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Message from the Workshop Chairs

The development of intelligent systems capable of producing concise, fluent, and accurate summaries is a
longstanding objective in natural language processing. This workshop serves as a forum for the exchange
of ideas towards achieving this aim. It brings together experts from various disciplines, including sum-
marization, language generation, and cognitive and psycholinguistics, to discuss key issues in automatic
summarization. The agenda covers a wide array of topics, such as innovative paradigms and frameworks,
multilingual and cross-lingual setups, shared tasks, information integration, novel evaluation methods,
applied research, and future research directions. The workshop is aimed at fostering a cohesive research
community, expediting the transfer of knowledge, and developing new tools, datasets, and resources to
meet the needs of academia, industry, and government.

This fourth edition of the workshop, following our previous workshops at EMNLP 2017, EMNLP 2019,
and EMNLP 2021, received 31 paper submissions, with acceptance rates of 42%. We are honored to
host five distinguished speakers: Kathleen McKeown (Columbia University), Jackie Cheung (McGill
University), Rui Zhang (Penn State University), Iz Beltagy (AI2), Chenguang Zhu (Zoom), who collec-
tively represent a wide spectrum of expertise in summarization and text generation fields. We extend our
gratitude to these speakers, as well as to our program committee members and workshop attendees.
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Abstract

Recently, the emergence of ChatGPT has at-
tracted wide attention from the computational
linguistics community. Many prior studies have
shown that ChatGPT achieves remarkable per-
formance on various NLP tasks in terms of auto-
matic evaluation metrics. However, the ability
of ChatGPT to serve as an evaluation metric is
still underexplored. Considering assessing the
quality of natural language generation (NLG)
models is an arduous task and NLG metrics
notoriously show their poor correlation with
human judgments, we wonder whether Chat-
GPT is a good NLG evaluation metric.

In this report, we provide a preliminary meta-
evaluation on ChatGPT to show its reliability as
an NLG metric. In detail, we regard ChatGPT
as a human evaluator and give task-specific
(e.g., summarization) and aspect-specific (e.g.,
relevance) instruction to prompt ChatGPT to
evaluate the generated results of NLG models.
We conduct experiments on five NLG meta-
evaluation datasets (including summarization,
story generation and data-to-text tasks). Ex-
perimental results show that compared with
previous automatic metrics, ChatGPT achieves
state-of-the-art or competitive correlation with
human judgments in most cases. In addition,
we find that the effectiveness of the ChatGPT
evaluator might be influenced by the creation
method of the meta-evaluation datasets. For
the meta-evaluation datasets which are created
greatly depending on the reference and thus
are biased, the ChatGPT evaluator might lose
its effectiveness. We hope our preliminary
study could prompt the emergence of a general-
purposed reliable NLG metric.1

∗ Equal Contribution. Work was done when Wang and
Liang was interning at Pattern Recognition Center, WeChat
AI, Tencent Inc, China.

†Corresponding author.
1We have released the used data at https://github.

com/krystalan/chatgpt_as_nlg_evaluator.

Figure 1: Prompting ChatGPT as an evaluator to score
the generated results of NLG models (taking news sum-
marization as an example).

1 Introduction

Pre-trained large language models (LLMs; e.g.,
GPT-3.5, ChatGPT and GPT-4), which are per-
formed through chatting (or asking) with it, have
obtained promising results on various natural lan-
guage understanding (NLU) and natural language
generation (NLG) downstream tasks (Ouyang et al.,
2022; Kocoń et al., 2023; Qin et al., 2023; Huang
et al., 2023; Yang et al., 2023; Rao et al., 2023;
Bang et al., 2023; Zuccon and Koopman, 2023).
For example, Zhong et al. (2023) show that Chat-
GPT can attain the comparable understanding abil-
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ity to some fine-tuned BERT-style models on NLU
tasks while failing to surpass current task-specific
NLU models. Wei et al. (2023) prove that ChatGPT
can achieve good performance and even surpasses
some full-shot models on several datasets through
a multi-turn question-answering manner. For NLG
tasks, Jiao et al. (2023) claim that ChatGPT per-
forms competitively with commercial translation
products (e.g., Google Translator) on high-resource
European languages. Wang et al. (2023a) demon-
strate that ChatGPT can balance well between in-
formativeness and conciseness, and generate great
cross-lingual summaries. Although impressive per-
formance on these tasks in terms of automatic eval-
uation metrics has been shown, it is still not clear
whether ChatGPT can evaluate the quality of tex-
tual generations as a human does.

Recently, using pre-trained language models as
NLG evaluation metric, e.g., MoverScore (Zhao
et al., 2019), BERTScore (Zhang et al., 2020),
COMET (Rei et al., 2020), BLEURT (Sellam
et al., 2020), BARTScore (Yuan et al., 2021) and
MAUVE (Pillutla et al., 2022), receives increas-
ing attention since it offers a decent human-related
judgment from a deep semantic perspective. Given
the powerful ability of ChatGPT as an intelligent
conversational LLM, researchers also attempt to
investigate whether it can evaluate the translation
quality as a human evaluator (Kocmi and Feder-
mann, 2023). However, the automated assessment
of the general generation quality of NLG models
still remains underexplored.

In this report, we aim to answer the following
research question: Is ChatGPT a good NLG evalu-
ator? To this end, we regard ChatGPT as a human
evaluator and give task-specific (e.g., summariza-
tion) and aspect-specific (e.g., relevance) instruc-
tion to prompt ChatGPT to evaluate the genera-
tion of NLG models. As the example shows in
Figure 1, we also attempt different scoring crite-
ria and whether to provide golden references in
the prompts to systematically test the reliability
of the ChatGPT evaluator. We conduct experi-
ments on five widely-used NLG meta-evaluation
datasets (including summarization, story genera-
tion and data-to-text tasks). Experimental results
show that ChatGPT exhibits a high correlation with
human judgment in most cases especially for the
story generation task, indicating its potential as an
NLG metric. In addition, we find that the Chat-
GPT evaluator is sensitive to the prompts, and for

different tasks or aspects, the prompts should be
carefully designed. Moreover, the creation method
of the meta-evaluation datasets has a significant
influence on the effectiveness of different evalua-
tion metrics. If a meta-evaluation dataset is created
greatly depending on the reference, the similarity
between model generation and references serves as
a strong signal to reflect human judgments, where
simple similarity-based metrics (e.g., ROUGE) can
achieve very strong performance. Therefore, the
ChatGPT evaluator might lose its effectiveness in
such situations.

Our main contributions are concluded as follows:
• To our knowledge, we are the first to utilize Chat-

GPT as a general NLG evaluation metric to study
its correlations with human judgments.

• We use task-specific and aspect-specific prompts
to guide ChatGPT to perform as a reference-
free or reference-based NLG metric, and eval-
uate its effectiveness on five widely-used meta-
evaluation datasets covering three NLG tasks.

• We find that the ChatGPT evaluator has a high
correlation with humans in most cases, especially
for creative NLG tasks (e.g., story generation)
where multiple generations can satisfy humans.

• We find that the ChatGPT evaluator is sensitive
to the prompts. For different tasks and aspects,
the prompt should be carefully designed.

• We find that the involved biases of the NLG meta-
evaluation datasets also influence the effective-
ness of NLG metrics, and might lead to the lim-
ited effectiveness of the ChatGPT evaluator.

2 Related Work

2.1 NLG Metrics

A good automatic NLG metric can effectively in-
dicate the quality of the textual generations and
thus can save lots of human labor from conducting
human evaluation. Therefore, it is vital to design
automatic evaluation metrics for NLG tasks, e.g.,
text summarization, story generation, data-to-text
generation, machine translation, and many others.
Generally, the score that points out how well the
systems perform on each task is computed by com-
paring the system texts with one or more reference
texts for semantic matching. In the literature, the
metrics can be roughly categorized into four types:

n-gram-based Metrics. Essentially, the n-gram-
based metrics aim to measure the lexical over-
lap between a generated text and a reference text.
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The standard n-gram overlap-based metrics gen-
erally include ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), Distinct-n (Li et al., 2016), and
METEOR (Denkowski and Lavie, 2011). For ex-
ample, ROUGE is the dominant metric in the sum-
marization evaluation area. Its variants consider
the overlap of unigrams (ROUGE-1) and bigrams
(ROUGE-2), among others. BLEU metric is the
common practice for the machine translation eval-
uation area. Although these metrics achieve good
correlations (typically large overlaps) with golden
references, they are not general enough because a
system summary might convey the same meaning
while using different surface forms.

Embedding-based Metrics. To further improve
semantic similarity between a generated text and
a reference text, embedding-based metrics are
proposed based on the word embeddings (e.g.,
WMD (Kusner et al., 2015)) or sentence embed-
dings (e.g., BERTScore (Zhang et al., 2020) and
MoverScore (Zhao et al., 2019)). These metrics
further bridge the gap with human-related judg-
ment while they largely depend on the quality of
embeddings, which may limit their potential.

LLM-based Metrics. With the development of
LLMs, some researchers show that LLMs could
achieve great correlation with human judgment, i.e.,
BARTScore (Yuan et al., 2021), and GPTScore (Fu
et al., 2023). However, ChatGPT, as a more power-
ful conversational LLM, has not been investigated
to evaluate the quality of the NLG model outputs.

Other Metrics. In different research fields, there
are some paraphraser-based or task-specific met-
rics. For example, PRISM (Thompson and Post,
2020) is proposed to evaluate translation outputs
based on the pre-trained paraphrase models. Sto-
ryER (Chen et al., 2022), a learning metric, mimics
human preference when judging a story by three
steps: Ranking, Rating, and Reasoning based on a
specific story-generation dataset. Besides, a specif-
ically developed metric named PARENT (Dhingra
et al., 2019) is designed for the table2text genera-
tion. Other statistical indicators, such as omission
errors, hallucination errors, addition errors, dupli-
cation errors, and extrinsic errors, are also applied
in the table2text task. Although these metrics have
obtained impressive results, human evaluation is
still inevitable in table2text.

2.2 Research on ChatGPT

In recent years, from BERT (Devlin et al., 2019) to
ChatGPT (OpenAI, 2022), a large number of pre-
trained language models have been proposed one
after another. Both their parameters and ability are
gradually increased, facilitating much-advanced
techniques. In particular, ChatGPT, which shows
us a revolutionary change as an intelligent conver-
sational large language model, sends shock waves
through the research community and industries that
have continued to reverberate to this day. With
the emergence of ChatGPT, there are two growing
research interests related to it: (1) leveraging Chat-
GPT to deal with various NLP tasks and evaluating
its performance using traditional task-specific met-
rics (i.e., evaluation), and (2) using as a metric to
evaluate the outputs of other task-specific models
(i.e., evaluator) (Kocmi and Federmann, 2023).

Evaluation. Generally, the evaluation tasks on
ChatGPT can be divided into two categories, i.e.,
natural language understanding (NLU) and natural
language generation (NLG). For NLU tasks, some
researchers find that ChatGPT covers almost all
NLU tasks (e.g., sentiment analysis, textual simi-
larity and textual entailment) and achieves com-
petitive or even better performance (Qin et al.,
2023; Bang et al., 2023; Zhong et al., 2023). For
NLG tasks, machine translation (Jiao et al., 2023),
summarization (Yang et al., 2023), query gener-
ation (Wang et al., 2023b), and radiology report
simplification (Jeblick et al., 2022) are involved.
Different from them, we regard ChatGPT as a hu-
man evaluator to automatically assess the quality
of general textual generations rather than using it
for solving tasks.

Evaluator. As an evaluator, there are two studies
that evaluate the quality of translation (Kocmi and
Federmann, 2023) and human personalities (Rao
et al., 2023) by prompting ChatGPT. However, in
this work, we aim to evaluate the more general tex-
tual outputs to further show the ability of ChatGPT
as a general NLG metric.

3 ChatGPT for NLG Evaluation

In this section, we discuss how to prompt ChatGPT
to serve as a reference-free NLG metric (§ 3.1) or
a reference-based NLG metric (§ 3.2) to evaluate
the generation quality of NLG models. We take the
news summarization task as an example, and give
the details of the prompt templates.
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3.1 Reference-free Metric
To evaluate the generation quality of NLG mod-
els, we regard ChatGPT as a human evaluator and
give it evaluation instruction via different prompts.
Each prompt should specify (1) which NLG task
(e.g., summarization) needs to be evaluated and (2)
which aspect (e.g., fluency) of the generation result
should be assessed currently.

Inspired by Kocmi and Federmann (2023), we
utilize the following two prompts: direct assess-
ment (DA) and one-to-five stars ranking (star).

(DA Prompt)
Score the following [task-ins] with re-
spect to [aspect] on a continuous scale
from 0 to 100, where a score of zero means
“[ant-aspect]” and score of one hun-
dred means “perfect [aspect]”. Note that
[aspect] measures [aspect-ins].

[Conditioned Text]
[Generated Text]
Scores:

(Star Prompt)
Score the following [task-ins] with re-
spect to [aspect] with one to five stars,
where one star means “[ant-aspect]” and
five stars means “perfect [aspect]”. Note
that [aspect] measures [aspect-ins].

[Conditioned Text]
[Generated Text]
Stars:

where [task-ins] and [aspect-ins] are
the instructions of the current task and aspect, re-
spectively. [aspect] and [ant-aspect] de-
note the evaluated aspect and its antonym, respec-
tively. [Conditioned Text] is the input of
NLG models while [Generated Text] is the
output. For example, when evaluating news sum-
marization models in terms of fluency, the DA
prompt may be like this:

Score the following news summarization given
the corresponding news with respect to fluency
on a continuous scale from 0 to 100, where
a score of zero means "disfluency" and score
of one hundred means "perfect fluency". Note
that fluency measures the quality of individual
sentences, are they well-written and grammati-

cally correct. Consider the quality of individ-
ual sentences.

News: [a news article]
Summary: [one generated summary]
Scores:

In this manner, both the details of the task and
the evaluation aspect are given to ChatGPT. Next,
ChatGPT will give its judgment (e.g., “score: 70”)
and the corresponding illustrative description (e.g.,
“the summary covers the main points of the news,
but ...”). A specific example is shown in Figure 1.
Finally, the numerical scores could be extracted via
several simple heuristic rules.

3.2 Reference-based Metric

In addition to reference-free metrics, we explicitly
mention the golden references in the prompts to
make ChatGPT a reference-based NLG metric:

(DA Prompt w/ Reference)
Score the following [task-ins] with re-
spect to [aspect] on a continuous scale
from 0 to 100, where a score of zero means
“[ant-aspect]” and score of one hun-
dred means “perfect [aspect]”. Note that
[aspect] measures [aspect-ins].

[Conditioned Text]
Human reference: [A Reference]
[Generated Text]
Scores:

The star prompt with reference is also formed in
a similar way:

(Star Prompt w/ Reference))
Score the following [task-ins] with re-
spect to [aspect] with one to five stars,
where one star means “[ant-aspect]” and
five stars means “perfect [aspect]”. Note
that [aspect] measures [aspect-ins].

[Conditioned Text]
Human reference: [A Reference]
[Generated Text]
Stars:

In this way, the ChatGPT evaluator will make its
judgment and give the evaluation results under the
consideration of the golden references.

4



Metrics
Coherence Relevance Consistency Fluency Avg.

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.167 0.160 0.126 0.326 0.359 0.252 0.160 0.224 0.130 0.115 0.158 0.094 0.192 0.225 0.150
ROUGE-2 0.184 0.174 0.139 0.290 0.327 0.219 0.187 0.246 0.155 0.159 0.185 0.128 0.205 0.233 0.160
ROUGE-L 0.128 0.102 0.099 0.311 0.342 0.237 0.115 0.189 0.092 0.105 0.141 0.084 0.165 0.194 0.128
BERTScore 0.283 0.310 0.211 0.311 0.346 0.243 0.110 0.152 0.090 0.192 0.209 0.158 0.224 0.254 0.175
MoverScore 0.159 0.167 0.118 0.318 0.371 0.244 0.157 0.224 0.127 0.129 0.176 0.105 0.191 0.234 0.148
PRISM 0.249 0.258 0.196 0.212 0.232 0.163 0.345 0.352 0.285 0.254 0.264 0.205 0.265 0.276 0.212
BARTScore 0.322 0.345 0.250 0.264 0.290 0.197 0.311 0.321 0.256 0.248 0.260 0.203 0.286 0.304 0.227
BARTScore+CNN 0.448 0.458 0.342 0.356 0.369 0.273 0.382 0.422 0.315 0.356 0.407 0.292 0.385 0.414 0.305
BARTScore+CNN+Para 0.424 0.442 0.325 0.313 0.364 0.241 0.401 0.487 0.332 0.378 0.448 0.311 0.379 0.435 0.302

ChatGPT (DA w/o ref) 0.451 0.456 0.383 0.439 0.473 0.379 0.432 0.512 0.399 0.380 0.443 0.351 0.425 0.471 0.378
ChatGPT (Stars w/o ref) 0.470 0.484 0.403 0.428 0.454 0.374 0.419 0.517 0.389 0.353 0.415 0.329 0.417 0.468 0.374
ChatGPT (DA w/ ref) 0.420 0.435 0.346 0.448 0.474 0.378 0.424 0.534 0.384 0.316 0.381 0.285 0.402 0.456 0.348
ChatGPT (Stars w/ ref) 0.474 0.491 0.407 0.430 0.457 0.378 0.403 0.489 0.375 0.339 0.409 0.319 0.411 0.461 0.370

Table 1: Sample-level Spearman correlation (Spear.) correlation, Pearson (Pear.) correlation and Kendall’s Tau
(Kend.) of different aspects on SummEval (a text summarization meta-evaluation dataset). “ Avg. ” indicates the
average performance. The bold indicates the best correlation.

4 Experiments

4.1 Experimental Setup
Metrics. To evaluate how well automatic metrics
correlate with human judgment. Two widely-used
correlation measures are adopted: (1) Spearman
correlation (Zar, 2005) assesses the monotonic re-
lationships between two variables; (2) Pearson cor-
relation (Mukaka, 2012) measures the linear rela-
tionships between two sets of data; (3) Kendall’s
Tau (Kendall, 1938) evaluates the ordinal associa-
tion between two measured quantities.
Evaluation Strategy. When calculating the corre-
lation scores, there are different aggregation meth-
ods. Given a set of conditioned text {c1, c2, ..., cn}
(e.g., source documents in text summarization task)
and M NLG models. The generated text of m-th
model for the i-th condition text is denoted as gi,m.
(1) Sample-level evaluation strategy calculates the
correlation scores as follows:

Corrsample =
1

n

n∑

1

(ρ([fauto(gi,1), ..., fauto(gi,M )],

[fhuman(gi,1), ..., fhuman(gi,M )]))
(1)

where ρ denotes the correlation metrics like Spear-
man correlation. fauto and fhuman indicate the au-
tomatic evaluation and human judgment functions,
respectively.
(2) Dataset-level evaluation strategy calculates the
correlation as follows:

Corrdataset =ρ([fauto(g1,1), ..., fauto(gn,M )],

[fhuman(g1,1), ..., fhuman(gn,M )])
(2)

4.2 Baselines

We compare the ChatGPT evaluator with the fol-
lowing widely-used automatic NLG metrics to pro-
vide deeper analyses:
• ROUGE-1, ROUGE-2 and ROUGE-L (Lin,

2004) measure the lexical overlap between the
generated text and corresponding references
based on unigram, bigram and longest common
subsequence, respectively.

• BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019) evaluate the semantic
similarity via pre-trained BERT model (Devlin
et al., 2019).

• PRISM (Thompson and Post, 2020) is used to
evaluate NLG models via pre-trained paraphrase
models.

• BARTScore (Yuan et al., 2021) is a state-of-the-
art NLG metrics based on vanilla pre-trained
BART model (Lewis et al., 2020).

• BARTScore+CNN (Yuan et al., 2021) could be
regarded as an enhanced version of BARTScore.
This metric is based on the BART fine-tuned on
the CNN/DM dataset (Hermann et al., 2015).

• BARTScore+CNN+Para (Yuan et al., 2021) is
another enhanced version of BARTScore. The
metric is based on the BART fine-tuned on both
CNN/DM and Paraphrase2.0 (Hu et al., 2019).

• Perplexity (PPL) is a commonly-used NLG met-
ric to evaluate whether the generation result is
grammatical and fluent.

4.3 Text Summarization

We conduct meta-evaluation on SummEval (Fabbri
et al., 2021), NewsRoom (Grusky et al., 2018) and
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Metrics
Coherence Relevance Informativeness Fluency Avg.

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.095 -0.071 0.076 0.147 -0.001 0.112 0.130 -0.039 0.099 0.104 -0.074 0.082 0.119 -0.046 0.092
ROUGE-2 0.026 -0.108 0.009 0.091 -0.056 0.065 0.079 -0.087 0.052 0.048 -0.101 0.032 0.061 -0.088 0.092
ROUGE-L 0.064 -0.091 0.051 0.106 -0.034 0.083 0.089 -0.068 0.064 0.072 -0.090 0.061 0.083 -0.071 0.065
BERTScore 0.147 0.043 0.116 0.162 0.080 0.126 0.130 0.044 0.105 0.171 0.046 0.128 0.152 0.053 0.119
MoverScore 0.161 0.008 0.127 0.195 0.077 0.157 0.188 0.045 0.151 0.120 -0.008 0.086 0.166 0.030 0.130
PRISM 0.573 0.605 0.478 0.553 0.636 0.460 0.561 0.629 0.472 0.532 0.547 0.443 0.555 0.604 0.463
BARTScore 0.679 0.709 0.568 0.604 0.744 0.507 0.646 0.749 0.543 0.670 0.662 0.564 0.650 0.716 0.545
BARTScore+CNN 0.653 0.690 0.547 0.567 0.718 0.478 0.616 0.712 0.510 0.640 0.653 0.540 0.619 0.693 0.519
BARTScore+CNN+Para 0.657 0.675 0.544 0.562 0.739 0.465 0.614 0.727 0.507 0.652 0.630 0.545 0.621 0.693 0.515

ChatGPT (DA w/o ref) 0.469 0.487 0.405 0.461 0.587 0.392 0.578 0.645 0.498 0.507 0.524 0.427 0.504 0.561 0.430
ChatGPT (Stars w/o ref) 0.428 0.424 0.375 0.402 0.488 0.348 0.557 0.602 0.487 0.451 0.448 0.385 0.460 0.490 0.399
ChatGPT (DA w/ ref) 0.431 0.494 0.369 0.436 0.535 0.372 0.429 0.484 0.368 0.459 0.490 0.387 0.439 0.501 0.374
ChatGPT (Stars w/ ref) 0.423 0.424 0.369 0.443 0.506 0.395 0.404 0.463 0.352 0.503 0.504 0.430 0.443 0.474 0.387

Table 2: Sample-level Spearman correlation (Spear.) correlation, Pearson (Pear.) correlation and Kendall’s Tau
(Kend.) of different aspects on NewsRoom (a text summarization meta-evaluation dataset). “ Avg. ” indicates the
average performance. The bold indicates the best correlation.

Metrics
Sample-level Dataset-level

Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.498 0.526 0.408 0.533 0.555 0.383
ROUGE-2 0.423 0.449 0.353 0.514 0.513 0.369
ROUGE-L 0.488 0.515 0.403 0.533 0.549 0.383
BERTScore 0.441 0.477 0.347 0.503 0.517 0.358
MoverScore 0.372 0.400 0.290 0.427 0.451 0.303
PRISM 0.411 0.458 0.324 0.478 0.494 0.339
BARTScore 0.441 0.467 0.342 0.467 0.458 0.327
BARTScore+CNN 0.475 0.500 0.374 0.436 0.455 0.306
BARTScore+CNN+Para 0.471 0.512 0.374 0.499 0.515 0.357

ChatGPT (DA w/o ref) 0.173 0.179 0.152 0.185 0.193 0.145
ChatGPT (Stars w/o ref) 0.145 0.162 0.129 0.170 0.179 0.136
ChatGPT (DA w/ ref) 0.184 0.208 0.154 0.276 0.288 0.206
ChatGPT (Stars w/ ref) 0.195 0.207 0.174 0.224 0.261 0.181

Table 3: Sample-level and Dataset-level correlation
on RealSumm (a text summarization meta-evaluation
dataset) (Spear.: Spearman correlation; Pear.: Pearson
correlation; Kend.: Kendall’s Tau). The bold indicates
the best correlation.

RealSumm (Bhandari et al., 2020) to evaluate the
performance of ChatGPT as an NLG metric for
text summarization. SummEval collects 16 model-
generated summaries on the CNN/DM dataset and
annotates human judgments upon these summaries
covering aspects of coherence, relevance, consis-
tency and fluency. Newsroom, as a text summariza-
tion dataset, also provides human judgments on 7
model-generated summaries, including coherence,
relevance, informativeness and fluency. RealSumm
evaluates the pyramid (Nenkova and Passonneau,
2004) recall of 25 model-generated summaries.

The Potentiality of ChatGPT. Table 1 and Table 2
show the sample-level evaluation results on Sum-
mEval and NewsRoom, respectively (dataset-level
evaluation results on SummEval and NewsRoom
also shown in Table 4 and Table 5 with the similar
trends). Experimental results show that ChatGPT

achieves a new state-of-the-art correlation in most
aspects of SummEval, demonstrating its potential
of serving as an NLG metric. For results on News-
room, ChatGPT also outperforms dominant sum-
marization metrics (i.e., ROUGE and BERTScore)
by a large margin. Note that our experiments only
estimate the lower bound of ChatGPT’s perfor-
mance, and better performances would like to be
achieved once using better prompts or updated ver-
sions of ChatGPT.

The Impact of Dataset Biases. As shown in Ta-
ble 3, we find that the experimental results on Re-
alSumm show different trends from those on Sum-
mEval, i.e., ChatGPT significantly underperforms
other baseline metrics. For example, ChatGPT
(Stars w/ ref) achieves 0.195 sample-level Spear-
man correlation, which is far behind the counterpart
of ROUGE-1 (i.e., 0.498). We conjecture this is
because the human judgments in RealSumm are
collected via pyramid method (Nenkova and Pas-
sonneau, 2004). In detail, this method first requires
human evaluators to extract semantic content units
from golden references, and then score each system
summary based on how many extracted semantic
content units are mentioned in the system summary.

In this manner, the more similarity between one
generated summary and the corresponding golden
reference, the more human evaluation scores will
be achieved. Therefore, this reference-oriented
annotation method makes the traditional n-gram-
based metric (such as ROUGE) already achieve
well correlations with human judgments, which
we named as lexical biases. As for SummEval
and NewsRoom, human evaluators are required to
directly score different summaries without compar-
ing them with the golden references, and thus do
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Metrics
Coherence Relevance Consistency Fluency Avg.

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.184 0.193 0.129 0.302 0.341 0.217 0.137 0.175 0.108 0.080 0.143 0.062 0.176 0.213 0.129
ROUGE-2 0.145 0.140 0.102 0.245 0.254 0.175 0.129 0.152 0.102 0.062 0.092 0.048 0.145 0.160 0.107
ROUGE-L 0.141 0.148 0.100 0.284 0.318 0.204 0.109 0.152 0.086 0.079 0.132 0.061 0.153 0.188 0.113
BERTScore 0.317 0.326 0.224 0.362 0.381 0.262 0.117 0.146 0.092 0.150 0.196 0.117 0.237 0.262 0.174
MoverScore 0.178 0.177 0.125 0.294 0.328 0.211 0.150 0.171 0.118 0.119 0.160 0.092 0.185 0.209 0.136
PRISM 0.286 0.281 0.204 0.280 0.297 0.202 0.323 0.297 0.256 0.236 0.248 0.184 0.281 0.281 0.212
BARTScore 0.335 0.357 0.241 0.363 0.386 0.263 0.269 0.276 0.212 0.187 0.206 0.146 0.288 0.306 0.215
BARTScore+CNN 0.408 0.434 0.292 0.394 0.423 0.286 0.334 0.377 0.264 0.285 0.354 0.223 0.355 0.397 0.266
BARTScore+CNN+Para 0.424 0.430 0.304 0.398 0.431 0.289 0.379 0.452 0.301 0.346 0.410 0.271 0.387 0.431 0.291

ChatGPT (DA w/o ref) 0.394 0.399 0.310 0.455 0.435 0.365 0.339 0.500 0.300 0.286 0.380 0.250 0.368 0.428 0.306
ChatGPT (Stars w/o ref) 0.435 0.438 0.353 0.448 0.459 0.366 0.356 0.515 0.320 0.300 0.385 0.268 0.385 0.449 0.327
ChatGPT (DA w/ ref) 0.418 0.426 0.327 0.494 0.506 0.389 0.363 0.507 0.315 0.237 0.329 0.203 0.378 0.442 0.308
ChatGPT (Stars w/ ref) 0.465 0.472 0.385 0.458 0.476 0.381 0.333 0.475 0.299 0.285 0.385 0.258 0.385 0.452 0.331

Table 4: Dataset-level Spearman correlation (Spear.) correlation, Pearson (Pear.) correlation and Kendall’s Tau
(Kend.) of different aspects on SummEval (a text summarization meta-evaluation dataset). “ Avg. ” indicates the
average performance. The bold indicates the best correlation.

Metrics
Coherence Relevance Informativeness Fluency Avg.

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.100 0.015 0.070 0.122 0.061 0.084 0.149 0.043 0.106 0.064 -0.009 0.043 0.109 0.028 0.076
ROUGE-2 0.080 0.033 0.060 0.124 0.071 0.092 0.158 0.060 0.119 0.045 0.018 0.032 0.102 0.045 0.076
ROUGE-L 0.079 -0.010 0.055 0.101 0.031 0.069 0.136 0.018 0.098 0.045 -0.030 0.029 0.090 0.002 0.063
BERTScore 0.169 0.138 0.122 0.176 0.158 0.127 0.196 0.153 0.141 0.154 0.129 0.109 0.174 0.145 0.125
MoverScore 0.173 0.119 0.122 0.192 0.156 0.132 0.232 0.148 0.166 0.112 0.091 0.076 0.177 0.129 0.124
PRISM 0.483 0.485 0.350 0.540 0.550 0.398 0.567 0.569 0.414 0.420 0.421 0.303 0.503 0.506 0.366
BARTScore 0.656 0.666 0.495 0.588 0.700 0.439 0.645 0.710 0.485 0.615 0.610 0.464 0.626 0.671 0.471
BARTScore+CNN 0.623 0.640 0.466 0.557 0.665 0.411 0.592 0.665 0.440 0.596 0.592 0.448 0.592 0.641 0.441
BARTScore+CNN+Para 0.621 0.639 0.465 0.575 0.692 0.427 0.615 0.694 0.459 0.593 0.577 0.444 0.601 0.650 0.449

ChatGPT (DA w/o ref) 0.383 0.418 0.297 0.491 0.541 0.392 0.527 0.576 0.413 0.401 0.398 0.309 0.451 0.483 0.353
ChatGPT (Stars w/o ref) 0.370 0.374 0.294 0.422 0.444 0.343 0.518 0.527 0.423 0.381 0.362 0.302 0.423 0.427 0.341
ChatGPT (DA w/ ref) 0.381 0.407 0.292 0.434 0.458 0.339 0.377 0.412 0.291 0.386 0.403 0.298 0.394 0.420 0.305
ChatGPT (Stars w/ ref) 0.370 0.355 0.295 0.425 0.426 0.342 0.373 0.400 0.301 0.439 0.425 0.353 0.402 0.402 0.323

Table 5: Dataset-level Spearman correlation (Spear.) correlation, Pearson (Pear.) correlation and Kendall’s Tau
(Kend.) of different aspects on NewsRoom (a text summarization meta-evaluation dataset). “ Avg. ” indicates the
average performance. The bold indicates the best correlation.

Metrics
Sample-level Dataset-level

Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.014 0.020 0.013 -0.023 -0.010 -0.016
ROUGE-2 0.035 0.041 0.035 0.009 0.012 0.007
ROUGE-L 0.013 0.021 0.014 -0.016 -0.004 -0.011
BERTScore 0.140 0.120 0.105 0.081 0.084 0.056
BARTScore -0.065 -0.082 -0.061 -0.065 -0.092 -0.045
BARTScore+CNN 0.049 0.026 0.041 0.047 0.053 0.033
BARTScore+CNN+Para 0.064 0.050 0.062 0.062 0.074 0.043
PPL 0.324 0.330 0.265 0.306 0.255 0.213

ChatGPT (DA w/o ref) 0.507 0.533 0.439 0.471 0.494 0.366
ChatGPT (Stars w/o ref) 0.472 0.490 0.427 0.415 0.439 0.342
ChatGPT (DA w/ ref) 0.411 0.434 0.357 0.363 0.375 0.281
ChatGPT (Stars w/ ref) 0.478 0.493 0.435 0.346 0.372 0.291

Table 6: Sample-level and Dataset-level correlation
on OpenMEVA (a story generation meta-evaluation
dataset) (Spear.: Spearman correlation; Pear.: Pearson
correlation; Kend.: Kendall’s Tau).

not involve such lexical biases.

The Impact of Different Prompt. In this work, we
attempt four prompts to guide ChatGPT to evaluate
the generation of NLG models. As we can see,
the performances of ChatGPT are sensitive to the

prompt design. For different aspects, the prompt
should be carefully designed, just like formulating
instructions for human evaluators.

4.4 Story Generation

Story generation is another NLG task with more
emphasis on open-ended generation compared with
text summarization, which also means for a given
beginning of a story, various generated storylines
and different plots could satisfy people. Therefore,
story generation models are extremely challenging
to evaluate. The automatic similarity-based met-
rics between the generated storylines and so-called
references cannot fully evaluate the quality of the
storylines since they do not consider creativity.

To show the effectiveness of ChatGPT as an
NLG metric for the story generation task, we con-
duct experiments on OpenMEVA-ROC (Guan et al.,
2021). The OpenMEVA-ROC dataset manually an-
notates five model-generated storylines under the
consideration of their overall quality.
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Metrics
Informativeness Naturalness Quality Avg.

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.092 0.093 0.073 0.265 0.274 0.206 0.235 0.234 0.184 0.197 0.200 0.154
ROUGE-2 0.133 0.137 0.103 0.233 0.241 0.177 0.192 0.192 0.145 0.186 0.190 0.142
ROUGE-L 0.079 0.084 0.063 0.237 0.255 0.183 0.210 0.216 0.163 0.175 0.185 0.136
BERTScore 0.231 0.261 0.174 0.288 0.327 0.216 0.264 0.304 0.197 0.261 0.297 0.196
MoverScore 0.284 0.276 0.209 0.189 0.189 0.140 0.152 0.161 0.114 0.208 0.209 0.154
PRISM 0.255 0.268 0.189 0.301 0.350 0.223 0.308 0.337 0.226 0.288 0.318 0.213
BARTScore 0.234 0.270 0.174 0.221 0.280 0.164 0.186 0.245 0.139 0.214 0.265 0.159
BARTScore+CNN 0.237 0.253 0.177 0.312 0.382 0.233 0.294 0.357 0.219 0.281 0.331 0.210
BARTScore+CNN+Para 0.240 0.266 0.177 0.335 0.416 0.248 0.343 0.383 0.255 0.306 0.355 0.227

ChatGPT (DA w/o ref) - - - 0.243 0.293 0.202 0.310 0.319 0.260 - - -
ChatGPT (Stars w/o ref) - - - 0.316 0.389 0.269 0.307 0.367 0.266 - - -
ChatGPT (DA w/ ref) 0.247 0.255 0.198 0.305 0.344 0.248 0.269 0.343 0.215 0.274 0.314 0.220
ChatGPT (Stars w/ ref) 0.266 0.262 0.224 0.293 0.374 0.235 0.276 0.328 0.239 0.278 0.321 0.233

Table 7: Dataset-level Spearman correlation (Spear.) correlation, Pearson (Pear.) correlation and Kendall’s Tau
(Kend.) of different aspects on BAGEL (a data-to-text generation meta-evaluation dataset). “ Avg. ” indicates the
average performance. The bold indicates the best correlation.

The Potentiality of ChatGPT. As shown in Ta-
ble 6, ChatGPT achieves the best performance
in terms of all correlations, and significantly out-
performs the second-best metric (i.e., PPL). For
example, ChatGPT (DA w/o ref) achieves 0.507
sample-level Spearman correlation, while PPL only
achieves 0.324 sample-level Spearman correlation.
In addition, we also find that all similarity-based
metrics (i.e., ROUGE-1, ROUGE-2, ROUGE-L,
BERTScore and BARTScore) show their weak cor-
relations with the human judgments. This finding
indicates that the ChatGPT evaluator has more pow-
erful and reliable judgments on the open-ended and
creative text generation tasks, where many diver-
sified generated results could also be regarded as
high-quality.
The Impact of Different Prompt. The results in
Table 6 also show the sensitivity of the correlation
results led by the different prompts. For example,
there are large performance gaps between ChatGPT
(DA w/o ref) and ChatGPT (DA w/ ref). This find-
ing is also consistent with that in text summariza-
tion (Section 4.3). More recently, some researchers
also discuss the robustness of LLMs on different
(adversarial) prompts (Zhu et al., 2023), and we
think this under-explored LLM research direction
deserves more research attention.

4.5 Data-to-Text Generation
Data-to-text generation aims at generating a flu-
ent free-text description for a given structured ta-
ble. We conduct experiments on BAGEL (Mairesse
et al., 2010) to show the effectiveness of the Chat-
GPT evaluator on data-to-text generation.

Table 7 shows the experimental results, where
ChatGPT achieves competitive correlations com-
pared with the previous state-of-the-art baselines,
indicating its strong potentiality serving as a met-
ric for data-to-text generation. It is worth noting
that we do not provide reference-free ChatGPT
performance in terms of informativeness because
informativeness in BAGEL is defined as “whether
the system generation contains all the information
in the gold reference”, which also means that when
evaluating informativeness the golden references
must be given.

5 Conclusion

In this technical report, we explore a research ques-
tion: “Is ChatGPT a good NLG evaluator?”. To
this end, we design task-specific as well as aspect-
specific prompts to guide ChatGPT to perform
as an NLG metric. Experimental results on five
widely-used meta-evaluation datasets, covering text
summarization, story generation and data-to-text
tasks, show the potentiality of ChatGPT as an NLG
metric. ChatGPT achieves the new state-of-the-
art correlations (with human judgments) on Sum-
mEval and OpenMEVA meta-evaluation datasets,
and obtains competitive results on NewsRoom and
BAGEL datasets.

In addition, we also find that the lexical biases in-
volved in the meta-evaluation datasets would influ-
ence the effectiveness of NLG metrics, and might
lead to the limited performance of the ChatGPT
evaluator. Besides, the performances of ChatGPT
as an NLG evaluator are sensitive to the format
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of the prompt, for different tasks and aspects, the
prompt should be carefully designed.

We believe that ChatGPT will exceed its current
performance and provide a reliable NLG metric for
the research community in the near future.

Limitations

While we show that ChatGPT achieves state-of-
the-art or competitive correlation with human judg-
ments on various NLG tasks, there are limitations
that provide avenues for future work: (1) Chat-
GPT’s performance as an NLG metric is related
to prompts, and future work could explore more
powerful prompts to achieve better performance;
(2) This preliminary report misses experiments on
some mainstream NLG tasks, e.g., dialogue genera-
tion and report generation; (3) When we did the ex-
periments, the OpenAI ChatGPT did not release the
official API. Thus, we conducted the experiments
on the ChatGPT website with default temperature,
making the results difficult to reproduce. All exper-
iments related to ChatGPT are conducted between
February 24 to February 27, 2023; and March 17 to
March 22. (4) The experiments are only conducted
on the English NLG meta-evaluation datasets, and
future work could extend this method into other
languages or cross-lingual scenes. (5) The correla-
tion between the ChatGPT evaluator and humans
is also related to the quality and challenge of the
corresponding meta-evaluation datasets. Our ex-
periments are conducted on the traditional NLG
meta-evaluation datasets (that appear before the
LLM era). Recently, Zeng et al. (2023) propose
LLM-BAR, a challenging meta-evaluation bench-
mark to test the ability of an LLM evaluator. Future
work could adapt our method to other challenging
datasets and study the performance of the ChatGPT
evaluator.
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Kanclerz, Anna Kocoń, Bartłomiej Koptyra, Wik-
toria Mieleszczenko-Kowszewicz, Piotr Miłkowski,
Marcin Oleksy, Maciej Piasecki, Łukasz Radliński,
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Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–
1561, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Mavuto M Mukaka. 2012. A guide to appropriate use of
correlation coefficient in medical research. Malawi
medical journal, 24(3):69–71.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
ing content selection in summarization: The pyramid
method. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 145–152, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

OpenAI. 2022. Introducing chatgpt. https://
openai.com/blog/chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Krishna Pillutla, Lang Liu, John Thickstun, Sean
Welleck, Swabha Swayamdipta, Rowan Zellers, Se-
woong Oh, Yejin Choi, and Zaid Harchaoui. 2022.
Mauve scores for generative models: Theory and
practice.

10



Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Haocong Rao, Cyril Leung, and Chunyan Miao. 2023.
Can chatgpt assess human personalities? a general
evaluation framework.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Brian Thompson and Matt Post. 2020. Automatic ma-
chine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 90–121, Online.
Association for Computational Linguistics.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zhixu Li,
Jianfeng Qu, and Jie Zhou. 2023a. Cross-lingual
summarization via chatgpt. arXiv preprint.

Shuai Wang, Harrisen Scells, Bevan Koopman, and
Guido Zuccon. 2023b. Can chatgpt write a
good boolean query for systematic review literature
search?

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, Yong Jiang, and Wen-
juan Han. 2023. Zero-shot information extraction via
chatting with chatgpt.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023. Exploring the limits of chatgpt
for query or aspect-based text summarization. arXiv
preprint arXiv:2302.08081.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion.

Jerrold H Zar. 2005. Spearman rank correlation. Ency-
clopedia of biostatistics, 7.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2023. Evaluating large
language models at evaluating instruction following.
arXiv preprint arXiv:2310.07641.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023. Can chatgpt understand too? a
comparative study on chatgpt and fine-tuned bert.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.
Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.

Guido Zuccon and Bevan Koopman. 2023. Dr chatgpt,
tell me what i want to hear: How prompt knowledge
impacts health answer correctness.

11



Proceedings of The 4th New Frontiers in Summarization Workshop, pages 12–23
December 6, 2023 ©2023 Association for Computational Linguistics

Zero-Shot Cross-Lingual Summarization via Large Language Models

Jiaan Wang1∗†, Yunlong Liang2∗, Fandong Meng3, Beiqi Zou4

Zhixu Li5, Jianfeng Qu1 and Jie Zhou3

1Soochow University, Suzhou, China 2Beijing Jiaotong University, Beijing, China
3Pattern Recognition Center, WeChat AI, Tencent Inc, China 4Princeton University, NJ, USA

5Fudan Unversity, Shanghai, China
jawang.nlp@gmail.com yunlongliang@bjtu.edu.cn
fandongmeng@tencent.com bzou@cs.princeton.edu

Abstract

Given a document in a source language, cross-
lingual summarization (CLS) aims to gener-
ate a summary in a different target language.
Recently, the emergence of Large Language
Models (LLMs), such as GPT-3.5, ChatGPT
and GPT-4, has attracted wide attention from
the computational linguistics community. How-
ever, it is not yet known the performance of
LLMs on CLS. In this report, we empirically
use various prompts to guide LLMs to perform
zero-shot CLS from different paradigms (i.e.,
end-to-end and pipeline), and provide a prelim-
inary evaluation on the generated summaries.
We find that ChatGPT and GPT-4 originally pre-
fer to produce lengthy summaries with detailed
information. These two LLMs can further bal-
ance informativeness and conciseness with the
help of an interactive prompt, significantly im-
proving their CLS performance. Experimental
results on three widely-used CLS datasets show
that GPT-4 achieves state-of-the-art zero-shot
CLS performance, and performs competitively
compared with the fine-tuned mBART-50.

Moreover, we also find some multi-lingual and
bilingual LLMs (i.e., BLOOMZ, ChatGLM-
6B, Vicuna-13B and ChatYuan) have limited
zero-shot CLS ability. Due to the composite na-
ture of CLS, which requires models to perform
summarization and translation simultaneously,
accomplishing this task in a zero-shot manner
is even a challenge for LLMs. Therefore, we
sincerely hope and recommend future LLM re-
search could use CLS as a testbed.

1 Introduction

Cross-Lingual Summarization (CLS) aims to pro-
vide a target-language (e.g., Chinese) summary for
a lengthy document in a different source language
(e.g., English) (Leuski et al., 2003; Wan et al., 2010;

∗ Equal Contribution. Work was done when Wang and
Liang was interning at Pattern Recognition Center, WeChat
AI, Tencent Inc, China.

†Corresponding author.

Figure 1: An example of zero-shot CLS via ChatGPT.

Yao et al., 2015; Zhu et al., 2019, 2020; Ladhak
et al., 2020; Perez-Beltrachini and Lapata, 2021;
Bai et al., 2021a; Liang et al., 2022b; Feng et al.,
2022; Hasan et al., 2021; Wang et al., 2022a,b;
Liang et al., 2022a; Liu et al., 2022; Zheng et al.,
2022; Aumiller et al., 2022). This task could help
people quickly capture their interests from foreign
documents.

In recent years, a number of powerful multi-
lingual pre-trained generative models have been
proposed one after another, such as mBART (Liu
et al., 2020), mBART-50 (Tang et al., 2021),
mT5 (Xue et al., 2021) and BLOOM (Scao et al.,
2022). The parameters in these models have grad-
ually increased from million levels (e.g., 580M in
mT5-base and 610M in mBART-Large) to billion
levels (e.g., 3.7B in mT5-XL, 13B in mT5-XXL
and 176B in BLOOM), facilitating various research
topics (e.g., machine translation and CLS) in the
multi-lingual world. Besides, large language mod-
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els (LLMs) have been key to strong performance
when transferring to new tasks by simply condi-
tioning on a few input-label pairs (in-context learn-
ing) (Dong et al., 2022; Min et al., 2022) or short
sentences describing crucial reasoning steps (chain-
of-thoughts) (Fu et al., 2022; Zhang et al., 2022).

More recently, ChatGPT and GPT-4 (OpenAI,
2023) have attracted great attention from both the
research communities and industries. Similar to
InstructGPT (Ouyang et al., 2022), ChatGPT is
created by fine-tuning a GPT-3.5 series model
via reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017). GPT-4, as a multi-
modal LLM that can accept image and text inputs
and produce text outputs, exhibits human-level per-
formance on various benchmark datasets (OpenAI,
2023). With the emergence of ChatGPT and GPT-
4, there is growing interest in leveraging LLMs
for various NLP tasks (Qin et al., 2023; Jiao et al.,
2023; Bang et al., 2023; Yang et al., 2023; Zhong
et al., 2023; Wang et al., 2023; Bubeck et al., 2023;
Tan et al., 2023; Peng et al., 2023; Liu et al., 2023;
Yong et al., 2023). Nevertheless, the exploration of
LLMs on CLS is still lacking.

