaries comprising
new sentences which may or may not be present in
the body of the document. These models are mostly
based on the encoder-decoder architecture of the
sequence-to-sequence models and language models
like BART (Lewis et al., 2020), BigBird (Zaheer
et al., 2020), and T5 (Raffel et al., 2020). Aksenov
et al. (2020) applied BERT-windowing to overcome
the length limitation of the BERT model and sum-
marize long documents. Gidiotis and Tsoumakas
(2020) trained the summarizer model to generate
separate abstractive summaries for small parts of
the document. Pilault et al. (2020) combined both

the extractive and abstractive summarization using
a transformer language model and built an hybrid
summarizer model. Yu et al. (2020) fine-tuned pre-
trained BERT as the abstractive summarizer for
generating a lay summary from the document.

2.3 Scientific Article Summarization

Existing scientific article summarizers, in most
cases, are extractive models designed on the idea
of sentence selection (Cohan and Goharian, 2018).
Cohan et al. (2018) developed the first abstractive
summarizer for long scientific articles using an hi-
erarchical encoder and discourse-aware attentive
decoder. Mishra et al. (2022) applied citation con-
textualization to extract unique relevant sentences
from the document and final summaries are gen-
erated using a multi-objective clustering approach.
Gupta et al. (2022) applied BERT and graph-based
approaches for biomedical document summariza-
tion. Li et al. (2020) fine tuned T5 for generating
summaries from long scientific documents and im-
plemented an extractive summarizer using GCN.
Yasunaga et al. (2019) built a corpus (Scisumm-
Net) that includes a citation network for scien-
tific document summarization and extracted the
summary-candidate sentences using a GCN. An
et al. (2021) introduced a large corpus (SSN) with
141K research papers connected with a citation
graph. They also proposed a graph-based summa-
rization model (CGSUM) for extractive document
summarization. This model can draw information
from both the source and the citing texts.

3 Methodology

This section defines the problem of scientific docu-
ment summarization using a citation graph. Then,
the two benchmark datasets used for the scientific
article summarization experiments are discussed
along with the pre-processing procedures. Finally,
the proposed deep learning model is explained.

3.1 Problem Formulation: Summarization
Using Citation Graph

Scientific articles possess distinctive attributes, in-
cluding citation linkages, that establish profound
connections between their contents. These stud-
ies may also yield unforeseen impacts and evolve
in importance as research progresses. In such
cases, ideal summaries should encompass both
the authors’ key points and the perspectives of
the scientific community, as reflected in cita-
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tions (Yasunaga et al., 2019). To serve this in-
tent we have utilized two resources: the cita-
tion graph provided in the Semantic Scholar Net-
work (SSN) corpus (An et al., 2021), and the
ScisummNet/CL-SciSumm-2020 (CL-SciSumm-
2020) corpus (Chandrasekaran et al., 2020; Ya-
sunaga et al., 2019) which supplies documents and
their corresponding citing statements.

3.2 Description of the Datasets

As this work is focused on generating summaries
from scientific articles that incorporate the research
community’s views, we have considered two bench-
mark datasets: ScisummNet/CL-SciSumm (Chan-
drasekaran et al., 2020; Yasunaga et al., 2019),
and Semantic Scholar Network (SSN) (An et al.,
2021) for the experiments done here. To the best of
our knowledge, these are the only datasets for the
summarization task that also provide citation infor-
mation. The ScisummNet corpus consists of ab-
stracts of the 1000 most cited research articles from
the ACL Anthology Network (Radev et al., 2013)
along with 15 citing statements per article. The
gold standard summaries for these 1000 documents
are manually summarized by domain experts. The
CL-SciSumm-2020 corpus (Chandrasekaran et al.,
2020) extends the ScisummNet corpus with 40 ex-
tra documents and human-generated summaries
thereby providing 1040 documents, citation sen-
tences, and summaries. For testing, we have used
the test set comprising 200 scientific articles from
the CL-SciSumm-2020 corpus. The other bench-
mark dataset used for this task is the SSN corpus. It
includes 140,799 research articles culled from the
Semantic Scholar Open Research Corpus (S20RC)
(Lo et al., 2020) together with a large citation graph.
This citation graph has each article as a node and
660,908 edges indicating the citations. This cor-
pus covers research articles from three domains:
physics, mathematics and computer science.

