@inproceedings{goncalves-etal-2023-supervising,
title = "Supervising the Centroid Baseline for Extractive Multi-Document Summarization",
author = "Gon{\c{c}}alves, Sim{\~a}o and
Correia, Gon{\c{c}}alo and
Pernes, Diogo and
Mendes, Afonso",
editor = "Dong, Yue and
Xiao, Wen and
Wang, Lu and
Liu, Fei and
Carenini, Giuseppe",
booktitle = "Proceedings of the 4th New Frontiers in Summarization Workshop",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.newsum-1.9",
doi = "10.18653/v1/2023.newsum-1.9",
pages = "87--96",
abstract = "The centroid method is a simple approach for extractive multi-document summarization and many improvements to its pipeline have been proposed. We further refine it by adding a beam search process to the sentence selection and also a centroid estimation attention model that leads to improved results. We demonstrate this in several multi-document summarization datasets, including in a multilingual scenario.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goncalves-etal-2023-supervising">
<titleInfo>
<title>Supervising the Centroid Baseline for Extractive Multi-Document Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simão</namePart>
<namePart type="family">Gonçalves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gonçalo</namePart>
<namePart type="family">Correia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diogo</namePart>
<namePart type="family">Pernes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afonso</namePart>
<namePart type="family">Mendes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th New Frontiers in Summarization Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The centroid method is a simple approach for extractive multi-document summarization and many improvements to its pipeline have been proposed. We further refine it by adding a beam search process to the sentence selection and also a centroid estimation attention model that leads to improved results. We demonstrate this in several multi-document summarization datasets, including in a multilingual scenario.</abstract>
<identifier type="citekey">goncalves-etal-2023-supervising</identifier>
<identifier type="doi">10.18653/v1/2023.newsum-1.9</identifier>
<location>
<url>https://aclanthology.org/2023.newsum-1.9</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>87</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supervising the Centroid Baseline for Extractive Multi-Document Summarization
%A Gonçalves, Simão
%A Correia, Gonçalo
%A Pernes, Diogo
%A Mendes, Afonso
%Y Dong, Yue
%Y Xiao, Wen
%Y Wang, Lu
%Y Liu, Fei
%Y Carenini, Giuseppe
%S Proceedings of the 4th New Frontiers in Summarization Workshop
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F goncalves-etal-2023-supervising
%X The centroid method is a simple approach for extractive multi-document summarization and many improvements to its pipeline have been proposed. We further refine it by adding a beam search process to the sentence selection and also a centroid estimation attention model that leads to improved results. We demonstrate this in several multi-document summarization datasets, including in a multilingual scenario.
%R 10.18653/v1/2023.newsum-1.9
%U https://aclanthology.org/2023.newsum-1.9
%U https://doi.org/10.18653/v1/2023.newsum-1.9
%P 87-96
Markdown (Informal)
[Supervising the Centroid Baseline for Extractive Multi-Document Summarization](https://aclanthology.org/2023.newsum-1.9) (Gonçalves et al., NewSum 2023)
ACL