In this report, we present a preliminary evalu-
ation of LLMs’ zero-shot CLS performance, in-
cluding GPT-3.5, ChatGPT, GPT-4, BLOOMZ,
ChatGLM-6B, Vicuna-13B and ChatYuan. In de-
tail, we design various prompts to guide LLMs to
perform CLS in an end-to-end manner with or with-
out chain-of-thoughts (CoT). Figure 1 gives an ex-
ample of prompting ChatGPT to perform zero-shot
CLS. To further exploit the interaction capability
of conversational LLMs (e.g., ChatGPT and GPT-
4), we leverage an interactive prompt to let them
produce more concise summaries. Moreover, to
provide a deeper analysis of LLMs’ zero-shot CLS
performance, we compare them with fine-tuned
mBART-50 (Tang et al., 2021) which has shown
its superiority in many previous CLS works (Wang
et al., 2022a; Feng et al., 2022; Perez-Beltrachini
and Lapata, 2021). Experimental results on three
CLS datasets, covering three domains (news, how-
to guide and dialogue) and two cross-lingual di-
rections (En⇒Zh and En⇒De)1, show that GPT-
4 achieves the best zero-shot performance but is
still worse than the fine-tuned mBART-50 model
in terms of ROUGE scores and BERTScore. We

1Since a CLS dataset might contain multiple source and tar-
get languages, we use “X⇒Y” to indicate the source language
and target language are X and Y, respectively. En: English;
Zh: Chinese; De: German.

also conduct case studies to show that ChatGPT
and GPT-4 could absorb the core idea of the given
source-language documents and generate fluent and
concise target-language summaries.

In addition, we find that the current open-source
LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B
and ChatYuan) achieve limited zero-shot CLS per-
formance, which is significantly worse than that of
GPT-4. This leads us to conclude that the compos-
ite end-to-end CLS prompts are difficult for them
to follow, and there is still a challenge for LLMs
to perform zero-shot CLS in an end-to-end manner
which requires simultaneously carrying out transla-
tion and summarization. Based on the finding, we
suggest that future multi-lingual or bilingual LLM
research uses CLS as a testbed to evaluate LLMs’
capabilities to follow composite instructions as well
as combine their different abilities.

Our main contributions are concluded as follows:
• To the best of our knowledge, we are the first to

explore the zero-shot CLS performance of LLMs.
To achieve that, we design various prompts to
guide LLMs to perform CLS in an end-to-end
manner with or without chain-of-thoughts.

• Experimental results on three widely-used CLS
benchmark datasets, covering various domains
and languages, show several LLMs (especially
ChatGPT and GPT-4) achieve competitive results
compared with the strong fine-tuned baseline.

• We also find the current open-source LLMs gener-
ally achieve limited zero-shot CLS performance,
making us think CLS could be used as a testbed
for future LLM research due to its challenges.

2 Methodology

2.1 Cross-Lingual Summarization Prompts

We heuristically design 3 prompts to guide LLMs
to perform zero-shot CLS in an end-to-end manner,
which is shown as follows with an example from
an English document to a Chinese summary:

• The direct (Dir) prompt guides LLMs straightfor-
wardly output the corresponding target-language
summary without chain-of-thoughts (CoT):

Please summarize the
following text in
Chinese: [English Doc]

where [English Doc] indicates a given En-
glish document.

• The translate-then-summarize (TS) CoT prompt
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Please summarize the following text in Chinese: Annie: 
Are you going to be at school? Christine: Not tomorrow. I 
am not well. Annie: Oh noes! What happened? Christine: 
Got the flu, I think. Annie: what's your temperature? 
Christine: Not high, I'm not running a fever or anything 
Annie: Are you eating ok? Christine: Yeah. Just blocked 
nose, sore throat. Tired. Annie: Sounds like you've got a 
cold. You need anything? Christine: I could do with some 
Theraflu. Annie: OK, I think we've still got some sachets, 
should be in date. I'll drop them through your letterbox 
later on. Christine: Yeah. Don't call in because I'll feel bad 
if you catch this cold off me. Annie: I think I probably had 
it already, but you might be sleeping. Christine: If the light 
in my room is on, call if you want.

安妮问克里斯汀是否明天会去学校，克里斯汀回答因为
感到不舒服，不会去。安妮询问原因，得知克里斯汀可
能得了流感，但体温不高，只是有些堵塞和喉咙痛，很
累。安妮建议克里斯汀可能只是感冒了，问她是否需要
任何帮助，克里斯汀说可以用些治疗流感的药物，安妮
答应送过去。克里斯汀告诉安妮不要来拜访，因为她不
想传染感冒，但若光亮还开着，可以来敲门。

Please make the Chinese summary shorter.

安妮问克里斯汀是否明天去学校，克里斯汀因感冒不舒
服，要安妮帮忙送药，但不要拜访。

Please first translate the following text to Chinese and then 
summarize the translated text in Chinese: Annie: Are you 
going to be at school? Christine: Not tomorrow. I am not 
well. Annie: Oh noes! What happened? Christine: Got the 
flu, I think. Annie: what's your temperature? Christine: 
Not high, I'm not running a fever or anything Annie: Are 
you eating ok? Christine: Yeah. Just blocked nose, sore 
throat. Tired. Annie: Sounds like you've got a cold. You 
need anything? Christine: I could do with some Theraflu. 
Annie: OK, I think we've still got some sachets, should be 
in date. I'll drop them through your letterbox later on. 
Christine: Yeah. Don't call in because I'll feel bad if you 
catch this cold off me. Annie: I think I probably had it 
already, but you might be sleeping. Christine: If the light 
in my room is on, call if you want.

安妮：你明天会去学校吗？克里斯汀：不会，我不太
舒服。安妮：哦，不好！出了什么事？[…]安妮：我觉
得我可能已经得过了，但是你可能在睡觉。克里斯汀：
如果我房间的灯还开着，你可以打电话来。

这段对话描述了安妮和克里斯汀的健康状况。克里斯
汀感觉不太舒服，得了流感。安妮询问了克里斯汀的
体温和饮食情况，确认克里斯汀需要一些热力伏。由
于担心感染给安妮，克里斯汀不希望安妮打电话或上
门探访，但安妮表示可能已经得过这种感冒了。

Please make the Chinese summary shorter.

对话描述了安妮和克里斯汀的健康状况，确认克里斯
汀得了流感，需要热力伏。由于担心传染，克里斯汀
不希望安妮打电话或上门探访。

Please first summarize the following text and then translate 
the summary to Chinese: Annie: Are you going to be at 
school? Christine: Not tomorrow. I am not well. Annie: Oh 
noes! What happened? Christine: Got the flu, I think. Annie: 
what's your temperature? Christine: Not high, I'm not 
running a fever or anything Annie: Are you eating ok? 
Christine: Yeah. Just blocked nose, sore throat. Tired. Annie: 
Sounds like you've got a cold. You need anything? Christine: 
I could do with some Theraflu. Annie: OK, I think we've 
still got some sachets, should be in date. I'll drop them 
through your letterbox later on. Christine: Yeah. Don't call 
in because I'll feel bad if you catch this cold off me. Annie: I 
think I probably had it already, but you might be sleeping. 
Christine: If the light in my room is on, call if you want.

Annie and Christine are having a conversation about 
Christine's health. […] Annie suggests that she might 
have already had the cold.

Annie和Christine在谈论Christine的健康问题。
Christine因为感觉不舒服，明天不会去上学。Annie
问了Christine的症状，并提供Theraflu。Christine接
受了这个提议，但要求Annie不要过来拜访，因为她
不想传染感冒。Annie表示可能已经感染过这个感冒。

Please make the Chinese summary shorter.

Annie问Christine是否会去学校，Christine因病请假。
Annie问Christine的症状，提供药物，但不会拜访因为
担心传染感冒。

(a) Dir+Inta (b) TS+Inta (c) ST+Inta

Figure 2: An illustration of all prompts used to guide LLMs to perform zero CLS (take ChatGPT as an example).

makes LLMs first translate the given document
from the source language to the target language,
and then summarize the translated document to
perform CLS:

Please first translate
the following text
to Chinese and then
summarize the translated
text in Chinese:
[English Doc]

• The summarize-then-translate (ST) CoT prompt
lets LLMs first summarize the given document
and then translate the output summary to the tar-
get language:

Please first summarize
the following text
and then translate the
summary to Chinese:
[English Doc]

Note that though the TS and ST CoT prompts
guide LLMs to perform CLS step by step, the be-
haviors are end-to-end since the target-language
summaries are generated within a single turn.

To further exploit the potentiality of conversa-
tional LLMs, inspired by Bang et al. (2023), after
prompting with Dir, TS or ST prompt, we adopt an
interactive (Inta) prompt to make the preliminarily
generated summary more concise:

Please make the Chinese
summary shorter.

and the whole process is denoted as “Dir+Inta”,
“TS+Inta” or “ST+Inta”.

2.2 Large Language Models

We explore the CLS ability of the following LLMs:
• Davinci-003 is the most advanced GPT-3.5

model with 175B parameters. We evaluate its
performance by requesting the official API pro-
vided by OpenAI with default settings.2

• ChatGPT is created by fine-tuning a GPT-3.5
series model via reinforcement learning from hu-
man feedback (RLHF) (Christiano et al., 2017).
We conduct experiments on the ChatGPT plat-
form3 between February 17 to February 19, 2023.

• GPT-4, as a multi-modal LLM that can accept
image and text inputs and produce text outputs,
exhibits human-level performance on various
benchmark datasets (OpenAI, 2023). We assess
GPT-4 on the ChatGPT platform between March
15 to March 19, 2023.

• BLOOMZ (Muennighoff et al., 2022) is an open-
source multi-lingual LLM with 176B parameters.
The model supports 59 languages, and is created
by fine-tuning BLOOM (Scao et al., 2022) on an
instruction corpus (i.e., XP3).

• ChatGLM-6B4 is an open-source bilingual (i.e.,
Chinese and English) language model based on
General Language Model (GLM) framework (Du

2https://platform.openai.com/docs/
models/gpt-3-5

3https://chat.openai.com/
4https://github.com/THUDM/ChatGLM-6B
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Dataset Src Lang. Trg Lang. Domain Example Doc. Length Sum. Length

CrossSum English Chinese News 3981 / 497 / 50 out of 497 814.2 35.6

WikiLingua English
Chinese

How-to guide
13211 / 1886 / 50 out of 3775 538.6 53.2

German 40839 / 5833 / 50 out of 11669 526.1 63.4

XSAMSum English
Chinese

Dialogue
14732 / 818 / 50 out of 819 140.1 27.6

German 14732 / 818 / 50 out of 819 140.1 31.7

Table 1: Statistics of CLS datasets used in experiments. “Src Lang.” and “Trg Lang” denote the source and the target
languages. “Doc. Length” and “Sum. Length” show the average length of source documents and target summaries
(token level). “Example” lists the number of samples in each dataset w.r.t training, validation and test sets.

et al., 2022). The model suffers from both instruc-
tion tuning and RLHF.

• Vicuna-13B5 is an open-source LLM created by
fine-tuning LLaMA (Touvron et al., 2023) on
user-shared conversations collected from Chat-
GPT. We evaluate the model via its demo plat-
form6 between March 31 to April 2, 2023.

• ChatYuan7 is an open-source bilingual (i.e., Chi-
nese and English) LLM with 7.7B parameters.
The training process of this model includes in-
struction tuning and RLHF.
Among the above LLMs, ChatGPT, GPT-4,

ChatGLM-6B, Vicuna-13B and ChatYuan are
conversational LLMs while Davinci-003 and
BLOOMZ are not. When evaluating their zero-shot
CLS performance, we only equip conversational
LLMs with the interactive prompt.

3 Experiments

3.1 Experimental Setup

Datasets. We evaluate LLMs on the following
three CLS datasets: CrossSum (En⇒Zh) (Hasan
et al., 2021), WikiLingua (En⇒Zh/De) (Ladhak
et al., 2020) and XSAMSum (En⇒Zh/De) (Wang
et al., 2022a). CrossSum is collected from BBC
news website, it contains 3,981 English news re-
ports paired with Chinese summaries. WikiLingua
involves 18,887 English how-to guides paired with
Chinese summaries, and 58,375 English how-to
guides paired with German summaries. Note that
both CrossSum and WikiLingua also provide CLS
samples in other cross-lingual directions, and we
only utilize En⇒Zh or (and) En⇒De samples in
this work. XSAMSum contains 16,369 English
dialogues paired with both Chinese and German
summaries. The detailed statistics of these datasets

5https://vicuna.lmsys.org/
6https://chat.lmsys.org/
7https://github.com/clue-ai/ChatYuan

are listed in Table 1. Since ChatGPT, GPT-4 and
Vicuna-13B can only be interacted with manually
when we conduct experiments, evaluating their per-
formance is time-consuming. Thus, we randomly
sample 50 documents from the test set of each CLS
dataset for evaluation.

Metrics. We adopt ROUGE-1/2/L (R-1/2/L) (Lin,
2004) and BERTScore (B-S) (Zhang et al., 2020) in
our experiments. The ROUGE scores measure the
lexical overlap between the generated summaries
and corresponding references based on the uni-
gram, bigram and longest common subsequence,
while the BERTScore measures the semantic sim-
ilarity. For ROUGE scores, we use multi-lingual
rouge8 toolkit. For BERTScore, we use bert-score9

toolkit, and the score is calculated based on bert-
base-multilingual-cased10 model.

Baselines. We also compare zero-shot LLMs with
fine-tuned mBART-50 (Tang et al., 2021) to provide
a deeper analysis. mBART-50 is a multi-lingual ver-
sion of BART (Lewis et al., 2020) with the vanilla
transformer encoder-decoder architecture (Vaswani
et al., 2017). This model has been pre-trained on
large-scale multi-lingual unlabeled corpora with
BART-like denoising objectives.

3.2 Implementation Details

For ChatGPT, GPT-4 and Vicuna-13B, we manu-
ally evaluate their results via the corresponding plat-
form and demo websites. Among them, the demo
website of Vicuna-13B cannot support the long in-
put sequences, and it will automatically truncate the
long sequences, thus we only evaluate Vicuna-13B
on XSAMSum (En⇒Zh/De). For Davinci-003, we
use the official API with default settings.

8https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring

9https://github.com/Tiiiger/bert_score
10https://huggingface.co/

bert-base-multilingual-cased
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Model
CrossSum (En⇒Zh) WikiLingua (En⇒Zh) WikiLingua (En⇒De) XSAMSum (En⇒Zh) XSAMSum (En⇒De)

R-1 R-2 R-L B-S R-1 R-2 R-L B-S R-1 R-2 R-L B-S R-1 R-2 R-L B-S R-1 R-2 R-L B-S

mBART-50 26.1 7.4 22.1 65.4 32.1 10.4 26.8 68.5 26.8 7.7 20.5 62.5 40.6 14.4 33.9 74.5 42.4 18.9 35.4 73.7

ChatYuan-7.7B (Dir) 0.3 0.0 0.3 51.7 4.1 1.2 2.6 54.4 - - - - 0.8 0.3 0.7 48.5 - - - -
ChatYuan-7.7B (Dir+Inta) 0.2 0.0 0.2 52.0 4.7 1.6 3.4 51.6 - - - - 0.3 0.1 0.3 47.0 - - - -
ChatYuan-7.7B (TS) 0.4 0.0 0.4 46.6 8.2 2.7 5.4 56.0 - - - - 11.3 4.2 8.7 49.5 - - - -
ChatYuan-7.7B (TS+Inta) 2.0 0.5 1.4 46.9 6.9 2.1 4.3 53.4 - - - - 9.5 3.2 6.9 52.3 - - - -
ChatYuan-7.7B (ST) 0.5 0.0 0.4 49.6 6.9 2.1 4.2 56.1 - - - - 7.5 2.5 5.5 49.6 - - - -
ChatYuan-7.7B (ST+Inta) 1.2 0.4 0.9 49.7 7.3 2.3 4.6 55.5 - - - - 6.0 2.0 3.9 48.5 - - - -
ChatGLM-6B (Dir) 5.7 2.3 2.4 53.9 14.5 5.3 9.9 59.5 - - - - 20.4 9.1 15.3 58.8 - - - -
ChatGLM-6B (Dir+Inta) 7.9 2.4 5.3 55.6 14.6 5.1 9.5 59.1 - - - - 18.0 8.0 14.0 59.5 - - - -
ChatGLM-6B (TS) 8.4 2.9 4.8 54.1 14.6 5.3 9.8 59.7 - - - - 21.5 9.6 16.6 57.9 - - - -
ChatGLM-6B (TS+Inta) 9.6 3.0 6.1 55.2 14.9 5.1 9.4 59.1 - - - - 18.7 8.1 15.0 58.6 - - - -
ChatGLM-6B (ST) 5.8 1.8 3.6 53.2 15.6 5.5 10.2 59.9 - - - - 19.8 8.3 14.7 58.1 - - - -
ChatGLM-6B (ST+Inta) 2.2 0.6 1.7 53.8 9.8 3.3 6.1 57.0 - - - - 12.7 5.1 9.9 56.8 - - - -
Vicuna-13B (Dir) - - - - - - - - - - - - 19.5 7.2 14.5 60.1 22.5 4.9 17.6 58.5
Vicuna-13B (Dir+Inta) - - - - - - - - - - - - 24.1 9.7 18.9 63.0 28.7 7.8 22.0 60.5
Vicuna-13B (TS) - - - - - - - - - - - - 18.3 7.1 14.6 61.6 25.0 5.9 18.2 59.4
Vicuna-13B (TS+Inta) - - - - - - - - - - - - 22.0 7.9 17.4 64.3 31.7 8.9 24.2 61.2
Vicuna-13B (ST) - - - - - - - - - - - - 17.5 6.1 13.6 59.6 27.3 6.8 20.4 59.3
Vicuna-13B (ST+Inta) - - - - - - - - - - - - 19.8 7.4 15.4 62.2 31.6 9.4 24.1 61.9
BLOOMZ-176B (Dir) 0.7 0.1 0.7 29.2 0.3 0.0 0.2 8.9 0.0 0.0 0.0 3.3 21.4 11.2 17.8 65.3 13.0 1.2 11.9 56.2
BLOOMZ-176B (TS) 2.1 1.3 1.6 21.5 0.4 0.0 0.3 5.6 0.0 0.0 0.0 5.0 30.4 15.0 25.2 64.8 12.5 0.7 11.4 54.4
BLOOMZ-176B (ST) 3.0 1.2 2.4 33.8 0.3 0.0 0.2 9.0 0.0 0.0 0.0 3.3 28.1 13.4 23.4 66.3 13.8 1.3 12.8 54.8

Davinci-003 (Dir) 18.7 3.6 14.7 60.2 23.6 3.8 17.8 60.9 18.8 2.6 12.2 60.7 24.4 8.0 20.7 63.4 35.5 12.4 27.3 62.4
Davinci-003 (TS) 22.9 8.9 13.5 59.6 23.7 8.2 15.1 61.0 16.9 2.0 10.9 59.2 33.3 17.1 26.6 64.7 34.7 11.5 26.1 62.0
Davinci-003 (ST) 26.2 9.3 16.9 61.3 24.2 8.4 15.9 61.2 19.8 2.8 13.1 60.4 34.1 18.2 26.4 68.1 35.7 11.7 26.9 63.0
ChatGPT (Dir) 14.2 3.3 10.3 60.3 20.9 5.6 15.5 62.7 16.9 2.1 10.7 60.1 21.3 5.5 17.1 63.5 32.0 10.3 24.5 61.4
ChatGPT (Dir+Inta) 22.1 3.8 15.6 61.8 28.4 6.5 22.1 64.5 22.4 2.8 14.7 61.3 27.2 6.9 22.9 67.5 39.6 16.0 31.4 64.3
ChatGPT (TS) 15.8 3.3 11.9 60.9 24.8 5.4 19.1 62.9 19.4 2.4 12.6 60.0 26.0 7.3 21.2 66.4 33.2 9.6 25.3 61.1
ChatGPT (TS+Inta) 22.6 4.1 16.9 62.7 26.1 5.3 19.7 63.7 21.6 2.4 15.1 60.8 27.4 6.7 22.4 67.1 39.4 13.5 29.4 63.3
ChatGPT (ST) 16.5 3.8 12.0 60.8 27.2 7.3 20.3 64.3 21.3 3.5 14.4 60.9 26.8 7.7 21.3 66.7 31.7 8.8 23.5 60.8
ChatGPT (ST+Inta) 21.6 3.5 15.5 61.7 30.1 8.1 22.4 64.9 21.4 3.1 15.4 60.6 31.4 11.5 28.1 70.1 35.9 13.2 29.0 62.8
GPT-4 (Dir) 13.7 3.7 10.1 59.7 23.1 9.1 15.5 63.5 20.4 3.3 13.8 62.2 24.5 7.1 19.5 66.1 34.7 13.4 25.3 61.7
GPT-4 (Dir+Inta) 20.3 4.4 14.1 61.9 30.4 11.7 20.9 65.7 24.8 3.9 17.0 63.5 31.3 7.3 26.5 70.7 40.5 13.4 30.8 64.2
GPT-4 (TS) 19.4 3.6 14.3 60.9 28.5 11.4 18.2 64.2 23.1 3.8 16.3 62.7 34.7 12.5 28.5 71.0 38.9 11.9 29.0 63.3
GPT-4 (TS+Inta) 22.7 4.3 16.1 62.2 29.2 12.6 20.3 64.9 23.6 3.9 17.3 62.9 30.8 6.5 25.6 70.9 39.1 13.5 32.6 64.1
GPT-4 (ST) 19.0 4.3 14.1 61.7 30.2 12.2 19.5 64.2 23.4 3.8 16.4 63.0 32.1 10.7 26.4 70.7 38.6 12.3 29.5 63.2
GPT-4 (ST+Inta) 22.6 4.9 16.8 63.1 30.5 11.9 21.3 65.2 23.1 4.2 17.4 62.7 29.2 8.2 25.4 71.4 39.0 11.5 31.2 63.7

Table 2: Experimental results on CrossSum, WikiLingua and XSAMSum. Pink denotes the fine-tuned baseline.
Light blue and blue denote the zero-shot performance of open-source and non-open-source LLMs, respectively.

Green indicates the zero-shot result is better than that of the fine-tuned baseline. “-” denotes the model cannot be
evaluated in the corresponding dataset.

For BLOOMZ, ChatGLM-6B and ChatYuan, we
download the corresponding checkpoints and eval-
uate their performances following the officially re-
leased codes. The 176B BLOOMZ makes use of
5*80G GPUs to load with FP16 precision. We use
a sampling decoding strategy and set the temper-
ature to 0.7. We only evaluate ChatGLM-6B and
ChatYuan on En⇒Zh cross-lingual direction due
to their bilingualism (i.e., Chinese and English).

For mBART-50 baseline, inspired by Feng
et al. (2022) and Wang et al. (2022a), we employ
mBART-large-50-many-to-many-mmt
model11 via the implementation of Huggingface
Transformers (Wolf et al., 2020). This model is
fine-tuned with 4 batch size, 5e-6 learning rate and
10 epochs on each CLS dataset.

11https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

3.3 Main Results

Table 2 lists the experimental results. As we can
see, Davinci-003, ChatGPT and GPT-4 achieve
competitive results with the fine-tuned mBART-50.

The Effect of Each CLS Prompt. Among three
end-to-end prompts (i.e., Dir, ST and TS), the CoT
prompts lead to better performance than the di-
rect prompt, indicating the effectiveness of CoT. It
also indicates that it is still challenging for a single
model to directly perform CLS without giving any
crucial or helpful instructions.

The Effect of Interactive Prompt. Further, with
the help of the interactive prompt, the performance
of ChatGPT and GPT-4 significantly improve and
even outperform mBART-50 in several automatic
metrics. As shown in Table 3, more concise sum-
maries can be generated after inputting the interac-
tive prompt, e.g., 183.7 tokens generated by Chat-
GPT (Dir) on CrossSum, while the counterpart
of ChatGPT (Dir+Inta) is 66.4 tokens. Figure 3
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Boris: Due to the number of PTO requests this week, 
we had to decide who will be allowed to take off 
based on seniority.  
Sarah: I understand. 
Boris: Unfortunately, you are too low on the totem 
pole and we will have to deny your request. 
Sarah: Oh, that's too bad! Is there any compromise? I 
really wanted to have some time with my family. 
Boris: I can give you first choice of dates the week 
after, but that's the best I can do. 
Sarah: What if someone cancels? 
Boris: That is a rare, but yes, I will come to you first. 
Sarah: Thank you. 
Boris: Again, I'm very sorry. 
Sarah: Could you amend my request for the 
following week, Monday through Wednesday? 
Boris: Certainly. That should be no problem. 
Sarah: That's great, at least I'll have a long weekend! 
Boris: Very true. No problems from my side. 
Sarah: Do I need to initial the change? 
Boris: Yes, please come see my assistant at your 
earliest convenience. 
Sarah: Certainly, no problem. 
Boris: Thank you for being so flexible. 
Sarah: Sure, I understand we can't all be off. You are 
just trying to be fair. 
Boris: That's it exactly. Sarah: Thank you again for 
explaining it so well. 
Boris: My pleasure. Have a nice holiday and enjoy 
your time off. Sarah: Thank you!

English Dialogue Generated Summaries
ChatGPT (Dir): Boris通知Sarah由于请假请求众多，公司不得不按资历高低来决定谁可以休假。由于Sarah资历不够高，公司
不得不拒绝她的请求。Sarah想知道是否有妥协的余地，Boris答应给她下周第一批可以选择的日期，但这是他所能做的最好安
排。Sarah问如果有人取消假期怎么办，Boris说这是很少见的，但如果确实发生，他会优先通知Sarah。最后，Sarah改变了请
假日期，Boris同意了，并建议她尽快与他的助手联系确认。他们互相道别，Sarah感谢Boris的解释，Boris祝她假期愉快。
ChatGPT (Dir+Inta): Sarah想请假，但因资历不够高被拒绝。Boris答应给她下周第一批可以选择的日期，如果有人取消假期，
会优先通知她。最后，Sarah改变了请假日期，Boris同意了。
ChatGPT (TS): 对于申请休假的员工，由于请假申请数量较多，公司根据资历来决定谁可以休假，导致低资历的员工被拒绝
休假请求。员工虽然表示遗憾，但同意公司的决定并愿意接受推迟的休假时间，直到后来有机会更改休假时间并获得了首选
日期。公司对员工的灵活性表示感谢，并向员工祝福愉快的假期。
ChatGPT (TS+Inta): 公司根据资历决定员工休假，低资历员工被拒绝休假请求。员工同意公司决定并愿意推迟休假时间，后
来获得了首选日期。公司感谢员工的灵活性，祝愿员工假期愉快。
ChatGPT (ST): 鲍里斯告诉萨拉，由于请假申请太多，他必须根据资历批准休假，但很遗憾，萨拉的请求不能被批准。然而，
鲍里斯提供萨拉选择下周的日期，如果有人取消。萨拉问能否修改为下周的请求，鲍里斯同意了。他们以积极的态度结束了
谈话，鲍里斯祝萨拉度过愉快的假期，萨拉感谢他的理解。
ChatGPT (ST+Inta): 因请假申请太多，鲍里斯按资历批准休假，未能批准萨拉的请求。但鲍里斯提供了选择下周日期的机会。
萨拉同意改为下周休假，他们友好结束谈话。
GPT-4 (Dir): Boris通知Sarah由于请假请求众多，公司不得不按资历高低来决定谁可以休假。由于Sarah资历不够高，公司不得
不拒绝她的请求。Sarah想知道是否有妥协的余地，Boris答应给她下周第一批可以选择的日期，但这是他所能做的最好安排。
Sarah问如果有人取消假期怎么办，Boris说这是很少见的，但如果确实发生，他会优先通知Sarah。最后，Sarah改变了请假日
期，Boris同意了，并建议她尽快与他的助手联系确认。他们互相道别，Sarah感谢Boris的解释，Boris祝她假期愉快
GPT-4 (Dir+Inta): Sarah想请假，但因资历不够高被拒绝。Boris答应给她下周第一批可以选择的日期，如果有人取消假期，会
优先通知她。最后，Sarah改变了请假日期，Boris同意了。
GPT-4 (TS): 由于本周请假申请众多，鲍里斯根据员工资历决定谁能休假，萨拉的申请被拒。经过沟通，鲍里斯同意在下周给
萨拉优先选择日期，若有人取消，也会优先考虑萨拉。最后，鲍里斯帮助萨拉将申请更改为下周一至周三。萨拉表示理解公
平性并感谢鲍里斯的帮助。
GPT-4 (TS+Inta): 鲍里斯因员工请假申请多而根据资历拒绝了萨拉的请求。经沟通，鲍里斯同意下周给萨拉优先选择日期，
若有人取消，也会优先考虑。萨拉表示理解公平性并感谢鲍里斯。
GPT-4 (ST): 由于本周休假申请数量众多，鲍里斯不得不根据资历来决定谁可以休假，因此拒绝了萨拉的申请。他们讨论了潜
在的妥协方案，最终同意萨拉在下周一至周三休假。如果有人取消休假，鲍里斯将首先向萨拉提供名额。萨拉需要在鲍里斯
的助手那里签署更改。
GPT-4 (ST+Inta): 鲍里斯因资历问题拒绝了萨拉的休假申请。他们商量后同意萨拉下周一至三休假。若有人取消，鲍里斯会
优先通知萨拉。萨拉需在助手处确认更改。

Figure 3: Example dialogue document in XSAMSum and summaries generated by ChatGPT and GPT-4.

also shows an example English document with the
corresponding summaries generated by ChatGPT
and GPT-4 via different prompts. Therefore, the
conversational LLMs prefer to generate lengthy
summaries probably due to the RLHF training pro-
cess, and the interactive prompt further helps them
balance informativeness and conciseness, and sig-
nificantly improves their zero-shot CLS ability.

Best Zero-Shot LLM vs. Fine-Tuned mBART.
GPT-4 achieves state-of-the-art zero-shot CLS per-
formance among all LLMs, justifying its superior-
ity. But the model is still slightly worse than the
fine-tuned mBART-50 in terms of automatic eval-
uation metrics. One possible reason is that zero-
shot LLMs are not aware of the text style of the
golden summaries when performing zero-shot CLS
on each dataset. However, lower automatic scores
do not indicate worse performance. For example,
as discussed by Goyal et al. (2022), the news sum-
maries generated by GPT-3 achieve lower ROUGE
scores than fine-tuned models but higher in human
evaluation. Thus, the comparison between LLMs
and fine-tuned mBART-50 in CLS needs human
evaluation, which we reserve for the future.

Limited Performance of Open-Source LLMs.
For open-source LLMs, i.e., BLOOMZ, ChatGLM-
6B, Vicuna-13B and ChatYuan-7.7B, they per-
form poorly on CrossSum and WikiLingua datasets
whose documents typically contain more lengthy
content than those of XSAMSum. Although they
perform decently on XSAMSum, there is still a

Method
CrossSum WikiLingua XSAMSum

En⇒Zh En⇒Zh En⇒De En⇒Zh En⇒De

mBART-50 32.7 46.6 75.4 22.3 27.9

Davinci-003 (Dir) 83.3 78.5 149.1 61.8 62.5
Davinci-003 (TS) 82.1 76.2 148.6 53.4 65.8
Davinci-003 (ST) 44.7 49.1 91.7 43.4 52.1
ChatGPT (Dir) 183.7 176.6 273.5 68.6 75.3
ChatGPT (Dir+Inta) 66.4 50.0 80.7 28.7 42.5
ChatGPT (TS) 155.1 82.1 149.3 48.2 60.9
ChatGPT (TS+Inta) 63.4 46.2 70.0 30.3 41.1
ChatGPT (ST) 132.7 94.3 124.2 54.9 68.1
ChatGPT (ST+Inta) 57.8 50.1 71.6 29.3 37.5
GPT-4 (Dir) 227.1 170.5 193.1 70.4 74.4
GPT-4 (Dir+Inta) 102.2 58.7 75.1 30.1 38.3
GPT-4 (TS) 93.9 85.6 114.7 44.1 53.8
GPT-4 (TS+Inta) 56.5 45.4 66.5 26.3 33.8
GPT-4 (ST) 106.6 87.8 109.5 43.6 53.7
GPT-4 (ST+Inta) 62.7 48.0 65.1 26.7 33.3

Golden 36.1 50.0 66.8 23.9 29.6

Table 3: The average length (token level) of the gen-
erated summaries on the test set of each CLS dataset.
Light green indicates the length of golden summaries.

large gap compared to GPT-4. Thus, we conclude
that zero-shot CLS is challenging for LLMs to per-
form due to its composite nature that requires mod-
els to perform summarization and translation si-
multaneously. In this situation, we suggest future
bilingual or multi-lingual LLM research adopt CLS
as a testbed to evaluate the LLMs’ capabilities to
follow composite instructions as well as combine
their different ability.

3.4 LLM-based Evaluation

It is worth noting that conducting human evaluation
on the generated summaries of both LLMs and fine-
tuned models is not trivial since human evaluators
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XSAMSum (En⇒Zh) XSAMSum (En⇒De)
Coherence Relevance Consistency Fluency Coherence Relevance Consistency Fluency

mBART-50 54.0 32.3 36.6 55.8 54.6 36.0 45.3 52.1

ChatYuan-7.7B (Dir) 44.6 17.3 40.3 53.6 - - - -
ChatYuan-7.7B (Dir+Inta) 43.6 21.0 37.3 52.0 - - - -
ChatYuan-7.7B (TS) 41.0 17.0 24.8 48.8 - - - -
ChatYuan-7.7B (TS+Inta) 39.0 15.3 17.3 41.5 - - - -
ChatYuan-7.7B (ST) 47.3 19.6 36.3 54.6 - - - -
ChatYuan-7.7B (ST+Inta) 48.6 15.3 33.0 52.0 - - - -
ChatGLM-6B (Dir) 58.8 31.0 49.0 61.0 - - - -
ChatGLM-6B (Dir+Inta) 60.6 35.3 55.1 60.8 - - - -
ChatGLM-6B (TS) 52.0 22.0 25.3 54.0 - - - -
ChatGLM-6B (TS+Inta) 55.0 31.6 46.5 58.5 - - - -
ChatGLM-6B (ST) 58.6 27.0 37.3 56.5 - - - -
ChatGLM-6B (ST+Inta) 59.3 34.0 53.1 63.8 - - - -
Vicuna-13B (Dir) 50.3 28.0 39.6 52.8 64.3 53.6 67.1 63.8
Vicuna-13B (Dir+Inta) 55.5 36.0 43.0 56.8 63.8 49.0 62.0 63.6
Vicuna-13B (TS) 57.1 44.6 57.3 56.5 68.3 55.6 69.3 66.5
Vicuna-13B (TS+Inta) 55.1 35.6 49.3 52.1 66.6 56.3 66.3 64.0
Vicuna-13B (ST) 54.6 33.6 46.3 56.6 65.0 54.0 62.8 62.1
Vicuna-13B (ST+Inta) 53.6 37.0 44.3 55.1 69.5 57.3 67.6 66.3
BLOOMZ-176B (Dir) 53.5 38.3 44.3 54.3 63.1 51.0 61.0 63.8
BLOOMZ-176B (TS) 52.3 37.0 37.6 53.6 59.3 48.3 61.3 58.8
BLOOMZ-176B (ST) 54.3 37.3 44.3 55.5 59.5 48.0 60.3 60.3

Davinci-003 (Dir) 60.0 33.0 55.0 59.3 71.3 60.6 76.6 69.5
Davinci-003 (TS) 56.3 26.6 38.6 54.3 68.5 54.3 68.6 68.3
Davinci-003 (ST) 62.8 46.6 54.0 61.5 68.6 61.6 77.0 70.1
ChatGPT (Dir) 63.1 45.3 70.0 65.3 74.0 64.0 82.0 71.6
ChatGPT (Dir+Inta) 58.0 45.0 58.0 60.6 68.3 65.3 76.0 69.1
ChatGPT (TS) 63.0 49.6 59.0 62.8 71.5 62.0 77.6 71.8
ChatGPT (TS+Inta) 64.5 49.3 61.3 60.5 70.0 59.0 77.0 69.8
ChatGPT (ST) 64.3 51.6 64.0 62.3 72.3 63.6 77.0 74.0
ChatGPT (ST+Inta) 64.1 51.0 60.6 65.3 69.1 60.3 73.6 67.0
GPT4 (Dir) 64.0 48.6 67.6 67.0 75.3 68.0 83.6 74.5
GPT4 (Dir+Inta) 62.0 50.6 57.3 63.1 70.0 68.6 77.6 70.3
GPT4 (TS) 66.0 55.3 63.3 65.6 73.6 68.6 79.0 72.0
GPT4 (TS+Inta) 62.3 48.6 59.0 63.8 65.1 60.3 69.3 68.3
GPT4 (ST) 63.0 52.6 64.0 62.3 72.8 67.3 80.3 72.3
GPT4 (ST+Inta) 60.6 46.3 56.3 63.5 70.8 62.6 79.0 70.1

Table 4: Evaluation results (judged by ChatGPT) on XSAMSum. Pink denotes the fine-tuned baseline. Light blue

and blue denote the zero-shot performance of open-source and non-open-source LLMs, respectively. “-” denotes
the model cannot be evaluated in the corresponding dataset.

can easily realize which summaries are generated
by LLMs or fine-tuned models. In this manner,
the evaluators may have biases during scoring each
summary. To ensure the fairness of human judg-
ment, Stiennon et al. (2020) only retain the gener-
ated summaries whose length belongs to a certain
range, and then collect human judgment on these
summaries to minimize the potential evaluation
bias caused by summary length. In our scene, the
text styles of LLMs and fine-tuned models are quite
different, which might also lead to bias. Thus, the
human evaluation of comparing zero-shot LLMs
and fine-tuned models on CLS needs more care-
fully designed.

As an alternative to human evaluation, recent

studies (Liu et al., 2023; Kocmi and Federmann,
2023; Wang et al., 2023) show that the natural
language generation (NLG) results evaluated by
LLMs could achieve better correlations with hu-
mans. Following Wang et al. (2023), we utilize
ChatGPT to score the generated summaries in a
reference-free manner on four aspects, i.e., coher-
ence, relevance, consistency and fluency. An exam-
ple prompt is shown in Figure 4, and please refer
to Wang et al. (2023) for prompts of all aspects.
The instruction of each aspect (marked in purple
in Figure 4) is inspired by SummEval (a widely-
used summarization meta-evaluation benchmark
dataset) (Fabbri et al., 2021). We utilize the official
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Score the following dialogue summarization given the 
corresponding dialogue with respect to fluency on a 
continuous scale from 0 to 100, where a score of zero 
means "disfluency" and score of one hundred means 
"perfect fluency". Note that fluency measures the quality 
of individual sentences, are they well-written and 
grammatically correct. Consider the quality of individual 
sentences.

Dialogue: [a given dialogue]
Summary: [one generated summary]
Scores:

Figure 4: An example prompt used to guide ChatGPT
to score the summarization results in the aspect of flu-
ency. Purple indicates the detailed instruction of the
corresponding aspect.

APIs provided by OpenAI12 to conduct the experi-
ments with gpt-3.5-turbo model, and set the
temperature to 0 to eliminate the randomness of
evaluation results.

Table 4 shows the evaluation results on XSAM-
Sum (En⇒Zh/De). As we can see, GPT-4 achieves
the best performance in most aspects, showing its
superiority. Besides, compared with the fine-tuned
mBART-50 baseline, several zero-shot LLMs, in-
cluding ChatGLM-6B, Vicuna-13B, Davinci-003,
ChatGPT and GPT-4, achieve better results in all as-
pects, demonstrating the potentiality of performing
zero-shot CLS via LLMs. For example, ChatGLM-
6B (Dir+Inta) achieves 60.6, 35.3, 55.1 and 60.8
scores in aspects of coherence, relevance, con-
sistency and fluency respectively on XSAMSum
(En⇒Zh), while the counterparts of mBART-50
are 54.0, 32.3, 36.6 and 55.8, respectively. For
GPT-4 (Dir), the corresponding scores even reach
64.0, 48.6, 67.6 and 67.0, significantly better than
the fine-tuned mBART-50.

Moreover, while we show the interactive prompt
can improve the performance of zero-shot LLM in
terms of ROUGE scores and BERTScore, we do
not find the same trend in the LLM-based evalua-
tion results. In some cases, the interactive prompt
even leads to worse LLM-based scores. We conjec-
ture that the interactive prompt would force zero-
shot LLMs to reduce the length of the generated
summaries, and the models cannot make a good
trade-off between conciseness and other aspects,
which is also hard for humans.

12https://platform.openai.com/docs/
guides/gpt/chat-completions-api

4 Related Work

4.1 Cross-Lingual Summarization
Given documents in one language, cross-lingual
summarization (CLS) generates summaries in an-
other language. Early work typically focuses on
pipeline methods (Leuski et al., 2003; Orăsan and
Chiorean, 2008; Wan et al., 2010; Wan, 2011; Yao
et al., 2015), i.e., translation and then summariza-
tion or summarization and then translation. Re-
cently, with the availability of large-scale CLS
datasets (Zhu et al., 2019; Ladhak et al., 2020;
Perez-Beltrachini and Lapata, 2021; Wang et al.,
2022a; Zheng et al., 2022), many researchers
shift the research attention to end-to-end CLS
models. According to a comprehensive CLS re-
view (Wang et al., 2022b), the end-to-end mod-
els involve multi-task learning (Cao et al., 2020;
Bai et al., 2021b; Liang et al., 2022b), knowl-
edge distillation (Nguyen and Luu, 2022), resource-
enhanced (Zhu et al., 2020; Jiang et al., 2022)
and pre-training (Xu et al., 2020; Chi et al., 2021)
frameworks. However, none of them explore LLMs
performance on CLS. To our knowledge, we are
the first to explore can LLMs perform zero-shot
CLS and how their results are.

4.2 Large Language Models
Recently, there are growing interest in leveraging
LLMs for various NLP tasks. Bang et al. (2023),
Qin et al. (2023) and Zhong et al. (2023) con-
duct systematic investigations of ChatGPT’s per-
formance on various downstream tasks. Jiao et al.
(2023) and Peng et al. (2023) evaluate ChatGPT on
machine translation. Yong et al. (2023) show that
ChatGPT could generate high-quality code-mixed
text. Tan et al. (2023) explore the performance
of ChatGPT on knowledge-based question answer-
ing (KBQA). Some works (Kocmi and Federmann,
2023; Wang et al., 2023; Liu et al., 2023; Ji et al.,
2023) utilize ChatGPT or GPT-4 as an evaluation
metric to assess task-specific model performance.

5 Conclusion and Future Work

In this technical report, we evaluate the zero-shot
performance of mainstream bilingual and multi-
lingual LLMs on cross-lingual summarization. We
find that Davinci-003, ChatGPT and GPT-4 can
combine the ability to summarize and translate to
perform zero-shot CLS, and achieve competitive
results with the fine-tuned baseline (i.e., mBART-
50). In addition, the current open-source LLMs
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(i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and
ChatYuan) generally show their limited ability to
perform CLS in an end-to-end manner, showing the
challenge of performing zero-shot CLS still exists.

In the future, we would like to unleash the po-
tentiality of LLMs and leverage LLMs to perform
CLS in few-shot learning manners.

Limitations

While we evaluate the performance of LLMs on the
cross-lingual summarization task, there are some
limitations worth noting: (1) We only evaluate the
lower threshold of these models’ CLS performance.
Prompts are important to guide LLMs to perform
specific tasks, and future work could explore bet-
ter prompts to obtain better results. (2) This report
only uses two cross-lingual directions (En⇒Zh and
En⇒De) in experiments, and all the languages are
considered high-resource languages in the world.
The performance of LLMs on low-resource lan-
guages still needs to be explored. According to Jiao
et al. (2023), the machine translation ability of
ChatGPT is limited on low-resource languages. We
conjecture that the same situation might exist in
CLS. (3) Though the general trend of the evalu-
ation results should be correct, the comparisons
between LLMs are not rigorous due to the decod-
ing strategies of these models are not the same.13

This is one of the major reasons leading to the lim-
ited soundness of this work. (4) In the future, we
would like to conduct human evaluation to give
more analyses.
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Abstract
Cross-lingual science journalism is a recently
introduced task that generates popular science
summaries of scientific articles different from
the source language for non-expert readers. A
popular science summary must contain salient
content of the input document while focusing
on coherence and comprehensibility. Mean-
while, generating a cross-lingual summary
from the scientific texts in a local language for
the targeted audience is challenging. Existing
research on cross-lingual science journalism
investigates the task with a pipeline model to
combine text simplification and cross-lingual
summarization. We extend the research in
cross-lingual science journalism by introducing
a novel, multi-task learning architecture that
combines the aforementioned NLP tasks. Our
approach is to jointly train the two high-level
NLP tasks in SIMCSUM for generating cross-
lingual popular science summaries. We investi-
gate the performance of SIMCSUM against the
pipeline model and several other strong base-
lines with several evaluation metrics and hu-
man evaluation. Overall, SIMCSUM demon-
strates statistically significant improvements
over the state-of-the-art on two non-synthetic
cross-lingual scientific datasets. Furthermore,
we conduct an in-depth investigation into the
linguistic properties of generated summaries
and an error analysis.

1 Introduction

Cross-lingual science journalism is a recently intro-
duced task that produces science summaries in a tar-
get language from scientific documents in a source
language while emphasizing simplification (Fatima
and Strube, 2023). A real-world example of cross-
lingual science journalism is Spektrum der Wis-
senschaft1. It is the German version of Scientific
American and an acclaimed bridge between local
readers and the latest scientific research in Ger-
many. Spektrum’s target audience are non-expert
1https://www.spektrum.de/magazin

adults, so their journalists summarize complex sci-
entific concepts in easy-to-understand terms in their
local language. These scientific summaries are dis-
tinctive from other scientific texts/abstracts due
to their length, which is more concise than regu-
lar scientific articles, containing non-complex and
simplified terms, and are generated in a different
language from their source.

Previous work on science journalism, includ-
ing monolingual and cross-lingual, is quite lim-
ited. Monolingual science journalism has been
investigated as a downstream task of abstrac-
tive summarization (Dangovski et al., 2021; Za-
man et al., 2020) with customized monolingual
datasets (Zaman et al., 2020; Goldsack et al., 2022).
These datasets are, unfortunately, not suitable for
cross-lingual science journalism. Moreover, cross-
lingual science journalism has been investigated
as a fusion of cross-lingual summarization and
text simplification with a pipeline model (Fatima
and Strube, 2023) with cross-lingual scientific
datasets (Fatima and Strube, 2021). In the dawn of
cross-lingual summarization, various pipeline mod-
els (Ouyang et al., 2019; Zhu et al., 2019, 2020)
with synthetic cross-lingual datasets have been in-
troduced to explore the task. Later, cross-lingual
summarization models have been focused towards
Multi-Task Learning (MTL) (Cao et al., 2020; Bai
et al., 2021, 2022) and direct cross-lingual summa-
rization with non-synthetic datasets (Ladhak et al.,
2020; Fatima and Strube, 2021).