The primary objective of this study is to develop
a deep learning model capable of generating sum-
maries for lengthy scientific documents while incor-
porating insights from other researchers citing the
document. While the ScisummNet/CL-SciSumm
dataset provides citation statements, the SSN cor-
pus lacks this information. Originally, the SSN
corpus consisted of documents and their references,
but for our purpose of including citing statements,
modifications were necessary. We leveraged the
citation graph to identify citing papers and manu-

Figure 1: System architecture of the proposed model

ally extracted the statements referring to the cited
articles. Given the substantial size of the SSN cor-
pus, containing nearly 141K articles, we randomly
selected 10K papers for summarization. These pa-
pers have body lengths ranging from 1000 to 3500
words (with background/related work sections re-
moved), aligning with the capacity of the Long-
Former model (as described in Section 4), which
can handle a maximum of 4096 tokens at a time.
The dataset was divided into training (8000), valida-
tion (1000), and testing (1000) articles to facilitate
model development and evaluation.

Citations can convey positive, neutral, or nega-
tive intentions. To capture this diversity, we sys-
tematically categorized citing statements into these
three classes after gathering them from citing ar-
ticles. In cases where a paper had limited nega-
tive citations, we balanced the selection by includ-
ing more neutral and positive citation statements.
To classify these citation statements, we have em-
ployed RoBERTa trained on Athar (2014) follow-
ing the approach used by Kundu (2023).

In the SSN corpus, the summaries are limited to
the authors’ perspectives as they consist of the pa-
per abstracts. To create more comprehensive sum-
maries, we employed a two-step approach. First,
we used a fine-tuned T5 model (Raffel et al., 2020),
trained on the CL-SciSumm-2020 corpus, to gener-
ate five summaries per document by inputting both
the abstracts and corresponding citation statements.
Then, we have employed a pre-trained RoBERTa
architecture to obtain five vector representations
for these summaries. The most similar summary to
the reference summary, determined by cosine simi-
larity, was selected as our T5-Generated Summary.
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3.3 Model Overview
The investigated summarization model has two
units: an extractive and an abstractive summarizer.
The overall architecture of the model is portrayed
in Figure 1. This section discusses the architecture
and working principle of these two units.

While designing the extractive summarizer, we
have considered two issues: how the sentences are
connected to each other and how semantic units
like words affect the sentence level correlations.
To fulfill these purposes, we have utilized two
different graph-based neural networks: an hetero-
geneous graph neural network (HeterSumGraph)
(Wang et al., 2020) and a graph attention network
(GAT) (Velickovic et al., 2018).

For any graph G = {V,E}, V denotes the nodes
and E, the edges between them. HeterSumGraph
defines V = Vw∪Vs, Vw is the set of unique words
and Vs is the set of sentences in the document. For
a document with n unique words and m sentences,
E is the edge weight matrix, where ei,j represents
word i in sentence j, (i ∈ {1 : n}, j ∈ {1 : m})
(Wang et al., 2020). The nodes that represent the
sentences are initialized with LongFormer [CLS]
tokens. Because LogFormer generates a contextu-
alized word embedding for each occurrence of the
word in the document, all of the word embeddings
for a word are averaged to initialize that particular
word-representing node in the graph. The edges be-
tween the words and sentences are initialized with
the corresponding TF-IDF values.