Due to the limited prior work in cross-lingual
science journalism, this task needs further investiga-
tion. Fatima and Strube (2023) introduce the cross-
lingual science journalism task with a pipeline-
based model - SELECT, SIMPLIFY and REWRITE

(SSR). SSR consists of three components - an ex-
tractive summarizer as SELECT, a reinforcement
simplification model as SIMPLIFY, and a cross-
lingual abstractive summarizer as REWRITE. SSR

is a plug-and-play model which shows promising
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results for cross-lingual science journalism. How-
ever, this model has a few limitations. The SELECT

component is not a trainable model and cannot be
fine-tuned for the training data. The SIMPLIFY and
REWRITE components require independent train-
ing and hyper-parameter settings. Therefore, these
models cannot learn the mutual representations
for simplification and cross-lingual summarization.
We find this as a research gap. To the best of our
knowledge, there are no available models for cross-
lingual science journalism that can be trained at
once on training data for simplification and cross-
lingual summarization.

To fill this gap, we propose an MTL-based model
- SIMCSUM that jointly trains for simplification
and cross-lingual summarization to generate cross-
lingual popular science summaries. SIMCSUM con-
sists of one shared encoder and two independent
decoders for each task based on a transformer ar-
chitecture, where we consider cross-lingual sum-
marization as our main task and simplification as
our auxiliary task. The proposed model also leads
us to two important research questions. (RQ1)
Can jointly trained models learn and perform bet-
ter than pipeline models for cross-lingual science
journalism? (RQ2) Which linguistic features can
effectively measure conciseness and readability to
compare cross-lingual science journalism models?
To investigate these research questions, we empiri-
cally evaluate the performance of SIMCSUM against
SSR and several existing cross-lingual summariza-
tion models on two cross-lingual scientific datasets.
We conduct a human evaluation to find the linguis-
tic qualities of generated summaries. We further
analyze the outputs for various lexical, readability
and syntactic-based linguistic features. We also
perform an error analysis to assess the quality of
outputs.

2 Related Work

2.1 Scientific Summarization

This section focuses on the datasets for scien-
tific summarization. Most science summarization
datasets are collected from English scientific pa-
pers paired with abstracts: ARXIV (Kim et al., 2016;
Cohan et al., 2018), PUBMED (Cohan et al., 2018;
Nikolov et al., 2018), MEDLINE (Nikolov et al.,
2018) and science blogs (Vadapalli et al., 2018b,a).
Some work has been conducted for extreme sum-
marization with monolingual dataset (Cachola
et al., 2020), extended for cross-lingual extreme

summarization (Takeshita et al., 2022). The ex-
treme summarization task generates a one/two-line
summary from a scientific abstract/paper, which
makes it different from science journalism.

Cross-lingual scientific summarization is an un-
derstudied area due to its challenging nature. We
find two studies: a synthetic dataset from English to
Somali, Swahili, and Tagalog with round trip trans-
lation (Ouyang et al., 2019), two real cross-lingual
datasets from Wikipedia Science Portal and Spek-
trum der Wissenschaft for English-German (Fatima
and Strube, 2021).

2.2 Cross-lingual Summarization

This section focuses on MTL-based cross-lingual
summarization. Zhu et al. (2019) develop an MTL

model for English-Chinese cross-lingual summa-
rization. They develop two variations of the trans-
former model (Vaswani et al., 2017), where the en-
coder is shared, and two decoders are independent.
Cao et al. (2020) present a MTL model for cross-
lingual summarization by joint learning of align-
ment and summarization. Their model consists of
two encoders and two decoders, each dedicated to
one task while sharing contextual representations.
The authors evaluate their model on synthetic cross-
lingual datasets for the English-Chinese language
pairs. Takase and Okazaki (2022) introduce an MTL

framework for cross-lingual abstractive summariza-
tion by augmenting (monolingual) training data
with translations for three pairs: Chinese-English,
Arabic-English, and English-Japanese. The model
consists of a transformer encoder-decoder model
with prompt-based learning in which each training
instance is affixed with a special prompt to signal
example type. Bai et al. (2021) develop a variation
of multi-lingual BERT for English-Chinese cross-
lingual abstractive summarization. The model is
trained with a few shots of monolingual and cross-
lingual examples. Bai et al. (2022) extend their
work by introducing a MTL model to improve cross-
lingual summaries by combining cross-lingual sum-
marization and translation rates. They add a com-
pression scoring method at the encoder and decoder
of their model. They augment their datasets for
different compression levels of summaries. One
variation consists of cross-lingual and monolingual
summarization decoders, while the other consists
of cross-lingual and translation decoders.

Most of these studies focus on English-Chinese
synthetic datasets emphasizing summarization and
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translation (Zhu et al., 2019; Xu et al., 2020; Chen
et al., 2023; Bai et al., 2021, 2022). By architecture,
SIMCSUM is similar to Zhu et al. (2019) model as
it also consists of one shared encoder and two task-
specific decoders.

2.3 Science Journalism

This section focuses on science journalism mod-
els. Zaman et al. (2020) develop an extension of
PGN (See et al., 2017) by modifying the loss func-
tion, so the model is trained for joint simplification
and summarization. It is not a MTL model but a
summarization model with an added loss for simpli-
fication. Moreover, the model is trained for mono-
lingual science journalism on a customized dataset
that contains simplified summaries from the Eu-
reka Alert science news website. Dangovski et al.
(2021) introduce monolingual science journalism
as a downstream task of abstractive summarization
and story generation. They apply BERT-based mod-
els with a prompting method for data augmentation
on a monolingual dataset collected from Science
daily press releases and scientific papers. They use
three existing models for their work: SCI-BERT,
a CNN-based sequence-to-sequence model and a
story generation model.

Fatima and Strube (2023) propose cross-lingual
science journalism as a downstream task of text
simplification and cross-lingual summarization.
They investigate the task on two non-synthetic
cross-lingual scientific datasets with a pipeline-
based model - SELECT, SIMPLIFY and REWRITE

(SSR). To the best of author’s knowledge, there is
no other cross-lingual science journalism model
to-date.

3 Proposed Model

Our model jointly trains for Simplification and
Cross-lingual Summarization (SIMCSUM). We first
define MTL and our tasks, and then discuss the ar-
chitecture of our proposed model.

3.1 Multi-Task Learning

MTL is an approach in deep learning which im-
proves generalization by learning different noise
patterns from data related to different tasks. We de-
fine our MTL-based model trained on two tasks:
simplification and cross-lingual summarization.
We adopt hard parameter sharing as it improves
the positive transfer and reduces the risk of overfit-
ting (Ruder, 2017).
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Figure 1: Architecture of SIMCSUM.

3.2 Summarization
We define single-document abstractive summariza-
tion as follows. Given a text X = {x1, · · · , xm}
with m number of sentences comprising of a set
of words (vocabulary) WX = {w1, · · · , wX}, an
(encoder-decoder-based) abstractive summarizer
generates a summary Y ={y1, · · · , yn} with n sen-
tences that contain salient information of X, where
m≫ n and Y consisting of a set of words WY =

{w1, · · · , wY | ∃wi /∈WX}. The decoder learns the
conditional probability distribution over the given
input and all previously generated words, where t
denotes the time step.

Pθ(Y |X) = logP (yt| y<t, X) (1)

Cross-lingual summarization adds another di-
mension of language for simultaneous transla-
tion and summarization. Given a text X l ={
xl
1, · · · , xl

m

}
in a language l with m sentences

comprising of a vocabulary W l
X =

{
wl

1, · · · , wl
X

}
,

a cross-lingual summarizer generates a summary
Y k =

{
yk1 , · · · , ykn

}
in a language k that con-

tains salient information in X, where m ≫
n and Y consisting of a vocabulary W k

Y ={
wk

1 , · · · , wk
Y | ∃wi /∈W l

X

}
. The conditional prob-

ability is the same as in Eq.1, the only difference
being that the language on the decoder side is dif-
ferent from the encoder side.

3.3 Simplification
We define the document-level (lexical and syn-
tactic) simplification task as follows. Given a
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Algorithm 1 Training of SIMCSUM for Simplifica-
tion and Cross-lingual Summarization
Input:

for each d ∈ trainset do
▷ Process each instance d of dataset D for tuples I of input
x and targets for each task T

Create I⟨x, yT ⟩
end for

Initialize model parameters θ
Set maximum Epoch Ep
for epoch 1 to Ep do

for b ∈ trainset do
▷ b is a mini-batch containing I from trainset
▷ SIMCSUM consists of Encoder E, two Decoders DT

Feed x to E and get the cross-attention
Feed yT to DT
Feed the cross-attention to DT [eq. (2)]
t← 0
while θt is not converged do

t← t+ 1
Compute L(θ) [eq. (3)]
Compute gradient∇(θt)
Update θt ← θt−1 − η∇(θ)

end while
end for

end for

text X = {x1, · · · , xm} with m sentences compris-
ing of a vocabulary WX = {w1, · · · , wX}, a sim-
plification model generates the output text Y =

{y1, · · · , yn} that retains the primary meaning of
X, yet more comprehensible as compared to X,
where m ≈ n and Y consisting of a vocabulary
WY = {w1, · · · , wY | ∃wi /∈WX}. The conditional
probability is also the same as in Eq.1.

3.4 SimCSum

We illustrate the framework of SIMCSUM2 in Fig-
ure 1. SIMCSUM jointly trains on simplification
and cross-lingual summarization. SIMCSUM adopts
hard parameter sharing where the encoder is shared
between the tasks while having two task-specific
decoders. The decoders only share the cross-
attention layer, and the loss is combined to update
the parameters (θ). We opt for two decoders be-
cause each task’s output language and length differ.
The training method is described in Algorithm 1.
Here we discuss the further details of SIMCSUM.
For all mathematical definitions, T ∈ {sim, sum}
denotes a task.

3.4.1 Architecture
Considering the excellent text generation perfor-
mance of multi-lingual Bart (mBART) (Liu et al.,
2020), we implement the SIMCSUM model based

2https://github.com/MehwishFatimah/SimCSum

on it and modify it for two decoding sides for each
task. Each encoder and decoder stack consists of
12 layers.

Self-Attention. Each layer of encoder/decoder
has its self-attention, consisting of keys, values,
and queries generated from the same sequence.

A(Q,K, V ) = Softmax(
Q ·KT

√
dk

) · V

where Q is a query, KT is transposed K (key) and
V is the value. All parallel attentions are concate-
nated to generate multi-head attention scaled with
a weight matrix W .

MH(Q,K, V ) = Concat(A1, · · · , Ah) ·WO

Cross-attention. The cross-attention connects
the encoder and decoder and provides the decoder
with a weight distribution at each step, indicating
the importance of each input token in the current
context. We concatenate the cross-attention of both
decoders.

A(E,DT ) = Concat(Softmax(
DT · ET

√
dk

) · E)

(2)

where E is the encoder representation, DT is
the task-specific decoder contextual representation,
and dk is the model size.

3.4.2 Training Objective
We train our model end-to-end to maximize the
conditional probability of the target sequence given
a source sequence. We define the task-specific loss
as follows.

LT (θ) =
N∑

n=1

logP (yTt
|yT<t

, x; θ)

where x represents the input, y is the target, N is
the mini-batch size, t is the time step and θ denotes
learnable parameters. We define the total loss of
our model by task-specific losses where λT is an
assigned weight to each task.

L(θ) =
∑

λT · LT (θ) (3)

3.5 Comparison with SSR

Here, we discuss the key differences between
SSR (Fatima and Strube, 2023) and SIMCSUM.
SSR is a component-based approach that combines
three distinct modules: SELECT, SIMPLIFY and
REWRITE. Each of these components addresses
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a specific aspect of cross-lingual science journal-
ism. It allows for fine-grained control over each
step of the process, making it easier to analyze
the individual contributions of these components.
However, SIMCSUM is a unified model, where a
single model is trained to handle both simplifica-
tion and summarization. It needs to learn to bal-
ance and optimize these tasks simultaneously. It
leverages synergies between the two tasks, poten-
tially improving performance by learning shared
representations between simplification and sum-
marization. Furthermore, SSR introduces a degree
of complexity due to its multi-component nature
but allows for more control and transparency in
the overall process. While SIMCSUMcan simplify
the pipeline as it employs a single jointly trained
model, potentially reducing complexity and taking
benefits of shared representations.

4 Experiments

4.1 Datasets

4.1.1 Summarization
WIKIPEDIA. It is harvested from Wikipedia Sci-
ence Portal for English and German (Fatima and
Strube, 2021). Wikipedia Science Portal contains
articles in various science fields. The WIKIPEDIA

dataset consists of 50,132 English articles (avg.
1572 words) and German summaries (avg. 100
words).

SPEKTRUM. It is collected from Spektrum der
Wissenschaft (Fatima and Strube, 2021). Spektrum
is a famous science magazine (Scientific American)
in Germany. It covers various topics in diverse sci-
ence fields: astronomy, biology, chemistry, archae-
ology, mathematics, physics, etc. The SPEKTRUM

dataset contains 1510 English articles (avg. 2337
words) and German summaries (avg. 361 words).

4.1.2 Simplification
We construct a synthetic WIKIPEDIA dataset for
the simplification task by applying Keep-It-Simple
(KIS) (Laban et al., 2021). To create the simpli-
fied WIKIPEDIA, we fine-tune KIS on WIKIPEDIA

English articles as KIS is an unsupervised model
and does not require parallel data. The simplified
WIKIPEDIA consists of the original English articles
paired with simplified English articles.

4.2 Split and Usage

We use WIKIPEDIA for training, validation and test-
ing (80/10/10), while we use SPEKTRUM for zero-

shot adaptability as a case study. All PLM baselines
are trained on WIKIPEDIA where each instance I
in the training set consists of < x, y > where x
is the input English text and y is the target Ger-
man summary. SIMCSUM is trained on WIKIPEDIA

where each instance I in the training set contains
< x, ysim, ysum > where x denotes the input En-
glish article and ysim refers to the simplified En-
glish article and ysum is the target German sum-
mary.

4.3 Models
Baselines. Almost all cross-lingual MTL models
in §2 are based on translation and summarization,
and none of them applies simplification. So we
select several PLMs that accept long input texts as
baselines. We fine-tune the following baselines: (1)
mT5 (Xue et al., 2021), (2) mBART (Liu et al.,
2020), (3) PEGASUS (Zhang et al., 2020a), (4)
LongFormer-Encoder-Decorder (LONG-ED) (Belt-
agy et al., 2020), and (5) XLSUM (Hasan et al.,
2021) and (6) BIGBIRD (Zaheer et al., 2020). We
also consider SSR as a strong baseline for cross-
lingual science journalism.

SimCSum. We set λSum = 0.75 for SIMCSUM

based on the best results on the WIKIPEDIA valida-
tion set.

4.4 Training and Inference
The libraries, hardware and training time details
are presented in Appendix A. Here, we discuss
hyper-parameters.

Baselines. We fine-tune all models for a max-
imum of 25 epochs and average the results of 5
runs for each model. We use a batch size of 4-16,
depending on the model size. We use a learning
rate (LR) of 5e−5 and 100 warm-up steps to avoid
over-fitting of the fine-tuned models. We use the
Adam optimizer with a LR linearly decayed LR

scheduler. The encoder language is set to English,
and the decoder language is German.

SimCSum. We adopt similar settings as used
for baselines, except for the batch size fixed to 4.
We only generate tokens from the Summarization
decoder side in the inference period. We use beam
search of size 5 and a tri-gram block during the
decoding stage to avoid repetition.

4.5 Evaluation
Automatic. We evaluate all models with three met-
rics. ROUGE (Lin, 2004) is a standard metric for
summarization. BERT-score (Zhang et al., 2020b)
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MODELS R1 R2 RL BS FRE

GOLD - - - - 36.93
mT5 26.79 12.65 23.40 69.12 45.42
mBART 31.43 13.20 25.12 70.52 44.67
PEGASUS 29.30 13.93 24.62 69.83 43.39
XLSUM 31.91 13.30 24.14 70.04 37.83
BIGBIRD 29.23 13.72 24.60 69.19 41.42
LONG-ED 15.11 06.82 13.67 63.94 24.48

SSR 32.17 13.56 25.01 70.60 48.34†

SIMCSUM 34.50† 14.36† 25.85† 71.60† 46.86

Table 1: The WIKIPEDIA results for all baselines and SIM-
CSUM. GOLD denotes the reference summaries. Bold† de-
notes the best overall results with significant improvements
(p<.001).

(BS) is a recent metric for summarization and sim-
plification as an alternative metric to n-gram-based
metrics and applies contextual embeddings. For
readability, we use Flesch Kincaid Reading Ease
(FRE) (Kincaid et al., 1975) (Appendix B §B.2).

Human. We conduct a human evaluation to
compare the outputs of SIMCSUM with mBART

(baseline) for the same linguistic properties. Our
annotators are two university students from the
Computational Linguistics department with fluent
German and English skills. It is worth mention-
ing that human evaluation of long cross-lingual
scientific text is challenging and costly because
it requires bi-lingual annotators with a scientific
background.

5 Results

5.1 WIKIPEDIA

We report F-score of ROUGE and BERT-score and
FRE of all models in Table 1. The first block in-
cludes the fine-tuned PLM models, the second block
presents the pipeline baseline, and the last block in-
cludes SIMCSUM. From Table 1, we note that SIMC-
SUM outperforms all baselines for every metric ex-
cept FRE. We compute the statistical significance of
the results with the Mann-Whitney two-tailed test
for a p-value p< .001. Interestingly, WIKIPEDIA

summaries are not simplified compared to SPEK-
TRUM summaries; still, SIMCSUM performs better
on WIKIPEDIA than the baselines. We interpret
that the simplification auxiliary task helps SIMC-
SUM to learn a better contextual representation and
produce more relevant German words. We deduce
from the results that joint learning of simplifica-
tion and cross-lingual summarization improves the
quality of summaries.

MODELS R1 R2 RL BS FRE

GOLD - - - - 40.76
mT5 09.21 00.75 06.50 58.52 38.18
mBART 16.16 01.47 13.89 62.11 39.17
PEGASUS 11.49 00.95 08.01 60.56 37.93
XLSUM 17.10 01.63 09.79 62.25 33.83
BIGBIRD 12.28 01.04 08.65 59.97 36.24
LONG-ED 01.32 00.11 01.18 51.85 30.16

SSR 21.14† 04.34† 15.15† 63.09 41.01

SIMCSUM 20.98 03.82 14.16 63.47† 41.03†

Table 2: The SPEKTRUM results for all baselines and SIM-
CSUM. GOLD denotes the reference summaries. Bold† de-
notes the best overall results with significant improvements
(p<.001).

Among the baselines, almost all models demon-
strate comparable performance except LONG-ED.
For R1, SSR perform better than other models, how-
ever, mBART and XLSUM perform also similar. PE-
GASUS takes the lead for R2, and mBART shows
higher performance for RL. SSR and mBART take
the lead for BS among the baselines. For FRE, a
score between 30− 50 is the readability level best
understood by college graduates. The WIKIPEDIA

summaries fall in this range. For FRE, SSR per-
forms the best among all models. Interestingly,
almost all baselines except BIGBIRD and XLSUM

demonstrate good performance.

5.2 Case Study: SPEKTRUM

Table 2 presents the results of all models on SPEK-
TRUM. We find a similar pattern that SIMCSUM

outperforms all baselines except SSR for ROUGE-
scores. We also compute the statistical significance
of these results with the same procedure. The SPEK-
TRUM results are on the lower side compared to
the WIKIPEDIA results due to zero-shot adaptabil-
ity, especially for R2. This is because the ROUGE

score computes n-gram overlap (Ng and Abrecht,
2015). The SPEKTRUM summaries have higher
FRE scores compared to WIKIPEDIA. Interestingly,
we note that all baselines perform lower than the
GOLD summaries. However, the SIMCSUM score is
similar to the GOLD summaries.

Human Evaluation. We compare the SIMCSUM

and mBART outputs for analyzing linguistic qual-
ities because SIMCSUM’s architecture is based on
mBART. We provide 30× 2 (for each model) ran-
dom summaries with their original texts. We ask
two annotators to evaluate each document for three
linguistic properties on a Likert scale from 1− 5.
The first five samples are used to calibrate the an-
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MODELS FLUENCY RELEVANCE SIMPLICITY

mBART 2.28 (0.64) 1.64 (0.70 ) 1.86 (0.56)
SIMCSUM 2.62 (0.87) 2.76 (0.78) 2.88 (0.81)

Table 3: The SPEKTRUM human evaluation for mBART and
SIMCSUM. The average scores (Krippendorff’s α) for each
linguistic feature are presented here.

notations of annotators, and then each annotator
provides independent judgments on the rest of the
samples.

Table 3 shows the human evaluation results. The
samples used for calibration are not used for com-
puting the scores (guidelines in Appendix C). We
compute the inter-rater reliability by using Krip-
pendorff’s α3. We find that SIMCSUM improves the
fluency, relevance and readability of outputs. We
present a few comparative examples of SIMCSUM

and mBART in Appendix E.

6 Readability Analysis: SPEKTRUM

The automatic evaluation of models show higher
performance of SIMCSUM for ROUGE and BERT-
score for WIKIPEDIA. However, it is not the case
for FRE. Interestingly, for SPEKTRUM, SIMCSUM

shows better performance for FRE. So we decide to
further investigate readability with lexical diversity,
readability scores and syntactic analysis to deter-
mine the quality of generated summaries. These
types of analyses are well-known in NLP for textual
analysis (Aluisio et al., 2010; Hancke et al., 2012;
Vajjala and Lučić, 2018; Mosquera, 2022; Weiss
and Meurers, 2022). The lexical diversity and read-
ability scores are computed over all SPEKTRUM’s
reference summaries (Gold) and outputs of mBART,
SSR and SIMCSUM. The gold summaries’ score is
a guideline for how similar the models’ outputs are
to gold summaries.

6.1 Lexical Diversity
Lexical diversity estimates the overall language
distribution and computes cohesion through syn-
onyms in the text. It is a good indicator of the read-
ability of a text. We calculate Shannon Entropy
Estimation (SEE) (Shannon, 1948) and Measure
of Textual Lexical Diversity (MTLD) (McCarthy,
2005) to find lexical diversity (see Appendix B.1
for the formula).

SEE presents a text’s “informational value” and
language diversity. It is a language-dependent fea-
ture, and its value varies for different languages.
3https://github.com/LightTag/simpledorff

FEATURES GOLD mBART SSR SIMCSUM

Lexical Diversity
SEE ↓ 4.25 4.26 4.25 4.25
MTLD ↑ 201 65.13 90.32 91.75

Readability scores
CLI ↓ 18.45 21.64 19.98 20.96
ARI ↓ 18.99 21.07 21.16 20.26

Table 4: Lexical diversity and readability features’ average
scores.

Higher SEE scores suggest higher lexical diversity.
We aim to get similar SEE as Gold summaries. Ta-
ble 4 shows SEE scores of all three models which
are similar to Gold summaries suggesting the simi-
lar informational value of all summaries.

MTLD is considered a robust version of the type-
token ratio (TTR) and calculates lexical diversity
without considering text length. Higher MTLD rep-
resents the greater vocabulary richness. Table 4
presents MTLD scores of all three models. The
gold summaries have the highest scores, while SIM-
CSUM is the second highest, SSR has a slightly
lower score than SIMCSUM, and mBART has the
lowest score. These scores suggest that the lexical
richness of all groups is not similar, in contrast to
SEE results. The SIMCSUM outputs are more lexi-
cally diverse than the SSR and mBART outputs. We
deduce from the improved SIMCSUM scores that
joint learning of simplification and cross-lingual
summarization impacts word generation. These
results also suggest that MTLD provides a better
estimation of lexical diversity for our summaries.

6.2 Readability Scores

Readability scores measure comprehension levels
of the text. One of the syllables-based readability
scores is already presented in §5. Coleman and
Liau (1975) suggests that word length in letters
is a better predictor of readability than syllables.
We calculate Coleman Liau Index (CLI) (Coleman
and Liau, 1975) and Automated Readability Index
(ARI) (Senter and Smith, 1967) as these do not rely
on syllables (see Appendix B.1 for the formula).

CLI computes scores on word lengths. ARI com-
putes scores on characters, words and sentences.
For both CLI and ARI, the lower score is better as it
shows the ease of reading and understanding. From
Table 4, we note that Gold summaries have the low-
est score, SIMCSUM and SSR have similar scores,
while mBART has the highest score. We deduce
from these scores that joint learning of simplifica-
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FEATURES↓ GOLD mBART SSR SIMCSUM

ASL 24.09 24.15 22.65 20.97
ADD 3.60 4.16 3.95 3.91
ADW 0.93 0.95 0.94 0.94
ATH 8.32 8.72 8.60 8.57

Table 5: Syntactic features’ average scores.

tion and cross-lingual summarization has an impact
on both word and sentence level because CLI only
focuses on words, while ARI includes sentences
also.

6.3 Syntactic Analysis
Syntactic analysis elaborates on how words and
phrases are related in a sentence structure. We per-
form it with constituency trees on 25× 3 (for each
model) random summaries from mBART, SIMC-
SUM and the gold summaries. The total number of
sentences for mBART is 70, for SSR is 120, for SIM-
CSUM is 80 and for gold is 131. Table 5 presents
four syntactic features (see Appendix B.2 for defi-
nitions).

We note from the average sentence length (ASL)
that SIMCSUM produces shorter sentences among
all models, which exhibits syntactic simplicity. A
small average dependency distance (ADD) shows
that words with a dependency relation are close
together, making the text easier to understand.
Table 5 shows that SIMCSUM summaries have a
smaller average dependency than SSR and mBART,
much closer to gold summaries. Fewer dependents
per word (ADW) make a text less ambiguous and
thus easier to follow. Table 5 shows both SSR and
SIMCSUM outputs have fewer dependents than the
mBART outputs and are similar to gold summaries.
The average tree height (ATH) explains the syntac-
tic structural complexity of a sentence. Table 5
shows that SIMCSUM outputs are less structurally
complex than SSR and mBART outputs, however,
gold summaries have the least average tree height.
We deduce from the syntactic analysis that joint
learning of simplification and cross-lingual summa-
rization positively impacts the syntactic properties
of summaries.

7 Error Analysis

To further explore the challenges of generating
cross-lingual science summaries, we consider the
base model - mBART and SIMCSUM for analyzing
the produced errors. We randomly select 25 × 2
(for each model) summaries from the SIMCSUM

ERROR TYPES mBART SIMCSUM

Non-German words 83 35
Wrong name entities 1 2
Unfaithful information 3 3

Table 6: Error occurrences for mBART and SIMCSUM sum-
maries which may contain multiple errors.

and mBART outputs. We note three main categories
of errors in the manual inspection. Table 6 presents
the occurrences of these errors in each model. Ap-
pendix D presents some examples from the error
analysis and its guidelines.

Non-German Words. This is the error type
where the models either produce non-existent Ger-
man words or partially English-German or words
in another language. We find that mBART is more
prone to produce such errors. We note that it is due
to the imbalance between the pre-trained and fine-
tuned dataset sizes. These models are pre-trained
on many languages and usually fine-tuned on com-
paratively smaller data. SIMCSUM tends to produce
fewer errors due to data augmentation (simplifica-
tion data) during the training.

Wrong Named Entities. This is the error type
where the models produce wrong named entities,
such as cities or country names and persons’ first
and last names. We find that both models tend to
produce such errors, however, the percentage of
such errors is quite low. We note that the models
overestimate or underestimate the probability of
word sequences present in data.

Unfaithful Information. This is the error type
where we find some (new) information in gener-
ated summaries that is not faithful to the source
documents. We note that this error is caused by
long inputs where the model tends to hallucinate
and generates some content that cannot be verified
from the source. We find that SIMCSUM makes
similar errors as mBART for this error type.

8 Conclusions

In this paper, we investigate a recently introduced
task - cross-lingual science journalism. We pro-
pose a novel multi-task model - SIMCSUM- that
combines two high-level NLP tasks, simplification
and cross-lingual summarization. SIMCSUM jointly
trains for reducing linguistic complexity and cross-
lingual abstractive summarization. Our empirical
investigation shows the significantly superior per-
formance of SIMCSUM over the pipeline-based SSR
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model and other baselines on two non-synthetic
cross-lingual scientific datasets. This is confirmed
by human evaluation. Furthermore, our in-depth
linguistics analysis shows how multi-task learning
in SIMCSUM has lexical and syntactic impacts on
the generated summaries. We perform error analy-
sis to find what kind of errors has been produced by
the model. In the future, we plan to add modules
for linguistically informed simplification.

9 Limitations

We proposed SIMCSUM for the cross-lingual sci-
ence journalism task and verified its performance
for WIKIPEDIA and SPEKTRUM datasets for the
English-German language pair. We believe that
SIMCSUM is adaptable for other domains and lan-
guages. However, we have not verified it experi-
mentally and limited our experiments to English-
German scientific texts.

Our model jointly trains on two high-level NLP

tasks, which takes slightly more time than its base
model - mBART, as it has more parameters to
learn during the training. However, it takes much
less time in training than SSR. Furthermore, our
model is trained on synthetic simplification data,
which may create a dependency on the simplifica-
tion model - Keep-it-Simple (Laban et al., 2021).
Therefore, we plan to add linguistically informed
simplification modules in our model as our future
work. We also find during error analysis that both
mBART and SIMCSUM have problems (repetition
or unfaithful information) with long inputs, which
need further investigation that how we can mitigate
such errors.

10 Ethical Consideration

Reproducibility. We discussed all relevant param-
eters, training details, and hardware information in
§4.4 and Appendix A.

Legal Consent. We obtained legal consent from
Spektrum der Wissenschaft to use their dataset. We
adopted the public implementations with mostly
recommended settings, wherever applicable.
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A Training and Inference

Libraries. We train all models with Pytorch4, Hug-
ging Face5 integrated with DeepSpeed6 for parallel
model training with ZeRO-2. We apply ZeRO-27

to enable model parallelism. ZeRO-2 reduces the
memory footprints for gradients and optimizer be-
cause it shards the optimizer states and gradients
across GPUs.

Hardware. For all models, we complete training
and inference on 4 Tesla P40 GPUs each with 24GB

memory.
Training Time. We use the maximum length

capacity at the encoder side and set length of 200
tokens at the decoder side. mBART takes 1 day and
17 hours, mT5 takes 10 hours, PEGASUS takes 1
day and 8 hours, XLSUM takes 1 day and 3 hours,
LONG-ED takes almost 4 days, and BIGBIRD takes
2 days to complete 25 epochs. SIMCSUM takes 2
days to complete 25 epochs.

B Analysis: SPEKTRUM

B.1 Lexical Diversity
SEE is calculated with a frequency table as follows.

H(x) =
n∑

i=1

p(xi)log2
1

p(xi)

where H(x) is the total amount of information in
an entire probability distribution. P (xi) refers to
the frequency of a token appearing in the text, and
1/p(x) denotes the information of each case.

MTLD divides the texts into sequences having
the same TTR and then calculates the mean length
of the sequences.

B.2 Readability
FRE is calculated as follows:

FRE = 180−ASL− (58.5×ASW )

where average sentence length (ASL) is the number
of words divided by the number of sentences in the
text. The average number of syllables per word
(ASW) is the number of syllables divided by the
number of words in the text. The numeric values
are language-dependent constants.
4https://pytorch.org/
5https://huggingface.co/
6https://www.microsoft.com/en-
us/research/project/deepspeed/

7Initially, we used ZeRO-3 offload with FP16 evaluation, and
the training became quite slow as it consumes a lot of time
for offloading during evaluation.

CLI is calculated as follows:

CLI = 5.88× L

W
− 29.6× S

W
− 15.8

where L is the total number of characters (including
numbers and punctuation), W is the total number
of words, and S is the total number of sentences in
a given text.

ARI is computed as follows:

ARI = 4.71× L

W
+ 0.5× W

S
− 21.43

where L is the total number of characters (including
numbers and punctuation), W is the total number
of words, and S is the total number of sentences in
a given text.

B.3 Syntactic Analysis
We use Stanza8 to extract dependency relations and
Stanford Parser 9 to extract constituency trees for
each summary. Before tree generation, we replace
all German umlauts (ä, ö, ü and ß) in the summaries
with their replacements (ae, oe, ue and ss) due to
encoding issues of the Stanford Parser.

Average Sentence Length. It is the number of
tokens in the sentences averaged over the number
of sentences in a summary.

Average Dependency Distance. It is the av-
eraged dependency distance over the sentences,
which means the distance between the dependency
heads and their dependents.

Average Dependents per Word. It computes
the average number of dependents for each word.

Average Tree Height. For computing the av-
erage tree height of a summary, we calculate the
height of every tree and average it over the sen-
tences.

C Human Evaluation

C.1 Task
We provided annotators with 30 examples of doc-
uments paired with a reference summary and two
system-generated summaries. The models’ iden-
tities had not been revealed. The annotators had
to rate each model summary for the following lin-
guistic properties after reading the English docu-
ment and the German summaries. We asked an-
notators to use the first 5 examples to resolve the
annotator’s conflict and to find a common consen-
sus for rating the linguistic aspects. However, the
rest of the examples were annotated independently.
8https://stanfordnlp.github.io/stanza/constituency.html
9https://nlp.stanford.edu/software/lex-parser.shtml
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C.2 Linguistic Properties
We asked annotators to annotate each summary for
the following linguistic properties.

Relevance. A summary delivers adequate infor-
mation about the original text. Relevance deter-
mines the content relevancy of the summary.

Fluency. The words and phrases fit together
within a sentence, and so do the sentences. Flu-
ency determines the structural and grammatical
properties of a summary.

Simplicity. Lexical (word) and syntactic (syntax)
simplicity of sentences. A simple summary should
have minimal use of complex words/phrases and
sentence structure.

C.3 Scale
We use a Likert scale from 1 to 5 to score each
property (1:worst | 2:bad | 3:ok | 4:good | 5:best).
These scores should be assigned by comparing the
outputs of both models.

D Error Analysis

D.1 Guidelines
We define our informal guidelines for the error
analysis as follows. To find the errors in the mBART

and SIMCSUM outputs, we compare them to each
other, to the SPEKTRUM German gold summary
and the original English text.

Non-German Words. To find them, it is suffi-
cient to read through our model outputs and look
up any unknown words. If one of the unknown
words turns out to be a non-German word, we mark
them in red.

Wrong named entities. We find wrong named
entities by comparing the names in both system
outputs to the reference summary. If the names
differ, we verify with the original text that they refer
to the same person and thus represent a mistake by
the model, and we mark them in blue.

Unfaithful information. We note
new/unfaithful information by looking up
every piece of information in the model outputs
in the reference summary. We search for this
information in the original text, and if it is not
present there, it is clear that the model produced
new information that is not faithful to the source
text. We mark this information in orange.
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D.2 Examples

Target: im freigehege aufzuwachsen und sich dort im schlamm zu suhlen, stärkt offenbar das immunsystem von
schweinen : verglichen mit artgenossen, die in einem stall gehalten wurden, hatten freilandschweine eine höhere
anzahl von gesundheitsfördernden darmbakterien. zu diesem ergebnis kommen jetzt wissenschaftler um denise
kelly von der university of aberdeen. auch gene, die auf entzündungsreaktionen hindeuten, waren bei tieren, die im
außenbereich lebten, wesentlich weniger aktiv. [...]
Translation: Growing up in an outdoor enclosure and wallowing in the mud there apparently strengthens the
immune system of pigs : compared to conspecifics that were kept in a pen, free-range pigs had a higher number of
health-promoting intestinal bacteria. scientists led by denise kelly from the university of aberdeen are now coming
to this conclusion. genes that indicate inflammatory responses were also significantly less active in animals that
lived outdoors. [...]

mBART: als fruehmikrobielle kolonisation wird dieabdeckung der brustdruese von schweinen bei der fruehen
entwicklung des erwachsenen menschen bezeichnet. sie wird in der medizin, der mikrobiologie und der pathologie
erforscht. early microbial colonization of the gut reduced the incidence of infectious, entzuendlichen und
autoimmunischen diseasen reduced the incidence of infectious, inflammatory and autoimmune diseases.
Translation: the covering of the mammary gland of pigs during the early development of the adult human is
referred to as early microbial colonization. it is researched in medicine, microbiology and pathology. early
microbial colonization of the gut reduced the incidence of infectious, inflammatory and autoimmune diseases
reduced the incidence of infectious, inflammatory and autoimmune diseases.

SIMCSUM : die fruehzeitshygiene ist ein begriff aus der entwicklungsbiologie und bezeichnet das phaenomen,
dass die fruehzeitliche besiedlung des darmes durch krankheitserreger verhindert wird. die fruehzeitshygiene
unterscheidet sich von anderen entwicklungsbiologischen forschungsgebieten wie der entwicklungsphysiologie,
der haematologie und der palaeontologie dadurch, dass in ihrer gesamtheit zur fruehen entwicklungsphase die
mikrobielle vielfalt des darmes zaehlt.
Translation: early hygiene is a term from developmental biology and describes the phenomenon that prevents early
colonization of the intestines by pathogens. early hygiene differs from other developmental biological research areas
such as developmental physiology, haematology and palaeontology in that the microbial diversity of the intestine
counts in its entirety for the early development phase.

Table D.1: An example of SPEKTRUM output, where mBART produces non-German words (marked as red) and SIMCSUM
generates the summary with wrong attention on hygiene. The summaries are translated via Google translate.

Target: nicht nur stress und genetische faktoren tragen zu essstörungen bei, sondern auch vorübergehende hunger-
phasen. nun stießen forscher vom europäischen zentrum für hirnforschung in rom auf einen möglichen grund dafür -
und zwar in den gehirnen von labormäuse, die sich auch durch schmerzen nicht vom naschen abbringen ließen. die
psychologin rossella ventura und ihre kollegen trainierten mäuse darauf, in einer von zwei kammern nach einer
belohnung in form von schokolade zu suchen. dann versetzten sie den tieren ausgerechnet in dem raum, wo die
leckerei lockte, schmerzhafte elektroschocks. die mäuse mieden fortan die schokolade und hielten sich vorwiegend
in der anderen kammer auf - außer jene, die zuvor einige zeit lang kaum futter bekommen hatten. [...]
Translation: Not only stress and genetic factors contribute to eating disorders, but also periods of starvation. now
researchers from the european center for brain research in rome have discovered a possible reason for this - namely
in the brains of laboratory mice, which were not deterred from snacking even by pain. psychologist rossella ventura
and her colleagues trained mice to look for a chocolate reward in one of two chambers. then they gave the animals
painful electric shocks in the room where the treat lured them. From then on, the mice avoided the chocolate and
mainly stayed in the other chamber - except for those that had hardly received any food for a while. [...]

mBART: eating disorders (engl. “ess-stoerungen”) nennt man eine vielzahl von ursachen und mechanismen, die
zur auspraegung von essstoerungen fuehren koennen.
Translation: eating disorders are a number of causes and mechanisms that can lead to the development of eating
disorders.

SIMCSUM : als essverhalten oder magersucht werden die verhaltensweisen von menschen und tieren bezeichnet,
die excessive (vergoren) oder chronisch (z.b. nach unfaellen oder erkrankungen ) zu es verlangen oder dieses
verhalten unterdruecken. essverhalten kann zu verhaltensstoerungen fuehren, die ursache fuer die entstehung von
essstoerungen sind innere oder aeussere ursachen des essverhaltens.
Translation: eating habits or anorexia are the behaviors of people and animals that demand excessive (fermented) or
chronic (e.g. after accidents or illnesses) or suppress this behavior. eating behavior can lead to behavioral disorders,
the cause of eating disorders are internal or external causes of eating behavior.

Table D.2: An example of SPEKTRUM output, where mBART produces non-German words (marked as red) and quite short
summary. While SIMCSUM generates also generates a non-German word. The summaries are translated via Google translate.
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Target: der tod kam auf dem höhepunkt der macht : cangrandei. della scala, der berühmteste spross der scaliger aus
verona, hatte in zahlreichen kriegerischen auseinandersetzungen die herrschaft über ganz venetien an sich gerissen.
doch kurz nach seinem triumphalen einzug in die norditalienische stadt treviso am 18. juli 1329 begannen mit
durchfall und erbrechen die ersten symptome einer tödlichen erkrankung. [...]
Translation: death came at the height of power : cangrandei. della scala, the most famous offspring of the scaliger
family from verona, seized control of all of veneto in numerous military conflicts. but shortly after his triumphant
entry into the northern italian city of treviso on july 18, 1329, the first symptoms of a fatal illness began with
diarrhea and vomiting. [...]

mBART: alberto cangrande ( * 1291 oder 1329 in verona ; † 29. oktober 1329 ebenda ) war ein italienischer dichter,
schriftsteller und politiker der flämischen republik. in der zeit der italienischen republik bestieg er von seinen
brudern die dynastie der scaligeri. bei der eroberung der elfenbeinküste 1311 wurde er zum maßgebenden gründer
der faction in rom. ab 1314 war er herrscher im königreich venedig. cangrande gilt als vater der italienischen
Translation: alberto cangrande ( b. 1291 or 1329 in verona ; † october 29, 1329 ibid ) was an italian poet, writer
and politician of the flemish republic. in the time of the italian republic he ascended from his brothers the dynasty
of the scaligeri. when he conquered the ivory coast in 1311, he became the main founder of the faction in rome.
from 1314 he was ruler of the kingdom of venice. cangrande is considered the father of the italian

SIMCSUM : cangrande della scala oder cangrande cangrande ( * 9. märz 1291 in verona ; † 22. juli 1329 ebenda )
war ein begründer der von den scaligeri beeinflussten dynastie, der unter den herrschern von verona von 1308 bis
1387 regierte. der sohn des veronaer stadtbegründers und stadtmeisters alberto della scala ( genannt „ albert “ oder „
adelsmann “ ), der nur als unterstellt war, wurde nach seinem tod 1301 zum bruder von alberto verbannte.
Translation: cangrande della scala or cangrande cangrande ( born march 9, 1291 in verona ; † july 22, 1329 ibid
) was a founder of the dynasty influenced by the scaligeri, who reigned under the rulers of verona from 1308 to
1387. the son of verona’s founder and mayor alberto della scala ( called " albert " or " nobleman " ), who was only
subordinate, was banished to alberto’s brother after his death in 1301.

Table D.3: An example of SPEKTRUM output, where mBART generates a wrong named entity. SPEKTRUM, on the other hand,
gets it right but generates a wrong alias for this person. The summaries are translated via Google translate.

Target: inoffizieller weltrekordhalter im nicht - frieren trotz eisiger kälte ist der niederländer wimhof : er lief
bereits ziemlich nackt halbmarathons nördlich des polarkreises und nahm das längste eisbad seit beginn der
aufzeichnungen - ohne sich ernsthaft zu beklagen. wissenschaftliche untersuchungen des eismannes hatten bisher
keine körperlichen auffälligkeiten gefunden, die erklären könnten, warum hof mit kälte offensichtlich besser umgeht
als der durchschnittsmensch. [...]
Translation: the unofficial world record holder for not freezing despite the icy cold is the dutchman wimhof : he
ran half marathons north of the arctic circle quite naked and took the longest ice bath since records began - without
seriously complaining. scientific examinations of the ice cream man had not found any physical abnormalities that
could explain why hof obviously deals with the cold better than the average person. [...]

mBART: wim hof ( * 20. april 1959 ) ist ein niederländischer sportler, der sich unter anderem mit eisschwimmern
beschäftigt.
Translation: wim hof ( born april 20, 1959 ) is a dutch athlete who is involved with ice swimmers, among other
things.

SIMCSUM : wim hof ( * 20. april 1959 ), auch als eismann bekannt, ist ein niederländischer swimmer und
ein ehemaliger olympiateilnehmer. er hält seit dem 28. februar 2015 den bislang längsten direkten kontakt
menschlichen körpers mit eis.
Translation: Wim Hof ( born April 20, 1959 ), also known as Eismann, is a Dutch swimmer and a former
Olympic competitor. since february 28, 2015, he has been in the longest direct contact between the human body
and ice.

Table D.4: An example of SPEKTRUM output, where both mBART and SIMCSUM produce unfaithful information. Marked in
orange is unfaithful information to the original text. The summaries are translated via Google translate.

E SIMCSUM Examples and Results

Here we present some examples showing the difference between SIMCSUM and mBART.
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Target: für menschen ist der einbeinige stand immer eine wackelpartie , vor allem bei geschlossenen augen . um
nicht umzukippen , müssen die muskeln permanent die leichten schwankungen ausgleichen . nicht so bei flamingos
: sie kostet es weniger kraft , auf einem bein zu stehen als auf zweien . deswegen können sie auch beruhigt auf
einem bein ein schläfchen machen , ohne dabei umzukippen . [...]
Translation: standing on one leg is always a shaky game for humans, especially with closed eyes. in order not to
tip over , the muscles have to constantly compensate for the slight fluctuations . Not so with flamingos: it takes less
strength for them to stand on one leg than on two. that’s why you can take a nap on one leg without tipping over. [...]

mBART: die biogerontologie ( von griech. bíos „ leben “ und lat. protes „ befestigt “ ) beschäftigt sich mit
dem verhältnis von körpergewicht und körperhaltung. so untersucht die biogerontologie das verhältnis von
körpergewicht und körperhaltung : welche gewichtszustände und welche muskeln notwendig sind, um einen
pilz, der einer krankheit ausgesetzt ist, zu tragen? wie sehr wichtig es ist, den jeweiligen körpergewichtszus-
tand zu messen. dies wird in der
Translation: biogerontology (from greek bíos “life” and lat. protes “fixed”) deals with the relationship
between body weight and posture. this is how biogerontology examines the relationship between body weight
and posture: which weight conditions and which muscles are necessary to carry a fungus that is exposed to a
disease? how very important it is to measure the respective body weight condition. this will be in the

SIMCSUM : flamingos ( phoenicopteridae ) oft sitzen auf einem bein, um eine muskelkontraktion zu erzeugen.
sie haben die fähigkeit, das körpergewicht aufzunehmen und zu tragen, ohne dabei eine muskelaktive wirkung
auszuüben.
Translation: Flamingos (phoenicopteridae) often perch on one leg to produce muscle contraction. they have the
ability to absorb and carry body weight without exerting a muscle-active effect.

Table E.1: An example of SPEKTRUM output, where SIMCSUM generates a better summary than mBART . In this case, the
mBART summary misses the article’s point by focusing on biogerontology which has no relevancy in this case, and SIMCSUM
generates a summary that better captures the idea and main focus of the original text. Marked in orange is unfaithful information
to the original text. The summaries are translated via Google translate.