After the graph G is constructed, a graph atten-
tion network (GAT) is used to update the node
feature values. Considering hi ∈ Rdh where
i ∈ {1 : (n+m)} as the hidden states of the word
and sentence nodes, the GAT layer is designed as:

Ti,j = LeakyReLU(ωa[ωqhi;ωkhj ; ei,j ]) (1)

αi,j =
exp(Ti,j)∑
l∈Ni

exp(Ti,l)
(2)

ui = σ(
∑

j∈Ni

αi,jωvhj) (3)

where ωa, ωq, ωk and ωv are learnable weight ma-
trices. Ni denotes the list of the neighbor nodes.
The attention value between hi and hj is denoted
by αi,j . The GAT with multi-head attention (con-
sidering K attention heads) is designed as:

ui = ||Kk=1σ(
∑

j∈Ni

αk
i,jω

khi) (4)

To prevent the gradient from vanishing, HeterSum-
Graph incorporates a residual connection and the
final hidden state representation becomes:

hi = ui + hi (5)

Through the aforementioned GAT and position-
wise feed-forward network (FFN) layer compris-
ing two linear transformations (Wang et al., 2020),
the sentence nodes are updated with their adjacent
word nodes:

U1
w→s = GAT(H0

s ,H0
w,H0

w) (6)

H1
s = FFN(U1

w→s +H0
s) (7)

where U1
w→s ∈ Rn×dh H1

w = H0
w = Vw, and

H0
s = Vs. In Eq. 6, H0

s is employed as the atten-
tion query and for both the attention key and value
H0

w is used. Then, the revised sentence nodes are
used to generate new representations for the individ-
ual word nodes and continue to refine the revised
sentence nodes in an iterative fashion. At each
iteration, sentence-to-word and word-to-sentence
updates continue to be processed. The process can
be depicted as follows for the t-th iteration:

U t+1
s→w = GAT(Ht

w,Ht
s,Ht

s) (8)

Ht+1
w = FFN(U t+1

s→w +Ht
w) (9)

U t+1
w→s = GAT(Ht

s,Ht+1
w ,Ht+1

w ) (10)

Ht+1
s = FFN(U t+1

w→s +Ht
s) (11)

Once the model training is done, the sentence
nodes’ representations are used as the sentence
vector representations.

For direct sentence-level interactions, we have
also used a graph attention neural network (GAT).
Here, for the graph G = {V,E}, V = Vs where
Vs is the set of all the sentences in the document.
The edge weight matrix E preserves the semantic
similarity values between sentences. The nodes
are initialized in the same manner as the sentence
nodes in HeterSumGraph. For initializing the edges
between nodes, at first we have acquired the vector
representations of the sentences using pre-trained
LongFormer and then computed the cosine similar-
ity between the sentences. The edges are initialized
with the corresponding similarity values between
sentences. However, as scientific documents come
with many sentences, working with a fully con-
nected graph is not computationally cost effective.
To reduce the burden of computational overhead,
we have dropped the edge connections between
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nodes whose cosine similarity values are below a
certain cut-off value. Throughout the conducted ex-
periments, we have found that if we set the cut-off
value below 0.3, the performance of the summa-
rizer model remains the same.

Considering node features h = {h1, hn, ..., hm}
as the input, GAT applies a self attention on the
nodes and computes the attention coefficients as
follows:

Ti,j = a(ωhi, ωhj) (12)

where a is a single-layer feed forward neural net-
work with the LeakyReLU activation function, and
ω is a learnable parameter. This attention coeffi-
cient shows node j’s importance on node i and it
is computed only for the corresponding one-hop
neighbour nodes (j ∈ Ni). This attention coeffi-
cient value is normalized to compute the attention
values as follows:

αi,j =
exp(Ti,j)∑
l∈Ni

exp(Ti,l)
(13)

The multi-head attention is computed in the same
way it has been done for HeterSumGraph (Eq. 4).

Once the sentence representations from both the
HeterSumGraph and GAT are computed, they are
concatenated and fed to the feed-forward neural
network layer. This is a two-layer position-wise
feed-forward layer (Wang et al., 2020) for labeling
the sentences with 1 or 0; 1 indicates that particular
sentence is included in the extractive summary.

The abstractive summary is generated by the
LongFormer decoder. To train the summarizer
units in parallel, the training mechanism in Yu et al.
(2020) is used. The overall loss L of the model is:

L = Lext + Labs (14)

where Lext and Labs represent the cross-entropy
losses of the extractive and abstractive summariz-
ers, respectively.

4 Experimental Results and Analysis

This section gives a brief description of the model
parameters used in the experiments as well as the
results achieved on CL-SciSumm-2020 and the cus-
tomized SSN datasets.

4.1 Model Parameters and Training Details
We have trained our model on a 48GB NVIDIA
RTX A6000 GPU. The batch size has been set to 1

as the length of input documents plus the citation
statements is large. Since all the experiments are
done on a small batch-size, we have followed the
training procedure of Sefid and Giles (2022) and
accumulated gradients for 10 steps and updated
the parameters. The NOAM scheduler has been
utilized to adjust the learning rate and gradients are
clipped so that exploding gradients during training
can be prevented. The model has been trained for
20,000 epochs. The extractive summarizer is initial-
ized with the LongFormer embeddings. Following
that, the LongFormer encoder-decoder architecture
for the abstractive summarizer and the extractive
summarizer units’ forward passes are trained sep-
arately. Once both of the forward passes are done
for each iteration and the individual losses are cal-
culated, the model’s overall loss is calculated. If
either of the two unit’s validation loss continues
to go down for 5 epochs, the parameter settings
for that particular unit are saved and that unit’s
training is postponed for the next 10 epochs. The
number of attention-heads for multi-head attention
has been set to 8. The stop words and punctua-
tion have been filtered out when pre-processing the
word nodes in the graph. Following Wang et al.
(2020), 10% of the words in the vocabulary having
low TF-IDF values have been further filtered out.
The word and sentence nodes have been initialized
with 768-dimensional vectors. And the sentence
representations from both the HeterSumGraph and
GAT are 512-dimensional vectors. So, the final
sentence vectors after the concatenation step are
1024-dimensional vectors. The Feed Forward Net-
work hidden layer size is 512.

4.2 Performance Analysis of the Model

We have performed experiments on two datasets:
modified SSN and CL-SciSumm-2020. The results
achieved by our models are reported as overlap-
ping unigrams, bigrams, and the longest common
sequence between the generated summaries and
the reference summaries by means of R-1, R-2,
and R-L metrics; and semantic compatibility be-
tween the reference and generated summaries by
means of METEOR metric, respectively, for the
modified SSN corpus. R-1, and R-2 show the in-
formativeness, and R-L shows the fluency of the
generated summary. The metrics used for analyz-
ing the model performance on CL-SciSumm-2020
are R-2 and R-SU4, which indicate the proportion
of bigram overlap and unigram plus skipgram of
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Table 1: Results on the modified SSN corpus. The results consider both the abstracts and the T5-generated
summaries incorporating citation statements as the reference summaries. The best results are boldfaced.

Models On Abstracts as Summaries On T5-Generated Summaries
R-1 R-2 R-L METEOR R-1 R-2 R-L METEOR

Extractive
BERTSumExt 42.92 14.19 39.01 33.09 43.11 14.21 39.12 33.07
HeterSumGraph 44.27 14.52 39.73 33.18 44.30 14.53 39.74 33.18
GRETEL 45.22 15.19 40.23 36.87 45.23 15.19 40.24 36.88
Proposed Model (Extractive) 45.19 15.18 40.21 36.83 45.19 15.21 40.23 36.85
Abstractive
PTGen+Cov 41.66 13.08 36.95 32.44 41.60 13.10 36.72 32.40
BERTSumAbs 42.06 14.52 38.17 32.49 42.04 14.56 38.17 32.49
BERT+CopyTransformer 42.43 15.01 39.03 32.88 42.44 15.05 39.04 32.91
Proposed Model (Abstractive) 44.82 15.19 39.31 36.50 44.83 15.19 39.30 36.51

4 tokens overlap, respectively, between the refer-
ence and generated summaries. The performance
here is also analyzed with the METEOR metric.
As the Bi-directional encoder and autoregressive
decoder we have also experimented with BigBird.
However, the better performance was found with
LongFormer. That is why in the final model, we
have used LongFormer in all the cases for initial
encoding and generating abstractive summaries.