Target: eine besondere strategie, seinen fressfeinden zu entkommen, hat der bombardierkäfer pheropsophus
jessoensis entwickelt. er wehrt sich sogar noch, nachdem er eigentlich schon verloren hat, und das sogar recht
erfolgreich, wie jetzt shinji sugiura und takuya sato von der universität kobe in den biology letters berichten. gerade
verschluckt, schießt der käfer im magen der kröte einen strahl heißes, ätzendes sekret aus der afterdrüse - eine
strategie, die den bombardierkäfern ihren namen eingebracht hat. normalerweise allerdings dient die waffe zur
abschreckung. in diesem fall jedoch ätzen sich die käfer mit ihrer hilfe quasi zurück in die freiheit : das sekret lässt
die kröten erbrechen ; und der eigentlich schon verspeiste käfer entkommt. [...]
Translation: the bombardier beetle pheropsophus jessoensis has developed a special strategy for escaping its
predators. he even defends himself after he has actually already lost, and even quite successfully, as shinji sugiura
and takuya sato from the university of kobe now report in the biology letters. just swallowed, the beetle in the toad’s
stomach shoots a jet of hot, caustic secretion out of the anal gland - a strategy that has given the bombardier beetle
its name. normally, however, the weapon serves as a deterrent. in this case, however, the beetles etch their way back
to freedom with your help: the toads vomit the secretion; and the actually already eaten beetle escapes. [...]

mBART: unter zoologischer kompatibilitaet versteht man in der biologie die faehigkeit von beutetieremischlin-
gen, nach einem laubabschweif von artgenossen in den verdauungstrakt von artgenossen zu entweichen. die
oekologische kompatibilitaet ist ein wesentlicher bestandteil der erfolgreichen entstehung von beutegreifern.beim
laubabschweifexperiment mit hilfe des insektenpheropsophus jessoensis aus zwei kaeferarten, dem bufo japonicus
und dem b. torrenticola, konnte nachgewiesen werden, dass der kaefer pheropsophus jessoensis unter laboratorischen
bedingungen eine in den magensaftgastropfen der jagdsekten einschleudern kann.
Translation: in biology, zoological compatibility means the ability of hybrid prey animals to escape into the
digestive tract of conspecifics after the leaves have drifted away from conspecifics. ecological compatibility is
an essential part of the successful emergence of predators.in the leaf-dropping experiment with the help of the insect
pheropsophus jessoensis from two beetle species, the bufo japonicus and the b. torrenticola, it could be proven that
the beetle pheropsophus jessoensis can inject one into the gastric juice droplets of the hunting sects under laboratory
conditions.

SIMCSUM : als wehrverhalten oderverteidigungsverhalten bezeichnet man in der verhaltensbiologie verschiedene
verhaltensweisen von tieren, die wehren gegen die fressfeinde oder andere fresstiere bilden. nicht zu verwechseln
ist das wehrverhalten mit der phylogenetik, die sich aus der evolutionsgeschichte entwickelt hat.
Translation: in behavioral biology, defensive behavior is the term used to describe various behaviors of animals
that defend themselves against predators or other predators. the defensive behavior should not be confused with the
phylogenetics that have developed from the history of evolution.

Table E.2: An example of SPEKTRUM output, both SIMCSUM and mBART produce reasonable summaries. The SIMCSUM
summary is preferred because it explains the basic idea of the beetle defending itself against predators. The mBART summary is
filled with complex words that do not make sense or are unnecessary for this context. These words are marked in orange. The
summaries are translated via Google translate.
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Target: manche farben bleiben besser im gedächtnis haften als andere, doch auf die erinnerung an den entsprechend
gefärbten gegenstand hat das keinen einfluss. das zeigt nun eine studie von psychologen um christof kuhbandner von
der universität regensburg. die ergebnisse machen deutlich, dass der gegenstand selbst und dessen eigenschaften vom
gehirn nicht immer als einheit betrachtet werden. die wissenschaftler testeten für ihre studie das gedächtnis ihrer
versuchspersonen. dabei variierten sie sowohl, was zu merken war, als auch, wie es dargeboten wurde. insbesondere
präsentierten sie wörter und gegenstände in unterschiedlichen farben. [...]
Translation: some colors stick in the memory better than others, but this has no influence on the memory of the
correspondingly colored object. this is now shown by a study by psychologists led by christof kuhbandner from the
university of regensburg. the results make it clear that the object itself and its properties are not always viewed as a
unit by the brain. for their study, the scientists tested the memory of their subjects. they varied both what was to be
remembered and how it was presented. in particular, they presented words and objects in different colors. [...]

mBART: die farbpsychologie ist ein teilgebiet der psychologie und beschäftigt sich mit der wirkung von farben auf
die wahrnehmung und das gedächtnis.
Translation: color psychology is a branch of psychology and deals with the effect of colors on perception and
memory.

SIMCSUM : die farbe ist ein farbmuster, das uns wahrnehmungen und die sinneswahrnehmung durch das
sehen vermittelt. die farbwahrnehmung gehört zu den kognitionswissenschaften. wir sehen sie nicht nur als
eindimensionales spektrum möglicher farben, sondern auch als eindimensionales, oftmals auch als „ visuelles
system “, das die sinneswahrnehmung mitanpasst. [...]

Translation: color is a color pattern that conveys perceptions and sensory perception to us through seeing. Color
perception is one of the cognitive sciences. we see them not only as a one-dimensional spectrum of possible
colors, but also as a one-dimensional, often also as a " visual system " that also adapts the sensory perception.
[...]

Table E.3: An example of SPEKTRUM output, where mBART performs better than SIMCSUM . mBART generates a summary that
is too short but which better recapitulates the main idea. The orange marked words in the SIMCSUM summary are incoherent and
are not faithful to the original text. The summaries are translated via Google translate.
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Abstract

A modular approach has the advantage of be-
ing compositional and controllable, compar-
ing to most end-to-end models. In this pa-
per we propose Extract-Select-Rewrite (ESR),
a three-phase abstractive sentence summariza-
tion method. We decompose summarization
into three stages: (i) knowledge extraction,
where we extract relation triples from the text
using off-the-shelf tools; (ii) content selection,
where a subset of triples are selected; and (ii-
i) rewriting, where the selected triple are real-
ized into natural language. Our results demon-
strates that ESR is competitive with the best
end-to-end models while being more faithful.
Being modular, ESR’s modules can be trained
on separate data which is beneficial in low-
resource settings and enhancing the style con-
trollability on text generation.1

1 Introduction

While end-to-end models are dominating text gener-
ation tasks today, modular or pipelined approaches
have the advantage of greater controllability and in-
terpretability (Kedzie and McKeown, 2020). Prior
work on abstractive summarization adopts a two-
step process of first generating a plan (e.g., a se-
mantic representation) of the target summary and
then generating the summary conditioned on both
the plan and the input document (Narayan et al.,
2021, 2022). In this paper, we present a three-
phase extract-select-rewrite pipeline, or ESR, for
abstractive sentence summarization, where the plan
is restricted to be a subset of knowledge triples ex-
tracted from the document. Specifically, we decom-
pose the task into three subtasks: knowledge extrac-
tion, content selection and rewriting. To implement
the three modules, we extract knowledge triples
from the source document using off-the-shelf tools.
Then, we train a classifier to select important triples

1The codes are available on https://github.com/SeanG-
325/ESR.

representing content of the summary. Finally, we
train a rewriter to convert the selected triples into
natural language text (Figure 1).

There is extensive prior work that uses struc-
tured content extracted from the document to help
summarization, such as relation triples (Cao et al.,
2018), knowledge graphs (Zhu et al., 2021; Guan
et al., 2021), and topics (Li et al., 2018, 2020; Ara-
likatte et al., 2021). However, these methods typi-
cally augment the source document with the extract-
ed information and still learn to generate reference
summaries from it in an end-to-end manner. By
fully separating the modules during training, we
can take a rewriter trained on a large dataset, and
reuse it on a small target dataset while only training
the content selector on as few as 1k examples.

We run experiments on Gigaword, DUC-2004
and Reddit-TIFU datasets and find that our ap-
proach produces summaries that are competitive to
the end-to-end models in terms of automatic met-
rics. We also observe that a rewriter module trained
on Gigaword, in the news domain, can be paired
with a content selector trained on 1000 examples
from Reddit-TIFU, a social media dataset, to pro-
duce high quality summaries, demonstrating the
value of modularity in abstractive summarization.

Further, since our content planning is extractive
in nature the summaries generated are also more
faithful to the source as evidenced by a human
evaluation comparing summaries from our modular
approach and an end-to-end BART baseline. Lastly,
We also observe that the rewriter module can be
trained once on standalone text, which can enhance
the controllability on the summary text generation
style with minor changes of the training process.

2 Related Work

Knowledge-based Summarization Existing
methods that use knowledge in summarization en-
codes it together with the input, e.g., Ribeiro et al.
(2020) and Guan et al. (2021) introduce knowledge
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(an UN soldier,  be killed by,  a stray bullet)
Sentence Text: 

An UN soldier in Bosnia 
was shot and killed by a 
stray bullet on Tuesday in 
an incident. Authorities are 
calling an accident , 
military officials in 
Stockholm said Tuesday.

Sentence Text: 

An UN soldier in Bosnia 
was shot and killed by a 
stray bullet on Tuesday in 
an incident. Authorities are 
calling an accident , 
military officials in 
Stockholm said Tuesday.

(military officials, is in, Stockholm)

(UN soldier, is in, Bosnia)

(authorities, are calling, an accident)

(an UN soldier,  be killed by,  a stray bullet)

(UN soldier, is in, Bosnia)

Summary Text: 

An UN soldier 
in Bosnia killed 
by stray bullet.

Summary Text: 

An UN soldier 
in Bosnia killed 
by stray bullet.

Knowledge 
Extraction

Content 
Selection Rewriting

Figure 1: An overview of the three-phase summarization framework ESR.

graph encoding strategies for the graph-to-text
generation model. Koncel-Kedziorski et al. (2019)
and Wu et al. (2021) use a graph transformer
encoder to consume knowledge and semantic
graph. Huang et al. (2020) propose a model
integrated with the GAT (Veličković et al., 2018)
encoding knowledge graphs of the documents.

Modular Summarization Castro Ferreira et al.
(2019) and Khot et al. (2021) showed the advan-
tages of the modularity on text generation and
question answering comparing to the end-to-end
models. Pilault et al. (2020) and Chen and Bansal
(2018) first extract sentences from the documen-
t and then perform abstractive summarization on
them. Krishna et al. (2021) proposed a medical
text generation method using modular summariza-
tion techniques based on clustering of utterances
in sentences. However, the "modularity" in these
methods rely on the neural networks to take in ad-
ditional knowledge such as knowledge graphs, as
opposed to splitting the model into different mod-
ules explicitly, which is where ESR differs.

3 Method

We divide the summarization task explicitly into
three phases—Knowledge Extraction, Content Se-
lection, and Rewriting, as shown in Figure 1.

Knowledge Extraction To enable fine-grained
content selection and rewriting, we turn all docu-
ments into structured content representation. We
adopt knowledge triples that can be extracted
by off-the-shelf tools (Section 4.1). The knowl-
edge triples are in the form of <entity 1,
relation, entity 2>. The extractors usu-
ally generate a large number of redundant triples
(i.e. triples with large overlap with each other.2 To

2For example, given the sentence "German chemical
giant Hoechst Group announced plans wednesday to
invest over a million dollars in China next year" our
extractors might generate two candidates <German

delete the overlapping things, we use the Jaccard
distance on n-grams (JUni, JBi) of between any
pairs of triples (x1, x2) to calculate their similarity:

Sim(xi, xj)
def
= λ1JUni(xi, xj) + λ2JBi(xi, xj)

Here λ1, λ2 are hyperparameters determined on
the validation data. We filter triples such that no
pair of triples has a similarity score higher than
the threshold. If the similarity between two tripes
are larger than the threshold, the triple that has
the larger length will be kept. The details of the
threshold are in Section 4.1.

Content Selection The content selector selects
the triples that are to be included in the summary
out of the candidates. We train it as a sentence-pair
classifier with two inputs, the document and the
candidate knowledge triple extracted from it, and
an output of whether to select the triple. If the triple
is to be included in the summary of the document,
the document-triple pair will be labeled positive,
otherwise negative. We need to obtain supervised
labels for the triples in the training set for training
the content selector. For each triple in the training
set, we use ROUGE (Lin, 2004) to measure the
similarity to the corresponding summaries, if it is
higher than a threshold then we label that triple as
a positive example. Some representative examples
of these sentence pairs and the details for selecting
the threshold can be found in Section 4.1.

Rewriting The rewriter converts the selected
triples into fluent summaries, where the triples
serve as a content plan. We train a sequence-to-
sequence text generation model, similar to con-
verting meaning-representation to natural language
text (Kedzie and McKeown, 2020). The train data
for this phase contains the texts and the triples ex-
tracted from them. To train the generation model,

chemical giant Hoechst Group, announced,
plans> and <chemical giant Hoechst group,
announced, plans> which are clearly redundant.
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Ext. Valid Redun. Pos/Neg
Train Articles 6.34 2.53 60.1% 0.91
Train Summaries 4.51 1.76 62.0% -
Test Articles 6.19 2.42 60.9% -

Table 1: Triple statistics in train and test sets. "Ext."
(Extracted) and "Valid" are the mean numbers of the
the extracted and valid triplets (redundance removed).
"Redun." is the redundancy rate. "Pos/Neg" is the pos-
itive and negative sample ratio of the constructed data
set in the content selection phase.

we concatenate the extracted triples from the doc-
ument as the source sequence, and use the text as
the target sequence. Note that training the rewriter
only requires a piece of text and knowledge triples
extracted from it. Therefore it can be potentially
trained on much larger data (like Wiki text).

4 Experiments

4.1 Experiment Settings
Datasets Our main results are based on 2 news
summarization datasets: (i) the Gigaword corpus
(Rush et al., 2015), with around 3.8M summaries of
single sentence news documents; (ii) DUC-2004,
another test set in the news domain (Over et al.,
2007)3 To evaluate the modularity of our method,
we reuse the rewriter trained on Gigaword and
pair it with the content selector trained on another
dataset from a different domain, Reddit TIFU (Kim
et al., 2019); Gigaword contains news text while
Reddit TIFU contains text from social media.

Training Details We used OLLIE (Mausam
et al., 2012), two OpenIE tools (Angeli et al., 2015;
Saha and Mausam, 2018) as the triple extractors.
The triples from each of these are combined and
then filtered for redundancy (Section 3). In order
to ensure the quality of the triplet to the greatest
extent, the methods such as co-reference resolution
will be required. We fine-tuned the RoBERTa-large
(Liu et al., 2019) as the content selector and fine-
tuned the BART-large (Lewis et al., 2020) from
fairseq (Ott et al., 2019) as the rewriter. All
models are trained and fine-tuned on 2 NVIDIA
RTX 2080 Ti GPUs. The detailed hyperparameters
for three modules are in Appendix B.

4.2 Results
Intrinsic Evaluation of Each Module We first
evaluate each of the three modules separately. Ta-

3We use the DUC 2004 Task 1 which requires you to
generate a sentence summary to a short article.

Model R-1 R-2 R-L
BART (2020) 37.28 18.58 34.53
BART-RXF (2021) 40.45 20.69 36.56
PEGASUS+Dot (2021) 40.60 21.00 37.00
OFA (2022) 39.81 20.66 37.11
ESR 40.63 20.62 37.14

Table 2: ROUGE F1 on the Gigaword testset. It shows
that ESR achieves or is competitive with the state-of-
the-art on this dataset. Bold indicates the best score.

Model R-1 R-2 R-L
RT+Conv (2018) 31.15 10.85 27.68
BART (2020) 31.36 11.40 28.02
ALONE (2020) 32.57 11.63 28.24
WDROP (2021) 33.06 11.45 28.51
ESR 33.08 11.52 28.74

Table 3: ROUGE F1 on DUC-2004 dataset. It shows
ESR’s performance achieved the SOTA on this dataset.
Bold indicates the best score.

ble 1 shows the detailed statistics of knowledge
extraction based on Gigaword. The number of
sentence-triple pairs is 400k, which are used to
train the content selector. The accuracy of our fine-
tuned RoBERTa content selector on this dataset is
88.9%. The details of the metrics are in Appendix
Table 6. The size of the rewriting data set is 2M.
We ablate the effect of the rewriting phase by com-
paring ROUGE scores before and after rewriting
the triples in Appendix Table 7.

Automatic Evaluation Next, we evaluate the w-
hole system on new summarization datasets. We
report ROUGE score (Lin, 2004) on the Gigaword
test set and the DUC-2004 dataset, containing 1951
and 500 samples respectively. We compare our ES-
R to a BART baseline that is fine-tuned in a single
supervised step to generate the summary from the
source documents. and some other strong model-
s on the datasets.4 The performance is shown in
Table 2 and Table 3. On Gigaword and DUC2004,
our approach outperforms the BART baseline and
is within half the point of the SOTA results.5

Modularity One advantage of ESR is that train-
ing the rewriter does not require document-
summary pairs and we can train it on any generic
text. To test the modularity of ESR, we report the
ROUGE on Reddit TIFU reusing a rewriter trained

4These are typically modified variants of end-to-end model-
s.We report the results from the PapersWithCode leaderboard
and cite the corresponding works in the results table.

5State-of-the-art as of the date of submission per the leader-
board on PapersWithCode
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Model R-1 R-2 R-L
BART (2020) 24.19 8.12 21.31
PEGASUS+Sum (2022) 29.83 9.50 23.47
BART-R3F (2021) 30.31 10.98 24.74
ESR
SR + RG 30.63 10.82 24.78
SR + RR 29.92 10.51 24.26
SR1k + RG1k 29.67 10.09 24.00
SR1k + RR1k 29.38 10.02 23.90
SR1k + RG 29.09 10.07 23.86

Table 4: ROUGE F1 on R-TIFU (Reddit-TIFU). SR
means the content selector was trained on R-TIFU, RG
and RR mean rewriter trained on Gigaword and R-TIFU
respectively. 1k means that the module is trained on 1k
randomly sampled subset. The content selector can be
trained with low-resourced data without large dropping.
Bold means the best and Italics means the best in ESR.

on Gigaword in Table 4. The best ROUGE is ob-
tained when using the Reddit TIFU content selector
coupled with the Gigaword rewriter, highlighting
the benefit of training the modules separately. One
advantage of such decoupling is that we can train
the rewriter on high resource domains and reuse
it in low resource tasks. We further subsampled
1k samples from Reddit TIFU and Gigaword for
training the modules to see how performance varies
in the small data regime. We see that training a con-
tent selector on only 1k examples and reusing the
rewriter from Gigaword is on-par with using the
entire Reddit TIFU. Further, the modularity makes
ESR able to control the text style, as in Figure 2.

Human Evaluation We conducted a user study
on Amazon MTurk where annotators rated sum-
maries of 100 randomly sampled texts from the
Gigaword test set on faithfulness. We asked the
annotators to rate summaries of our approach and
BART, together with the results of the gold sum-
maries of the data set. Each crowdworker was
shown the source document and three summaries
and asked to decide if each summary is individual-
ly supported by the text in the source. We collect
three annotations for each example and decide the
judgement via a majority vote. It is labeled incon-
clusive if there is no agreement. The results are
in Table 5. We see that ESR is rated to be more
faithful than the baseline and almost as good as the
human-written summaries. A representative case is
shown in Figure 2. It shows that ESR can eliminate
the hallucination and control the summarization
styles with different rewriter modules.

Summaries Sup. Unsup. Incoh. Inconc.
Human-Written 96 3 0 1

BART 90 6 2 2
ESR 94 3 2 1

Table 5: Human evaluation on faithfulness. The sum-
maries from the dataset (Human-Written) and those
from ESR and the BART are annotated by 3 annota-
tors. Crowd workers find ESR to be more faithful than
BART.

Case Study 
ST: Zairean president Mobutu Sese Seko will stay at his French 
Riviera residence until at least the middle of the week because of 
an increase in diplomatic activity, a Mobutu aide said on Sunday. 
Selected Triples: 
(Zairean president Mobutu Sese Seko, will stay at, his French 
Riviera residence) 
(Zairean president Mobutu Sese Seko, will stay until, the middle 
of the week) 
Ref: Zairean president Mobutu to stay in France till mid-week 

BART: Tanzania's Mobutu to stay at Riviera residence until 
middle of week 

ESR (Gigaword content selector): 
- Gigaword rewriter: Zairean president Mobutu will stay at

his French Riviera residence until the middle of week
- Reddit-TIFU rewriter: Zairean Mobutu will stay at his

French Riviera president residence… it’s said that he will
stay until the middle of week

Figure 2: A case on the Gigaword testset. ST: source
text; Ref: reference summary; Selected Triples: triples
selected by the content selector. With the rewriter mod-
ule trained on different dataets, the text style of ESR
can be controlled. The green shows the factual correct-
ness and the red shows the error.

4.3 Analysis
The evaluations show that ESR can achieve or ap-
proach SOTA performance on multiple datasets
and can enhance the faithfulness of summaries. We
found ESR can limit the content of the generated
summary in the content selection stage, and then
rewrite only selected content. Therefore, text gener-
ation will introduce less hallucination. In addition,
ESR has better modularity than other models, as
the selector and rewriter can be trained separately
on different data to enhance performance and con-
trollability on summarization. This means that we
can modify the modules to enhance performance
rather than redesign the entire framework.

5 Conclusion

We propose ESR, a three-phase modular abstrac-
tive summarization method. It obtains competitive
performance on automatic metrics while produc-
ing more faithful summaries, and its modularity
makes it have a good controllability on summary
generation, and maintains a good performance on
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low resource data. In the future, we are adapting
the ESR method to multi-document summarization
datasets.
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Limitation

One limitation of our method is the reliance on
off-the-shelf tools for the extraction phase. These
tools are sometimes not able to successfully obtain
triples from the source sentences, which results in
empty summaries, and at others they returns mul-
tiple redundant candidates which makes selection
challenging. We attempt to address the former by
aggregating results from multiple extractors and
the latter by filtering candidates through overlap
based heuristics.

Ethical Consideration

One ethical consideration for the modular summa-
rization method is that we are essentially using two
different deep learning steps, content selection fol-
lowed by text generation. There is a chance for
model bias to have an impact at either stage. Addi-
tionally, we note that one of the features of modular
summarization is that different applications can se-
lect different content to be relevant to a summary.
Improper content selection here could exacerbate
issues such as misinformation when used in real-
world applications. We do however note that this
is not isolated to our modular summarization ap-
proach, but is also the case even when the model is
learned end-to-end.
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Petar Veličković, Guillem Cucurull, Arantxa Casano-
va, Adriana Romero, Pietro Lió, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Li Wang, Junlin Yao, Yunzhe Tao, Li Zhong, Wei Liu,
and Qiang Du. 2018. A reinforced topic-aware con-
volutional sequence-to-sequence model for abstrac-
tive text summarization. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, IJCAI’18, pages 4453–4460. AAAI Press.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. CoRR,
abs/2202.03052.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Z-
iqiang Cao, Sujian Li, Hua Wu, and Haifeng Wang.
2021. BASS: Boosting abstractive summarization
with unified semantic graph. In Proceedings of the

59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Join-
t Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6052–6067, Online. As-
sociation for Computational Linguistics.

Chenguang Zhu, William Hinthorn, Ruochen Xu,
Qingkai Zeng, Michael Zeng, Xuedong Huang, and
Meng Jiang. 2021. Enhancing factual consistency
of abstractive summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 718–733, On-
line. Association for Computational Linguistics.

47



Appendices
A Details of the Generated Summaries

The length statistics of the generated summaries of
our model on Gigaword test set is showed in Table
8.

As mentioned in the paper, the summary gen-
eration of our model is based on triples extracted
from the original text. Therefore, the quality of
the extracted triples during inference will affect the
quality of the generated abstracts to a certain ex-
tent. For example, the length of the final generated
summaries will depend on the text length of the
triples. In order to ensure the quality of the triplet
to the greatest extent, methods such as co-reference
resolution will be required.

B Hyper Parameters

The hyper parameters for fine-tuning RoBERTa-
large in content selection phase, and BART-large
model in rewriting phase are listed.

B.1 Knowledge Extraction
The hyperparameters in Jaccard similarity are λ1 =
0.75 and λ2 = 0.25. The threshold for similarity is
0.7.

B.2 Content Selection
TOTAL_NUM_UPDATES=3000
WARMUP_UPDATES=500
LR=1e-05
NUM_CLASSES=2
MAX_SENTENCES=8

Acc. Rec. Prec. F1
88.9% 88.6% 88.1% 88.4%

Table 6: Sentence-pair classification performance of
the content selector.

B.3 Rewriting
TOTAL_NUM_UPDATES = 10000
WARMUP_UPDATES = 500
MAX_TOKENS = 256
UPDATE_FREQ = 2
LR = 3e-5

R-1 R-2 R-L
Concatenated Triples 38.98 18.12 35.76
Rewritten Summaries 40.63 20.62 36.71

Table 7: ROUGE comparing Concatenated Triples
(aren’t rewritten) and Rewritten Summaries (rewritten).

Statistics Articles Ref. Our Model
Avg Len 30.9 9.1 12.3

Table 8: Sentence-pair classification metrics of content
selection phase.
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Abstract

Despite the prevalence of pretrained language
models in natural language understanding tasks,
understanding lengthy text such as document
is still challenging due to the data sparseness
problem. Inspired by that humans develop
their ability of understanding lengthy text form
reading shorter text, we propose a simple yet
effective summarization-based data augmen-
tation, SUMMaug, for document classifica-
tion. We first obtain easy-to-learn examples
for the target document classification task by
summarizing the input of the original training
examples, while optionally merging the orig-
inal labels to conform to the summarized in-
put. We then use the generated pseudo exam-
ples to perform curriculum learning. Experi-
mental results on two datasets confirmed the
advantage of our method compared to exist-
ing baseline methods in terms of robustness
and accuracy. We release our code and data at
https://github.com/etsurin/summaug.

1 Introduction

Although the pretrained language models (Devlin
et al., 2019; Liu et al., 2019; He et al., 2020) have
boosted the accuracy of various natural language
understanding tasks, the accuracy is still limited for
complex tasks with lengthy input (Lin et al., 2023)
and fine-grained output (Liu et al., 2021), such
as document classification. These tasks require
models to find a mapping between diverse input
and output, which models are more likely to suffer
from the data sparseness problem.

To address the data sparseness problem, re-
searchers have studied data augmentation for text
classification tasks. A basic approach is to gen-
erate pseudo training examples from gold exam-
ples by perturbing the inputs; those perturbation
include back-and-forth translation (Shleifer, 2019)
and minor editing of input text (Wei and Zou,
2019; Karimi et al., 2021) or its hidden represen-
tations (Chen et al., 2020, 2022; Wu et al., 2022).

Label Set

Documents Summarizer Summaries

Pseudo
Training Data

Pseudo Label Set

Label Coarsening

Original 
Training Data

Curriculum Fine-tuning

(As needed)

Fine-tuning

Fine-tuning

Initialized 
Model

Document 
Classifier

Figure 1: Curriculum fine-tuning for document classi-
fication using SUMMaug data augmentation: prior to
the normal finetuning, it fine-tunes a model with easy-
to-learn examples obtained by summarizing the original
training examples.

These methods basically echo the information in
the original training data, which will not help much
the model learn to read lengthy inputs.

In this study, to effectively develop the model’s
ability to comprehend the content in document
classification, we propose a simple yet effective
summarization-based data augmentation, SUM-
Maug, to generate pseudo, abstractive training ex-
amples for document classification. Specifically,
we apply text summarization to the input of gold
examples in document classification task to obtain
abstractive, easy-to-read examples, and merge fine-
grained target labels as needed so that the labels
conforms to the summarized input. Motivated by
that we humans gradually develop the ability of un-
derstanding lengthy text from reading shorter text,
we use the generated examples in the context of
curriculum learning (surveyed in (Soviany et al.,
2022)), namely, curriculum fine-tuning.

We compare our method to a baseline data aug-
mentation (Karimi et al., 2021) on two versions of
IMDb dataset with a different number of target la-
bels. Experimental results confirm that curriculum
fine-tuning with SUMMaug outperforms baseline
methods on both accuracy and robustness.
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2 Related Work

In this section, we first review existing neural mod-
els for document classification, and next introduce
existing data augmentation methods for text classifi-
cation. We then mention other attempts to leverage
summarization for text classification.

Document Classification In the literature, re-
searchers explore a better neural architecture to
comprehend the lengthy content in document clas-
sification; examples include a graph neural net-
work (Zhang and Zhang, 2020; Zhang et al., 2022)
and a convolutional attention network (Liu et al.,
2021). Recently, Transformer (Vaswani et al.,
2017)-based models have been revisited (Dai et al.,
2022) and reported to outperform the task-specific
networks. Since our work is model-agnostic and
orthogonal to the model architecture, we adopt
RoBERTa (Liu et al., 2019), a Transformer-based
pre-trained model, as the target of evaluation.

Data Augmentation for Text Classification To
address the data sparseness problem in text clas-
sification, researchers employ data augmentation,
which generates pseudo training examples from
the training examples. Shleifer (2019) leverages
back-and-forth translation to paraphrase the inputs
of training examples. Through translating the in-
puts into another language and then translating the
resulting translation back to the source language,
they obtain the input that are written in different
ways but will have the same meanings conform-
ing to the corresponding target labels. Xie et al.
(2017) perturb the input by deleting and inserting
words and replacing words with their synonyms.
Karimi et al. (2021) propose a simple but more
effective perturbation that randomly inserts punctu-
ation marks. Rather than directly perturbing the in-
put of training examples, some studies add noises in
their continuous representations (Chen et al., 2020,
2022; Wu et al., 2022). However, these method pre-
dominantly echo existing training data, providing
minimal assistance in understanding lengthy texts.

Use of Summarization in Text Classification Li
and Zhou (2020) and Hartl and Kruschwitz (2022)
utilize automatically generated summaries to re-
trieve fact for fake news detection. Whereas this
approach uses summaries to retrieve knowledge for
classification, our approach leverages summaries
in training as easy-to-learn examples, which does
not assume costly summarization in inference.

3 SUMMaug

Document classification requires a model to com-
prehend lengthy text with dozens of sentences,
which is even difficult for humans, especially, chil-
dren and second-language learners. Then, how
do we humans develop an ability to comprehend
lengthy text? In school, starting from reading short,
concise text, we gradually read longer text.

In this study, we develop a summarization-based
data augmentation method for document classifi-
cation, SUMMaug, and use it to generate pseudo,
abstractive training examples from gold examples
to perform curriculum learning in document classi-
fication.

3.1 Summarization-based data augmentation

In SUMMaug, a summarization model M is used
to generate pseduo, easy-to-learn examples for doc-
ument classification. In this study, we apply an
off-the-shelf summarization model, M , to each
training pair {x, y}, where x denotes the document
and y denotes the label, and then obtain a concise
summary of x, namely, x̂ = M(x).

An issue here is how to determine the label for
the generated concise summary, x̂. Since the sum-
marization abstracts away detailed information for
classification, the original target label y can be inap-
propriate especially when the target labels are fine-
grained. We thus define a map function f to merge
the fine-grained categories into a coarse-grained
label group, and obtain the augmented training pair
is {x̂, f(y)}, as shown in Figure 1.

On summarization model To summarize di-
verse text handled in document classification, we
assume an off-the-shelf summarization model that
can handle documents with diverse topics. In this
study, we choose an off-the-shelf BART (Lewis
et al., 2020)-based summarization model fine-tuned
on CNN-Dailymail (Hermann et al., 2015) dataset
as an implementation of M ,1 since the writing style
of news reports is suitable for most of the text
in daily life. We should mention that the CNN-
Dailymail dataset contains mostly extractive sum-
maries, and the resulting summarization model will
be less likely to suffer from hallucinations (Maynez
et al., 2020) that have been reported for a summa-
rization model trained on abstractive summariza-
tion datasets such as XSum (Narayan et al., 2018).

1https://huggingface.co/facebook/
bart-large-cnn
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I am Anthony Park, Glenn Park is my father. First off I want to say that the story behind this movie and the creation of
the Amber Alert system is a good one. However the movie itself was poorly made and the acting was terrible. The major
problem I had with the movie involved the second half with Nichole Timmons and father Glenn Park. The events surrounding
that part of the story were not entirely correct. My father was suffering from psychological disorders at the time and picked
up Nichole without any intent to harm her at all. He loved her like a daughter and was under the mindset that he was rescuing
her from some sort of harm or neglect that he likely believed was coming from her mother who paid little attention to her
over the 3 plus years that my father took care of her and summarily raised her so her mother could frolic about. The movie
depicted my father in a manner that he was going to harm her in some way shape or form. The funny thing is that Nichole
had spent many nights sometimes consecutively at my fathers place while Sharon would be working or doing whatever she
was doing. The reason that my father was originally thought to be violent was because he had items that could be conceived
to be weapons on his truck. My father was a landscaper. The items they deemed to be weapons were landscaping tools that he
kept in his truck all the time for work. My recommendation is take this movie with a grain of salt, it is a good story and based
on true events however the details of the movie (at least the Nichole Timmons - Glenn Park portion) are largely inaccurate
and depict the failure of the director to discover the truth in telling the story. The funny thing is, that if the director would
have interviewed any of Sharon’s friends who knew the situation they would have stated exactly what I have posted here.

The movie itself was poorly made and the acting was terrible. The events surrounding that part of the story were not entirely
correct. My recommendation is take this movie with a grain of salt, it is a good story and based on true events.

Table 1: An example of original text an generated summary on IMDb dataset. The first row is the original text
while the second row is the generated summary. Red text are counterparts of summary in the original text.

Table 1 exemplifies a summary generated for
IMDb datasets. While the original input (review)
exhibits a mild negative sentiment, its compression
into a summary intensifies this sentiment. This ob-
servation underscores the imperative to categorize
labels of augmented data into coarser groups.

3.2 Learning a Classifier with augmented data
In the literature of data augmentation, the mod-
els are basically trained with the original and aug-
mented training data, since both data are related
to the target task. In our settings, however, the la-
bels will be merged into fewer labels so that the
labels conform to the generated summaries. We
thus consider the following two strategies to utilize
the pseudo abstractive training data.

Mixed fine-tuning We combine the original and
pseudo training data to fine-tune a pre-trained
model for classification. In this setting, we do
not collapse labels, namely, f(y) = y.

Curriculum fine-tuning We first finetune a pre-
trained model on the pseudo training data, and
then finetune a pre-trained model on the orig-
inal training data. This strategy is inspired
by curriculum learning (Bengio et al., 2009).
In this setting, we collapse labels as needed.
When we collapse labels, we discard parame-
ters for the collapsed labels in the fine-tuning
with the original examples.

In the following experiments, we compare two
strategies for datasets with different numbers of
labels.

Dataset train val test C L LM

IMDb-2 22500 2500 25000 2 279.5 51.3
IMDb-10 108670 13432 13567 10 394.2 50.2

Table 2: Details of the IMDb datasets: C denotes the
number of classes. L and LM denote the average length
of the inputs and the generated summaries, respectively.

4 Experiments

We conduct experiments on two datasets to evalu-
ate our method, thus demonstrating that: (1) our
method shows better accuracy and robustness com-
pared with baseline methods in both general set-
ting and low-resource settings; and (2) curriculum
fine-tuning plays an important role in achieving
improvements.

4.1 Dataset

We use two versions of large-scale movie re-
views dataset IMDb for evaluation. One contains
50,000 movie reviews with a positive or negative
label (Maas et al., 2011), while the other involves
10 different labels from rating 1 to 10. For the
IMDB-2 dataset, we split 10% of the training data
for validation. For the IMDb-10 dataset, the same
splitting as Adhikari et al. (2019) is used. The de-
tailed information of the two datasets is shown in
Table 2.

4.2 Methods

We use the following three models for evaluation.
All models are based on RoBERTa (Liu et al., 2019)
with a classification layer.
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Model The size of training data

200 1500 all

RoBERTa 92.191.21 94.210.62 94.630.56

+ AEDA (mixed) 90.911.44 94.430.49 94.750.66

+ AEDA (curriculum) 93.591.16 94.260.74 95.560.12

+ SUMMaug (mixed) 92.940.99 94.610.64 94.850.62

+ SUMMaug (curriculum) 93.360.97 94.770.28 95.450.17

Table 3: Classification accuracystdev. (%) on IMDb-2:
mixed and curriculum denotes mixed and curriculum
fine-tuning. All the results are averages over five runs.
The best results are marked as bold.

RoBERTa We finetune a pre-trained RoBERTa2

on the original training data as a baseline.

RoBERTa + AEDA We use AEDA (Karimi
et al., 2021), a strong data augmentation method
for text classification as another baseline. We apply
AEDA3 to the original documents, and then fine-
tune a RoBERTa model on the augmented data and
original data.

RoBERTa + SUMMaug We use BART-based
summarizer trained on CNN-Dailymail to gener-
ate concise summaries, and fine-tune a RoBERTa
model on the augmented data and original data.

To evaluate the performance of our method in
low resource settings, we randomly select 200 and
1500 samples from the two datasets and train a
model on these sub datasets. However, on the
IMDb-10 dataset, we observe that all models di-
verge and perform randomly when training data is
reduced to 200, likely due to the challenges of fine-
grained classification with rather limited training
data; we thereby do not report the results.

In order to reveal the effectiveness of curricu-
lum fine-tuning, we apply curriculum fine-tuning
not only to SUMMaug but also to AEDA. On
the IMDb-10 dataset, we map the labels of the
augmented data into coarse-grained ones, as men-
tioned in § 3.1. Specifically, labels between 0-4 are
mapped into 0 (negative) while labels between 5-9
are mapped into 1 (positive).

4.3 Implementation Details
We set the model’s hyperparameters as follows.
For experiments on the IMDb-2 dataset, batch size
is set to 64 and learning rate is set to 1e-5. For
experiments on the IMDb-10 dataset, following
Adhikari et al. (2019), batch size is set to 16, with

2https://huggingface.co/roberta-large
3https://github.com/akkarimi/aeda_nlp

Model The size of training data

1500 all

RoBERTa 39.998.46 56.580.34

+ AEDA (mixed) 36.5810.64 51.2314.39

+ AEDA (curriculum) 41.773.01 56.631.65

+ SUMMaug (mixed) 40.652.71 55.812.00

+ SUMMaug (curriculum) 42.141.48 57.550.29

Table 4: Classification accuracystdev. (%) on IMDb-10.
All the results are averages over five runs. The notations
follow Table 3.

learning rate set to 2e-5. Detailed information of
training epochs can be found at Appendix A. All
the experiments were conducted on four NVIDIA
Quadro P6000 GPUs with 24GB memory.

The final model for evaluation is selected on
the basis of the performance on validation set. To
eliminate the effect of random factors, we report
the average accuracy over five runs.

5 Results

Tables 3 and 4 list the results of baseline methods
and our proposed method. Our method outperforms
baseline methods in all experimental settings. We
additionally confirm on both datasets that our data
augmentation is effective even when the training
data size is small.

How robustly does SUMMaug work? SUM-
Maug achieves higher classification accuracy
across datasets while improving or maintaining ro-
bustness (low standard deviations), whereas the
original AEDA, namely AEDA (mixed), reduces
the accuracy on IMDb-2 when 200 training exam-
ples are used, and it leads to unstable results on
IMDb-10 dataset.

Is curriculum fine-tuning effective? We use
mixed fine-tuning with SUMMaug and curriculum
fine-tuning with AEDA. We observe that under
mixed fine-tuning method, the data augmented by
SUMMaug exhibited less improvements and even
turns to be harmful on the IMDb-10 dataset. Con-
versely, it turns out that curriculum learning helps
the AEDA method achieve further improvements
in some cases while addressing the low robustness
issue. However, curriculum learning with AEDA
does not consistently enhance results because the
AEDA augmented data retains the same informa-
tion as the original data, which offers limited bene-
fits in improving text comprehension.
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N f Accuracystdev.
2 [0,0,0,0,0,1,1,1,1,1] 57.550.29

3 [0,0,0,1,1,1,1,2,2,2] 57.470.20

4 [0,0,0,1,1,2,2,3,3,3] 57.660.31

5 [0,0,1,1,2,2,3,3,4,4] 57.320.60

10 [0,1,2,3,4,5,6,7,8,9] 57.200.56

Table 5: Classification accuracystdev. (%) on IMDb-10
with different label coarsening function under SUM-
Maug (curriculum) method. N denotes the number of
merged label groups while f shows how the original
label 0-9 is mapped into coarse-grained label. All the
results are averages over five runs.

How label coarsening affects accuracy? Ta-
ble 5 shows the results of SUMMaug (curricu-
lum) under different map function f . The accu-
racy is comparable when N ≤ 4, while there’s
a noticeable decline in accuracy, accompanied by
decreased stability when label coarsening is insuffi-
cient or not adopted. This is probably because the
summaries can filter out detailed content, which
is essential for fine-grained classification. On the
other hand, unlike mixed fine-tuning, in which po-
tentially noisy augmented data is used throughout
the training process, in the curriculum fine-tuning,
the effect of noise diminishes after model turns to
train on the original data. Consequently, it can still
achieve improvement even without label coarsen-
ing.

6 Conclusion and Future Work

This study explores a novel application of a sum-
marization model and proposes a simple yet ef-
fective data-augmentation method, SUMMaug, for
document classification. It performs curriculum
learning-style fine-tuning to first train a model
on concise summaries prior to the fine-tuning on
the original training data. This mirrors the hu-
man process of mastering lengthy text comprehen-
sion, through gradual exposure to longer text. Ex-
perimental results on two document classification
datasets confirm that SUMMaug enhances both ac-
curacy and training stability compared to the base-
line data augmentation method. Meanwhile, our
method shows effective in low-resource settings.

The future work will focus on searching for the
optimal mapping function f and exploring the ef-
fect of different summarization models. We will
also apply SUMMaug to other document classifica-
tion tasks of various domains.

Limitations

One of the drawbacks of this study is that we do not
consider the label coarsening function f as a hyper-
parameter and just choose the simplest one for ex-
periments. The effect of label coarsening function
on accuracy is still insufficiently explored. For the
datasets, despite the different numbers of labels,
the documents used are originally from the same
kind of domain, which is not convincing enough
to show that SUMMaug is robust across diverse
classification tasks in different domains.
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Abstract
Large Language Models (LLMs) have shown
significant performance in numerous NLP
tasks, including summarization and controlled
text generation. A notable capability of LLMs
is in-context learning (ICL), where the model
learns new tasks using input-output pairs in the
prompt without any parameter update. How-
ever, the performance of LLMs in the context
of few-shot abstractive dialogue summarization
remains underexplored. This study evaluates
various state-of-the-art LLMs on the SAMSum
dataset within a few-shot framework. We as-
sess these models in both controlled (entity con-
trol, length control, and person-focused plan-
ning) and uncontrolled settings, establishing
a comprehensive benchmark in few-shot dia-
logue summarization. Our findings provide in-
sights into summary quality and model control-
lability, offering a crucial reference for future
research in dialogue summarization.

1 Introduction

Abstractive dialogue summarization aims to dis-
till human conversations into natural, concise, and
informative text, and is a challenging and interest-
ing task in text summarization (Chen and Yang,
2020; Liu et al., 2021). The major challenges
come from several aspects: 1) it lacks large human-
annotated datasets unlike document summarization
(Feng et al., 2021), and 2) it requires responses
to be not only fluent but also factually consistent
(Liu and Chen, 2022; Wang et al., 2022). More-
over, in practical use cases, users may impose addi-
tional constraints on system outputs, and this task
is known as controlled dialogue summarization,
which requires models to be capable of coherent
and flexible language generation.

In controlled dialogue summarization, users can
specify desired attributes (i.e., control signals) to
guide the response of language models. Previ-
ous works have explored to incorporate control

∗Work done during internship at I2R, A*STAR.

signals during pre-training (Keskar et al., 2019),
task-specific fine-tuning (Liu and Chen, 2021), and
prompt tuning (Zhang et al., 2022b). Meanwhile,
the advancements in LLMs have unveiled new
paradigms. For instance, instruction tuning, which
enables models to understand users’ intent in nat-
ural language, is considered to be promising for
conditional text generation (Zhang et al., 2023).
Additionally, the emergence of in-context learn-
ing (ICL) in LLMs has recently gained attention.
The ICL ability refers to learning from a few input-
output pairs written in the natural language form
(also called demonstrations) (Dong et al., 2023).
Followed by demonstrations, a query question is
appended at the end to form a complete prompt.
Compared to the traditional supervised learning,
ICL requires no training and only a few annotated
samples. Motivated by the paradigm shift with
LLMs and the challenges encountered in controlled
dialogue summarization, this study answers the fol-
lowing two key questions:

• How is the quality of the dialogue summaries
generated by LLMs via ICL?

• How is the controllability of LLMs in dia-
logue summarization?

We comprehensively evaluate a range of recent
Large Language Models (LLMs) on the SAMSum
dataset (Gliwa et al., 2019) using a few-shot frame-
work. Our assessment covers several controlled sce-
narios, including entity control, length control, and
person-focused planning, as well as uncontrolled
settings. We establish a comprehensive benchmark
for few-shot dialogue summarization in Section 2,
and elaborate on the findings in Section 3. Specif-
ically, in our experiments, we observe that LLMs
can summarize dialogues reasonably given several
demonstrations, and LLaMA and Alpaca achieve
a factual consistency rate exceeding 90% in the
automatic evaluation. Moreover, adding control
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Model Architecture Instruction-tuned Training Data
OPT (Zhang et al., 2022a) Decoder-only RoBERTa + The Pile + Reddit
OPT-IML (Iyer et al., 2022) Decoder-only ✓ OPT-IML Bench
mT5 (Xue et al., 2021) Encoder-Decoder mC4
CEREBRAS-GPT (Dey et al., 2023) Decoder-only The Pile
LLaMA (Touvron et al., 2023) Decoder-only CommonCrawl + C4 + Github, etc.
Alpaca (Taori et al., 2023) Decoder-only ✓ Instruct dataset generated by GPT-3
BLOOM (BigScience Workshop, 2022) Decoder-only ROOTS

Table 1: Summary of the experimented LLMs.

Summary of SAMSum Dataset
Training Set 14,732 samples
Validation Set 818 samples
Testing Set 819 samples
Language English
Annotation Method Manual

Table 2: Data details of the SAMSum dataset.

signals in prompts (particularly keywords) can ef-
fectively guide models to include key information
in generated summaries.

2 Our Experimental Setting of ICL
Dialogue Summarization

In this section, we describe how we establish the
benchmark of evaluating LLMs’ in-context learn-
ing for abstractive dialogue summarization.

2.1 Selected Models & Prompt Template

To conduct an extensive comparison, we evaluate
various models that differ in architectures, train-
ing corpora, and paradigms. Previous work shows
when LLMs reach a certain parameter size, their
differences in performance on dialogue summariza-
tion become relatively small (Wang et al., 2023).
Therefore, to balance the performance and infer-
ence latency, here we select models that are smaller
than a 10B parameter size. Details of the experi-
mented models are shown in Table 1. For a repro-
ducible and fair comparison, consistent prompt tem-
plates are employed across all models, as detailed
in Appendix A. Moreover, considering the encoder-
decoder architecture of mT5, we follow the ap-
proach of Puduppully et al. (2023) for prompting
bidirectional LLMs, specifically by adding control
keywords and infilling text between them.

2.2 Experimental Dataset

All models are evaluated using SAMSum (Gliwa
et al., 2019), a human-annotated dataset for abstrac-
tive multi-turn dialogue summarization. Table 2
lists some information about the dataset. We use
samples from the test set for model evaluation. For

Control Signal Example: Length Control

Summarize the conversation with the defined length:
Kevin: Hi, will you come to the workshop?
Elena: I have to, I will present a paper.
Kevin: Nice, I can’t wait!
Summary with the length of 8 words: Elena will
present a paper at the workshop.