4.3 Results: Modified SSN Corpus

To compare the performance of our model with
the existing extractive models, we train and test
the following extractive summarizer models on our
modified corpus: (1) BERTSumEXT (Liu and La-
pata, 2019): a BERT-based model; (2) HeterSum-
Graph (Wang et al., 2020): a heterogeneous graph-
based approach that considers the cross-sentence
correlations using additional semantic units; and
(3) GRETEL: fuses semantic information from the
document context and gold summary using a hier-
archical transformer encoder and graph contrastive
learning. For the abstractive summarization base-
line, we have experimented with: (1) PTGen+Cov
(See et al., 2017): based on a hybrid pointer genera-
tor network to copy words from the source text, (2)
BERTSumAbs (Liu and Lapata, 2019): a BERT-
based model; and (3) BERT+CopyTransformer
(Aksenov et al., 2020): applies BERT-windowing
for processing data longer than the BERT window.

The performance of the existing models and our
proposed models are shown in Table 1. As refer-
ence summaries, we have considered both the paper
abstracts as well as the summaries we have gener-
ated from the abstracts plus the citing statements
using T5.

Although BERTSumExt and BERTSumAbs per-

form very well with short documents, their per-
formance metrics are not at that level when sum-
marizing scientific documents. The main reason
for this is their limitation to working with a max-
imum 512 input tokens, but scientific documents
are much longer. For this, they have applied the
greedy algorithm introduced by Nallapati et al.
(2016). HeterSumGraph considers direct relation-
ships between words and sentences on texts with
a 50-sentence maximum, whereas our proposed
model considers direct cross-sentence correlations,
as well, and can deal with longer text spans (up
to 3500 words). These additional features, to-
gether with LongFormer’s enriched word and sen-
tence features, gives our model a performance
boost, but our model requires more computational
time and resources. Our model performs better
by a good margin compared to the other models
apart from GRETEL. Our extractive summarizer
shows slightly lower performance compared to
GRETEL which is a more complex model. Still, be-
cause of the parallel training approach, our model
has achieved comparable results. Our abstractive
summarizer model outperforms the other experi-
mental abstractive summarizers by large margins:
PTGen+Cov by 2.36, BertSumAbs by 1.14, and
BERT+CopyTransformer by 0.28 R-L scores. The
METEOR scores achieved by our model are 36.83
and 36.50 for extractive and abstractive summaries,
respectively, when tested over the T5-generated
summaries. In the experiment with the abstracts
as summaries, the METEOR scores are 36.51 and
36.85 for the abstractive and extractive summaries,
respectively. Looking at the METEOR scores
achieved by the other models (see Table 1), it is
clearly visible that both the extractive and abstrac-
tive summarizer units of our model have outper-
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Table 2: Model performance analysis on two CL-SciSumm-2020 summary categories. All values are F-1 scores.

Models Abstracts as Summaries Human-created Summaries
R-2 R-SU4 METEOR R-2 R-SU4 METEOR

Jaccard-focused GCN 0.19931 0.09956 - 0.2042 0.14162 -
Clustering 0.1959 0.0962 - 0.1749 0.1169 -
MMR2 0.15067 0.07851 - 0.15073 0.10237 -
LSTM+BabelNet 0.329 0.172 - 0.241 0.171 -
Proposed Model
Extractive Summarizer 0.43 0.266 31.12 0.42 0.249 30.18
Abstractive Summarizer 0.43 0.250 30.98 0.41 0.234 30.06

formed them by at least 3. This observation in-
dicates that the summaries generated by our pro-
posed model are more semantically similar to the
reference summaries. To see the importance of the
individual units, please check the ablation study in
the appendix.

4.4 Results: CL-SciSumm-2020 Corpus

For analyzing our proposed model’s performances
on CL-SciSumm-2020 Corpus, we have used R-
2 and R-SU4 F-1 scores (as the other compara-
ble models are reported with these metrics) We
have experimented to generate abstract and hu-
man summaries. As benchmarks, we have selected
the research works submitted to CL-SciSumm-
2019/2020: (1) Jaccard-focused GCN (Umapathy
et al., 2020): an extractive summarizer utilizing
cross-sentence graph and graph attention networks,
(2) Clustering (Mishra et al., 2020): based on dif-
ferent clustering algorithms followed by sentence-
scoring functions, (3) MMR2 (Reddy et al., 2020):
based on the maximal marginal relevance tech-
nique, and (4) LSTM+BabelNet (Chiruzzo et al.,
2019): BabelNet vectors were used to train the
LSTM. The CL-SciSumm task provides a perfor-
mance metric evaluation script which is used to
calculate the R-2 and R-SU4 values for the model-
generated summaries against the test set.

Results on CL-SciSumm-2020 are reported in
Table 2. Looking at the results, it is clear that
our model outperforms the other existing extrac-
tive models on every measure. The R-2 and R-
SU4 achieved for both of our model-generated ex-
tractive and abstractive summaries are very high
compared to the other existing extractive mod-
els. And this is the case for both the original ab-
stracts and the human-created summaries as ref-
erence summaries. For the human-created refer-
ence summaries, our extractive and abstractive

summarizers have achieved 0.078 and 0.063 R-
SU4 F-1 score gains, respectively, compared to
the LSTM+BabelNet model, which comes with
the best result among the other considered mod-
els. While considering the abstracts of the papers
as reference summaries, these gains are 0.094 and
0.078, respectively. For the abstractive summaries,
the METEOR score achieved by our model is
30.18 whereas for the extractive summaries, it has
achieved a 30.06 METEOR score on the human-
generated summaries. Over the abstracts of the
papers, these scores are 31.12 and 30.98, respec-
tively.

5 Conclusion and Future Work

In this paper, we have introduced a summarizer
model considering two intentions: first, summa-
rize scientific documents incorporating citation con-
texts, and second, build a summarizer model which
can generate both extractive and abstractive sum-
maries by means of parallel training so that both
counterparts can gain a performance boost. For this,
we have utilized both the sentence-sentence and
sentence-word correlations. Furthermore, we have
constructed a corpus comprising 10K scientific ar-
ticles with their corresponding citation statements
for the summarization task. The experimental re-
sults show that our model performs well compared
to other well-known methods. Though this work
considers the research community’s observations
(citing statements), it doesn’t consider the back-
ground information (references presented in the
target article). In our future work, we are planning
to use both sides of the citation graph (references
as the background knowledge and the citing state-
ments as the research community’s views) while
summarizing a scientific article.
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Limitations

Our experiments are limited to summarize long
scientific texts only. We have not conducted any
experiments with short target texts, consequently
we are not sure how well the model may perform
while summarizing short texts. We are also unsure
how well this model may perform for extreme sum-
mary generation like TLDR (Cachola et al., 2020).
Moreover, we have trained both the extractive and
abstractive summarizer units for a large number of
epochs. Though to prevent any unit from being
over-fitted we have checked the curve of validation
loss after every 5 epochs. This is very computation-
ally expensive and demands a longer period of time
for model training. Furthermore, no tests have been
performed to see how the abstractive summarizer
unit suffers from hallucination.
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A Appendix

A.1 Ablation Study

Table 3: Ablation Study: Rows labeled with † indicate
the extractive summaries and rows labeled with ∗ indi-
cate abstractive summaries.