Summarize the conversation with the defined length:
Jamilla: remember that the audition starts at 19:30.
Kiki: which station?
Jamilla: Antena 3
Yoyo: roger that
Summary with the length of 9 words: <output>

the few-shot ICL inference, all demonstrations are
randomly sampled from the training set.

2.3 ICL Inference Configuration
In this study, we consider two experiment settings:
uncontrolled and controlled dialogue summariza-
tion. An uncontrolled setting is identical to a tra-
ditional summarization task without control sig-
nals. In contrast, a controlled setting involves user-
provided control signals as constraints to LLMs’
outputs. Here we focus on three types of control
signals that are common and straightforward con-
trol aspects to users (He et al., 2022; Liu and Chen,
2021; Wang et al., 2023):

• Entity control: Given a set of user-specified
keywords or entities, the generated summary
should include them.

• Length control: In this case, the user deter-
mines the desired length for the summaries.

• Personal named entity planning: This is a
specific form of entity control, where the user
provides models with a sequence of personal
named entities, indicating person-focused per-
spectives.

Control Signal Setup: To quantitatively evaluate
the controllability of LLMs, we extract oracle con-
trol signals from human-annotated references (i.e.,
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Model Size ROUGE-1 ROUGE-2 ROUGE-L Perplexity Factual Consistency(%)
OPT 1.3B 30.7 6.6 22.6 64.7 60.2
OPT-IML 1.3B 34.6 9.9 27.8 264.4 80.9
mT5-XL 3.7B 21.9 7.4 21.5 139.3 48.4
CEREBRAS-GPT 6.7B 31.5 7.4 22.4 28.0 66.6
LLaMA 7B 31.0 7.3 22.9 41.1 94.0
Alpaca 7B 32.0 7.1 23.7 90.8 97.3
BLOOM 7B 32.1 7.7 23.2 38.2 82.1

GPT3-davinci-003 175B 43.8 17.0 39.4 66.6 -

Table 3: Evaluation results in the uncontrolled setting. The ROUGE F-scores are reported. The optimal performance
is highlighted in bold. GPT-3 serves as the factual consistency evaluator, so its factual consistency is excluded.

Model Size ROUGE-1 ROUGE-2 ROUGE-L Perplexity Success Rate(%)
OPT 1.3B 33.2 8.2 24.5 53.2 65.3 (↑ 14.8)
OPT-IML 1.3B 37.8 11.6 30.5 294.1 54.5 (↑ 9.5)
mT5-XL 3.7B 39.8 15.2 34.6 112.6 100.0
CEREBRAS-GPT 6.7B 36.0 9.7 26.0 40.5 73.0 (↑ 16.9)
LLaMA 7B 34.1 9.3 25.4 52.8 62.5 (↑ 14.0)
Alpaca 7B 35.9 9.6 27.1 111.9 63.4 (↑ 12.3)
BLOOM 7B 36.6 10.2 27.2 60.1 71.1 (↑ 17.0)
GPT3-davinci-003 175B 48.8 22.3 39.1 112.2 94.0 (↑ 18.8)

Table 4: Evaluation results in the entity control setting with 3 keywords. The ↑ symbol denotes the change of the
appearance likelihood of keywords compared to the uncontrolled setting.

gold summaries), assuming the user provides the
appropriate signals (He et al., 2022). For entity
control, the top k words in every gold summary
with the highest TF-IDF scores are extracted as key-
words. Considering the shorter lengths of the dia-
logue summaries, the range of k is set as {1, 2, 3}.
Table 8 shows several generated examples of entity
control. For length control, the expected length
is set equal to the length (number of words) of the
gold summary. In personal named entity plan-
ning, the order of named entities1 follows their
occurrence in the gold summaries. The control sig-
nals are included in the prompt, and the prompt
templates are shown in Appendix A.

Demonstration Selection: During few-shot in-
ference, the prompt includes several input-output
pairs followed by a query dialogue. We limit
the number of demonstrations to {1, 2, 3} due to
computational constraints on the prompt’s length.
Demonstrations are randomly selected from the
training set but are kept consistent across all mod-
els. Given the potential variance of ICL (Min et al.,
2022), we repeat the generation process in 5 times
using different demonstrations and report the aver-
age scores. The input-output pairs are concatenated
with the query dialogue to compose the prompt.

1The personal named entities data is acquired from
https://github.com/seq-to-mind/planning_dial_
summ/tree/main/data (Liu and Chen, 2021).

Evaluation Metrics: Our evaluation has two pri-
mary objectives: 1) to assess the quality of the
generated summaries, and 2) to measure the con-
trollability of the models.

For assessing text-level quality automatically,
we employ the ROUGE metric (Lin, 2004), which
gauges the correspondence between the generated
summaries and the reference (or gold) summaries.
Following previous work (Fan et al., 2018), we
also calculate the perplexity of model generations
using GPT-2 (Radford et al., 2019), which serves
as a measure of textual fluency.

Factual consistency represents another essential
facet of quality. Since GPT-3 has demonstrated
robust performance across various evaluation tasks
(Luo et al., 2023; Fu et al., 2023; Chia et al., 2023),
we utilize it as a binary natural language inference
classifier. This classifier assesses factual consis-
tency by determining if the generated summary
aligns with the underlying dialogue. Further elabo-
rations on this are provided in Appendix B.

Additionally, we perform automatic holistic eval-
uations of writing quality, focusing on coherence
and relevance. Following previous work (Chia
et al., 2023), where GPT-3 is used for automatic
evaluations to benchmark instruction-tuned mod-
els, we instruct GPT-3 to score the generated sum-
maries on a discrete scale of 1 to 5. To ensure com-
parability, we adopt the same prompt templates as
in Chia et al. (2023). The average scores are pre-
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Model Size ROUGE-1 ROUGE-2 ROUGE-L Perplexity Length Deviation
OPT 1.3B 30.7 6.5 22.2 54.2 12.4 (↓ 0.9)
OPT-IML 1.3B 36.0 10.4 28.8 252.0 11.7 (↓ 0.5)
mT5-XL 3.7B 21.1 5.6 18.4 102.4 10.7 (↑ 0.7)
CEREBRAS-GPT 6.7B 31.2 6.7 22.5 31.8 16.1 (↓ 1.4)
LLaMA 7B 33.7 8.2 24.8 57.8 12.3 (↓ 2.2)
Alpaca 7B 34.7 8.2 26.4 185.3 7.2 (↓ 4.7)
BLOOM 7B 32.9 7.9 24.3 45.0 13.1 (↓ 1.3)
GPT3-davinci-003 175B 47.8 20.1 38.0 219.0 7.1 (↓ 12.6)

Table 5: Evaluation results in the length control setting. The ↑ and ↓ symbols denote the change of length deviations
compared to the uncontrolled setting.

Model Size ROUGE-1 ROUGE-2 ROUGE-L Perplexity Success Rate (%)
OPT 1.3B 30.5 7.2 23.6 57.4 82.7 (↑ 4.1)
OPT-IML 1.3B 36.5 11.1 29.5 239.2 76.1 (↑ 4.2)
mT5-XL 3.7B 28.3 7.9 24.8 50.1 100
CEREBRAS-GPT 6.7B 32.8 8.8 24.2 31.1 88.0 (↑ 5.5)
LLaMA 7B 33.3 8.6 25.2 51.1 77.8 (↑ 7.1)
Alpaca 7B 33.8 8.5 25.8 102.4 76.6 (↑ 2.0)
BLOOM 7B 33.4 9.0 25.2 43.3 89.2 (↑ 6.4)
GPT3-davinci-003 175B 47.3 21.6 36.7 65.7 96.8 (↑ 4.9)

Table 6: Evaluation results in the person-focused planning setting. The ↑ and ↓ symbols denote the change of
length deviations compared to the uncontrolled setting.

Model Size Consistency (%) Fluency Coherence Relevance
OPT 1.3B 60.2 64.7 3.5 3.2
OPT-IML 1.3B 80.9 264.4 3.4 3.2
mT5-XL 3.7B 48.4 139.3 3.3 3.0
CEREBRAS-GPT 6.7B 66.6 28.0 3.4 3.4
LLaMA 7B 94.0 41.1 3.4 3.7
Alpaca 7B 97.3 90.8 3.5 3.5
BLOOM 7B 82.1 38.2 3.4 3.5

Table 7: Holistic evaluations on the writing quality. For each aspect, the best score is in bold.

sented in Table 7, and a more detailed description
is provided in Appendix C.

Regarding the model controllability, the success
rate of entity control is determined by the propor-
tion of specified keywords present in the generated
summaries (He et al., 2022). This success rate
metric is also applicable to personal named entity
planning. Length controllability is evaluated by
the mean absolute length deviation, formulated as
1
N ·

∑N
i=1 |lgenerated− lgold|, where N represents the

size of the test set, and l denotes the text length.

3 Our Findings

In this section, we analyze the experimental results
by discussing about the two research problems.

3.1 How is the quality of the dialogue
summaries generated by LLMs via ICL?

The experimented LLMs can generate reasonable
summaries via ICL inference, but perform differ-
ently. In the uncontrolled setting, as shown in Ta-
ble 3, OPT-IML 1.3B exhibits the highest ROUGE

scores, despite having the fewest parameters. How-
ever, ROUGE scores cannot reflect factual correct-
ness from the semantic view. In contrast, LLaMA
and Alpaca tend to produce summaries that are the
more factually consistent (i.e., their consistency in
GPT3’s assessment exceeds 90%). Considering
other evaluation aspects, CEREBRAS-GPT consis-
tently generates the most fluent sentences across
all settings, and summaries generated by LLaMA
obtain the highest score regarding relevance among
all models (see Table 7).

In the controlled setting, as shown in Table 4,
both entity control and person-focused planning im-
prove ROUGE scores, and the former brings a sub-
stantial performance gain. Length control has a mi-
nor impact on ROUGE scores, especially for mod-
els without instruction-tuning. Moreover, mT5’s
performance is inferior to other models in non-
entity control settings in terms of ROUGE scores
and factual consistency. However, it achieves opti-
mal ROUGE scores in entity control, as its archi-
tecture ensures the inclusion of keywords.
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Gold Summary Model Uncontrolled setting Entity control
The audition starts at 7.30
P.M. in Antena 3.

BLOOM-7b1 Jamilla and Yoyo are going to
an audition for a TV show. They
are waiting for the station to
start broadcasting.

Jamilla and Kiki are going to an
audition for a TV show. The sta-
tion is Antena3.

Adam and Karen are wor-
ried that May suffers from
depression. Karen will call
her friend who is a psychol-
ogist and ask for advice.

mT5-XL Melissa shows Brian what she
bought and he finds it awesome.

Adam and karen talk to their friend
about her depression. They talk to
their friend’s psychologist and she
agrees to help.

Mike suspects he might have
had an allergic reaction to
something.

LLaMA-7B Mike wakes up with a strange
rash on his face. He has no clue
what it is and asks his girlfriend
Emma to help him figure it out.

Mike suspects that he is allergic to
something, but he does not know
what it is.

Flo cannot get an appoint-
ment at the salon until the
6th. Flo worries she’s going
to be gray. Flo will have to
get a touch-up kit at Tesco.

CEREBRAS-6.7B Gina and Flo are having a con-
versation about getting their hair
done at the same time.

Flo is worried that she will be too
late for her appointment at the hair
salon. She will get a kit to get her
hair touched up.

Table 8: Comparisons of generated summaries between controlled and uncontrolled settings. Underlined keywords
are the control signals included in the prompts.

3.2 Can LLMs do controlled dialogue
summarization?

Experimental results demonstrate that LLMs are
capable of achieving controlled dialogue summa-
rization via ICL. Evaluation details of LLMs in
controlled settings are presented in Table 4 for en-
tity control with 3 keywords, Table 5 for length
control, and Table 6 for person-focused planning.
Table 10 in Appendix provides a comprehensive
evaluation with varying numbers of keywords.

In the entity control experiments, keywords are
included in the prompts as constraints. All models
exhibit improved ROUGE scores, and the likeli-
hood of keywords appearing in the summaries is
increased, indicating that LLMs effectively utilize
the information from control signals. Notably, mT5
achieves a 100% success rate, benefiting from its
bi-directional encoding architecture. Examples pre-
sented in Table 8 show how keywords can guide
models to generate better summaries. Surprisingly,
non-instruction-tuned models like CEREBRAS-
GPT and BLOOM demonstrate better controlla-
bility than instruction-tuned models like Alpaca
and OPT-IML in entity control.

The impact of length signals is relatively minor
compared to keyword signals on ROUGE scores.
However, the length distribution with length sig-
nals is more aligned with the actual length across
models, except for mT5. Notably, Alpaca demon-
strates the best length controllability. We also find
that OPT-IML appears to have lower controllability
compared to its foundation model, OPT.

Model Success Rate (%)
OPT-IML-1.3B 19.0 (↑ 4.2)
LLaMA-7B 10.1 (↑ 4.7)
Alpaca-7B 7.8 (↑ 3.5)
BLOOM-7B 28.3 (↑ 17.0)

Table 9: The success rates of numerical keywords.

3.3 Further Analysis

Numerical keywords (e.g., time and quantity)
tend to be left out by LLMs. Preliminary error
analysis shows a large portion of the missing key-
words in entity control contain numerical informa-
tion. To verify that, the models are prompted with
only numerical keywords (e.g., time, date, quantity,
and percent) extracted from gold summaries using
SpaCy (Honnibal et al., 2020). The results in Table
9 demonstrate a significant decrease in the success
rates across all models. It implies that LLMs have
some intrinsic bias toward non-numerical content,
potentially causing them to overlook crucial numer-
ical details within dialogues.

4 Conclusion

In this study, we have benchmarked the in-context
learning performance of state-of-the-art LLMs in
controlled and uncontrolled settings for abstractive
dialogue summarization. We assessed their sum-
marization quality, factual consistency, and con-
trollability, while also conducting holistic evalua-
tions and empirical analysis. We hope this study
provides insights for the follow-up research about
dialogue summarization using LLMs.
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Limitations

One limitation of this study is that only LLMs with
less than 10B parameters are experimented with
due to hardware constraints. To address this is-
sue, we release the evaluation codes, in order to
facilitate the follow-up research.

Meanwhile, the control signals in this work are
oracle, which means we assume the user provides
indicative keywords to be included in the summary.
There are automatic methods to extract keywords
from dialogues (He et al., 2022), but it is not the
focus and therefore not discussed in this study.

Due to time constraints, we adopted GPT-3 to
conduct automatic qualitative evaluations. While
GPT-based evaluations have proven to be compet-
itive in some evaluation tasks, the necessity for
human evaluations remains.
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A Appendix: Prompt template

This section includes examples of the prompt tem-
plates, which remain consistent across models.

Uncontrolled Setting

Summarize the conversation:
Selby: anybody for indian?
Terri: yuo cooked?
Selby: yessir
Terri: sounds cool
Winslow: gr8. ill be there too
Summary: Selby invites Terri and Winslow for a
home-cooked Indian meal.

Summarize the conversation:
Marta: <file_gif>
Marta: Sorry girls, I clicked something by accident
:D
Agnieszka: No problem :p
Weronika: Hahaha
Agnieszka: Good thing you didn’t send something
from your gallery ;)
Summary:

(Last line of mT5)
Summary: <extra_id_0>

Length Control

Summarize the conversation with the defined length:
Kevin: Hi, will you come to the workshop?
Elena: I have to, I will present a paper.
Kevin: Nice, I can’t wait!
Summary with the length of 8 words: Elena will
present a paper at the workshop.

Summarize the conversation with the defined length:
Jamilla: remember that the audition starts at 7.30
P.M.
Kiki: which station?
Jamilla: Antena 3
Yoyo: roger that
Summary with the length of 9 words:

(Last line of mT5)
Summary with the length of 9 words: <extra_id_0>

Entity control (non-mT5)

Summarize the conversation with keywords:
Kevin: Hi, will you come to the workshop?
Elena: I have to, I will present a paper.
Kevin: Nice, I can’t wait!
Summary with keywords [’Elena’, ’workshop’]:
Elena will present a paper at the workshop.

Summarize the conversation with keywords:
Jamilla: remember that the audition starts at 19:30.
Kiki: which station?
Jamilla: Antena 3
Yoyo: roger that
Summary with keywords [’audition’, ’antena’]:

Entity Control / Person-focused Planning
(mT5)

Summarize the conversation:
Selby: anybody for indian?
Terri: yuo cooked?
Selby: yessir
Terri: sounds cool
Winslow: gr8. ill be there too
Summary: Selby invites Terri and Winslow for a
home-cooked Indian meal. Selby invites Terri and
Winslow for a home-cooked Indian meal.</s>

Summarize the conversation:
Marta: <file_gif>
Marta: Sorry girls, I clicked something by accident
:D
Agnieszka: No problem :p
Weronika: Hahaha
Agnieszka: Good thing you didn’t send something
from your gallery ;)
Summary: <extra_id_0> marta <extra_id_1> file <ex-
tra_id_2>

Person-focused Planning (non mT5)

Summarize the conversation with the focus perspec-
tives provided:
Hugo: Im off to Mazagan (Morocco) this weekend
Lacey: Oh so nice!
Hugo: Where are you these days? In Spain already?
Lacey: No. In Poland all the time. I study here
Summary with the focus perspectives [’Hugo’,
’Lacey’]: Hugo is off to Mazagan in Morocco this
weekend. Lacey studies in Poland.

Summarize the conversation with the focus perspec-
tives provided:
Miley: don’t want to go to work tomorrow!
Miley: wanna sleep!!!
Miley: need some rest :(
Aaron: know what u feelin
Aaron: really want some holiday already
Miley: :(
Aaron: fighting girl!
Summary with the focus perspectives [’Miley’]:
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B Appendix: Utilizing GPT-3 for factual
consistency evaluation

This study employs text-davinci-003 model as the
factual consistency evaluator. The prompt template
adopts a zero-shot chain-of-thought style because it
outperforms direct prompting and exhibits greater
stability compared to the few-shot setup, as sug-
gested in Luo et al. (2023).

An illustrative example of the prompt and GPT-
3’s response is provided below:

Prompt for factual consistency classification

Decide if the following summary is consistent with
the corresponding dialogue. Note that consistency
means all information in the summary is supported
by the dialogue.
Dialogue:
Will: hey babe, what do you want for dinner tonight?
Emma: gah, don’t even worry about it tonight
...
Will: Alright, love you.
Emma: love you too.
Summary: Emma doesn’t want to cook for Will
tonight.
Explain your reasoning step by step then answer (yes
or no) the question:

GPT-3’s response
Yes, the summary is consistent with the dialogue.
Step 1: Will asks Emma what she wants for dinner.
Step 2: Emma responds that she doesn’t want to
worry about it, implying that she does not want to
cook.
Step 3: Will then asks what time she’ll be HOME,
and Emma says soon.
Step 4: Will then offers to pick her up to which
Emma responds no, she’ll tell him when she gets
home.
Step 5: Will then tells her he loves her and she
responds in kind.
Yes, the summary is consistent with the dialogue.

C Appendix: Holistic Evaluation

The holistic evaluation of writing quality utilizes
GPT-3. We follow the evaluation templates as well
as the rubrics in Chia et al. (2023). See details of
the prompts for writing an evaluation of relevance
and coherence on the next page.

Due to the API cost, each model is evaluated on
100 random samples from the test set.

D Appendix: Impact of the number of
demonstrations

ICL’s performance instability is influenced by the
selection and quantity of demonstrations. This
study employs a random selection strategy for effi-
ciency and simplicity, with each test sample having
five sets of demonstrations. The average values are
reported.

Table 10 and Figure 1 show the metric trends
for k demonstrations, indicating that an increase
in demonstrations may degrade performance and
increase instability in some models (e.g., Cerebras-
GPT-6.7B, OPT-1.3B), possibly due to their small
parameter sizes. Table 3 presents the optimal per-
formance for k values in the set 1,2,3.
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Writing evaluation on relevance

Text: Eric, Bella and Eric were talking about their boss and how he appreciated their decision of dismissing a potential
client. Eric and Bella were discussing the reasons why they dismissed the client, while Eric was asking Bella about her
reaction to his boss’ reaction.

Prompt: Summarize the following dialogue:
Eric: Hey Bella, What happened today in boss’s room?? Was he angry??
Bella: NO NO!!! He wasn’t angry at all.. He actually appreciated on our brave deccision to dismiss the request of client..
Eric: REALLY!! He appreciated this decision.. Bella: Yeah he really did.. I too was astounded by his reaction...
Eric: What could possibly lead to this?? I mean , they were potential clients...
Bella: What he told me was that he was looking forward to bring in new clients which were our current client’s
competitor..
Eric: Oh that could possibly be the reason.Well anyways you got appreciation xD congo
Bella: hahaha Blessing in disguise xD

How relevant is the text to the prompt? Select a suitable option number between 1 and 5 based on the op-
tions below.

1. Inadequate: The text fails to provide any relevant information or insights related to the given prompt.
2. Limited: The text may contain some relevant information, but significant gaps exist, and key aspects of the prompt are
not adequately covered.
3. Satisfactory: The text covers the main aspects of the prompt and provides relevant information, but it lacks depth and
may not explore the topic in great detail.
4. Proficient: The text provides a comprehensive response by addressing the key aspects of the prompt, offering relevant
and well-supported information or arguments.
5. Excellent: The text thoroughly and thoughtfully addresses the prompt, demonstrating a comprehensive understanding
of the topic. It offers insightful and original ideas, supported by relevant arguments and information.

Writing evaluation on coherence

Text: Eric, Bella and Eric were talking about their boss and how he appreciated their decision of dismissing a potential
client. Eric and Bella were discussing the reasons why they dismissed the client, while Eric was asking Bella about her
reaction to his boss’ reaction.
How coherent is the text? Select a suitable option number between 1 and 5 based on the options below.

1. Inadequate: The text lacks logical organization, making it difficult to follow. Ideas are disjointed and
phrased awkwardly, requiring significant effort to understand.
2. Limited: The text demonstrates some attempt at organization, but there are significant gaps in coherence. Ideas may
be loosely connected, and the arguments lack clarity.
3. Satisfactory: The text generally follows a logical organization, but occasional disruptions or awkward phrasing may
occur. There is an acceptable level of readability and understanding.
4. Proficient: The text is clearly organized and easy to understand. Ideas and arguments flow smoothly, contributing to
easy comprehension and a pleasant reading experience.
5. Excellent: The text presents exceptionally coherent writing with a fluent and engaging flow of ideas, ensuring
effortless comprehension and a delightful reading experience.
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Model k ROUGE-1 ROUGE-2 ROUGE-L Succee Rate (%)
OPT-1.3B 1 30.0 6.4 22.1 71.7 (↑ 10.7)

2 32.1 7.7 23.7 68.7 (↑ 14.1)
3 33.2 8.2 24.5 65.3 (↑ 14.8)

OPT-IML-1.3B 1 36.5 11.0 30.0 61.9 (↑ 7.5)
2 36.9 11.1 29.6 57.4 (↑ 8.7)
3 37.8 11.6 30.5 54.5 (↑ 9.5)

mT5-XL 1 32.3 11.0 27.5 100.0
2 36.3 13.0 31.4 100.0
3 39.8 15.2 34.6 100.0

Cerebras-GPT-6.7B 1 32.6 7.7 23.2 79.6 (↑ 13.9)
2 33.9 8.6 24.5 74.9 (↑ 15.1)
3 36.0 9.7 26.0 73.0 (↑ 16.9)

LLaMA-7B 1 32.0 7.8 23.4 69.1 (↑ 12.6)
2 33.6 8.8 24.8 65.2 (↑ 13.7)
3 34.1 9.3 25.4 62.5 (↑ 14.0)

Alpaca-7B 1 33.3 7.6 24.7 67.6 (↑ 8.5)
2 35.2 8.9 26.3 65.4 (↑ 11.5)
3 35.9 9.6 27.1 63.4 (↑ 12.3)

BLOOM-7B 1 32.2 7.6 23.1 77.1 (↑ 12.2)
2 34.9 9.2 25.7 73.0 (↑ 14.8)
3 36.6 10.2 27.2 71.1 (↑ 17.0)

Table 10: Evaluation results in the entity control setting with k keywords.
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(a) OPT-1.3B

(b) mT5-XL

(c) BLOOM-7B

(d) CEREBRAS-GPT-6.7B

Figure 1: The line plots of evaluation metrics given k demonstrations in the uncontrolled setting. 95% confidence
interval is highlighted within the plots.
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Abstract

Selecting the “right” amount of information to
include in a summary is a difficult task. A good
summary should be detailed and entity-centric
without being overly dense and hard to follow.
To better understand this tradeoff, we solicit
increasingly dense GPT-4 summaries with what
we refer to as a “Chain of Density” (CoD) prompt.
Specifically, GPT-4 generates an initial entity-
sparse summary before iteratively incorporating
missing salient entities without increasing the
length. Summaries generated by CoD are more
abstractive, exhibit more fusion, and have less of
a lead bias than GPT-4 summaries generated by a
vanilla prompt. We conduct a human preference
study on 100 CNN DailyMail articles and find
that humans prefer GPT-4 summaries that are
more dense than those generated by a vanilla
prompt and almost as dense as human written
summaries. Qualitative analysis supports the
notion that there exists a tradeoff between infor-
mativeness and readability. 500 annotated CoD
summaries, as well as an extra 5,000 unannotated
summaries, are freely available on HuggingFace1.

1 Introduction

Automatic summarization has come a long way in
the past few years, largely due to a paradigm shift
away from supervised fine-tuning on labeled datasets
to zero-shot prompting with Large Language Models
(LLMs), such as GPT-4 (OpenAI, 2023). Without
additional training, careful prompting can enable
fine-grained control over summary characteristics,
such as length (Goyal et al., 2022), topics (Bhaskar
et al., 2023), and style (Pu and Demberg, 2023).

An overlooked aspect is the information density of
an summary. In theory, as a compression of another
text, a summary should be denser–containing a higher
concentration of information–than the source docu-
ment. Given the high latency of LLM decoding (Kad-
dour et al., 2023), covering more information in fewer

1https://huggingface.co/datasets/
griffin/chain_of_density

Human Summary

Vanilla GPT-4

Human Preferred CoD

Figure 1: Chain of Density (CoD) summaries grow
increasingly entity dense, starting off closer to vanilla
GPT-4 summaries and eventually surpassing that of human
written summaries. Human annotations suggest that a
density similar to that of human-written summaries is
preferable–striking the right balance between clarity (favors
less dense) and informativeness (favors more dense).

words is a worthy goal, especially for real-time appli-
cations. Yet, how dense is an open question. A sum-
mary is uninformative if it contains insufficient detail.
If it contains too much information, however, it can be-
come difficult to follow without having to increase the
overall length. Conveying more information subject to
a fixed token budget requires a combination of abstrac-
tion, compression, and fusion. There is a limit to how
much space can be made for additional information
before becoming illegible or even factually incorrect.

In this paper, we seek to identify this limit by solic-
iting human preferences on a set of increasingly dense
summaries produced by GPT-4. Treating entities, and,
in particular, the average number of entities per token,
as a proxy for density, we generate an initial, entity-
sparse summary. Then, we iteratively identify and fuse
1-3 missing entities from the previous summary with-
out increasing the overall length (5x overall). Each
summary has a higher ratio of entities to tokens than
the previous one. Based on human preference data, we
determine that humans prefer summaries that are al-
most as dense as human-written summaries and more
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Ar t i c l e:  { { ARTI CLE} }

You wi l l  gener at e i ncr easi ngl y conci se,  ent i t y- dense summar i es of  t he 
above Ar t i c l e.

Repeat  t he f ol l owi ng 2 st eps 5 t i mes.

St ep 1.  I dent i f y 1- 3 i nf or mat i ve Ent i t i es ( " ; "  del i mi t ed)  f r om t he 
Ar t i c l e whi ch ar e mi ssi ng f r om t he pr evi ousl y gener at ed summar y.
St ep 2.  Wr i t e a new,  denser  summar y of  i dent i cal  l engt h whi ch cover s 
ever y ent i t y and det ai l  f r om t he pr evi ous summar y pl us t he Mi ssi ng 
Ent i t i es.

A Mi ssi ng Ent i t y i s:
-  Rel evant :  t o t he mai n st or y.
-  Speci f i c :  descr i pt i ve yet  conci se ( 5 wor ds or  f ewer ) .
-  Novel :  not  i n t he pr evi ous summar y.
-  Fai t hf ul :  pr esent  i n t he Ar t i c l e.
-  Anywher e:  l ocat ed anywher e i n t he Ar t i c l e.

Gui del i nes:
-  The f i r st  summar y shoul d be l ong ( 4- 5 sent ences,  ~80 wor ds)  yet  
hi ghl y non- speci f i c ,  cont ai ni ng l i t t l e i nf or mat i on beyond t he 
ent i t i es mar ked as mi ssi ng.  Use over l y ver bose l anguage and f i l l er s 
( e. g. ,  " t hi s ar t i c l e di scusses" )  t o r each ~80 wor ds.
-  Make ever y wor d count :  r e- wr i t e t he pr evi ous summar y t o i mpr ove 
f l ow and make space f or  addi t i onal  ent i t i es.
-  Make space wi t h f usi on,  compr essi on,  and r emoval  of  uni nf or mat i ve 
phr ases l i ke " t he ar t i c l e di scusses" .
-  The summar i es shoul d become hi ghl y dense and conci se yet  
sel f - cont ai ned,  e. g. ,  easi l y under st ood wi t hout  t he Ar t i c l e.
-  Mi ssi ng ent i t i es can appear  anywher e i n t he new summar y.
-  Never  dr op ent i t i es f r om t he pr evi ous summar y.  I f  space cannot  be 
made,  add f ewer  new ent i t i es.

Remember ,  use t he exact  same number  of  wor ds f or  each summar y.

Answer  i n JSON.  The JSON shoul d be a l i s t  ( l engt h 5)  of  di ct i onar i es 
whose keys ar e " Mi ssi ng_Ent i t i es"  and " Denser _Summar y" .

Thi s ar t i c l e di scusses an i nci dent  t hat  occur r ed dur i ng t he Chi nese Gr and Pr i x i nvol v i ng 
t wo r aci ng dr i ver s,  Jenson But t on and Past or  Mal donado.  The t wo wer e compet i ng f or  t he 
13t h pl ace when But t on col l i ded wi t h Mal donado' s vehi c l e,  causi ng damage t o bot h car s.  

The i nci dent  r esul t ed i n a penal t y f or  But t on,  who was demot ed t o 14t h pl ace.  Mal donado,  
on t he ot her  hand,  had t o r et i r e f r om t he r ace due t o t he damage hi s car  sust ai ned.

Dur i ng t he Chi nese Gr and Pr i x,  Jenson But t on,  dr i v i ng f or  McLar en,  col l i ded wi t h Past or  
Mal donado' s Lot us,  whi l e t hey wer e vyi ng f or  13t h pl ace.  The cr ash caused Mal donado t o 
r et i r e and But t on t o r ecei ve a penal t y,  dr oppi ng hi m t o 14t h.  The i nci dent  unf ol ded i n 

f r ont  of  Fer nando Al onso,  who managed t o avoi d t he col l i s i on and move up t wo pl aces.

I n t he Chi nese Gr and Pr i x,  Jenson But t on' s McLar en hi t  Past or  Mal donado' s Lot us,  causi ng 
Mal donado t o r et i r e and But t on t o r ecei ve a f i ve- second penal t y,  demot i ng hi m t o 14t h.  

But t on al so r ecei ved t wo penal t y poi nt s on hi s super l i cence.  Fer nando Al onso,  who 
wi t nessed t he i nci dent ,  advanced t wo pl aces,  whi l e But t on was l apped by Ni co Rosber g' s 

Mer cedes .

Jenson But t on' s McLar en col l i ded wi t h Past or  Mal donado' s Lot us dur i ng t he Chi nese Gr and 
Pr i x,  causi ng f r ont  wi ng damage t o But t on' s car  and r ear - end damage t o Mal donado' s,  
f or c i ng hi s r et i r ement .  But t on r ecei ved a f i ve- second penal t y and t wo super l i cence 

poi nt s,  dr oppi ng hi m t o 14t h.  Fer nando Al onso advanced t wo pl aces,  whi l e But t on was 
l apped by Ni co Rosber g and Al onso by Sebast i an Vet t el  and Ki mi  Rai kkonen.

On l ap 49 of  t he i nci dent - packed Chi nese Gr and Pr i x,  Jenson But t on' s McLar en hi t  Past or  
Mal donado' s Lot us,  causi ng damage and Mal donado' s r et i r ement .  But t on r ecei ved a 

f i ve- second penal t y and t wo super l i cence poi nt s,  f al l i ng t o 14t h.  Fer nando Al onso,  who 
wi t nessed t he cr ash,  advanced t wo pl aces,  whi l e But t on was l apped by Ni co Rosber g and 

Al onso by Fer r ar i ' s  Sebast i an Vet t el  and Ki mi  Rai kkonen.

Chai n of  Densi t y ( CoD)  Pr ompt CoD Out put s ( Added Det ai l s f r om pr evi ous)

Figure 2: Chain of Density (CoD) Prompt and example output. At each step, 1-3 additional details (entities) are added
to the previous summary without increasing the length. To make room for new entities, existing content is re-written (e.g.,
compression, fusion). Half the annotators (2/4) prefer the second to last summary, with the others preferring the final one.

dense than those generated by a vanilla GPT-4 prompt.
Our primary contributions are to:

• Develop a prompt-based iterative method (CoD)
for making summaries increasingly entity dense.

• Conduct both human and automatic evaluation
of increasingly dense summaries on CNN/Dai-
lymail articles to better understand the tradeoff
between informativeness (favoring more entities)
and clarity (favoring fewer entities).

• Open source GPT-4 summaries, annotations, and
a set of 5,000 unannotated CoD summaries to
be used for evaluation or distillation.

2 Chain of Density Prompting

Prompt. Our goal is to generate a set of summaries
with GPT-4 with varying levels of information density,
while controlling for length, which has proven to be a
strong confounder when evaluating summaries (Fabbri
et al., 2021; Liu et al., 2023b). To do this, we formu-
late a single Chain of Density (CoD) prompt, whereby
an initial summary is generated and made increasingly
entity dense. Specifically, for a fixed number of turns,
a set of unique salient entities from the source text
are identified and fused into the previous summary
without increasing the length. The first summary is
entity-sparse as it focuses on only 1-3 initial entities.

To maintain the same length while increasing the num-
ber of entities covered, abstraction, fusion, and com-
pression is explicitly encouraged, rather than dropping
meaningful content from previous summaries.

Figure 2 displays the prompt along with an
example output. Rather than be prescriptive about the
types of entities, we simply define a Missing Entity as:

• Relevant: to the main story.
• Specific: descriptive yet concise (5 words or

fewer).
• Novel: not in the previous summary.
• Faithful: present in the Article.
• Anywhere: located anywhere in the Article.

Data. We randomly sample 100 articles from the
CNN/DailyMail summarization (Nallapati et al.,
2016) test set for which to generate CoD summaries.

Reference Points. For frame of reference, we
compare CoD summary statistics to human-written
bullet-point style reference summaries as well as
summaries generated by GPT-4 with a vanilla prompt:
“Write a VERY short summary of the Article. Do not
exceed 70 words.” We set the desired token length to
match that of CoD summaries (shown in Table 1).

3 Statistics

Direct statistics (tokens, entities, entity density) are
ones directly controlled for by CoD, while Indirect
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Vanilla GPT-4

Human Summary

Human Summary

Vanilla GPT-4

Vanilla GPT-4

Human Summary

Figure 3: CoD-generated summaries grow increasingly abstractive while exhibiting more fusion and less of a lead bias.

statistics are expected byproducts of densification.

CoD Step Tokens Entities Density (E/T)
1 72 6.4 0.089
2 67 8.7 0.129
3 67 9.9 0.148
4 69 10.8 0.158
5 72 12.1 0.167

Human 60 8.8 0.151
Vanilla GPT-4 70 8.5 0.122

Table 1: Explicit statistics for GPT-4 CoD summaries.

Direct Statistics. In Table 1, we compute tokens
with NLTK (Loper and Bird, 2002), measure unique
entities with Spacy2, and compute entity density as the
ratio. The CoD prompt largely adheres to a fixed to-
ken budget. In fact, the second step leads to an average
5-token (72 to 67) reduction in length as unnecessary
words are removed from the initially verbose
summary. The entity density rises–starting at 0.089,
initially below Human and Vanilla GPT-4 (0.151 and
0.122)–to 0.167 after 5 steps of densification.

Indirect Statistics. Abstractiveness should increase
with each CoD step because summaries are itera-
tively re-written to make space for each additional
entity. We measure abstractiveness with extractive
density: the average squared length of extractive frag-
ments (Grusky et al., 2018). Similarly, the level of
concept Fusion should increase monotonically as en-
tities are added to a fixed-length summary. We proxy
fusion as average number of source sentences aligned
to each summary sentence. For alignment, we use
the relative ROUGE gain method (Zhou et al., 2018),
which aligns source sentences to a target sentence un-
til the relative ROUGE gain of an additional sentence
is no longer positive. We also expect the Content
Distribution–the position in the Article from which
summary content is sourced–to shift. Specifically, we
expect that CoD summaries initially exhibit a strong
Lead Bias yet gradually start to pull in entities from the

2https://spacy.io.

middle and end of the article. To measure this, we use
our alignments from fusion and measure the average
sentence rank of all aligned source sentences. Figure 3
confirms these hypotheses: abstractiveness increases
with the number of re-writing steps (lower extractive
density on the left), the rate of fusion rises (middle
figure), and the summaries start to incorporate content
from the middle and end of the article (right figure).
Interestingly, all CoD summaries are more abstrac-
tive than both human written and baseline summaries.

4 Results

To better understand the tradeoffs present with CoD
summaries, we conduct a preference-based human
study and a rating-based evaluation with GPT-4.

CoD % Share of First Place Votes
Step Individual Annotators Aggregate

1 3.0 2.0 13.0 17.4 8.3
2 25.0 28.0 43.0 31.4 30.8
3 22.0 28.0 21.0 24.4 23.0
4 29.0 25.0 13.0 26.7 22.5
5 21.0 17.0 10.0 16.3 15.5

Table 2: Breakdown of first-place votes for CoD
summaries by step. Based on aggregate preferences, the
modal CoD step is 2, median is 3, and expected is 3.06.

Human Preferences. We conduct a human
evaluation to assess the impact of densification on
human assessments of overall quality. Specifically,
the first four authors of the paper were presented with
randomly shuffled CoD summaries, along with the
articles, for the same 100 articles (5 steps * 100 =
500 total summaries). Based on the definition of a
“good summary" from Stiennon et al. (2020) (Table
6 from their paper), each annotator indicated their top
preferred summary. Table 2 reports the breakdown of
first place votes by CoD step across annotators–as
well as aggregated across annotators. First, we report
a low Fleiss’ kappa (Fleiss, 1971) of 0.112, which
points to the subtle differences between summaries
and the subjective nature of the task. Recent work has
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CoD Step Entity Density Informative Quality Coherence Attributable Overall GPT-4 Eval Average
1 0.089 4.34 4.75 4.96 4.96 4.41 4.69
2 0.129 4.62 4.79 4.92 5.00 4.58 4.78
3 0.148 4.67 4.76 4.84 5.00 4.57 4.77
4 0.158 4.74 4.69 4.75 5.00 4.61 4.76
5 0.167 4.73 4.65 4.61 4.97 4.58 4.71

Table 3: GPT-4 Likert-scale (1-5) assessments of Chain of Density (CoD) Summaries by step.

Figure 4: An example of a human-preferred densification step (left) and one which is not preferred. For the left, the
bottom summary is preferred because the addition of “Liverpool” and the goal-scorers is relevant. The second summary
makes room with sensible compressions, such as synthesizing “a potential route back into the game” into “a comeback”.
For the right, the addition of more details on “TVMonde” does not make up for the presence of an awkward fusion of
entities (“cyberattack”, and “Yves Bigot”), which was a direct result of having to tighten the previous summary.

similarly noted low instance-level agreement when
judging GPT-based summaries (Goyal et al., 2022).

Yet, at the system level, some trends start to
emerge. For 3 of the 4 annotators, CoD step 1
received the largest share of first-place votes across
the 100 examples (28, 43, and 31.4%, respectively).
Yet, in aggregate, 61% of first placed summaries
(23.0+22.5+15.5) involved≥3 densification steps.
The median preferred CoD step is in the middle (3),
and the expected step is 3.06.

Based on the average density of Step 3 summaries,
we can roughly infer a preferred entity density of
∼ 0.15 across the CoD candidates. From Table 1,
we can see that this density aligns with human-written
summaries (0.151), yet is noticeable higher than sum-
maries produced with a vanilla GPT-4 prompt (0.122).

Automatic Metrics. As an evaluator, GPT-4
has been shown to adequately correlate to human
judgments (Fu et al., 2023; Liu et al., 2023a), even
potentially outperforming crowd-sourced workers
on some annotation tasks (Gilardi et al., 2023). As
a complement to our human evaluation (below), we
prompt GPT-4 to rate CoD summaries (1-5) along
5 dimensions: Informative, Quality, Coherence, At-
tributable, and Overall. The definitions of Informa-
tive, Quality, and Attributable come from Aharoni
et al. (2023), while Coherence comes from Fabbri
et al. (2021)3. Overall aims to capture the qualities
jointly. Please see Appendix A for the prompts used

3Quality and Coherence are article-independent metrics.

to solicit scores for each dimension. Table 3 suggests
that densification is correlated with informativeness,
yet there is a limit, with the score peaking at Step 4
(4.74). Article-free dimensions: Quality and Coher-
ence, decline sooner (after 2 and 1 steps, respectively).
All summaries are deemed Attributable to the source
article. The Overall scores skew toward denser and
more informative summaries, with Step 4 having the
highest score. On average across dimensions, the first
and last CoD steps are least favored, while the mid-
dle three are close (4.78, 4.77, and 4.76, respectively).

In Appendix A, we report highest summary-
level correlations of the Overall metric to human
judgments (0.31 Pearson correlation), yet note low cor-
relations overall–a phenomenon observed by Deutsch
et al. (2022) when summaries are of similar quality.

Qualitative Analysis. There exists a clear trade-off
between coherence / readability of summaries and in-
formativeness. To illustrate, in Figure 4, we present
two CoD steps: one for which the summary is im-
proved with more detail, and one for which the sum-
mary is harmed. On average, intermediate CoD sum-
maries best achieved this balance, yet we leave it to fu-
ture work to precisely define and quantify this tradeoff.

5 Related Work

GPT Summarization. Goyal et al. (2022) bench-
marked GPT-3 on news article summarization and
found that humans preferred GPT-3 summaries
over previous supervised baselines, which was
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not reflective of existing reference-based and
reference-free metrics. Zhang et al. (2023) find that
zeroshot GPT-3 summaries perform on par with
humans by soliciting high-quality summaries from
freelance writers. Entity-Based Summarization.
Narayan et al. (2021) proposed generating entity
chains as a planning step for supervised fine-tuning
of summarization models, in contrast to keywords
(Li et al., 2020; Dou et al., 2021) or purely extractive
units (Dou et al., 2021; Adams et al., 2023a). Entities
have also been incorporated for summarization as a
form of control (Liu and Chen, 2021; He et al., 2022;
Maddela et al., 2022), to improve faithfulness (Nan
et al., 2021; Adams et al., 2022), and as a unit for
evaluation (Cao et al., 2022; Adams et al., 2023b).

6 Conclusion

We study the impact of summary densification on
human preferences of overall quality. We find that
a degree of densification is preferred, yet, when
summaries contain too many entities per token, it
is very difficult maintain readability and coherence.
We open-source annotated test set as well as a larger
un-annotated training set for further research into the
topic of fixed-length, variable density summarization.

7 Limitations

We only analyze CoD for a single domain, news
summarization. Annotations did not show high
summary-level agreement yet did start to show
system-level trends, which is in line with previous
work on LLM-based evaluation (Goyal et al., 2022).
Finally, GPT-4 is a closed source model so we cannot
share model weights. We do, however, publish
all evaluation data, annotations, as well as 5, 000
un-annotated CoD to be used for downstream uses
cases, e.g., density distillation into an open-sourced
model such as LLAMA-2 (Touvron et al., 2023).
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A GPT-4 Metrics

For the GPT-4 Likert-style evaluation, we use the
following prompt template.

Article: {{Article}}

Summary: {{Summary}}
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Please rate the summary
(1=worst to 5=best) with
respect to {{Dimension}}.

{{Definition}}

Below, we present the definitions provided for each
quality metric.

• Informative: An informative summary captures
the important information in the article and
presents it accurately and concisely.

• Quality: A high quality summary is comprehen-
sible and understandable.

• Coherence: A coherent summary is well-
structured and well-organized.

• Attributable: Is all the information in the
summary fully attributable to the Article?

• Overall Preference: A good summary should
convey the main ideas in the Article in a concise,
logical, and coherent fashion.

The Quality and Coherence prompts do not in-
clude the Article in the prompt. These definitions were
paraphrased from previous summarization annotation
efforts: (Fabbri et al., 2021; Aharoni et al., 2023).

Dimension Correlation
Informative 0.215

Quality 0.120
Coherence 0.178

Attributable 0.245
Overall 0.311

Table 4: Summary-Level Pearson Correlation coefficient
between human preferences and GPT-4 Likert ratings.

Meta-Evaluation. To compute the summary-level
correlation, we first turned the preference data into a
vector representing the number of times that summary
received a first-placed vote. Table 4 demonstrates,
unsurprisingly, that a prompt designed to capture
overall summary rating has the highest summary-level
Pearson correlation to overall preferences (31), yet
overall correlations are still low.
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Abstract
Summarization of scientific articles often over-
looks insights from citing papers, focusing
solely on the document’s content. To incor-
porate citation contexts, we develop a model
to summarize a scientific document using the
information in the source and citing documents.
It concurrently generates abstractive and extrac-
tive summaries, each enhancing the other. The
extractive summarizer utilizes a blend of het-
erogeneous graph-based neural networks and
graph attention networks, while the abstrac-
tive summarizer employs an autoregressive de-
coder. These modules exchange control signals
through the loss function, ensuring the creation
of high-quality summaries in both styles.

1 Introduction

Text summarization automates condensing docu-
ments while preserving key information. Most
neural summarization models, like those by Nal-
lapati et al. (2016); Zhong et al. (2019), are de-
signed for shorter texts, e.g., the CNN/Daily Mail
dataset (Hermann et al., 2015). However, applying
these models to longer documents, such as scien-
tific research papers, remains limited. In scientific
document summarization, it is common to focus
solely on abstracts, introductions, and conclusions,
as demonstrated in Yasunaga et al. (2019)’s work.