Discarded Unit On T5-Generated Summaries
R-1 R-2 R-L METEOR

GAT† 44.86 14.9 39.96 36.52
HeterSumGraph† 44.78 14.81 39.84. 36.49
Extractive Summarizer∗ 43.01 15.02 38.99 35.92
Abstractive Summarizer† 44.91 14.95 39.96 36.50

To portray a better grasp of each component’s
contribution in our suggested model, we have exper-
imented with different units of our model separately
and the results are reported in Table 3. All of these
experiments are performed on the T5-generated
corpus which combines the abstract of the paper
along with the citation statements.

In our first experiment, we have discarded the
GAT unit which works with cross-sentence rela-
tionships and kept only the HeterSumGraph for
extractive summary generation. This time the per-
formances of the model are lower than the reported
results in Tables 1 (R-1: 44.86, R-2: 14.91, R-L:
39.96, and METEOR: 36.52) for our generated ex-
tractive summaries. Still, these results are higher
compared to the original HeterSumGraph model. It
shows, using the LongFormer encoder in the begin-
ning and using the collective loss function for both
the abstractive and extractive summarizer units play
a significant role in the performance boost. And
it also indicates that taking direct cross-sentence
correlations into consideration provides some addi-
tional features to enrich the model which helps the
model’s performance to improve.

In the second experiment, we have discarded
the HeterSumGraph unit and used only GAT in
the extractive summarization unit. This time the
performance metrics for extractive summaries are
R-1: 44.78, R-2: 14.81, R-L: 39.84,and METEOR:
36.4. These values are comparably lower than we
gained in the last experiment. The reason behind
this incident is, though no direct cross-sentence
relationships are present, HeterSumGraph, by 2-
hop distance, considers the correlations between
sentences.

The third experiment discards the extractive sum-
marizer unit. The LongFormer abstractive sum-
marizer unit achieves very poor R-1: 43.01, R-2:
15.02, R-L: 38.99, and METEOR: 35.92 scores

compared to the proposed model. This poor per-
formance demonstrates the importance of the infor-
mation that the extractive summarizer provides the
abstractive summarizer through the combined loss
function.

Finally, we have discarded the abstract summa-
rizer unit and used the combination of HeterSum-
Graph and GAT for extractive summary generation.
During this experiment, the achieved R-1, R-2 R-
L, and METEOR scores are 44.91, 14.95, 39.96,
and 36.50, respectively, which are more than the
cases for the three above-mentioned ablation ex-
periments. It indicates the significance of training
the abstractive summarization unit in parallel as
well as using the cross-sentence and semantic unit-
sentence correlations at the same time.

A.2 Validity Check of the Proposed Corpus
To ascertain the corpus’s quality, a rigorous anal-
ysis was conducted on a statistically significant
subset of the dataset, with a confidence level of
95% and a margin of error of 3%, aided by three
human annotators. Within the vast pool of 10,000
summarization samples, a random selection of 400
was subject to annotation for this statistical inquiry.

Each annotator was tasked with evaluating
whether the summaries generated by the T5 model
effectively encapsulated the same information as
the combination of the abstract and the citing state-
ments. The first annotator affirmed that 374 sam-
ples achieved this concurrence, the second anno-
tator concurred with 368, and the third annotator
with 371.

When comparing the assessments of the first and
second annotators, it was determined they agreed
that 368 samples were appropriately summarized,
while 16 were not, resulting in a substantial Co-
hen’s κ of 0.89. In the comparison between the
second and third annotators, a significant concur-
rence emerged for 396 samples, where 368 were
accurately summarized, and 28 were not, yielding
κ value of 0.93. Similarly, when examining the
assessments of the first and third annotators, agree-
ment was established for 398 summaries, with 370
being correctly summarized and 27 not, resulting
in κ of 0.94.
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