Summarizing scientific publications presents
unique challenges due to their length, complex con-
cepts, technical jargon, structured organization, and
citations. These complexities make it a more daunt-
ing task compared to summarizing other types of
documents. Additionally, the long-term impact of
a scientific article may not be fully evident when
it is first published, as its significance can evolve
over time. While an abstract provides an initial
overview from the authors’ perspective, it may not
capture the full extent of the paper’s influence on
the research community and its evolving impact
(Yasunaga et al., 2019). As an example, we can
consider the abstract from Bergsma and Lin (2006):

We present an approach to pronoun res-
olution based on syntactic paths. . . . we
learn the likelihood of coreference be-
tween a pronoun and a candidate noun
based on the path in the parse tree be-
tween the two entities. . . . Highly coref-
erent paths also allow mining of precise
probabilistic gender/number information.
We combine statistical knowledge with
well known features in a Support Vec-
tor Machine pronoun resolution classi-
fier. Significant gains in performance are
observed on several datasets.

This abstract gives insight into the methods the au-
thors used. But the citations emphasize the corpus
it presents. For example:

We use the approach of Bergsma and
Lin (2006), both because it achieves
state-ofthe-art gender classification per-
formance, and because a database of the
obtained noun genders is available on-
line. (Bergsma, 2005)

For the gender task that we study in our
experiments, we acquire class instances
by filtering the dataset of nouns and their
genders created by Bergsma and Lin
(2006). (Bergsma and Van Durme, 2013)

Jaidka et al. (Jaidka et al., 2016, 2019) have iden-
tified this missing aspect in scientific document
summarization and addressed it by introducing a
shared task. This task aims to create summaries
that take into account not only the information in
the body of the documents but also the research
community’s overview of the documents over time.
The work described here continues in this direction.

With the advancement of neural networks, there
have been a few prominent research works in re-
cent years for generating extractive (Yasunaga et al.,
2019) and abstractive (Yu et al., 2020; Zhang et al.,
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2019) summaries from scientific documents (Co-
han et al., 2018; Zhang et al., 2022). Extractive
summarization recognizes key sentences from the
source document as the summary but lack the flow
of information, whereas the abstractive summariza-
tion technique generates new phrases using lan-
guage models while preserving the semantics of
the input document but may miss some important
aspects of the text. This is a motivation for design-
ing a model to generate both summaries in parallel
and help the counterpart to achieve a performance
boost with additional guidance.

A key step in extracting brief synopsis sentences
from a manuscript is to map the cross-sentence
correlations. A lot of recent prominent works (Nal-
lapati et al., 2017) have tried to do so using recur-
rent neural networks (RNNs). However, because
of using RNNs, these models fail to capture long-
distance sentence-level dependencies. Another ap-
proach to preserve sentence-level dependencies
from long documents is using graph-based neu-
ral networks. A few recent works (e.g., (Cohan and
Goharian, 2018; Yasunaga et al., 2017)) have uti-
lized discourse information in the article along with
inter-sentence correlations for constructing graphs
and summarizing document. Another approach is
to construct a sentence-level fully connected graph.
Zhong et al. (Zhong et al., 2019) and Liu et al. (Liu
and Lapata, 2019) used transformer (Vaswani et al.,
2017) encoders to determine how sentences inter-
act with each other. Wang et al. (Wang et al., 2020)
introduced an heterogeneous graph neural network
for extractive summarization which used additional
semantic units (words) as intermediate nodes to
construct relationships between sentences.

Abstractive summarizers focus heavily on form,
with the goal of producing a generalized sum-
mary, which tends to necessitate complex language-
generating models. These models are typically
based on sequence-to-sequence (seq2seq) architec-
tures, in which a source document is seen as one se-
quence whereas its summary as another. The major-
ity of previous research on neural abstractive sum-
marization depended on large-scale, high-quality
datasets of supervised document-summarization
pairings (See et al., 2017). Recently, state-of-
the-art solutions on abstractive summarization are
built upon the transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) models. These
attention-based abstractive models are being used
in different fields like clinical note summariza-

tion (Kanwal and Rizzo, 2022), scientific docu-
ment summarization (Zhang et al., 2022), and lay-
abstract generation (Yu et al., 2020).

In this paper, addressing the above-mentioned
issues, we have built a standalone summarization
model which can generate both extractive and ab-
stractive summaries from scientific documents in-
corporating the citation network. Analyzing the
citation network, citing statements from the citing
articles are accumulated with the original text doc-
ument to incorporate the research community’s ob-
servation on that particular cited manuscript. These
summaries are the abstracts of the original papers
with additional information reflecting the research
community’s view. After that, we run the Long-
Former (Beltagy et al., 2020) encoder to generate
sentence and word representations and train ex-
tractive and abstractive summarizers together. For
the extractive summarizer, an heterogeneous graph
neural network (Wang et al., 2020) is used as it has
the ability to preserve sentence-level dependencies
utilizing additional semantic units as intermediate
nodes in the graph representation. Abstractive sum-
maries are generated by the autoregressive decoder.
The loss function is defined in such a way that both
summarizers can achieve better ROUGE and ME-
TEOR scores. Furthermore, we have developed a
corpus containing 10K research articles along with
their corresponding citation statements and is a sub-
set of the Semantic Scholar Network (SSN) corpus.
The citation statements are collected utilizing the
citation graph used in the SSN corpus. In short, the
contributions of this work are:

• We have built a stand-alone summarizer model
which can produce both extractive and abstrac-
tive summaries and each counterpart helps the
other to generate better summaries.

• The summarizer model can work with long
scientific text articles

• This model considers research communities’
observations while generating the summaries

• We have proposed a new corpus containing
10K research articles along with the corre-
sponding citing statements to incorporate the
research communities’ view.

2 Related Work

Text summarization aims to distill a document’s
essence efficiently. Recent NLP research has
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yielded effective neural summarization models, par-
ticularly those using transformer and BERT-based
architectures. Work summarizing lengthy scientific
documents often focuses on specific sections rather
than the entire text (Yu et al., 2020) or citation
statements (An et al., 2021).

2.1 Extractive Text Summarization
Extractive text summarization models classify sen-
tences in a document using labels that indicate
whether or not a sentence ought to be included
in the summary. Originally, these models were de-
signed based on the encoder-decoder architecture
using RNNs (Nallapati et al., 2017). Since trans-
former and BERT-based models provide a more
enriched sentence encoding, they have become the
foundation for the majority of extractive summa-
rizer models in recent years. Liu and Lapata (2019)
fine-tuned BERT with stacked layers of transformer
to obtain the sentence vectors and then used a sig-
moid classifier for identifying the sentences that
would be included in the summary. Zhang et al.
(2019) fine-tuned an hierarchical transformer (HI-
BERT) for the extractive summarization task. An-
other prominent approach for extractive summa-
rization is using graph representations which can
preserve sentence-level correlations. Later, the
graph convolutional network (GCN) (Welling and
Kipf, 2016) has been espoused for building dif-
ferent inter-sentence correlation graphs (Yasunaga
et al., 2017) for this task. Wang et al. (2020) built an
heterogeneous graph neural network for extractive
summarization (HeterSumGraph) which takes into
account additional semantic units at the word level
for building the sentence-level correlation graph.

2.2 Abstractive Text Summarization
Abstractive text summarization models, unlike the
extractive summarizers which work like classifiers,
are intended to generate summaries comprising
new sentences which may or may not be present in
the body of the document. These models are mostly
based on the encoder-decoder architecture of the
sequence-to-sequence models and language models
like BART (Lewis et al., 2020), BigBird (Zaheer
et al., 2020), and T5 (Raffel et al., 2020). Aksenov
et al. (2020) applied BERT-windowing to overcome
the length limitation of the BERT model and sum-
marize long documents. Gidiotis and Tsoumakas
(2020) trained the summarizer model to generate
separate abstractive summaries for small parts of
the document. Pilault et al. (2020) combined both

the extractive and abstractive summarization using
a transformer language model and built an hybrid
summarizer model. Yu et al. (2020) fine-tuned pre-
trained BERT as the abstractive summarizer for
generating a lay summary from the document.

2.3 Scientific Article Summarization

Existing scientific article summarizers, in most
cases, are extractive models designed on the idea
of sentence selection (Cohan and Goharian, 2018).
Cohan et al. (2018) developed the first abstractive
summarizer for long scientific articles using an hi-
erarchical encoder and discourse-aware attentive
decoder. Mishra et al. (2022) applied citation con-
textualization to extract unique relevant sentences
from the document and final summaries are gen-
erated using a multi-objective clustering approach.
Gupta et al. (2022) applied BERT and graph-based
approaches for biomedical document summariza-
tion. Li et al. (2020) fine tuned T5 for generating
summaries from long scientific documents and im-
plemented an extractive summarizer using GCN.
Yasunaga et al. (2019) built a corpus (Scisumm-
Net) that includes a citation network for scien-
tific document summarization and extracted the
summary-candidate sentences using a GCN. An
et al. (2021) introduced a large corpus (SSN) with
141K research papers connected with a citation
graph. They also proposed a graph-based summa-
rization model (CGSUM) for extractive document
summarization. This model can draw information
from both the source and the citing texts.

3 Methodology

This section defines the problem of scientific docu-
ment summarization using a citation graph. Then,
the two benchmark datasets used for the scientific
article summarization experiments are discussed
along with the pre-processing procedures. Finally,
the proposed deep learning model is explained.

3.1 Problem Formulation: Summarization
Using Citation Graph

Scientific articles possess distinctive attributes, in-
cluding citation linkages, that establish profound
connections between their contents. These stud-
ies may also yield unforeseen impacts and evolve
in importance as research progresses. In such
cases, ideal summaries should encompass both
the authors’ key points and the perspectives of
the scientific community, as reflected in cita-
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tions (Yasunaga et al., 2019). To serve this in-
tent we have utilized two resources: the cita-
tion graph provided in the Semantic Scholar Net-
work (SSN) corpus (An et al., 2021), and the
ScisummNet/CL-SciSumm-2020 (CL-SciSumm-
2020) corpus (Chandrasekaran et al., 2020; Ya-
sunaga et al., 2019) which supplies documents and
their corresponding citing statements.

3.2 Description of the Datasets

As this work is focused on generating summaries
from scientific articles that incorporate the research
community’s views, we have considered two bench-
mark datasets: ScisummNet/CL-SciSumm (Chan-
drasekaran et al., 2020; Yasunaga et al., 2019),
and Semantic Scholar Network (SSN) (An et al.,
2021) for the experiments done here. To the best of
our knowledge, these are the only datasets for the
summarization task that also provide citation infor-
mation. The ScisummNet corpus consists of ab-
stracts of the 1000 most cited research articles from
the ACL Anthology Network (Radev et al., 2013)
along with 15 citing statements per article. The
gold standard summaries for these 1000 documents
are manually summarized by domain experts. The
CL-SciSumm-2020 corpus (Chandrasekaran et al.,
2020) extends the ScisummNet corpus with 40 ex-
tra documents and human-generated summaries
thereby providing 1040 documents, citation sen-
tences, and summaries. For testing, we have used
the test set comprising 200 scientific articles from
the CL-SciSumm-2020 corpus. The other bench-
mark dataset used for this task is the SSN corpus. It
includes 140,799 research articles culled from the
Semantic Scholar Open Research Corpus (S20RC)
(Lo et al., 2020) together with a large citation graph.
This citation graph has each article as a node and
660,908 edges indicating the citations. This cor-
pus covers research articles from three domains:
physics, mathematics and computer science.

The primary objective of this study is to develop
a deep learning model capable of generating sum-
maries for lengthy scientific documents while incor-
porating insights from other researchers citing the
document. While the ScisummNet/CL-SciSumm
dataset provides citation statements, the SSN cor-
pus lacks this information. Originally, the SSN
corpus consisted of documents and their references,
but for our purpose of including citing statements,
modifications were necessary. We leveraged the
citation graph to identify citing papers and manu-

Figure 1: System architecture of the proposed model

ally extracted the statements referring to the cited
articles. Given the substantial size of the SSN cor-
pus, containing nearly 141K articles, we randomly
selected 10K papers for summarization. These pa-
pers have body lengths ranging from 1000 to 3500
words (with background/related work sections re-
moved), aligning with the capacity of the Long-
Former model (as described in Section 4), which
can handle a maximum of 4096 tokens at a time.
The dataset was divided into training (8000), valida-
tion (1000), and testing (1000) articles to facilitate
model development and evaluation.

Citations can convey positive, neutral, or nega-
tive intentions. To capture this diversity, we sys-
tematically categorized citing statements into these
three classes after gathering them from citing ar-
ticles. In cases where a paper had limited nega-
tive citations, we balanced the selection by includ-
ing more neutral and positive citation statements.
To classify these citation statements, we have em-
ployed RoBERTa trained on Athar (2014) follow-
ing the approach used by Kundu (2023).

In the SSN corpus, the summaries are limited to
the authors’ perspectives as they consist of the pa-
per abstracts. To create more comprehensive sum-
maries, we employed a two-step approach. First,
we used a fine-tuned T5 model (Raffel et al., 2020),
trained on the CL-SciSumm-2020 corpus, to gener-
ate five summaries per document by inputting both
the abstracts and corresponding citation statements.
Then, we have employed a pre-trained RoBERTa
architecture to obtain five vector representations
for these summaries. The most similar summary to
the reference summary, determined by cosine simi-
larity, was selected as our T5-Generated Summary.
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3.3 Model Overview
The investigated summarization model has two
units: an extractive and an abstractive summarizer.
The overall architecture of the model is portrayed
in Figure 1. This section discusses the architecture
and working principle of these two units.

While designing the extractive summarizer, we
have considered two issues: how the sentences are
connected to each other and how semantic units
like words affect the sentence level correlations.
To fulfill these purposes, we have utilized two
different graph-based neural networks: an hetero-
geneous graph neural network (HeterSumGraph)
(Wang et al., 2020) and a graph attention network
(GAT) (Velickovic et al., 2018).

For any graph G = {V,E}, V denotes the nodes
and E, the edges between them. HeterSumGraph
defines V = Vw∪Vs, Vw is the set of unique words
and Vs is the set of sentences in the document. For
a document with n unique words and m sentences,
E is the edge weight matrix, where ei,j represents
word i in sentence j, (i ∈ {1 : n}, j ∈ {1 : m})
(Wang et al., 2020). The nodes that represent the
sentences are initialized with LongFormer [CLS]
tokens. Because LogFormer generates a contextu-
alized word embedding for each occurrence of the
word in the document, all of the word embeddings
for a word are averaged to initialize that particular
word-representing node in the graph. The edges be-
tween the words and sentences are initialized with
the corresponding TF-IDF values.

After the graph G is constructed, a graph atten-
tion network (GAT) is used to update the node
feature values. Considering hi ∈ Rdh where
i ∈ {1 : (n+m)} as the hidden states of the word
and sentence nodes, the GAT layer is designed as:

Ti,j = LeakyReLU(ωa[ωqhi;ωkhj ; ei,j ]) (1)

αi,j =
exp(Ti,j)∑
l∈Ni

exp(Ti,l)
(2)

ui = σ(
∑

j∈Ni

αi,jωvhj) (3)

where ωa, ωq, ωk and ωv are learnable weight ma-
trices. Ni denotes the list of the neighbor nodes.
The attention value between hi and hj is denoted
by αi,j . The GAT with multi-head attention (con-
sidering K attention heads) is designed as:

ui = ||Kk=1σ(
∑

j∈Ni

αk
i,jω

khi) (4)

To prevent the gradient from vanishing, HeterSum-
Graph incorporates a residual connection and the
final hidden state representation becomes:

hi = ui + hi (5)

Through the aforementioned GAT and position-
wise feed-forward network (FFN) layer compris-
ing two linear transformations (Wang et al., 2020),
the sentence nodes are updated with their adjacent
word nodes:

U1
w→s = GAT(H0

s ,H0
w,H0

w) (6)

H1
s = FFN(U1

w→s +H0
s) (7)

where U1
w→s ∈ Rn×dh H1

w = H0
w = Vw, and

H0
s = Vs. In Eq. 6, H0

s is employed as the atten-
tion query and for both the attention key and value
H0

w is used. Then, the revised sentence nodes are
used to generate new representations for the individ-
ual word nodes and continue to refine the revised
sentence nodes in an iterative fashion. At each
iteration, sentence-to-word and word-to-sentence
updates continue to be processed. The process can
be depicted as follows for the t-th iteration:

U t+1
s→w = GAT(Ht

w,Ht
s,Ht

s) (8)

Ht+1
w = FFN(U t+1

s→w +Ht
w) (9)

U t+1
w→s = GAT(Ht

s,Ht+1
w ,Ht+1

w ) (10)

Ht+1
s = FFN(U t+1

w→s +Ht
s) (11)

Once the model training is done, the sentence
nodes’ representations are used as the sentence
vector representations.

For direct sentence-level interactions, we have
also used a graph attention neural network (GAT).
Here, for the graph G = {V,E}, V = Vs where
Vs is the set of all the sentences in the document.
The edge weight matrix E preserves the semantic
similarity values between sentences. The nodes
are initialized in the same manner as the sentence
nodes in HeterSumGraph. For initializing the edges
between nodes, at first we have acquired the vector
representations of the sentences using pre-trained
LongFormer and then computed the cosine similar-
ity between the sentences. The edges are initialized
with the corresponding similarity values between
sentences. However, as scientific documents come
with many sentences, working with a fully con-
nected graph is not computationally cost effective.
To reduce the burden of computational overhead,
we have dropped the edge connections between
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nodes whose cosine similarity values are below a
certain cut-off value. Throughout the conducted ex-
periments, we have found that if we set the cut-off
value below 0.3, the performance of the summa-
rizer model remains the same.

Considering node features h = {h1, hn, ..., hm}
as the input, GAT applies a self attention on the
nodes and computes the attention coefficients as
follows:

Ti,j = a(ωhi, ωhj) (12)

where a is a single-layer feed forward neural net-
work with the LeakyReLU activation function, and
ω is a learnable parameter. This attention coeffi-
cient shows node j’s importance on node i and it
is computed only for the corresponding one-hop
neighbour nodes (j ∈ Ni). This attention coeffi-
cient value is normalized to compute the attention
values as follows:

αi,j =
exp(Ti,j)∑
l∈Ni

exp(Ti,l)
(13)

The multi-head attention is computed in the same
way it has been done for HeterSumGraph (Eq. 4).

Once the sentence representations from both the
HeterSumGraph and GAT are computed, they are
concatenated and fed to the feed-forward neural
network layer. This is a two-layer position-wise
feed-forward layer (Wang et al., 2020) for labeling
the sentences with 1 or 0; 1 indicates that particular
sentence is included in the extractive summary.

The abstractive summary is generated by the
LongFormer decoder. To train the summarizer
units in parallel, the training mechanism in Yu et al.
(2020) is used. The overall loss L of the model is:

L = Lext + Labs (14)

where Lext and Labs represent the cross-entropy
losses of the extractive and abstractive summariz-
ers, respectively.

4 Experimental Results and Analysis

This section gives a brief description of the model
parameters used in the experiments as well as the
results achieved on CL-SciSumm-2020 and the cus-
tomized SSN datasets.

4.1 Model Parameters and Training Details
We have trained our model on a 48GB NVIDIA
RTX A6000 GPU. The batch size has been set to 1

as the length of input documents plus the citation
statements is large. Since all the experiments are
done on a small batch-size, we have followed the
training procedure of Sefid and Giles (2022) and
accumulated gradients for 10 steps and updated
the parameters. The NOAM scheduler has been
utilized to adjust the learning rate and gradients are
clipped so that exploding gradients during training
can be prevented. The model has been trained for
20,000 epochs. The extractive summarizer is initial-
ized with the LongFormer embeddings. Following
that, the LongFormer encoder-decoder architecture
for the abstractive summarizer and the extractive
summarizer units’ forward passes are trained sep-
arately. Once both of the forward passes are done
for each iteration and the individual losses are cal-
culated, the model’s overall loss is calculated. If
either of the two unit’s validation loss continues
to go down for 5 epochs, the parameter settings
for that particular unit are saved and that unit’s
training is postponed for the next 10 epochs. The
number of attention-heads for multi-head attention
has been set to 8. The stop words and punctua-
tion have been filtered out when pre-processing the
word nodes in the graph. Following Wang et al.
(2020), 10% of the words in the vocabulary having
low TF-IDF values have been further filtered out.
The word and sentence nodes have been initialized
with 768-dimensional vectors. And the sentence
representations from both the HeterSumGraph and
GAT are 512-dimensional vectors. So, the final
sentence vectors after the concatenation step are
1024-dimensional vectors. The Feed Forward Net-
work hidden layer size is 512.

4.2 Performance Analysis of the Model

We have performed experiments on two datasets:
modified SSN and CL-SciSumm-2020. The results
achieved by our models are reported as overlap-
ping unigrams, bigrams, and the longest common
sequence between the generated summaries and
the reference summaries by means of R-1, R-2,
and R-L metrics; and semantic compatibility be-
tween the reference and generated summaries by
means of METEOR metric, respectively, for the
modified SSN corpus. R-1, and R-2 show the in-
formativeness, and R-L shows the fluency of the
generated summary. The metrics used for analyz-
ing the model performance on CL-SciSumm-2020
are R-2 and R-SU4, which indicate the proportion
of bigram overlap and unigram plus skipgram of
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Table 1: Results on the modified SSN corpus. The results consider both the abstracts and the T5-generated
summaries incorporating citation statements as the reference summaries. The best results are boldfaced.

Models On Abstracts as Summaries On T5-Generated Summaries
R-1 R-2 R-L METEOR R-1 R-2 R-L METEOR

Extractive
BERTSumExt 42.92 14.19 39.01 33.09 43.11 14.21 39.12 33.07
HeterSumGraph 44.27 14.52 39.73 33.18 44.30 14.53 39.74 33.18
GRETEL 45.22 15.19 40.23 36.87 45.23 15.19 40.24 36.88
Proposed Model (Extractive) 45.19 15.18 40.21 36.83 45.19 15.21 40.23 36.85
Abstractive
PTGen+Cov 41.66 13.08 36.95 32.44 41.60 13.10 36.72 32.40
BERTSumAbs 42.06 14.52 38.17 32.49 42.04 14.56 38.17 32.49
BERT+CopyTransformer 42.43 15.01 39.03 32.88 42.44 15.05 39.04 32.91
Proposed Model (Abstractive) 44.82 15.19 39.31 36.50 44.83 15.19 39.30 36.51

4 tokens overlap, respectively, between the refer-
ence and generated summaries. The performance
here is also analyzed with the METEOR metric.
As the Bi-directional encoder and autoregressive
decoder we have also experimented with BigBird.
However, the better performance was found with
LongFormer. That is why in the final model, we
have used LongFormer in all the cases for initial
encoding and generating abstractive summaries.

4.3 Results: Modified SSN Corpus

To compare the performance of our model with
the existing extractive models, we train and test
the following extractive summarizer models on our
modified corpus: (1) BERTSumEXT (Liu and La-
pata, 2019): a BERT-based model; (2) HeterSum-
Graph (Wang et al., 2020): a heterogeneous graph-
based approach that considers the cross-sentence
correlations using additional semantic units; and
(3) GRETEL: fuses semantic information from the
document context and gold summary using a hier-
archical transformer encoder and graph contrastive
learning. For the abstractive summarization base-
line, we have experimented with: (1) PTGen+Cov
(See et al., 2017): based on a hybrid pointer genera-
tor network to copy words from the source text, (2)
BERTSumAbs (Liu and Lapata, 2019): a BERT-
based model; and (3) BERT+CopyTransformer
(Aksenov et al., 2020): applies BERT-windowing
for processing data longer than the BERT window.

The performance of the existing models and our
proposed models are shown in Table 1. As refer-
ence summaries, we have considered both the paper
abstracts as well as the summaries we have gener-
ated from the abstracts plus the citing statements
using T5.

Although BERTSumExt and BERTSumAbs per-

form very well with short documents, their per-
formance metrics are not at that level when sum-
marizing scientific documents. The main reason
for this is their limitation to working with a max-
imum 512 input tokens, but scientific documents
are much longer. For this, they have applied the
greedy algorithm introduced by Nallapati et al.
(2016). HeterSumGraph considers direct relation-
ships between words and sentences on texts with
a 50-sentence maximum, whereas our proposed
model considers direct cross-sentence correlations,
as well, and can deal with longer text spans (up
to 3500 words). These additional features, to-
gether with LongFormer’s enriched word and sen-
tence features, gives our model a performance
boost, but our model requires more computational
time and resources. Our model performs better
by a good margin compared to the other models
apart from GRETEL. Our extractive summarizer
shows slightly lower performance compared to
GRETEL which is a more complex model. Still, be-
cause of the parallel training approach, our model
has achieved comparable results. Our abstractive
summarizer model outperforms the other experi-
mental abstractive summarizers by large margins:
PTGen+Cov by 2.36, BertSumAbs by 1.14, and
BERT+CopyTransformer by 0.28 R-L scores. The
METEOR scores achieved by our model are 36.83
and 36.50 for extractive and abstractive summaries,
respectively, when tested over the T5-generated
summaries. In the experiment with the abstracts
as summaries, the METEOR scores are 36.51 and
36.85 for the abstractive and extractive summaries,
respectively. Looking at the METEOR scores
achieved by the other models (see Table 1), it is
clearly visible that both the extractive and abstrac-
tive summarizer units of our model have outper-
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Table 2: Model performance analysis on two CL-SciSumm-2020 summary categories. All values are F-1 scores.

Models Abstracts as Summaries Human-created Summaries
R-2 R-SU4 METEOR R-2 R-SU4 METEOR

Jaccard-focused GCN 0.19931 0.09956 - 0.2042 0.14162 -
Clustering 0.1959 0.0962 - 0.1749 0.1169 -
MMR2 0.15067 0.07851 - 0.15073 0.10237 -
LSTM+BabelNet 0.329 0.172 - 0.241 0.171 -
Proposed Model
Extractive Summarizer 0.43 0.266 31.12 0.42 0.249 30.18
Abstractive Summarizer 0.43 0.250 30.98 0.41 0.234 30.06

formed them by at least 3. This observation in-
dicates that the summaries generated by our pro-
posed model are more semantically similar to the
reference summaries. To see the importance of the
individual units, please check the ablation study in
the appendix.

4.4 Results: CL-SciSumm-2020 Corpus

For analyzing our proposed model’s performances
on CL-SciSumm-2020 Corpus, we have used R-
2 and R-SU4 F-1 scores (as the other compara-
ble models are reported with these metrics) We
have experimented to generate abstract and hu-
man summaries. As benchmarks, we have selected
the research works submitted to CL-SciSumm-
2019/2020: (1) Jaccard-focused GCN (Umapathy
et al., 2020): an extractive summarizer utilizing
cross-sentence graph and graph attention networks,
(2) Clustering (Mishra et al., 2020): based on dif-
ferent clustering algorithms followed by sentence-
scoring functions, (3) MMR2 (Reddy et al., 2020):
based on the maximal marginal relevance tech-
nique, and (4) LSTM+BabelNet (Chiruzzo et al.,
2019): BabelNet vectors were used to train the
LSTM. The CL-SciSumm task provides a perfor-
mance metric evaluation script which is used to
calculate the R-2 and R-SU4 values for the model-
generated summaries against the test set.

Results on CL-SciSumm-2020 are reported in
Table 2. Looking at the results, it is clear that
our model outperforms the other existing extrac-
tive models on every measure. The R-2 and R-
SU4 achieved for both of our model-generated ex-
tractive and abstractive summaries are very high
compared to the other existing extractive mod-
els. And this is the case for both the original ab-
stracts and the human-created summaries as ref-
erence summaries. For the human-created refer-
ence summaries, our extractive and abstractive

summarizers have achieved 0.078 and 0.063 R-
SU4 F-1 score gains, respectively, compared to
the LSTM+BabelNet model, which comes with
the best result among the other considered mod-
els. While considering the abstracts of the papers
as reference summaries, these gains are 0.094 and
0.078, respectively. For the abstractive summaries,
the METEOR score achieved by our model is
30.18 whereas for the extractive summaries, it has
achieved a 30.06 METEOR score on the human-
generated summaries. Over the abstracts of the
papers, these scores are 31.12 and 30.98, respec-
tively.

5 Conclusion and Future Work

In this paper, we have introduced a summarizer
model considering two intentions: first, summa-
rize scientific documents incorporating citation con-
texts, and second, build a summarizer model which
can generate both extractive and abstractive sum-
maries by means of parallel training so that both
counterparts can gain a performance boost. For this,
we have utilized both the sentence-sentence and
sentence-word correlations. Furthermore, we have
constructed a corpus comprising 10K scientific ar-
ticles with their corresponding citation statements
for the summarization task. The experimental re-
sults show that our model performs well compared
to other well-known methods. Though this work
considers the research community’s observations
(citing statements), it doesn’t consider the back-
ground information (references presented in the
target article). In our future work, we are planning
to use both sides of the citation graph (references
as the background knowledge and the citing state-
ments as the research community’s views) while
summarizing a scientific article.
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Our experiments are limited to summarize long
scientific texts only. We have not conducted any
experiments with short target texts, consequently
we are not sure how well the model may perform
while summarizing short texts. We are also unsure
how well this model may perform for extreme sum-
mary generation like TLDR (Cachola et al., 2020).
Moreover, we have trained both the extractive and
abstractive summarizer units for a large number of
epochs. Though to prevent any unit from being
over-fitted we have checked the curve of validation
loss after every 5 epochs. This is very computation-
ally expensive and demands a longer period of time
for model training. Furthermore, no tests have been
performed to see how the abstractive summarizer
unit suffers from hallucination.
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A Appendix

A.1 Ablation Study

Table 3: Ablation Study: Rows labeled with † indicate
the extractive summaries and rows labeled with ∗ indi-
cate abstractive summaries.

Discarded Unit On T5-Generated Summaries
R-1 R-2 R-L METEOR

GAT† 44.86 14.9 39.96 36.52
HeterSumGraph† 44.78 14.81 39.84. 36.49
Extractive Summarizer∗ 43.01 15.02 38.99 35.92
Abstractive Summarizer† 44.91 14.95 39.96 36.50

To portray a better grasp of each component’s
contribution in our suggested model, we have exper-
imented with different units of our model separately
and the results are reported in Table 3. All of these
experiments are performed on the T5-generated
corpus which combines the abstract of the paper
along with the citation statements.

In our first experiment, we have discarded the
GAT unit which works with cross-sentence rela-
tionships and kept only the HeterSumGraph for
extractive summary generation. This time the per-
formances of the model are lower than the reported
results in Tables 1 (R-1: 44.86, R-2: 14.91, R-L:
39.96, and METEOR: 36.52) for our generated ex-
tractive summaries. Still, these results are higher
compared to the original HeterSumGraph model. It
shows, using the LongFormer encoder in the begin-
ning and using the collective loss function for both
the abstractive and extractive summarizer units play
a significant role in the performance boost. And
it also indicates that taking direct cross-sentence
correlations into consideration provides some addi-
tional features to enrich the model which helps the
model’s performance to improve.

In the second experiment, we have discarded
the HeterSumGraph unit and used only GAT in
the extractive summarization unit. This time the
performance metrics for extractive summaries are
R-1: 44.78, R-2: 14.81, R-L: 39.84,and METEOR:
36.4. These values are comparably lower than we
gained in the last experiment. The reason behind
this incident is, though no direct cross-sentence
relationships are present, HeterSumGraph, by 2-
hop distance, considers the correlations between
sentences.

The third experiment discards the extractive sum-
marizer unit. The LongFormer abstractive sum-
marizer unit achieves very poor R-1: 43.01, R-2:
15.02, R-L: 38.99, and METEOR: 35.92 scores

compared to the proposed model. This poor per-
formance demonstrates the importance of the infor-
mation that the extractive summarizer provides the
abstractive summarizer through the combined loss
function.

Finally, we have discarded the abstract summa-
rizer unit and used the combination of HeterSum-
Graph and GAT for extractive summary generation.
During this experiment, the achieved R-1, R-2 R-
L, and METEOR scores are 44.91, 14.95, 39.96,
and 36.50, respectively, which are more than the
cases for the three above-mentioned ablation ex-
periments. It indicates the significance of training
the abstractive summarization unit in parallel as
well as using the cross-sentence and semantic unit-
sentence correlations at the same time.

A.2 Validity Check of the Proposed Corpus
To ascertain the corpus’s quality, a rigorous anal-
ysis was conducted on a statistically significant
subset of the dataset, with a confidence level of
95% and a margin of error of 3%, aided by three
human annotators. Within the vast pool of 10,000
summarization samples, a random selection of 400
was subject to annotation for this statistical inquiry.

Each annotator was tasked with evaluating
whether the summaries generated by the T5 model
effectively encapsulated the same information as
the combination of the abstract and the citing state-
ments. The first annotator affirmed that 374 sam-
ples achieved this concurrence, the second anno-
tator concurred with 368, and the third annotator
with 371.

When comparing the assessments of the first and
second annotators, it was determined they agreed
that 368 samples were appropriately summarized,
while 16 were not, resulting in a substantial Co-
hen’s κ of 0.89. In the comparison between the
second and third annotators, a significant concur-
rence emerged for 396 samples, where 368 were
accurately summarized, and 28 were not, yielding
κ value of 0.93. Similarly, when examining the
assessments of the first and third annotators, agree-
ment was established for 398 summaries, with 370
being correctly summarized and 27 not, resulting
in κ of 0.94.
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Abstract

The centroid method is a simple approach for
extractive multi-document summarization and
many improvements to its pipeline have been
proposed. We further refine it by adding a
beam search process to the sentence selection
and also a centroid estimation attention model
that leads to improved results. We demonstrate
this in several multi-document summarization
datasets, including in a multilingual scenario.

1 Introduction

Multi-document summarization (MDS) addresses
the need to condense content from multiple source
documents into concise and coherent summaries
while preserving the essential context and mean-
ing. Abstractive techniques, which involve gener-
ating novel text to summarize source documents,
have gained traction in recent years (Liu and Lap-
ata, 2019; Jin et al., 2020; Xiao et al., 2022), fol-
lowing the advent of large pre-trained generative
transformers. However, their effectiveness in sum-
marizing multiple documents remains challenged.
This is attributed not only to the long input context
imposed by multiple documents but also to a no-
table susceptibility to factual inconsistencies. In
abstractive methods, this is more pronounced when
compared to their extractive counterparts due to the
hallucination-proneness of large language models.

Extractive approaches, on the other hand, tackle
this problem by identifying and selecting the most
important sentences or passages from the given doc-
uments to construct a coherent summary. Extrac-
tive MDS usually involves a sentence importance
estimation step (Hong and Nenkova, 2014; Cao
et al., 2015; Cho et al., 2019), in which sentences
from the source document are scored according to
their relevance and redundancy with respect to the
remaining sentences. Then, the summary is built
by selecting a set of sentences achieving high rel-
evance and low redundancy. The centroid-based

method (Radev et al., 2000) is a cheap unsuper-
vised solution in which each cluster of documents
is represented by a centroid that consists of the sum
of the TF-IDF representations of all the sentences
within the cluster and the sentences are ranked by
their cosine similarity to the centroid vector. While
the original method is a baseline that can be easily
surpassed, subsequent enhancements have been in-
troduced to make it a more competitive yet simple
approach (Rossiello et al., 2017; Gholipour Gha-
landari, 2017; Lamsiyah et al., 2021).

In this work, we refine the centroid method even
further: i) we utilize multilingual sentence em-
beddings to enable summarization of clusters of
documents in various languages; ii) we employ
beam search for sentence selection, leading to a
more exhaustive exploration of the candidate space
and ultimately enhancing summary quality; iii) we
leverage recently proposed large datasets for multi-
document summarization by adding supervision to
the centroid estimation process. To achieve this,
we train an attention-based model to approximate
the oracle centroid obtained from the ground-truth
target summary, leading to significant ROUGE-
score improvements in mono and multilingual set-
tings. To the best of our knowledge, we are the first
to tackle the problem within a truly multilingual
framework, enabling the summarization of a cluster
of documents in different languages.1

2 Related Work

Typical supervised methods for extractive summa-
rization involve training a model to predict sentence
saliency, i.e. a model learns to score sentences in
a document with respect to the target summary, ei-
ther by direct match in case an extractive target is
available or constructed (Svore et al., 2007; Wood-
send and Lapata, 2012; Mendes et al., 2019) or
by maximizing a similarity score (e.g., ROUGE)

1https://github.com/Priberam/cera-summ
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with respect to the abstractive target summaries
(Narayan et al., 2018). Attempts to reduce redun-
dancy exploit the notion of maximum marginal
relevance (MMR; Carbonell and Goldstein, 1998;
McDonald, 2007) or are coverage-based (Gillick
et al., 2008; Almeida and Martins, 2013), seeking
a set of sentences that cover as many concepts as
possible while respecting a predefined budget. Dur-
ing inference, the model is then able to classify the
sentences with respect to their salience, selecting
the highest-scored sentences for the predicted sum-
mary. Rather than training a model that predicts
salience for each individual sentence, we employ
a supervised model that directly predicts an over-
arching summary representation, specifically pre-
dicting the centroid vector of the desired summary.
Training this model can thus be more direct when
training with abstractive summaries (as is the case
in most summarization datasets), since computing
the reference summary centroid is independent of
whether the target is extractive or abstractive.

Regarding enhancements to the centroid method
for extractive MDS, Rossiello et al. (2017) refined
it by substituting the TF-IDF representations with
word2vec embeddings (Mikolov et al., 2013), and
further incorporated a redundancy filter into the
algorithm. Gholipour Ghalandari (2017), on the
other hand, retained the utilization of TF-IDF sen-
tence representations but improved the sentence
selection process. Recently, Lamsiyah et al. (2021)
introduced modifications to the sentence scoring
mechanism, incorporating novelty and position
scores, and evaluated a diverse array of sentence
embeddings with the proposed methodology, in-
cluding contextual embeddings provided by ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019).

While there have been initiatives to foster re-
search in multilingual extractive MDS (Gian-
nakopoulos, 2013; Giannakopoulos et al., 2015),
the proposed approaches (Litvak and Vanetik, 2013;
Aries et al., 2015; Huang et al., 2016) are only
language-agnostic, requiring all the documents
within each cluster to be in the same language. In
contrast, we address extractive MDS in a scenario
where each cluster is multilingual.

3 Methodology

The pipeline of our proposed model is divided into
two stages. In the first stage, we use an attention
model to obtain a cluster representation that re-
places the naive centroid obtained by averaging

sentence embeddings of the documents in a clus-
ter. The rationale behind this approach is that the
contribution of each sentence to the cluster cen-
troid should depend on its relevance to the cluster
summary. In order to capture the whole cluster con-
text, a sentence-level attention model is employed,
assigning variable weights to each sentence embed-
ding so as to approximate the resulting average to
the centroid that would be obtained by averaging
the sentence embeddings of the target summary. In
the second stage, an adapted version of the greedy
sentence selection algorithm from Gholipour Gha-
landari (2017) for extractive MDS is used to select
the sentences included in the predicted summary.
This adapted version uses our proposed supervised
centroid and also includes a beam search algorithm
to better explore the space of candidate summaries.

3.1 Centroid Estimation

Gholipour Ghalandari (2017) builds a centroid by
summing TF-IDF sentence representations of all
the sentences that compose the cluster to summa-
rize. In our research, we compute the centroid from
a learnable weighted average of the contextual sen-
tence embeddings, via an attention model.

Attention Model In our centroid estimation pro-
cedure, we use a pre-trained multilingual sentence
transformer from Yang et al. (2020) to encode the
sentences from the news articles, obtaining contex-
tual embeddings ek ∈ Rd, k ∈ {1, . . . , N}, for
each of the N sentences in a cluster. Since it is
often the case that the first sentences of a document
are especially important for news summarization
tasks, we add sentence-level learnable positional
embeddings to the contextual embeddings at the
input of the attention model. Specifically, given a
cluster D comprising N sentences, we compute:

epos,k = ek + ppos(k), (1)

where pos(k) is the position within the respec-
tive document of the k-th sentence in the clus-
ter and ppos(k) ∈ Rd is the corresponding learn-
able positional embedding. Each epos,k ∈ Rd is
then concatenated with the mean-pool vector of
the cluster,2 denoted by epos ∈ Rd, resulting in
e′pos,k = concat(epos,k, epos) for each sentence.
This concatenation ensures that the computation of

2This is calculated by averaging the sentence embeddings
within each document and then computing the mean of these
individual document averages.

88



the attention weight for each position uses informa-
tion from all the remaining positions. The vector
β ∈ RN of attention weights is obtained as:

β = softmax
(
MLP(e′pos,1), . . . ,MLP(e′pos,N )

)
,

(2)
where MLP is a two-layer perceptron shared by all
the positions. It has a single output neuron and a
hidden layer with d units and a tanh activation.

After computing the attention weights for the
cluster, we take the original sentence embeddings
ek, k ∈ {1, . . . , N}, and compute a weighted sum
of these representations:

h =
N∑

k=1

βkek. (3)

Consequently, the resultant vector h ∈ Rd is a con-
vex combination of the input sentence embeddings.
Since it is not guaranteed that the target centroid
lies within this space, h is subsequently mapped to
the output space through a linear layer, yielding an
estimate ĉattn ∈ Rd of the centroid. Hereafter we
refer to this attention model as Centroid Regression
Attention (CeRA).

Interpolation The original (unsupervised) ap-
proach involves estimating the centroid by com-
puting the average of all sentence representations
ek within a cluster, which has consistently demon-
strated strong performance. Let eD represent this
centroid for cluster D. To leverage the advantages
of this effective technique, we introduce eD as a
residual component to enhance the estimate pro-
duced by the attention model. Thus, our final cen-
troid estimate is computed as:

ĉ = α⊙ ĉattn + (1−α)⊙ eD, (4)

where α ∈ [0, 1]d is a vector of interpolation
weights and ⊙ denotes elementwise multiplication.
The interpolation weights are obtained from con-
catenating ĉattn and eD and mapping it through an
MLP of two linear linear layers with d units each.
The two layers are interleaved with a ReLU activa-
tion and a sigmoid is applied at the output. We call
the model with interpolation CeRAI.

Training Objective Finally, we minimize the co-
sine distance between the model predictions ĉ and
the mean-pool of the sentence embeddings of the
target summary cgold.

3.2 Sentence Selection
Considering the cluster D and a set S with the cur-
rent sentences in the summary. at each iteration of
greedy sentence selection (Gholipour Ghalandari,
2017), we have

eS∪{s} =
∑

s′∈S
es′ + es (5)

for each sentence s ∈ D \ S. Then, the new sen-
tence s∗ to be included in the summary is

s∗ = argmax
s∈D\S

cos sim(eS∪{s}, eD), (6)

where cos sim is the cosine similarity. The algo-
rithm stops when the summary length reaches the
specified budget.3 As demonstrated in that work,
redundancy is mitigated since the centroid is com-
pared to the whole candidate summary S ∪ {s} at
each iteration and not only to the new sentence s.

In our version of the algorithm, we not only es-
timate the cluster centroids as explained in §3.1,
replacing eD by ĉ in equation (6), but also employ
a beam search (BS) algorithm so that the space of
candidate summaries is explored more thoroughly.
Moreover, in order to exhaust the chosen budget,
we add a final greedy search to do further improve-
ments to the extracted summary. The procedure is
defined in Algorithm 1, shown in Appendix A, and
we describe it less formally below.

Beam Search The process begins by pre-
selecting sentences, retaining only the first n sen-
tences from each document. Beam search initiates
by selecting the top B sentences with the highest
similarity scores with the centroid, where B repre-
sents the beam size. In each subsequent iteration,
the algorithm finds the highest-scoring B sentences
on each beam, generating a total of B2 candidates.
Among these candidates, only the highest-ranked
B sentences are retained. Suppose any of these
sentences exceed the specified budget length for
the summary. In that case, we preserve the corre-
sponding previous state, and no further exploration
is conducted on that beam. The beam search con-
cludes when all candidate beams have exceeded the
budget or when no more sentences are available.

Greedy Search To exhaust the specified budget
and improve results, we add a greedy search of

3While the original algorithm would stop after the first sen-
tence that exceeded the budget, we stop before it is exceeded,
and thus we do not need truncation to respect the budget.
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Method Multi-News WCEP-10 TAC2008 DUC2004

Oracle centroid 21.72 ± 0.33 28.54 ± 1.21 11.99 ± 1.32 10.29± 1.01

Gholipour Ghalandari 16.07 ± 0.26 15.09 ± 0.92 7.36 ± 1.15 6.82 ± 0.76

Lamsiyah et al. 13.92 ± 0.22 16.10 ± 0.96 7.91 ± 1.31 7.80 ± 0.78

BS (Ours) 16.22 ± 0.25 15.64 ± 0.97 8.10 ± 1.32 7.03 ± 0.64

BS+GS (Ours) 16.70 ± 0.26 16.41 ± 0.91 8.16 ± 1.25 7.46 ± 0.83

CeRA (Ours) 17.98 ± 0.23 17.46 ± 0.98 8.27 ± 1.26 7.31 ± 0.74

CeRAI (Ours) 17.99 ± 0.27 17.24 ± 0.93 8.37 ± 1.24 7.72 ± 0.77

Table 1: ROUGE-2 recall with 95% bootstrap confidence intervals of different extractive methods on the considered
test sets. CeRA and CeRAI were only trained on the Multi-News training dataset.

sentences that are allowed within the word limit.
The top-scoring B states from the beam search
are used as starting points for this greedy search.
Then, for each state, we greedily select the highest-
scoring sentence that does not exceed the budget
among the top T ranked sentences. This process
iterates until either all of the top T ranked sentences
would exceed the budget or there are no further
sentences left for consideration.

4 Experimental Setup

Herein, we outline the methods, datasets, and eval-
uation metrics employed in our experiments.

Methods We compare our approaches with the
centroid-based methods from Gholipour Ghalan-
dari (2017) and Lamsiyah et al. (2021), described
in §2. To be consistent with the remaining meth-
ods, the approach by Gholipour Ghalandari (2017)
was implemented on top of contextual sentence
embeddings instead of TF-IDF. Additionally, we
perform ablation evaluations in three scenarios: i) a
scenario (BS) where we do not use the centroid es-
timation model (§3.1) and rely solely on the beam
search for the sentence selection step (§3.2); ii) a
scenario (BS+GS) identical to the previous one,
except that we perform the greedy search step after
the beam search; iii) two scenarios (CeRAI and
CeRA) where we utilize the centroid estimation
model with and without incorporating interpolation,
and apply the BS+GS algorithm on the predicted
centroid. The “Oracle centroid” upperbounds our
approaches, since it results from applying BS+GS
on the mean-pool of the sentence embeddings of
the target summary, cgold, as the cluster centroid.
Appendix C provides additional details about data
processing and hyperparameters.

Datasets We used four English datasets, Multi-
News (Fabbri et al., 2019), WCEP-10 (Ghalandari
et al., 2020; Xiao et al., 2022), TAC2008, and

DUC2004, and one multilingual dataset, CrossSum
(Bhattacharjee et al., 2023), in our experiments.
We used the centroid-estimation models trained
on Multi-News to evaluate CeRA and CeRAI on
WCEP-10, TAC2008, and DUC2004 since these
datasets do not provide training splits. CrossSum
was conceived for single-document cross-lingual
summarization, so we had to adapt it for multi-
lingual MDS. This adaptation results in clusters
that encompass documents in multiple languages,
with each cluster being associated with a single
reference summary containing sentences in various
languages. We explain this procedure and provide
further details about each dataset in Appendix B.

Evaluation Metrics We evaluate ROUGE scores
(Lin, 2004) in all the experiments. When evaluating
models in the multilingual setting, we translated
both the reference summaries and the extracted
summaries into English prior to ROUGE computa-
tion. As we optimized for R2-R on the validation
sets, we report it as our main metric in Tables 1 and
2. The remaining scores are shown in Appendix D.

5 Results

Monolingual Setting The ROUGE-2 recall (R2-
R) of all the methods in the monolingual datasets
are presented in Table 1. F1 scores and results for
the other ROUGE variants are presented in Table 4,
in Appendix D. The first observation is that BS
alone outperforms Gholipour Ghalandari (2017) in
all datasets, with additional improvements obtained
when the greedy search step is also performed
(BS+GD). This was expected since our approach
explores the candidate space more thoroughly. The
motivation for using a supervised centroid estima-
tion model arose from the excellent ROUGE results
obtained when using the target summaries to build
the centroid (“Oracle centroid” in the tables), show-
ing that an enhanced centroid estimation procedure
could improve the results substantially. This is con-
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Method CrossSum CrossSum-ZS

Oracle centroid 11.74 ± 0.55 14.91 ± 0.49

Gholipour Ghalandari 7.72 ± 0.43 10.03 ± 0.40

Lamsiyah et al. 8.01 ± 0.52 10.45 ± 0.46

BS (Ours) 7.74 ± 0.44 10.16 ± 0.40

BS+GS (Ours) 8.23 ± 0.43 10.85 ± 0.41

CeRA (Ours) 9.65 ± 0.49 11.67 ± 0.41

CeRAI (Ours) 9.38 ± 0.50 11.73 ± 0.43

Table 2: ROUGE-2 recall results with 95% bootstrap
confidence intervals of different extractive methods on
the multilingual test sets. The CrossSum set contains the
same languages used for training the centroid estimation
model, whereas CrossSum-ZS (zero-shot) consists of
languages that were not present in the training data.

firmed by the two methods using the centroid esti-
mation model (CeRA and CeRAI), which improve
R2-R significantly in Multi-News and WCEP-10
and perform at least on par with Lamsiyah et al.
(2021) in TAC2008 and DUC2004. It’s also worth
noting that CeRA and CeRAI were only trained
on the Multi-News training set and nevertheless
performed better or on par with the remaining base-
lines on the test sets of the remaining corpora. In-
corporating the interpolation step (CeRAI) appears
to yield supplementary enhancements compared to
the non-interpolated version (CeRA) across various
settings, which we attribute to this method adding
regularization to the estimation process, improving
results on harder scenarios.

Multilingual Setting The R2-R scores of all
the methods in CrossSum can be found in Ta-
ble 2, while additional results are in Table 5 of
Appendix D. Once again, we observe the supe-
riority of the centroid estimation models, CeRA
and CeRAI, in comparison to all the remaining
methods, with the variants with and without inter-
polation performing on par with each other. Most
notably, these models prove to be useful even when
tested with languages unseen during the training
phase, underscoring their robustness and applica-
bility in a zero-shot setting.

6 Conclusions

We enhanced the centroid method for multi-
document summarization by extending a previ-
ous approach with a beam search followed by a
greedy search. Additionally, we introduced a novel
attention-based regression model for better cen-
troid prediction. These improvements outperform
existing methods across various datasets, including

a multilingual setting, offering a robust solution for
this challenging scenario. Regarding future work,
we believe an interesting research direction would
be to further explore using the supervised centroids
obtained by the CeRA and CeRAI models, by hav-
ing them as a proxy objective to obtain improved
abstractive summaries.

Limitations

While we believe that our approach possesses mer-
its, it is equally important to recognize its inherent
limitations. Diverging from conventional centroid
methods that operate entirely in an unsupervised
manner, our centroid estimation model necessi-
tates training with reference summaries. Never-
theless, its robustness to dataset shifts was demon-
strated: the model trained on Multi-News consis-
tently yielded strong results when assessed on dif-
ferent English datasets, and the model trained on
a subset of languages from CrossSum displayed
successful generalization to other languages.

Finally, our method introduces increased com-
putational complexity. This arises from both the
forward pass through the attention model and
the proposed beam search algorithm, which in-
curs a greater computational cost compared to
the original, simpler greedy approach proposed by
Gholipour Ghalandari (2017).
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A Sentence Selection Algorithm

Algorithm 1 Sentence Selection

Require: Cluster D, centroid ĉ, summary budget
ℓ, number of sentences n to pre-select, beam
size B, number of candidates T for greedy
search.

1: Dn ← select-first(D,n)
2: π, πnext, πbs ← empty list
3: while ∃b : length(πnext[b]) < ℓ do: ▷ Beam

Search
4: πnext ← BSstep(π,Dn, B, ĉ) (4)

5: if ∃b : length(πnext[b]) > ℓ then
6: πbs.append(π)
7: end if
8: π ← ∀πnext[b] : length(πnext[b]) ≤ ℓ
9: end while

10: πbest ← highest-scored B states in πbs (sorted)
11: for b = 1, 2, . . . , B do: ▷ Greedy Search
12: t← 0
13: D′

n ← Dn \ πbest[b]
14: while t < T do:
15: s∗ ← argmax

s∈D′
n

cos sim(eπbest[b]∪{s}, ĉ)

16: π′
best[b]← πbest[b] ∪ {s∗}

17: if length(π′
best[b]) ≤ ℓ then:

18: πbest[b]← π′
best[b]

19: t← 0
20: else:
21: t← t+ 1
22: end if
23: D′

n ← D′
n \ {s∗}

24: end while
25: end for
26: return S ← highest-scored state in πbest

B Datasets

We now describe each of the datasets used for eval-
uation and explain how we have adapted CrossSum
for the task of MDS.

Multi-News The Multi-News dataset (Fabbri
et al., 2019) is a large-scale dataset for MDS of
news articles. It contains up to 10 documents per
cluster and more than 50 thousand clusters divided
into training, validation, and test splits. There is a
single human-written reference summary for each
cluster.

4BSstep denotes a step of the usual beam search algorithm.
Details omitted for brevity.

WCEP-10 This dataset (Ghalandari et al., 2020;
Xiao et al., 2022) consists of short human-written
target summaries extracted from the Wikipedia Cur-
rent Events Portal (WCEP). Each news cluster as-
sociated with a certain event is paired with a single
reference summary, and there are at most 10 doc-
uments per cluster. The dataset comprises 1022
clusters, all of which are used for testing.

TAC2008 This is a multi-reference dataset intro-
duced by the Text Analysis Conference (TAC)5. It
provides no training nor validation sets and the test
set consists of 48 news clusters, each with 10 re-
lated documents and 4 human-written summaries
as references.

DUC2004 Another multi-reference news summa-
rization dataset6 designed and used for testing only.
It contains 50 clusters with 10 documents and 4
human-written reference summaries each.

CrossSum To assess the performance of the mod-
els in a multilingual context, we have adapted
the CrossSum dataset (Bhattacharjee et al., 2023)
for the task of MDS. Initially designed for
cross-lingual summarization, this dataset offers
document-summary pairs for more than 1500 lan-
guage directions. The dataset is derived from pairs
of articles sourced from the multilingual summa-
rization dataset XL-Sum (Hasan et al., 2021). No-
tably, these pairings were established using an au-
tomatic similarity metric, resulting in many pairs
covering similar topics rather than the exact same
stories, rendering it well-suited MDS.

To tailor this dataset for our specific task, we be-
gan by selecting the data from a predefined subset
of the languages. Subsequently, we aggregated the
documents into clusters, taking into account their
pairings. For instance, if document A was paired
with document B and document B was paired with
document C, then A, B, and C would belong to
the same cluster. Clusters containing only one
document were discarded. For obtaining multi-
lingual reference summaries for each cluster, we
interleaved the sentences from the individual sum-
maries until we reached a predefined limit of 100
words. We have built training, validation, and test
sets using data in English, Spanish, and French, and
another test set using data in Portuguese, Russian,
and Turkish to evaluate our model in a zero-shot

5https://tac.nist.gov
6https://duc.nist.gov
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setting. Statistics about each split are presented in
Table 3.

C Experimental Details

Data Processing To ensure a fair com-
parison, all the models we evaluated used
the same sentence representations, specifi-
cally, sentence embeddings obtained from the
distiluse-base-multilingual-cased-v27

sentence encoder (Yang et al., 2020).
For monolingual datasets, the documents were

split into sentences using sent_tokenize from the
NLTK library (Bird et al., 2009). For CrossSum,
we used SentSplitter from the multilingual ICU-
tokenizer.8 Regular expressions were applied to
replace redundant white spaces and excessive para-
graphs and empty sentences were excluded. Before
sentence selection (Algorithm 1), the data goes
through a second processing step, during which
duplicate sentences and sentences that individually
exceed the summary budget are eliminated.

When evaluating models in CrossSum, we trans-
lated both the reference summaries and the ex-
tracted summaries into English prior to ROUGE
computation. All the translations were performed
using the M2M-100 12-billion-parameter model
(Fan et al., 2021).

The following word-limit budgets were used by
all models: 230 words for the Multi-News dataset,
100 words for TAC2008, DUC2004 and CrossSum,
and 50 words for WCEP-10.9

Hyperparameters The hyperparameters for the
beam search-based methods were tuned by running
a grid search on the BS+GS approach on the Multi-
News validation set. For the number of sentences n,
odd numbers from 1 to 9 were tested. For the beam
width B values 1,5, and 9 were examined, and
regarding the number of candidates T , values 1,5,
and 9 were considered. The values that maximized
R2-R on this validation set were n = 9, B=5, and
T=9. In all of our experiments, these were the
values we considered for the parameters. Note that
for the BS method only n and B are relevant.

The hyperparameters of the centroid estimation
model used in CeRA were obtained by random

7https://huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v2

8https://pypi.org/project/icu-tokenizer
9We used ROUGE 1.5.5 toolkit with the following argu-

ments: -n 4 -m -2 4 -l budget -u -c 95 -r 1000 -f
A -p 0.5 -t 0 -a

search on Multi-News. The hyperparameters yield-
ing the highest R2-R score on the validation set for
the produced summaries were kept. The CeRAI
model was trained using the optimal hyperparame-
ters found for CeRA. The optimal parameters were:
batch size = 2, learning rate = 5×10−4, and num-
ber of positional encodings = 35. We utilized the
Adam optimizer with a multi-step learning rate
scheduler configured with step size = 3 and γ = 0.1.

Implementation Details Our CeRA and CeRAI
models used early stopping, where the stopping
criteria metric was based on R2-R. Layer normal-
ization (Ba et al., 2016) was applied on the input
data before adding the positional information to
it and before passing the data through the last lin-
ear layer that transforms h (equation (3)) into ĉattn
in the CeRA and CeRAI models. We have also
normalized the input data to have a unit L2 norm.

D Additional Results

The ROUGE-1/2/L recall and F1 scores obtained
by all the methods in the monolingual datasets are
shown in Table 4. Table 5 presents the same quan-
tities for the multilingual case.
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Split Languages #Clusters #Docs per cluster Avg #sentences per doc Avg #words per summary

Train en, es, fr 6541 2−10 38.5 ± 28.8 52.5 ± 16.1

Val en, es, fr 889 2−6 34.4 ± 27.4 52.3 ± 15.5

Test en, es, fr 853 2−6 36.6 ± 35.4 52.2 ± 16.2

Test-ZS pt, ru, tr 933 2−5 23.4 ± 21.1 60.2 ± 20.8

Table 3: CrossSum: statistics of each split. Averages are indicated with standard deviations.

Test set Method R1-R R1-F R2-R R2-F RL-R RL-F

Multi-News

Oracle centroid 54.26 50.36 21.72 20.02 24.33 22.42
Gholipour Ghalandari 47.91 45.64 16.07 15.16 21.41 20.24
Lamsiyah et al. 44.91 43.02 13.93 13.18 20.56 19.53
BS (Ours) 48.34 45.81 16.22 15.24 21.34 20.08
BS+GS (Ours) 49.54 45.98 16.70 15.36 21.81 20.08
CeRA (Ours) 50.75 47.07 17.98 16.52 22.69 20.86
CeRAI (Ours) 50.76 47.08 17.99 16.53 22.69 20.87

WCEP-10

Oracle centroid 58.72 44.94 28.54 21.50 42.38 31.94
Gholipour Ghalandari 41.26 35.09 15.09 12.61 29.42 24.86
Lamsiyah et al. 41.65 35.62 16.10 13.38 30.53 25.75
BS (Ours) 43.48 35.07 15.64 12.42 30.49 24.44
BS+GS (Ours) 46.23 34.72 16.41 12.05 31.85 23.60
CeRA (Ours) 47.14 35.23 17.46 12.65 33.03 24.28
CeRAI (Ours) 46.85 35.17 17.24 12.59 32.81 24.24

TAC2008

Oracle centroid 41.07 42.02 11.99 12.26 20.66 21.11
Gholipour Ghalandari 32.00 34.38 7.36 7.91 16.64 17.87
Lamsiyah et al. 31.00 33.75 7.91 8.65 16.65 18.16
BS (Ours) 33.93 35.62 8.10 8.53 17.62 18.50
BS+GS (Ours) 35.12 35.98 8.16 8.34 17.99 18.40
CeRA (Ours) 34.43 35.07 8.27 8.42 17.35 17.66
CeRAI (Ours) 34.44 35.11 8.37 8.52 17.73 18.06

DUC2004

Oracle centroid 39.93 41.10 10.29 10.60 19.48 20.05
Gholipour Ghalandari 32.82 35.86 6.82 7.48 16.00 17.51
Lamsiyah et al. 32.81 36.03 7.80 8.61 16.66 18.34
BS (Ours) 34.01 36.20 7.03 7.51 16.35 17.41
BS+GS (Ours) 35.11 36.37 7.46 7.74 16.98 17.60
CeRA (Ours) 34.88 36.06 7.31 7.56 16.67 17.23
CeRAI (Ours) 35.16 36.38 7.72 7.99 16.89 17.48

Table 4: ROUGE-1/2/L recall and F1 results of different extractive methods on the considered monolingual test sets.

Test set Method R1-R R1-F R2-R R2-F RL-R RL-F

CrossSum

Oracle centroid 46.86 31.85 11.74 7.93 27.64 18.57
Gholipour Ghalandari 38.64 27.88 7.72 5.56 23.30 16.65
Lamsiyah et al. 37.89 27.53 8.01 5.77 23.81 17.13
BS (Ours) 39.24 27.83 7.74 5.48 23.60 16.53
BS+GS (Ours) 40.78 27.71 8.23 5.57 24.42 16.39
CeRA (Ours) 42.45 28.89 9.65 6.52 25.64 17.27
CeRAI (Ours) 42.31 28.73 9.38 6.31 25.55 17.15

CrossSum-ZS

Oracle centroid 50.55 37.30 14.91 11.00 28.90 21.08
Gholipour Ghalandari 41.70 32.65 10.03 7.82 24.52 19.02
Lamsiyah et al. 41.14 32.39 10.45 8.17 24.81 19.31
BS (Ours) 42.53 32.65 10.16 7.81 24.87 18.90
BS+GS (Ours) 44.36 32.65 10.85 7.99 25.74 18.74
CeRA (Ours) 45.44 33.43 11.67 8.57 26.52 19.30
CeRAI (Ours) 45.37 33.38 11.73 8.62 26.51 19.26

Table 5: ROUGE-1/2/L recall and F1 results of different extractive methods on the considered multilingual test sets.
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Abstract 

Recent work within the Argument Mining 

community has shown the applicability of 

Natural Language Processing systems for 

solving problems found within competitive 

debate. One of the most important tasks 

within competitive debate is for debaters to 

create high quality debate cases. We show 

that effective debate cases can be 

constructed using constrained shortest path 

traversals on Argumentative Semantic 

Knowledge Graphs. We study this potential 

in the context of a type of American 

Competitive Debate, called “Policy 

Debate”, which already has a large scale 

dataset targeting it called “DebateSum”. 

We significantly improve upon DebateSum 

by introducing 53180 new examples, as 

well as further useful metadata for every 

example, to the dataset. We leverage the 

txtai semantic search and knowledge graph 

toolchain to produce and contribute 9 

semantic knowledge graphs built on this 

dataset. We create a unique method for 

evaluating which knowledge graphs are 

better in the context of producing policy 

debate cases. A demo which automatically 

generates debate cases, along with all other 

code and the Knowledge Graphs, are open-

sourced and made available to the public 

here: 

https://huggingface.co/spaces/Hellisotherp

eople/DebateKG 

1 Introduction 

1.1 Policy Debate  

Persuasion has been of interest to humans since we 

first began communicating with each other. The 

formal process of using argumentation and rhetoric 

to convince others to see in one’s own way is 

known as “debate”. With varying levels of 

formality and intensity, these debates happen all 

around us every day.  

More formalized, competitive forms of debate 

are both highly educational and integral to the 

formation of a lawful and just society. There is a 

long and time-honored tradition of academic 

institutions and news organizations facilitating 

competitive debate. Many organizations and 

associations organize debate tournaments 

according to their differing traditions and rule sets.  

Some types of debate are more suited to be 

assisted with Natural Language Processing 

systems than others. A popular form of competitive 

debate done predominantly within United States 

high schools and universities is called “Policy 

Debate”. Policy Debate maintains one extremely 

broad and open-ended topic over a whole year, and 

challenges teams to be ready to either affirm any 

plan which implements the topic, or to be ready to 

explain why the opposing teams plan is a bad idea.  

Policy Debate is a highly technical form of 

debate, which puts relatively little emphasis on the 

aesthetic quality of the speech act, and 

correspondingly strong emphasis on the quality of 

the delivered evidence and the delivered 

argumentation around it. For this reason, Policy 

Debate rewards teams who can present the 

maximum amount of evidence possible during 

their limited speaking time. This leads to a peculiar 

phenomenon known as “speed reading” or 

“spreading” which is normalized among most 

serious competitors. While Policy Debate 

idiosyncrasies may end up making it less amicable 

for the general public to watch than other forms, 

those very same traits make it a uniquely good 

source of data for NLP systems which generate 

high quality debate cases.  

DebateKG – Automatic Policy Debate Case Creation with Semantic Knowledge Graphs 
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1.2 Policy Debate Cases 

Luckily, a large-scale dataset of Policy Debate 

evidence called DebateSum (Roush and Ballaji., 

2020) exists. DebateSum includes all publically 

available Policy Debate evidence gathered from 

2013-2019, which totals to over 180,000 pieces of 

evidence with corresponding abstractive and 

extractive summaries alongside rich metadata such 

as the citation author and word counts.  

Beyond its original targeted task of queryable 

word-level extractive summarization, DebateSum 

is an excellent dataset for the task of constructing 

Policy Debate cases. This is because most Policy 

Debate cases are highly standardized. In almost 

every Policy Debate round, each debater carefully 

reads a set of around 3-12 pieces of evidence, 

starting first with slowly reading the abstractive 

summary of the evidence (the “argument”), then 

formulaically reading the evidence citation, and 

then finally speed reading the extractive summary 

of the evidence that supports the argument. Moving 

from each piece of evidence to the next can 

sometimes be so imperceptible that debaters are 

instructed to add a slow verbal “next” to their 

speeches in-between each piece of evidence. Each 

piece of evidence is likely to be highly related to 

the previous piece, as they are being chained 

together to advance the larger narrative of the 

debate case. This extractive format for debate case 

construction can be naturally performed by NLP 

systems which leverage ideas from the Information 

Retrieval, Graph Analysis, and Distributional 

Semantics communities.  

1.3 Semantic Knowledge Graphs 

Knowledge Graphs are systems which store 

information about entities and relates them to each 

other using (often weighted) edges which show the 

relationships between each entity. We denote 

Knowledge Graphs, where each entity consists of 

documents or sentences, and where weighted edges 

are constructed between each based on their 

semantic similarity to each other as “Semantic 

Knowledge Graphs”.  

1.4 txtai 

Computing the semantic similarity between each 

entity and every other entity is an ideal place to 

                                                           
1 openCaselist is a continuation of the Open Evidence 

project and it can be accessed here: 

https://opencaselist.com/ 

leverage a large scale language model. 

Approximate Nearest Neighbor (ANN) Systems 

unlock viable semantic search of these entities, and 

storing and querying these is a natural place to 

leverage a database. We are fortunate in that 

software which does all of these things already 

exists, and it is called “txtai”. 

    Txtai is a python software package for building 

AI powered semantic search applications. Txtai 

features support for a wide variety of backends to 

power its aforementioned components. Txtai is a 

natural choice for building Semantic Knowledge 

Graphs.  

2 Innovations Introduced 

In this work, we introduce several innovations 

related to automatic Policy Debate case generation. 

2.1 DebateSum  

We significantly improve the existing DebateSum 

dataset by adding the most recent three additional 

years of evidence (2020-2022) using the same 

preprocessing tools as discussed in Roush and 

Ballaji (2020). This totals to an addition of 53,180 

number of documents, bringing the total number of 

documents within DebateSum to 240,566.  

    We also add further metadata columns, 

indicating the source DebateCamp, the broad type 

of argument, and the topic-year, for all documents 

within DebateSum. The type of the argument, 

designated as the “tag”, This metadata was 

extracted from the “openCaselist1” project. Figure 

1 shows how this metadata was represented on 

openCaselist.  

    The additional metadata is particularly useful for 

more fine-grained information retrieval (e.g. “Give 

me all evidence about the environment from 

Gonzaga debate camp in 2013”) as well as for 

leveraging information about the type of debate 

argument (e.g. “Give me an argument about why 

individual states should do the plan from the 

arguments labeled as counterplans”).  

2.2  Contributed Semantic Graphs  

We use txtai to build 9 Semantic Knowledge 

Graphs, which differ based on which column of 

DebateSum was indexed semantically, and on the 

language model underlying language model used 
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for similarity calculations. We leave all settings at 

their defaults during graph construction, which 

means that networkx is used for the graph backend, 

huggingface for the language models, faiss for the 

ANN index, and sqlite for the database. A table of 

these contributed models is presented in Appendix 

1. 

Txtai automatically does topic modeling on each 

graph using the Louvain (Blondel et al, 2008) 

community detection algorithm. This data is stored 

as further information within the graph and unlocks 

a powerful way to constrain the topics of the 

generated arguments.  

2.3 DebateKG 

The system that we demonstrate is called 

“DebateKG”. DebateKG is a huggingface “space” 

webapp which leverages the contributed Semantic 

Knowledge Graphs to build Policy Debate cases. 

Users can specify a starting, an ending, and any 

number of middle arguments. They can also 

specify any additional constraints, like on the topic, 

or on the contents of each piece of evidence. 

DebateKG extracts the evidence closest to the 

given arguments which meets the given 

constraints, and then connects these evidence 

examples together by calculating the constrained 

weighted shortest path between each evidence 

example. The portions of each extracted piece of 

evidence which match the previous portions are 

highlighted, which functions as a kind of 

interpretability.  

Since there are usually many paths which 

connect the given pieces of evidence together, there 

are also many viable debate cases which can be 

generated. We allow users to generate all possible 

connected paths (all debate cases), and we enable 

users to manually display any possible debate case 

and to interpret the connections between the 

evidence within them. Besides the automatic case 

construction functionality, users can also 

individually query for evidence using txtai’s built 

in semantic SQL language, which helps in the 

construction of input arguments.  Figure 2 shows a 

sample generated debate case from DebateKG. 

2.4 Summarization 

This work on constructing policy debate cases from 

semantic knowledge graphs has important 

implications for summarization tasks. The 

abstractive and extractive summaries associated 

with each piece of evidence in DebateSum provide 

 

Figure 1: The added metadata to DebateSum was 

parsed from tables on openCaselist, which associates 

each debate document with its camp, its tag (argument 

types), and its year. 

 

Figure 2: A Policy Debate Case created with 

DebateKG. Arguments are shown. The citation, read-

aloud extracts, and evidence are omitted for brevity. 

The first and final argument are the inputs supplied by 

the user. The highlighted portions show the tokens 

with the highest similarity to the previous argument, 

and functions as interpretability. 
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a rich source of training data for abstractive and 

extractive summarizers. The ability to find 

constrained shortest paths between evidence 

examples based on their semantic similarity is 

analogous to how multi-document summarization 

aims to find common themes and topics across 

documents. Additionally, the choice of which text 

columns to index semantically in the knowledge 

graphs parallels decisions made in query-focused 

summarization on what aspects of the text are most 

relevant to the query. The DebateKG demo itself 

extracts and concatenates relevant passages into 

coherent arguments, functioning as an extractive 

summarization system. The semantic knowledge 

graph techniques introduced in this work are highly 

relevant for developing more robust summarization 

systems. More broadly, the semantic knowledge 

graph approach introduced here offers 

representational and algorithmic tools for 

identifying salient semantics within text collections 

3 Prior Work 

Many others have looked at the relationships 

between Graph Methods and Argumentation.  

The closest prior work to our own comes from 

IBM Project Debater (Slonim et al., 2021). They 

created a full debating system which they 

prominently pitted against champion parliamentary 

debaters. They defined a custom tailored, 

“simplified version” of the Parliamentary Debate 

style. Parliamentary Debate has dramatic 

differences compared to Policy Debate, namely 

that the topics are only known to each side 15 

minutes ahead of time. As a result, Parliamentary 

Debate relies far less on evidence, usually only 

including small snippets as part of a larger speech. 

In Policy Debate, the vast majority of most of the 

opening speeches is recitation of extractive 

summaries of evidence for or against a position.  

This dramatically simplifies the required system 

for Policy Debate case generation. Project Debater 

utilizes many closed source models models, a 

massive but generalized corpus and requires 

significantly more compute resources than 

DebateKG to run. 

Finally, Policy Debate is considered to be a more 

“rigorous style” of debate at its highest level than 

Parliamentary Debate, which requires dramatically 

                                                           
2 A recording of that final debate round and results 

can be found here: 

https://www.youtube.com/watch?v=l9HJ6Iq6Vas 

more effort to participate in. An example of this can 

be found in the 2014-2015 National Parliamentary 

Tournament of Excellence (NPDA) tournament, 

the largest American college level parliamentary 

debate tournament, where the winning team had no 

prior Parliamentary Debate experience and was 

otherwise a good but not champion Policy Debate 

team 2 . Their defeated opponents had been 

undefeated for the prior 3 years that they competed 

in the national tournament.   

Further work coming from IBM exists about 

Knowledge Graphs directly being used for 

Argument Generation (Khatib et al., 2021). Their 

work explores how to utilize KG encoded 

knowledge to fine-tune GPT-2 to generate 

arguments. Our system is extractive in nature, as it 

creates debate cases by chaining together evidence 

from DebateSum utilizing graph traversals. 

Extractive systems are far more appropriate for 

Policy Debate.  

There is fascinating work that applies the idea of 

Graph Neural Networks for predicting the way that 

each member of a legislative branch will vote on an 

input motion (Sawhney et al., 2020). Our work 

does not try to predict how judges will vote based 

on any inputs, but instead generates debate cases 

given input arguments. Their work is in the context 

of elected officials, whereas ours is in the context 

high school and collegic competitive debate. There 

is also work related to trying to understand the 

arguments made within these legislative 

Parliamentary Debates (Tamper et al., 2022)  

Knowledge Graphs have been utilized for fact 

checked arguments. ClaimsKG (Tchechmedjiev et 

al., 2019) is an example, which indexes a wide 

variety of fact checking websites and annotates 

them. DebateSum and its contributed KGs do not 

have fact checking information directly since it is 

considered the debaters job to convince the judge 

of the truth of each presented piece of evidence. 

DebateSum and DebateKG are also significantly 

larger in size than ClaimsKG and its training 

corpus.  

Work related to automatically evaluating the 

quality of arguments using Knowledge Graphs 

exists (Dolz et al., 2022). In their work, they 

leverage a dataset of debate, the VivesDebate 

corpus, to identify if an argument is likely to “win”. 

They also recognized the potential for graph 
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traversals to form arguments, or whole debate cases 

(see figures 2 and 3 from their work). VivesDebate 

is significantly smaller and less encompassing than 

DebateSum, and DebateSum does not have 

information about how successful the arguments 

within it are.  

Other work, which recognizes the potential for 

paths within knowledge graphs to form arguments, 

exists (Das et al., 2017). The idea of using “debate 

dynamics” to present evidence for graph 

classification has been extensively explored 

(Hildebrandt et al., 2020). They imagine triple 

classification and link prediction in graphs as a 

figurative “debate game” between two 

reinforcement learning agents who extract 

“arguments” (paths) which support or oppose a 

hypothesis. A final binary classifier “judge” votes 

based on the presented “arguments”. They show 

parallels within Graph Analysis algorithm 

development to the ideas that we present, but they 

evaluate this algorithm on non-argumentative 

datasets. To our knowledge, we are the first work 

to explore “arguments” (constrained paths) within 

Knowledge Graphs on an argumentative dataset.    

4 Details 

The DebateKG demo is hosted on huggingface3. In 

this section, we describe the details of DebateKG 

and its underlying Semantic Knowledge Graphs.  

4.1 Underlying Language Models 

Txtai supports several language modeling 

backends, the most modern of which is sentence 

transformers (Reimers and Gurevych., 2019). 

Besides having many pre-trained language models 

which are designed for Semantic Textual Similarity 

or for Sentence Modeling, any Transformer model 

can be transformed into a “sentence transformer” 

model with nothing more than a pooling layer 

added.  

    We choose three language models for building 

the Knowledge Graphs. The first is the 

recommended model from the sentence 

transformers documentation 4 , “all-mpnet-base-

v2”. We are also curious about the potential 

usefulness of language models which are fine-

tuned in a domain similar to DebateSum, such as 

                                                           
3 The link to that demo is here: 
https://huggingface.co/spaces/Hellisotherpeople/De
bateKG 
4 

the legal domain.  We choose “legal-bert-base-

uncased” (Chalkidis et al., 2020) for this reason, as 

it is trained on a diverse legal corpus. Finally, we 

are curious about language models which can 

model long sequences. We choose 

“allenai/longformer-base-4096” (Beltagy et al., 

2020) due to its potential to model sequences up to 

4096 tokens long directly. 

4.2  Importance of Granularity 

For each piece of evidence in DebateSum, there is 

an associated abstractive summary and biased 

extractive summary. Since at the time of writing, 

txtai and DebateKG can only semantically index 

one text column at a time, the choice of which 

column and at what granularity is highly important. 

There are merits and drawbacks to each approach. 

For this reason, we construct Graphs which index 

two of these columns (denoted with the prefixes 

“DebateKG-ext”, and “DebateKG-abs”). We also 

construct graphs which index each individual 

sentence of the full document (denoted as 

“DebateKG-sent”). These graphs are significantly 

larger, but are potentially far more potent since the 

sentence transformers recommended models are 

designed for the sentence granularity and because 

the other two models are average pooled and 

subsequently long sequences dilute their 

embeddings.  

4.3 Importance of Settings 

DebateKG computes the semantic similarity 

between each entity, and connects the entities 

whose similarity is greater than a user-defined 

threshold. We use the default threshold of 0.10, and 

each entity has a limit of no more than 100 edges. 

Changes in these settings, such as lowering the 

threshold and increasing the entity limit, will result 

in more highly connected and correspondingly 

larger graphs.   

4.4 Policy Debate Case Construction 

The shortest paths, which minimizes the semantic 

distance between each input argument, are also 

An analysis of the pretrained models can be found 
here: 
https://www.sbert.net/docs/pretrained_models.htm
l 
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Policy Debate Arguments5. One or more of these 

Arguments can be concatenated to form Policy 

Debate Cases. The ideal Policy Debate Argument 

uses the minimum amount of spoken words. This 

enables competitors to make more arguments, and 

to make broader and stronger cases.  

Beyond a naïve shortest path calculation on the 

whole graph, we can control how Debate Case are 

constructed by choosing to run these calculations 

on subgraphs. These subgraphs include only 

entities which fulfil a particular constraint – 

enabling things like arguments where all of the 

evidence stays on a particular topic, or which 

always includes a keyword, or even where the 

evidence isn’t longer than a certain number of 

words.  

Related to the idea of minimizing the number of 

words spoken out loud within each debate case, we 

can also modify the scoring function used within 

the shortest path calculations to account for and try 

to minimize the length of the evidences extracts. 

This has the advantage over selecting subgraphs of 

allowing for inclusion of long documents within 

the argument if they are actually the most 

appropriate.  

4.5 Value of Knowledge Graphs 

While an exhaustive analysis of these Knowledge 

Graphs is beyond the scope of this paper, it is 

important to recognize that techniques and 

algorithms from the Graph Analysis literature can 

be particularly illuminating. Centrality algorithms, 

like Pagerank (Page et al., 1998), will find evidence 

which is highly applicable to many arguments. 

Community detection, also known as clustering – 

finds evidence which is highly related to each 

other. A treasure trove of insights into DebateSum 

are unlocked for those willing to explore the 

Semantic Knowledge Graphs.   

4.6 Connection to the Legal Domain 

Policy debate focuses extensively on legal topics, 

as debaters must argue matters of policy frequently 

connected to the law. As such, the DebateSum 

dataset provides a trove of legal text spanning 

diverse issues. The constrained shortest path 

approach introduced mirrors legal research in 

finding related precedents and documents to build 

a broader argument. The graph structure encodes 

                                                           
5 And in fact, any path on this graph can be an 
Argument 

useful semantics for legal information retrieval, 

while segmentation by sentence allows fine-

grained modeling of argument components within 

judicial opinions. 

    Further, the legal-domain language model 

explores domain adaptation of BERT models, an 

important avenue in legal NLP. The interpretable 

paths can explain how fragments are related, 

promoting model transparency important for legal 

applications. Graph-based representation and 

algorithms for semantic similarity offer techniques 

to push forward core legal NLP tasks. With rich 

legal data and domain-specific modeling, this work 

makes both methodological and data contributions 

highly relevant for legal NLP. The techniques could 

further applications like legal search, 

summarization of contracts or cases, and argument 

mining over caselaw. 

5 Evaluation 

DebateSum does not include any data indicating if 

an argument is “strong”, or if it is likely to win or 

not. It also does not have similarity labels between 

each example or even between pairs of samples. 

This means that it is challenging to compare the 

Model Average Words in 

Case 

Mpnet-DebateKG-abs 406 

Mpnet-DebateKG-ext 305 

Mpnet-DebateKG-

sent 
760 

legalbert-DebateKG-

abs 
502 

legalbert-DebateKG-

ext 
230 

legalbert-DebateKG-

sent 
709 

longformer-

DebateKG-abs 
500 

longformer-

DebateKG-ext 
457 

longformer-

DebateKG-sent 
301 

 
 

Table 1: Results of experiment on sample 10 

arguments 
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argumentation quality of each graph. Fortunately, it 

is simple to look at the lengths of the spoken aloud 

extracts. Since Policy Debaters are trying to 

minimize the time spent on each argument, they 

will prefer Graphs that extract evidence chains with 

shorter extracts.  

Thus, we evaluate each graph based on how long 

the created Debate Cases extracts are. We choose 

10 input argument pairs (a table of which is 

included within the github repo) and rank each 

graph based on the average length of the read aloud 

extracts from the generated debate cases across all 

10 of these argument pairs. Table 1 shows the 

results of this experiment.  

Due to the unique and small-scale nature of our 

evaluation, we hope that future work can find more 

effective ways to evaluate Semantic Knowledge 

Graphs in an argumentative context.  

6 Conclusion 

In this paper, we significantly expanded and 

improved an existing large scale argument mining 

dataset called “DebateSum”. We created 9 

Semantic Knowledge Graphs using the “txtai” 

Semantic AI toolkit. We showed how constrained 

shortest path traversals on these graphs can be used 

to create Policy Debate Cases. We created a System 

Demonstration of this called DebateKG which is a 

“space” webapp hosted on huggingface. We 

discuss implementation details of this system. We 

propose a way for Policy Debaters to decide which 

graph is better for their needs, and evaluate our 

systems using this technique. We open source all 

data, code, and graphs. 

Limitations 

The largest of the contributed Semantic Graphs, 

denoted “DebateKG-sent”, can require as much as 

100gb of free-space on disk when uncompressed 

(which is required to leverage them). All training 

and creation of these graphs was performed on a 

personal computer with an RTX 3080ti GPU, an I7 

8700K CPU, and 32gigs of ram.  

    American Policy Debate, is almost always 

performed in English, and it is unlikely that suitable 

training data targeting it outside of English will be 

created in the near future. 

    DebateSum is crowd sourced from high school 

and college Policy Debate camp attendees. The 

evidence found within DebateSum, as well as the 

additions included within this paper, may have 

some annotation and/or parsing errors. This is 

because while the general layout of evidence is 

agreed upon by all, there is much variance in the 

formatting.  

Ethics Statement 

Philosophy, Law, Politics, Economics, and other 

Social Sciences are particularly well represented 

within DebateSum due to its nature as an 

argumentative dataset. The Policy Debate 

community has strong norms and supervision 

related to the included content which make the risk 

of hurtful or harmful content being included to be 

low. Still, the possibility of problematic content 

being included cannot be fully eliminated.  

    DebateKG is an extractive system. While 

extractive systems have far lower abuse potential 

compared to generative systems, the risk of abuse 

is also not totally eliminated. A “dialectic”, 

according to the ancient philosopher Plato, is a 

dialogue held between two or more people for the 

purposes of finding truth. By contrast, a “debate”, 

as far as competitors are concerned, is nothing 

more than a game of rhetorical persuasion played 

with real life evidence and situations. While most 

evidence within DebateSum is fully cited and is 

generally high quality, the way that that the 

evidence is summarized is biased towards the 

targeted argument that the competitor was trying to 

craft.  

    We also point out that DebateSum is not 

necessarily factual or “truthful”. While the 

evidence within it should have almost no direct 

“lies”, “fabrications” or “fake-news”, the evidence 

can still be misleading or without important 

context.  
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A  Appendix 1: Table of Contributed 

Models 

Model 

Name 

Number 

of 

Vertices 

Number 

of Edges 

Average 

Degree 

Mpnet-abs 240566 1876918 7.80 

Mpnet-ext 240566 2133792 8.86 

Mpnet-sent 2546059 68305930 19.3 

Legalbert-

abs 

240566 3006572 11.16 

Legalbert-

ext 

240566 2685362 12.49 

Legalbert-

sent 

2546059 48352931 21.5 

Longformer-

abs 

240566 3685467 6.56 

Longformer-

ext 

240566 5507938 8.89 

Longformer-

sent 

2546059 59743621 22.4 
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Abstract

Opinion summarization is the task of creating
summaries capturing popular opinions from
user reviews. In this paper, we introduce
Geodesic Summarizer (GeoSumm), a novel sys-
tem to perform unsupervised extractive opin-
ion summarization. GeoSumm consists of an
encoder-decoder based representation learning
model that generates topical representations of
texts. These representations capture the un-
derlying semantics of the text as a distribution
over learnable latent units. GeoSumm gener-
ates these topical representations by performing
dictionary learning over pre-trained text rep-
resentations at multiple layers of the decoder.
We then use these topical representations to
quantify the importance of review sentences
using a novel approximate geodesic distance-
based scoring mechanism. We use the impor-
tance scores to identify popular opinions in
order to compose general and aspect-specific
summaries. Our proposed model, GeoSumm,
achieves strong performance on three opinion
summarization datasets. We perform additional
experiments to analyze the functioning of our
model and showcase the generalization ability
of GeoSumm across different domains.

1 Introduction

As more and more human interaction takes place
online, consumers find themselves wading through
an ever-increasing number of documents (e.g., cus-
tomer reviews) when trying to make informed pur-
chasing decisions. As this body of information
grows, so does the need for automatic systems
that can summarize it in an unsupervised manner.
Opinion summarization is the task of automatically
generating concise summaries from online user re-
views (Hu and Liu, 2004; Pang, 2008; Medhat et al.,
2014). For instance, opinion summaries allow a
consumer to understand product reviews without
reading all of them. Opinion summaries are also

† Work done during an internship at Google Research.

useful for sellers to receive feedback, and com-
pare different products. The recent success of deep
learning techniques has led to a significant improve-
ment in summarization (Rush et al., 2015; Nallapati
et al., 2016; Cheng and Lapata, 2016; See et al.,
2017; Narayan et al., 2018; Liu et al., 2018) in
supervised settings. However, it is difficult to lever-
age these techniques for opinion summarization
due to the scarcity of annotated data. It is expen-
sive to collect good-quality opinion summaries as
human annotators need to read hundreds of reviews
to write a single summary (Moussa et al., 2018).
Therefore, most works on opinion summarization
tackle the problem in an unsupervised setting.

Recent works (Bražinskas et al., 2021; Am-
playo et al., 2021a) focus on abstractive summariza-
tion, where fluent summaries are generated using
novel phrases. However, these approaches suffer
from issues like text hallucination (Rohrbach et al.,
2018) that affect the faithfulness of generated sum-
maries (Maynez et al., 2020). Extractive summaries
are less prone to these problems presenting the user
with a representative subset of the original reviews.

We focus on the task of unsupervised extrac-
tive opinion summarization, where the system se-
lects sentences representative of the user opinions.
Inspired by previous works (Chowdhury et al.,
2022; Angelidis et al., 2021a), we propose a novel
encoder-decoder architecture along with objectives
for (1) learning sentence representations that cap-
ture the underlying semantics, and (2) a sentence
selection algorithm to compose a summary.

One of the challenges in extractive summariza-
tion is quantifying the importance of opinions. An
opinion is considered to be important if it is se-
mantically similar to opinions from other users.
Using off-the-shelf pre-trained representations to
obtain semantic similarity scores has known is-
sues (Timkey and van Schijndel, 2021). These
similarity scores can behave counterintuitively due
to the high anisotropy of the representation space
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(a few dimensions dominate the cosine similar-
ity scores). Therefore, we use topical represen-
tations (Blei et al., 2003), which capture the seman-
tics of text as a distribution over latent semantic
units. These semantic units encode underlying con-
cepts or topics. The semantic units can be captured
using a learnable dictionary (Engan et al., 1999;
Mairal et al., 2009; Aharon et al., 2006; Lee et al.,
2006). Topical representations enable us to effec-
tively measure semantic similarity between text
representations as they are distributions over the
same support. Text representations from reviews
lie on a high-dimensional manifold. It is important
to consider the underlying manifold while comput-
ing the importance score of a review. Therefore, we
use the approximate geodesic distance between top-
ical text representations to quantify the importance
scores of reviews.

In this paper, we present Geodesic Summarizer
(GeoSumm) that learns topical text representations
in an unsupervised manner from distributed rep-
resentations (Hinton, 1984). We also present a
novel sentence selection scheme that compares top-
ical sentence representations in high-dimensions
using approximate geodesics. Empirical evalua-
tions show that GeoSumm achieves strong perfor-
mance on three opinion summarization datasets –
OPOSUM+ (Amplayo et al., 2021a), AMAZON (He
and McAuley, 2016) and SPACE (Angelidis et al.,
2021b). Our primary contributions are:
• We present an extractive opinion summarization

system, GeoSumm. It consists of an unsuper-
vised representation learning system and a sen-
tence selection algorithm (Section 3).

• We present a novel representation learning model
that learns topical text representations from dis-
tributed representations using dictionary learning
(Section 3.1).

• We present a novel sentence selection algorithm
that computes the importance of text using ap-
proximate geodesic distance (Section 3.2).

• GeoSumm achieves strong performance on 3
opinion summarization datasets (Section 4.4).

2 Task Setup

In extractive opinion summarization, the objective
is to select representative sentences from a review
set. Specifically, each dataset consists of a set of en-
tities E and their corresponding review setR. For
each entity e ∈ E (e.g., a particular hotel such as
the Holiday Inn in Redwood City, CA), a review set

Re = {r1, r2, . . .} is provided, where each review
is an ordered set of sentences ri = {s(i)1 , s

(i)
2 , . . .}.

For simplicity of notation, we will represent the
set of review sentences corresponding to an entity
e as Se =

⋃
ri∈Re

ri. For each entity, reviews en-
compass a set of aspects Ae = {a1, a2, . . .} (e.g.,
service, food of a hotel). In this work, we consider
two forms of extractive summarization: (a) general
summarization, where the system selects a subset
of sentences Oe ⊂ Se, that best represents popular
opinions in the review set Re; (b) aspect summa-
rization, where the system selects a representative
sentence subset O(a)

e ⊂ Se, about a specific aspect
a (e.g., service) of an entity e (e.g., hotel).

3 Geodesic Summarizer (GeoSumm)

In this section, we present our proposed approach
Geodesic Summarizer (GeoSumm). GeoSumm has
two parts: (a) an unsupervised model to learn topi-
cal representations of review sentences, and (b) a
sentence selection algorithm that uses the approxi-
mate geodesic distance between topical representa-
tions, to compose the extractive summary.

3.1 Unsupervised Representation Learning
The goal of the representation learning model is to
learn topical representations of review sentences.
Topical representations model text as a distribu-
tion over underlying concepts or topics. This is
useful for unsupervised extractive summarization
because we want to capture the aggregate semantic
distribution and quantify the importance of individ-
ual review sentences with respect to the aggregate
distribution. Topical representations allow us to
achieve both. Being a distribution over latent units,
topical representations can be combined to form
an aggregate (mean) representation, enabling com-
positionality. Also, it is convenient to measure the
similarity between representations using conven-
tional metrics (like cosine similarity).

We propose to model topical representations
by decomposing pre-trained representations us-
ing dictionary learning (Tillmann, 2015; Lotfi and
Vidyasagar, 2018). In this setup, the various com-
ponents of the dictionary capture latent semantic
units and we consider the representation over dictio-
nary elements as the topical representation. Unlike
conventional dictionary learning algorithms, we
use a sentence reconstruction objective for learning
the dictionary. We use an encoder-decoder architec-
ture to achieve this. We retrieve word embeddings
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Figure 1: Architecture of Geodesic Summarizer. Sparse
representations of words are formed via the kernel func-
tion f

(j)
θ . The representations are trained to reconstruct

the output embeddings of the encoder layer. Alongside
the dictionary learning objective, we use an unsuper-
vised sentence reconstruction cross-entropy loss. N
indicates the number of decoder layers.

from a pre-trained encoder. We modify the archi-
tecture of a standard Transformer decoder by in-
troducing a dictionary learning component at each
decoder layer. The pre-trained word embeddings
obtained from the encoder are decomposed using
these dictionary learning components to obtain top-
ical representations. Then, we combine the topical
word representations at different decoder layers to
form a sentence representation. The schematic dia-
gram of the model is shown in Figure 1. Next, we
will discuss each of the components in detail.
Encoder. We obtain contextual word embeddings
from a pre-trained BART (Lewis et al., 2020) en-
coder. We keep the weights of the encoder frozen
during training. In Section 5, we discuss why
frozen representations are important for our model.
Given an input sentence s = {w1, . . . , wL}, we
retrieve contextual word embeddings zi’s from the
BART encoder:

zi = sg(enc(wi)) ∈ Rd (1)

where sg(·) denotes the stop gradient operator.
Dictionary Learning. We describe the dictionary
learning component within each decoder layer. We
use dictionary learning to decompose pre-trained
word representations from the encoder to obtain a

sparse representation for each word. We want word
representations to be sparse because each word can
capture only a small number of semantics. We for-
ward word representations from the encoder to the
decoder layers. For the j-th decoder layer, we use
a dictionary, D(j) ∈ Rm×d, and kernel function,
kj(·, ·), where j ∈ {1, . . . , N} (N is the number of
decoder layers). The dictionary captures the under-
lying semantics in the text by enabling us to model
text representations as a combination of dictionary
elements. Specifically, we learn a topical word
representation Tj(wi) over the dictionary D(j) as:

ẑi
(j) = D(j)TTj(wi)

Tj(wi) = kj(zi,D
(j)) ∈ Rm,

(2)

where ẑ
(j)
i is the reconstructed word embedding,

and kj(·, ·) ∈ Rm is the kernel function that mea-
sures the similarity between zi and individual dic-
tionary elements. In practice, since the dictionary
is common for all word embeddings zi’s, the kernel
function can be implemented as:

kj(zi,D
(j)) = f

(j)
θ (zi) ∈ Rm, (3)

where f
(j)
θ is a feed-forward neural network with

ReLU non-linearity. ReLU non-linearity ensures
that the kernel coefficients are positive and also
encourages sparsity.

Following conventional dictionary learning algo-
rithms (Beck and Teboulle, 2009), the dictionary
D(j) and kernel layer f (j)

θ are updated iteratively.
We ensure the sparsity of the word representations
f
(j)
θ (z) by adding an L1-penalty to the loss. Over-

all, this can be achieved by using the loss function:

Ldict(D(j), f
(j)
θ ) = ∥zi − sg(D(j)T )f

(j)
θ (zi)∥2

+ ∥zi −D(j)T sg(f
(j)
θ (zi))∥2

+
∣∣f (j)

θ (zi)− E
[
f
(j)
θ (zi)

] ∣∣
1
,

where the gradient update of the dictionary D(j)

and kernel layer f (j)
θ are performed independently.

Decoder. We build on the decoder architecture
introduced by Vaswani et al. (2017). A decoder
layer consists of 3 sub-layers (a) masked multi-
head attention layer that takes as input decoder
token embeddings, (b) multi-head attention that
performs cross-attention between decoder tokens
and encoder stack output, and (c) feed-forward net-
work. We modify the cross attention multi-head
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sub-layer to attend over the reconstructed word em-
beddings ẑ(j)i (Equation 2), instead of the encoder
stack output (shown in Figure 1). Finally, the de-
coder autoregressively generates the reconstructed
sentence ŝ = {ŵ1, . . . , ŵL}.
Training. The system is trained using the sen-
tence reconstruction objective. The overall objec-
tive function is shown below:

LCE(s, ŝ) +
N∑

j=1

Ldict(D(j), f
(j)
θ ), (4)

where LCE is the cross-entropy loss, and f
(j)
θ is

the implementation of the kernel function kj(·, ·)
corresponding to the j-th decoder layer. The above
loss function is used to update the decoder, the dic-
tionary elements, and the kernel parameters while
keeping the encoder weights frozen.
Sentence Representations. We combine topical
word representations from different decoder layers
to form a sentence representation. First, we ob-
tain a word representation, Tj(w) ∈ Rm from each
decoder layer. We compose the final word represen-
tation xw by concatenating representations from
all decoder layers.

xw = [T1(w), . . . , TN (w)] ∈ RmN , (5)

where m is the dictionary dimension and N is the
number of decoder layers. We use max-pooling
over the dimensions of word representations to
form a sentence representation xs as shown below.

xs
n = max

w∈{w1,...,wL}
xw

∣∣
n

x̄s = {xs
n}mN

n=1,xs = x̄s/∥x̄s∥1 ∈ RmN ,
(6)

where xw

∣∣
n

is the n-th entry of the vector xw. The
sentence representation xs is normalized to a unit
vector. Next, we discuss how we leverage these
topical sentence representations to compute impor-
tance scores using approximate geodesics. We use
the importance scores to compose the final extrac-
tive summary for a given entity.

3.2 General Summarization
We use representations retrieved from GeoSumm to
select sentences representative of popular opinions
in the review set. For an entity e, the set of sentence
representations is denoted as Xe = {xs|s ∈ Se}.
For a summary budget q, we select a subset of

xs

xs′ 

Figure 2: Illustration of the geodesic shortest path
(shown in blue) between two sentence representations
xs and xs′ on a three-dimensional manifold.

sentences Oe ⊂ Se according to their importance
scores, such that |Oe| = q. First, we compute a
mean representation as shown: µe = Es∼Se [xs].
Secondly, we define the importance of a sentence
s, as the distance from the mean representation
d(xs, µe). However, we do not directly evaluate
d(·, ·) using a similarity metric. Representations
in Xe lie in a high-dimensional manifold, and we
aim to measure the geodesic distance (Jost and Jost,
2008) between two points along that manifold. An
illustration of the geodesic distance between two
points is shown in Figure 2. Computing the ex-
act geodesic distance is difficult without explicit
knowledge of the manifold structure (Surazhsky
et al., 2005). We approximate the manifold struc-
ture using a k-NN graph. Each sentence repre-
sentation forms a node in this graph. A directed
edge exists between two nodes if the target node
is among the k-nearest neighbours of the source
node. The edge weight between two nodes (s, s′)
is defined using their cosine similarity distance,
d(s, s′) = 1 − xsx

T
s′ . The geodesic distance be-

tween two sentence representations is computed
using the shortest path distance along the weighted
graph. Therefore, the importance score I(s) for a
sentence s, is defined as:

I(s) = 1/ShortestPath(xs, µe), (7)

where the shortest path distance is computed us-
ing Dijkstra’s algorithm (Dijkstra et al., 1959). We
select the top-q sentences according to their im-
portance scores I(s) to form the final general ex-
tractive summary. The overall sentence selection
routine is shown in Algorithm 1.
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Algorithm 1 General Summarization Routine
1: Input: A set of sentence representations Xe =
{xs|s ∈ Se} are review sentences for entity e.

2: µe ← Es∼Se [xs]
3: A← knn(Xe ∪ µe) ∈ Rl×l ▷ adjacency

matrix of k-NN graph, l = |Se|+ 1.
4: d← Dijkstra(A, µe) ▷ shortest distances of

all nodes from µe

5: I ← {1/d(s)|s ∈ Se} ▷ importance scores
6: tq ← min top-q(I) ▷ top-q threshold
7: Oe ← {s | I(s) ≥ tq, s ∈ Se}
8: return Oe

3.3 Aspect Summarization
In aspect summarization, the goal is to select repre-
sentative sentences to form a summary specific to
an aspect (e.g., durability) of an entity (e.g., bag).
To perform aspect summarization, we compute the
mean representation of aspect-specific sentences
as shown: µ

(a)
e = E

s∼S(a)
e

[xs], where S(a)e is the
set of sentences mentioning aspect a. We identify
S(a)e by detecting the presence of aspect-specific
keywords available with the dataset. To ensure
the selected sentences are aspect-specific, we in-
troduce a measure of informativeness (Chowdhury
et al., 2022; Peyrard, 2019). Informativeness pe-
nalizes a sentence for being close to the overall
mean µe. Therefore, we model the aspect-specific
importance score Ia(s) as:

Ia(s) = 1/ShortestPath(xs, µ
(a)
e )− γI(s), (8)

where γ is a hyperparameter, I(s) is the overall im-
portance score (obtained from Eqn. 7). Aspect sum-
mary O(a)

e is composed using the top-q sentences
according to the aspect-specific scores, Ia(s).

4 Experiments

We evaluate the performance of GeoSumm on ex-
tractive summarization. Given a set of user reviews
the system needs to select a subset of the sentences
as the summary. This summary is then compared
with human-written summaries. In this section, we
discuss the experimental setup in detail.

4.1 Datasets & Metrics
We evaluate GeoSumm on three publicly available
opinion summarization datasets:
(a) OPOSUM+ (Amplayo et al., 2021b) is
an extended version of the original OPOSUM

Dataset Reviews Train / Test Ent. Rev./Ent.

OPOSUM+ 4.13M 95K / 60 10
AMAZON 4.75M 183K / 60 8
SPACE 1.14M 11.4K / 50 100

Table 1: Dataset statistics for OPOSUM+, AMAZON and
SPACE datasets. (Train/Test Ent.: Number of entities in
the training and test set; Rev./Ent.: Number of reviews
per entity in the test set.)

dataset (Angelidis and Lapata, 2018a). This dataset
contains Amazon reviews from six product cat-
egories (like laptops, bags, etc.), with 3 human-
written summaries in the test set. The extended
version contains additional product reviews and
aspect-specific human annotations.
(b) AMAZON (He and McAuley, 2016; Bražinskas
et al., 2020a) has product reviews of 4 different
categories (like electronics, clothing, etc.) from
Amazon, with 3 human summaries per entity.
(c) SPACE (Angelidis et al., 2021a) contains re-
views for hotels from Tripadvisor. SPACE provides
three human-written abstractive summaries and six
aspect-specific summaries per hotel entity.

Statistics of the datasets are provided in Table 1.
We observe that SPACE dataset has significantly
more reviews per entity compared to other datasets.

4.2 Implementation Details
Our experiments are implemented using the Ten-
sorFlow (Abadi et al., 2015) framework. We use
BARTbase (Lewis et al., 2020) architecture as our
encoder-decoder model. We initialize the encoder
with pre-trained weights from BART, while the de-
coder is trained from scratch. In our experiments,
we use dictionary dimension m = 8192, number
of decoder layers N = 6, and hidden dimension
d = 768. GeoSumm was trained for 15K steps on
16 TPUs in all setups. We optimize our model us-
ing Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 10−5. We set aspect-summarization
parameter γ = 0.5 for OPOSUM+ and γ = 0.7 for
SPACE (Equation 8). All hyperparameters were
tuned using grid-search on the development set.
We will make our code publicly available.

4.3 Baselines
We compare GeoSumm with several summariza-
tion systems (including the current state-of-the-art)
that can be classified into three broad categories:
• Single Review systems select a single review as
the summary. We compare with the following sys-
tems: (a) Random samples a review randomly from
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Method
OPOSUM+ AMAZON SPACE

R1 R2 RL R1 R2 RL R1 R2 RL
Si

ng
le

R
ev

.

Random 29.88 5.64 17.19 27.66 4.72 16.95 26.24 3.58 14.72
CentroidBERT 33.44 11.00 20.54 29.94 5.19 17.70 31.29 4.91 16.43
Oracle 32.89 23.20 28.73 31.69 6.47 19.25 33.21 8.33 18.02

A
bs

tr
ac

tiv
e

Opinosis (Ganesan et al., 2010) - - - 28.42 4.57 15.50 28.76 4.57 15.96
MeanSum (Chu and Liu, 2019) 34.95 7.49 19.92 29.20 4.70 18.15 34.95 7.49 19.92
Copycat (Bražinskas et al., 2020b) 36.66 8.87 20.90 31.97 5.81 20.16 36.66 8.87 20.90
PlanSum (Amplayo et al., 2021c) - - - 32.87 6.12 19.05 - - -
TranSum (Wang and Wan, 2021) - - - 34.23 7.24 20.49 - - -
COOP (Iso et al., 2021) - - - 36.57 7.23 21.24 - - -
AceSum (Amplayo et al., 2021c) 32.98 10.72 20.27 - - - 40.37 11.51 23.23

E
xt

ra
ct

iv
e LexRankBERT (Erkan and Radev, 2004) 35.42 10.22 20.92 31.47 5.07 16.81 31.41 5.05 18.12

QT (Angelidis et al., 2021a) 37.72 14.65 21.69 31.27 5.03 16.42 38.66 10.22 21.90
AceSumEXT (Amplayo et al., 2021b) 38.48 15.17 22.82 - - - 35.50 7.82 20.09
SemAE (Chowdhury et al., 2022) 39.16 16.85 23.61 32.03 5.38 16.47 42.48 13.48 26.40

Geodesic Summarizer (GeoSumm) 41.55 20.77 25.19 33.75 7.15 18.79 42.36 12.44 24.80

Table 2: Evaluation results of GeoSumm and baseline approaches on general summarization. We observe that
GeoSumm achieves strong performance on all datasets. We report the ROUGE-F scores denoted as – R1: ROUGE-1,
R2: ROUGE-2, RL: ROUGE-L. We highlight the best performance achieved by an extractive summarization system
in bold and the best abstractive summarization performance in underline.

Method
OPOSUM+ SPACE

R1 R2 RL R1 R2 RL

A
bs

tr
ac

t MeanSum 24.63 3.47 17.53 23.24 3.72 17.02
CopyCat 26.17 4.30 18.20 24.95 4.82 17.53
AceSum 29.53 6.79 21.06 32.41 9.47 25.46

E
xt

ra
ct

iv
e LexRank 22.51 3.35 17.27 27.72 7.54 20.82

QT 23.99 4.36 16.61 28.95 8.34 21.77
SemAE 25.30 5.08 17.62 31.24 10.43 24.14
AceSumEXT 26.16 5.75 18.55 30.91 8.77 23.61

GeoSumm 30.84 8.98 21.64 26.61 5.82 19.37

Table 3: Evaluation results on aspect summarization.
The best scores for each metric is highlighted in bold.
GeoSumm achieves the state-of-the-art performance on
OPOSUM+, while achieving competitive performance
with other extractive methods on SPACE.

the review set; (b) Centroid selects a review closest
to the centroid of the review set. The centroid is
computed using BERT (Devlin et al., 2019) embed-
dings; (c) Oracle selects the best review based on
ROUGE overlap with the human-written summary.
• Abstractive systems generate summaries using
novel phrasing. We compare GeoSumm with the
following systems: MeanSum (Chu and Liu, 2019),
Copycat (Bražinskas et al., 2020b), PlanSum (Am-
playo et al., 2021c), TranSum (Wang and Wan,
2021), COOP (Iso et al., 2021), and AceSum (Am-
playo et al., 2021b).
• Extractive systems select text phrases from the
review set to form the summary. We compare with

General Inform. Coherence Redund.

SemAE -7.3 -10.0 -51.3
QT 8.0 -4.7 12.7
GeoSumm -0.7 14.7* 38.7*

Table 4: Human evaluation results of general summa-
rization for SPACE dataset. (*): statistically significant
difference with all baselines (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

the following systems: LexRank (Erkan and Radev,
2004) using BERT embeddings, QT (Angelidis
et al., 2021a), AceSumEXT (Amplayo et al., 2021b),
and SemAE (Chowdhury et al., 2022).

4.4 Results
We discuss the performance of GeoSumm on gen-
eral and aspect-specific summarization. We eval-
uate the quality of the extracted summaries us-
ing the automatic metric – ROUGE F-scores (Lin,
2004), which measures the n-gram overlap with the
human-written summaries.
General Summarization. We present the results
of GeoSumm and baseline approaches on gen-
eral summarization in Table 2. We observe that
GeoSumm achieves strong performance across all
datasets. For OPOSUM+ and AMAZON datasets,
GeoSumm achieves significant improvement over
baselines achieving the best performance among
extractive summarization systems. For the SPACE

dataset, it is competitive with baselines falling
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Aspect Exclusive Partial None

SemAE 22.1 43.8 34.1
QT 22.2 41.9 35.9
GeoSumm 46.4* 45.6 8.0*

Table 5: Human evaluation results of aspect summariza-
tion for OPOSUM+ dataset. GeoSumm generates more
aspect-specific summaries compared to baselines.

slightly short of the state-of-the-art model, SemAE.
However, we observe that GeoSumm’s summaries
are much more diverse leading to significantly bet-
ter human evaluation scores compared to SemAE.
Aspect Summarization. We report the perfor-
mance on different approaches on aspect summa-
rization in Table 3 on OPOSUM+ and SPACE. We
observe that GeoSumm achieves the state-of-the-
art performance for all metrics on the OPOSUM+
dataset. On SPACE dataset, it achieves comparable
scores to other extractive approaches.
Human Evaluation. We perform a human evalu-
ation to compare the summaries from GeoSumm
with the state-of-the-art extractive summarization
systems SemAE and QT. General summaries were
judged based on the following criteria: informa-
tiveness, coherence, and redundancy. We present
human evaluators with summaries in a pairwise
fashion and ask them to select which one was bet-
ter/worse/similar according to the criteria. The
final scores for each system reported in Table 4
were computed using Best-Worst Scaling (Lou-
viere et al., 2015). We observe that GeoSumm
outperforms the baselines in coherence and redun-
dancy. GeoSumm performs slightly worse than QT
in informativeness. This is expected as GeoSumm
greedily select sentences (that are often similar),
while QT performs sampling leading to more coher-
ent summaries (compromising on informativeness).

For aspect summaries, we ask annotators to
judge whether a summary discusses a specific as-
pect exclusively, partially, or does not mention it
at all. In Table 5, we report the human evalua-
tion results for aspect summaries on OPOSUM+
dataset. We observe that GeoSumm generates sum-
maries that are significantly more aspect-specific
compared to baselines. We provide further details
about human evaluation in Appendix A.1.

5 Analysis

Thawed Encoder. In this experiment, we compare
the performance of GeoSumm when the encoder
is allowed to be fine-tuned with the original setup,
where the encoder weights are frozen. In Table 6,

Dataset R1 R2 RL

OPOSUM+ 35.7 (↓5.9) 13.9 (↓6.9) 21.1 (↓4.1)
AMAZON 32.2 (↓1.6) 6.2 (↓1.0) 17.3 (↓1.5)
SPACE 33.5 (↓8.9) 6.9 (↓5.5) 19.5 (↓5.3)

Table 6: Evaluation results when GeoSumm’s encoder
is fine-tuned during training. We observe a significant
drop in performance when the encoder is fine-tuned.

we observe that there is a significant drop in perfor-
mance when the encoder is fine-tuned. We hypoth-
esize that this happens because the model overfits
shallow word-level semantics, and is unable to cap-
ture more abstract semantics. This showcases the
utility of pre-trained representations that helps Geo-
Summ perform well in an unsupervised setting.

Next, we investigate the efficacy of the represen-
tation learning and sentence selection modules by
replacing each of them with a competitive variant.

Dataset R1 R2 RL

OPOSUM+ 28.1 (↓13.5) 6.2 (↓14.6) 15.8 (↓9.4)
AMAZON 32.6 (↓1.2) 6.1 (↓1.1) 17.9 (↓0.8)
SPACE 41.4 (↓1.0) 11.5 (↓0.9) 24.0 (↓0.8)

Table 7: Evaluation results of GeoSumm with a modi-
fied score I(s) = −∥xs − µe∥22. We observe a signifi-
cant drop in performance across all three datasets.

Euclidean-based Importance Score. We investi-
gate the utility of geodesic-based importance scor-
ing over Euclidean-based scoring. In this experi-
ment, instead of I(s) (defined in Equation 7) we
compute the importance score of a sentence, s, as
the Euclidean distance from the mean represen-
tation, µe (I(s) = −∥xs − µe∥22). We report the
results of this setup in Table 7 (relative performance
to GeoSumm is shown in brackets). We observe
that performing sentence selection using Euclidean
distance results in a significant drop in performance
across all datasets. We believe that leveraging the
kNN graph provides us with a better approximation
of the underlying representation manifold, which
results in better summarization performance.
Distributed vs. Topical Representations. In
this experiment, we investigate the relative efficacy
of topical representations compared to distributed
representations. We retrieve distributed sentence
representations from RoBERTa (Liu et al., 2019)
([CLS] token feature) and SimCSE (Gao et al.,
2021) model. Then, we use these representations
in our sentence selection algorithm (Section 3.2)
to compose the summary. In Table 8, we observe
that topical representations (obtained from Geo-
Summ) outperform distributed representations by a
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Dataset Model R1 R2 RL

OPOSUM+ RBT 35.1 (↓6.5) 13.0 (↓7.8) 21.2 (↓4.0)
SCS 33.5 (↓8.1) 6.9 (↓13.9) 19.5 (↓5.7)

AMAZON
RBT 29.4 (↓4.4) 4.7 (↓2.4) 15.3 (↓3.5)
SCS 31.0 (↓2.8) 5.2 (↓1.9) 16.4 (↓2.4)

SPACE
RBT 26.8 (↓15.6) 3.7 (↓8.7) 15.4 (↓9.4)
SCS 30.1 (↓12.3) 4.8 (↓7.6) 17.3 (↓7.5)

Table 8: Evaluation results of GeoSumm using
RoBERTa (RBT) and SimCSE’s (SCS) representations.
We observe that opinion summarization using topical
representations from GeoSumm outperforms distributed
representations across all datasets.

Perplexity (PPL) ↓ SPACE AMAZON

QT 33.46 63.70
SemAE 15.95 55.46
GeoSumm 14.95 45.55

Table 9: Perplexity of the summaries generated by dif-
ferent extractive summarization systems. We observe
that GeoSumm achieves the best perplexity scores, indi-
cating more coherent summaries.

significant margin across all setups. This shows the
utility of topical representations over distributed
representations for unsupervised summarization.
Summary Coherence. In this experiment, we
evaluate the coherence of the generated extractive
summaries using automatic measures. Specifically,
we measure the perplexity scores (from Hugging-
Face (Wolf et al., 2020) Evaluate API) using the
GPT-Neo model (Black et al., 2021). The perplex-
ity scores are indicative of the coherence of the
generated text. In Table 9, we report the perplexity
scores on SPACE and AMAZON datasets for ex-
tractive systems QT, SemAE, and GeoSumm. We
observe that GeoSumm achieves the best perplex-
ity scores showcasing that it is able to generate
superior-quality summaries in terms of coherence.
We believe that the greedy aggregation of sentences
in GeoSumm often results in the selection of seman-
tically similar sentences thereby leading to more
coherent summaries with fewer context switches.
Cluster Interpretation. In this experiment, we in-
vestigate whether different parts of the representa-
tion space capture distinct semantics. We partition
the space by performing agglomerative clustering
with Ward’s linkage (Ward Jr, 1963) on the repre-
sentation set for a particular entity. In Table 10, we
report example sentences within different clusters.
We observe that sentences belonging to the same
cluster share a common theme. The underlying
semantics of a cluster can vary from being coarse,
like the presence of the phrase ‘Calistoga’, to more

Theme Sentences

Flowers
• The gardens are lovely with wide va-
rieties of flowering plants and shrubs,
koi ponds and hummingbird feeders.
• Pots of tulips and daffodils in full

bloom; other plantings well cared for;
pathways clean and swept.

Location
‘Calistoga’

• Calistoga is a beautiful historic town
with good restaurants and beautiful old
houses –a fun place to walk.
• The Roman Spa and Calistoga is our
favorite spot in the Wine Country.

Pillows
& Beds

• The rooms were in great shape, very
clean, comfortable beds with lots of
pillows.
• The pillows and bed coverings were
of very good quality There was also a
mini-refrigerator and coffeemaker.

Phrase
‘every year’

• We return every year to the Roman
Space after the holidays and brought
Seattle friends this January.
• Every year for the past 15 years we
have met at the Roman Spa ...

Table 10: Sentences within a cluster produced from
agglomerate clustering. Sentences in a row belong to
the same cluster. We highlight the dominant theme of a
cluster in green.

nuanced concepts like pillows & beds in the room,
flowers in the hotel’s garden, etc.
Generated Summaries. In Table 11, we report
the summaries generated by GeoSumm, and other
comparable extractive summarization systems like
SemAE and QT. We observe that GeoSumm is
able to generate a comprehensive summary that
reflects the main considerations mentioned in the
human summary. Compared to SemAE, we see
more specific adjectival descriptions; SemAE in-
dicates that many of the hotel characteristics are
simply ‘great’. Compared to QT, we see a review
that seems to more accurately reflect the human-
written summary.

We perform additional ablations experiments to
investigate the domain transfer capabilities, sparsity
of representations, among others in Appendix A.2.

6 Related Work

Most work on opinion summarization focuses on
generating summaries in an unsupervised setup
due to the scarcity of labeled data. These works
are broadly classified into two categories based on
the type of summaries being generated: abstrac-
tive (Ganesan et al., 2010; Carenini et al., 2006;
Di Fabbrizio et al., 2014) or extractive (Erkan and
Radev, 2004; Nenkova and Vanderwende, 2005;
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Human GeoSumm SemAE QT

All staff members were
friendly, accommodating,
and helpful. The hotel and
room were very clean. The
room had modern charm
and was nicely remodeled.
The beds are extremely
comfortable. The rooms are
quite with wonderful beach
views. The food at Hash,
the restaurant in lobby, was
fabulous. The location is
great, very close to the beach.
It’s a longish walk to Santa
Monica. The price is very
affordable.

Overall we had a nice stay
at the hotel. Our room was
very clean and comfortable.
The atmosphere is stylish
and the service was great.
We ate breakfast at the ho-
tel and it was great. I ap-
preciate the location and
the security in the hotel.
The food and service at the
restaurant was awesome.
The Hotel is classy and has
a rooftop bar. The restau-
rant is cozy but they have
good healthy food. Great
hotel.

The staff is great. The Ho-
tel Erwin is a great place to
stay. The staff were friendly
and helpful. The location
is perfect. We ate break-
fast at the hotel and it was
great. The hotel itself is in a
great location. The service
was wonderful. It was great.
The rooms are great. The
rooftop bar HIGH was the
icing on the cake. The food
and service at the restaurant
was awesome. The service
was excellent.

Great hotel. We liked our
room with an ocean view.
The staff were friendly
and helpful. There was
no balcony. The loca-
tion is perfect. Our room
was very quiet. I would
definitely stay here again.
You’re one block from the
beach. So it must be
good! Filthy hallways.
Unvacuumed room. Pricy,
but well worth it.

Table 11: Human-written and generated summaries from GeoSumm, SemAE, and QT. For a fair comparison, we
present the summary for the instance reported in previous works. GeoSumm generates a comprehensive review with
a relatively logical ordering that starts with a clear topic sentence and then proceeds to details. Compared to SemAE,
we see more descriptive sentences selected. Compared to QT, we see a summary that more closely matches the
human-written summary.

Zhao et al., 2022; Li et al., 2023). Abstractive sys-
tems, in an unsupervised setup (Chu and Liu, 2019;
Bražinskas et al., 2020b; Iso et al., 2021; Wang and
Wan, 2021; Amplayo et al., 2021a) train an encoder-
decoder setup using a self-supervised objective and
generate the summary by leveraging the aggregate
opinion representation. On the other hand, ex-
tractive opinion systems (Kim et al., 2011), select
sentences using an importance score that quanti-
fies their salience. Salience has been computed
using frequency-based approaches (Nenkova and
Vanderwende, 2005), distance from mean (Radev
et al., 2004), or graph-based techniques (Erkan and
Radev, 2004). Few approaches focus on aspect
specificity and sentiment polarity for sentence se-
lection (Angelidis and Lapata, 2018b; Zhao and
Chaturvedi, 2020).

Our work is most similar to extractive summa-
rization systems SemAE (Chowdhury et al., 2022),
and QT (Angelidis et al., 2021a). Similar to these
systems, Geodesic Summarizer has two compo-
nents: a representation learning system, and a sen-
tence selection routine. However, unlike these ap-
proaches, we leverage pre-trained models to learn
topical representations over a latent dictionary and
propose a sentence selection mechanism using ap-
proximate geodesics to perform summarization.

Approaches in our work resemble prior works
in deep clustering, which considers a similar com-
bination of unsupervised representation learning
and sparse structures (Yang et al., 2016; Jiang

et al., 2016; Law et al., 2017; Caron et al., 2020;
Zhao et al., 2020). In a similar fashion, dictionary
learning-like approaches have been combined with
deep networks (Liang et al., 2021; Zheng et al.,
2021) for various tasks.

7 Conclusion

We present Geodesic Summarizer, a novel frame-
work for extractive opinion summarization. Geo-
Summ uses a representation learning model to con-
vert distributed representations from a pre-trained
model into topical text representations. GeoSumm
uses these representations to compute the impor-
tance of a sentence using approximate geodesics.
We show that GeoSumm achieves strong perfor-
mance on several opinion summarization datasets.
However, there are a lot of open questions about
the inductive biases of representation learning that
are needed for unsupervised summarization. In
this work, we show the efficacy of topical repre-
sentations. However, are there better approaches to
capturing language semantics that help us quantify
the importance of an opinion? Our analysis shows
that representations from GeoSumm span the high-
dimensional space in a manner that different parts
of it capture distinct semantics. This opens up the
possibility of leveraging the representation geome-
try to capture different forms of semantics. Future
work can explore ways to leverage topical repre-
sentations from GeoSumm for tasks where there is
a scarcity of labeled data.
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9 Limitations

We propose GeoSumm, a novel system that learns
topical representations of text and uses them to
compute the importance of opinion reviews for ex-
tractive summarization. One of the limitations of
GeoSumm is that it requires pre-training of the
representation learning module using reviews sen-
tences from a similar domain. For this, GeoSumm
requires access to a large collection of review data
from the target domain, thereby limiting its applica-
bility in zero-shot or few-shot setups. This can be
alleviated by future research on developing founda-
tional models that learn topical representations on
large-scale datasets and generalize across different
opinion summarization domains.

Ethical Considerations

We do not foresee any ethical issues from the tech-
nology introduced in this paper. However, we
would like to mention certain limitations of extrac-
tive summarization systems in general. As extrac-
tive systems select review sentences from the input,
it can produce undesirable output when the input
reviews have foul or offensive language. Therefore,
it is important to remove foul language from the
input in order to ensure the end user is not affected.
In general, we use public datasets and do not an-
notate any data manually. All datasets used in this
paper have customer reviews in the English lan-
guage. Human evaluations for summarization were
performed on Amazon Mechanical Turks (AMT)
platform. Human judges were based in the United
States. Human judges were compensated at a rate
of at least $15 USD per hour.
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Daniel Tam. 2004. Centroid-based summarization
of multiple documents. Information Processing &
Management, 40(6):919–938.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object hallu-
cination in image captioning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4035–4045, Brussels,
Belgium. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 379–389, Lisbon, Por-
tugal. Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1073–1083, Vancouver, Canada. As-
sociation for Computational Linguistics.

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov,
Steven J Gortler, and Hugues Hoppe. 2005. Fast
exact and approximate geodesics on meshes. ACM
transactions on graphics (TOG), 24(3):553–560.

Yee Teh, Michael Jordan, Matthew Beal, and David
Blei. 2004. Sharing clusters among related groups:
Hierarchical dirichlet processes. Advances in neural
information processing systems, 17.

Andreas M. Tillmann. 2015. On the computational
intractability of exact and approximate dictionary
learning. IEEE Signal Processing Letters, 22(1):45–
49.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
4527–4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008.

Ke Wang and Xiaojun Wan. 2021. TransSum: Trans-
lating aspect and sentiment embeddings for self-
supervised opinion summarization. In Findings
of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 729–742, Online. Associ-
ation for Computational Linguistics.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association, 58(301):236–244.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016.
Joint unsupervised learning of deep representa-
tions and image clusters. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 5147–5156.

Chao Zhao and Snigdha Chaturvedi. 2020. Weakly-
supervised opinion summarization by leveraging ex-
ternal information. In Proceedings of the AAAI

117



Conference on Artificial Intelligence, volume 34,
pages 9644–9651.

Chao Zhao, Tenghao Huang, Somnath Basu Roy
Chowdhury, Muthu Kumar Chandrasekaran, Kath-
leen Mckeown, and Snigdha Chaturvedi. 2022. Read
top news first: A document reordering approach for
multi-document news summarization. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 613–621.

Jinyu Zhao, Yi Hao, and Cyrus Rashtchian. 2020. Un-
supervised embedding of hierarchical structure in
euclidean space. arXiv preprint arXiv:2010.16055.

Hongyi Zheng, Hongwei Yong, and Lei Zhang.
2021. Deep convolutional dictionary learning
for image denoising. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

118



A Appendix

A.1 Human Evaluation
We perform the human evaluation on the Ama-
zon Mechanical Turk (AMT) platform. We de-
signed the payment rate per Human Intelligence
Task (HIT) in a manner to ensure that judges were
compensated at a rate of at least $15 USD per hour.
In all tasks, each HIT was evaluated by three hu-
man judges.

For general summarization, we performed a pair-
wise evaluation of two summarization systems.
Specifically, we were given two system summaries
the human judges were asked to judge each pair
as better, worse, or similar. We asked the judges
to evaluate the pair based on the following criteria
– informativeness, redundancy, and coherence, in
independent tasks. For informativeness, we also
provide the judges with a human-written summary.
The judges annotate a summary as more informa-
tive only if the information is consistent with the
human-written summaries. The reported scores
(-100 to +100) were computed using Best-worst
scaling (Louviere et al., 2015). For a fair compari-
son, we consider the version of SemAE that does
not use additional aspect-related information.

For aspect summarization, we provide human
judges with a system-generated aspect summary
and the corresponding aspect. Judges were asked
to annotate whether the system summary discusses
the mentioned aspect exclusively, partially, or does
not mention the aspect at all.

A.2 Analysis
Dictionary Size Ablation. In this experiment, we
vary the number of elements in each dictionary
(m) and observe the summarization performance
on SPACE dataset. We conduct these experiments
on the SPACE dataset. In Table 12, we observe
GeoSumm achieves comparable performance with
significantly smaller dictionary sizes. In fact, for
the smallest dictionary sizes GeoSumm achieves
the best ROUGE-1 and ROUGE-L scores.
Sparsity.

We examine the sparsity of sentence representa-
tions from GeoSumm. For each sentence represen-
tation, we sort the dimensions by magnitude, from
smallest to largest. This enables us to compare
magnitudes across sentences for a specific sorted
rank position. We then plot the mean magnitude
(and two standard deviations) for each sorted rank
position, as illustrated in Figure 3. Our observa-

m R1 R2 RL

512 43.36 11.53 24.10
1024 42.76 12.66 24.28
4096 42.77 11.47 24.11
8192 42.36 12.44 24.80
16384 41.24 10.92 23.92

Table 12: Evaluation results with a varying number of
dictionary elements on SPACE dataset. We observe that
there is only a small drop in performance of GeoSumm,
when the dictionary sizes are reduced.

tions indicate that most sentences possess only a
few dimensions with high magnitude, while the
remaining dimensions have magnitudes of zero or
close to zero.

Figure 3: Plot depicting the sparsity of sentence repre-
sentations retrieved from GeoSumm. We sort, individu-
ally for each sentence, the dimensions from the smallest
to the largest magnitude and report the mean magnitude
for each sorted position (and two standard deviations).
Most sentences seem to have only a few large magni-
tude dimensions and many close to zero.

Domain Transfer capability. In this experiment,
we investigate the domain transfer capability of
GeoSumm. Specifically, we evaluate how Geo-
Summ trained on one dataset, performs on others.
We also evaluate GeoSumm when it is trained on
C4 dataset (Raffel et al., 2020). In Table 14, we
report the results of this experiment. We observe
that when training on the non-domain specific C4
corpus, performance is nearly that of in-domain
training. The largest degradation of performance
occurs when training on OPOSUM+ or AMAZON

and evaluating on SPACE. We hypothesize that this
happens due to a domain shift, where both AMA-
ZON and OPOSUM+ are product review datasets,
while SPACE has reviews for hotel entities. When
evaluated on OPOSUM+ or AMAZON, we observe
that GeoSumm is generalizing well, and out-of-
domain performance is not much worse than in-
domain performance (highlighted in gray ).
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Method
OPOSUM+ AMAZON SPACE

R1 R2 RL R1 R2 RL R1 R2 RL

NMF (Lee and Seung, 2000) 32.85 10.44 18.96 30.33 5.07 16.10 34.88 6.14 18.87
LDA (Blei et al., 2003) 32.70 10.85 19.60 31.31 5.27 16.51 26.57 3.46 14.81
LSA (Dumais et al., 2004) 32.41 10.33 19.66 31.71 6.11 17.79 31.64 5.57 17.72
HDP (Teh et al., 2004) 34.60 11.29 19.39 30.60 4.91 16.20 29.77 4.44 16.49
NTMBERT (Bianchi et al., 2021) 33.00 11.01 19.01 31.62 5.29 16.54 26.12 2.74 15.29

Geodesic Summarizer (GeoSumm) 41.55 20.77 25.19 33.75 7.15 18.79 42.36 12.44 24.80

Table 13: Comparison of Geodesic Summarizer’s performance with other unsupervised topic modeling techniques on
general summarization. In this experiment, we modify the representation learning module of Geodesic Summarizer
while keeping the sentence selection approach same. We observe that Geodesic Summarizer’s topic modeling
approach achieves the best performance across all datasets.

Train→Predict R1 R2 RL

SPACE→OPOSUM+ 38.94 16.80 22.60
AMAZON→OPOSUM+ 40.14 18.97 24.91
C4→OPOSUM+ 37.96 15.97 21.93
OPOSUM+→OPOSUM+ 41.55 20.77 25.19

SPACE→AMAZON 32.29 6.36 17.22
OPOSUM+→AMAZON 33.57 6.46 17.86
C4→AMAZON 32.03 6.35 17.04
AMAZON→AMAZON 33.75 7.15 18.79

OPOSUM+→SPACE 27.85 4.93 16.03
AMAZON→SPACE 25.14 2.95 14.98
C4→SPACE 41.81 11.61 24.28
SPACE→SPACE 42.36 12.44 24.80

Table 14: Evaluation results when the representation
learning system is trained on a different dataset. In-
domain performance is highlighted in gray . GeoSumm
shows decent domain transfer performance for OPO-
SUM+ and AMAZON datasets.

Unsupervised Topic Modeling Ablations In this
setup, we experiment with different unsupervised
topic modeling approaches – latent Dirichlet allo-
cation (LDA) (Blei et al., 2003), linear semantic
analysis (LSA) (Dumais et al., 2004), non-negative
matrix factorization (NMF) (Lee and Seung, 2000),
hierarchical Dirichlet process (HDP) (Teh et al.,
2004), and neural topic model (NTM) using con-
textual embeddings (Bianchi et al., 2021). Most
of these approaches focus on factorizing sentence
representations into topical representations over a
set of learned topics. We set the sentence repre-
sentation dimension d = 100 for all approaches.
Specifically, we replace the representation learning
module from GeoSumm while keeping the sen-
tence selection algorithm the same. In Table 13,
we report the performance on general summariza-
tion of different methods. We observe that most of

the other topical approaches perform significantly
worse than GeoSumm. These approaches use sig-
nificantly fewer parameters compared to a Trans-
former decoder used in GeoSumm. We believe that
leveraging more parameters helps the unsupervised
model to capture latent semantics better leading to
better summarization performance.
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Abstract

Abstractive summarization systems aim to
write concise summaries capturing the most
essential information of the input document in
their own words. One of the ways to achieve
this is to gather and combine multiple pieces
of information from the source document, a
process we call aggregation. Despite its im-
portance, the extent to which both reference
summaries in benchmark datasets and system-
generated summaries require aggregation is
yet unknown. In this work, we propose AG-
GSHAP, a measure of the degree of aggre-
gation in a summary sentence. We show that
AGGSHAP distinguishes multi-sentence aggre-
gation from single-sentence extraction or para-
phrasing through automatic and human evalu-
ations. We find that few reference or model-
generated summary sentences have a high de-
gree of aggregation measured by the proposed
metric. We also demonstrate negative corre-
lations between AGGSHAP and other qual-
ity scores of system summaries. These find-
ings suggest the need to develop new tasks and
datasets to encourage multi-sentence aggrega-
tion in summarization.

1 Introduction

Abstractive summarization aims to gather impor-
tant information from some source text and to syn-
thesize this information into a brief, informative,
and factually correct summary. Summary-worthy
information on a topic can be located in multiple
parts of the document or even in different docu-
ments in the multi-document summarization case.
They may appear in multiple sentences with either
overlapping content or complementary information
that is related in discourse. Therefore, aggregation,
the process of combining multiple related pieces of
information, is necessary to generate more useful
and concise abstractive summaries.

∗Work done at Mila/McGill University

Multi-sentence aggregation or fusion has been
studied as a way to perform abstractive summa-
rization (Barzilay and McKeown, 2005; Thadani
and McKeown, 2013; Brook Weiss et al., 2022).
A good summary can be written by fusing a set
of salient sentences on the same topic. There-
fore, the capability of aggregating information is
extremely important in many summarization set-
tings, such as long document summarization, multi-
document summarization and timeline summariza-
tion. Moreover, from the theoretical perspective,
multi-sentence aggregation motivates future stud-
ies of more fine-grained semantic operations (e.g.
modelling contradictions and synthesizing com-
mon information across texts).

Previous studies compute proxies of abstractive-
ness that are closely related to the aggregation of
a summary. They quantify how a summary uses
words and phrases that are not found in the doc-
ument, such as the percentage of novel n-grams
as one of the ways to achieve highly condensed
and abstractive summaries. Note that higher ab-
stractiveness can be achieved by a broader set of
rewriting operations (e.g. paraphrasing, sentence
fusion, synthesizing and external knowledge). In
this paper, we are particularly interested in measur-
ing summary sentences formed by multi-sentence
aggregation.

As an illustration of the difference between ag-
gregation and abstractiveness, all three summary
sentences in Table 1 contain a similar percentage of
novel uni-, bi- and tri-grams, but they are formed
by using different types of rewriting techniques.
Novel n-grams are not able to distinguish instances
that require information from multiple sentences,
or that require external knowledge to infer the sum-
mary sentence, from those only formed by single-
sentence compression and paraphrasing.

Another reason that aggregation is under-
explored is that some popular summarization
benchmark datasets are nearly extractive. As a
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Rewriting
Type Source Document Summary Sentence

Novel [uni-, bi- tri-]grams
AGGSHAP
[LM, ROUGE]

Paraphrase (1) (CNN)Recently, a New York judge issued an opinion authorizing service of
divorce papers on a husband completely via Facebook.

A court allowed a wife to serve divorce
papers via Facebook .
[0.25, 0.72, 0.9]

[0.449, 0.651]

Multi-sentence
Fusion

(1) ( CNN ) Five years ago , Rebecca Francis posed for a photo while lying next
to a dead giraffe .

(2) The trouble started Monday , when comedian Ricky Gervais tweeted the photo
with a question .

Rebecca Francis’ photo with a
giraffe was shared by Ricky Ger-
vais.
[0.153, 0.666, 0.909]

[0.823, 0.856]

External
Knowledge

(1)The Masters 2015 is almost here.

(2) To help get you in the mood for the first major of the year, [golfers’ names]
give the lowdown on every hole at the world-famous Augusta National Golf Club.

(3) Click on the graphic below to get a closer look at what the biggest names in
the game will face when they tee off on Thursday.

The 79th Masters Tournament
gets underway at Augusta Na-
tional on Thursday .
[0.33,0.72,0.93]

[0.951, 0.896]

Table 1: Examples from CNN/DM test set show summary sentences formed by diverse types of rewriting techniques
with a similar level of novel n-grams. The source sentences are highlighted based on the magnitude of their Shapley
values from AGGSHAP-LM. We use three shades to indicate the relative contributions of the individual source
sentence, namely [40%, 100%] , [20%, 40%) and [0, 20%) .

result, systems are not rewarded for performing
aggregation. For example, Lebanoff et al. (2019b)
show that only 30% of the summary sentences in
the CNN/DM (Nallapati et al., 2016) are gener-
ated by fusing two or more sentences. Only rela-
tively recently have datasets been proposed which
are less extractive in terms of novel n-grams (Her-
mann et al., 2015; Narayan et al., 2018; Grusky
et al., 2018; Koupaee and Wang, 2018; Fabbri
et al., 2019). Some specifically encourage multi-
sentence aggregation with summary-worthy con-
tent evenly distributed in the source (Sharma et al.,
2019b). These datasets are designed to encour-
age systems to learn information aggregation in
dispersed source document sentences, but automat-
ically measuring this property is not yet available.

In this work, we propose a novel measure of ag-
gregation AGGSHAP by computing a measure of
many-to-one dependency between source and sum-
mary sentences. Specifically, we focus on multi-
sentence aggregation where supporting information
is present in the source document. Our measure
uses the Shapley value (Shapley, 1953) from co-
operative game theory by treating the coverage of
information in a summary sentence as a coalition
game played by source sentences. We compute
the contribution of each source sentence using the
Shapley value. Finally, the degree of aggregation
of a summary sentence is characterized by the dis-
persion of their contributions. This measure helps
us quantify intuitions about summarization datasets
and the types of semantic operations that we can
hope to train systems to perform using them. It
also allows us to examine the phenomenon of ag-
gregation in existing abstractive summarizers.

We validate the proposed AGGSHAP by using
it to distinguish between sentences that require fus-

ing information from multiple sentences and sen-
tences that do not. More importantly, we show that
AGGSHAP has a stronger correlation with direct
human ratings of aggregation than other abstrac-
tiveness measures such as novel n-grams. Next,
we apply our measure to examine the need for ag-
gregation in existing summarization datasets and
in the output of recent neural abstractive summa-
rization models trained on these datasets. Finally,
we demonstrate a negative correlation between the
degree of aggregation and existing summary qual-
ity measures. This suggests that multi-sentence
aggregation remains largely beyond the capability
of current abstractive summarizers.

2 Related Work

2.1 Aggregation in Text Summarization
Aggregation, broadly defined, has long been a re-
search area in NLG (Reape and Mellish, 1999;
Dalianis and Hovy, 1996; Di Eugenio et al., 2005).
In summarization, Jing and McKeown (1999)
showed some human-written summary sentences
are formed by aggregating information from multi-
ple text spans through manual inspection. Sentence
fusion is one of the most studied aggregation behav-
iors in the literature (Barzilay and McKeown, 2005;
Elsner and Santhanam, 2011; Cheung and Penn,
2014; Yuan et al., 2021; Brook Weiss et al., 2022).
Lebanoff et al. (2019a, 2020) studied sentence fu-
sion by leveraging the syntactic cues. Much work
in sentence fusion literature focuses on the syntac-
tic dependency between similar sentences without
understanding the semantic dependency between
disparate sentences. As a step towards understand-
ing semantic abstraction, Jumel et al. (2020) intro-
duced a task of generalization and semantic aggre-
gations of entities which is useful for performing
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higher-level aggregation across sentences. Ernst
et al. (2021) proposed a task of aligning summary
sentences and document sentences in summariza-
tion, where aligned document sentences can be
viewed as the source of aggregation.

Humans write summaries at different levels of
granularity using aggregation operations beyond
sentence fusion. For example, in the news do-
main (Hermann et al., 2015; Grusky et al., 2018),
summaries are usually formed by copying and are
affected by strong layout biases (Grenander et al.,
2019). On the other hand, salient content may
be distributed evenly throughout the text in scien-
tific documents (Sharma et al., 2019b). Datasets
for summarizing dialog (Chen et al., 2021), fic-
tion (Kryściński et al., 2021) and meetings (Liu
and Liu, 2013) show varying types of aggregation
and amount of reused text (Song et al., 2020).

2.2 Measuring Aggregation

Previous work reported the percentage of novel
n-grams or the notion of Coverage (Grusky et al.,
2018) as a proxy for abstractiveness. These met-
rics have been adopted in other areas such as dia-
log (Dziri et al., 2022) to inspect the qualities and
characteristics of datasets. Despite being conve-
nient, these measures do not enable fine-grained
analyses of multi-sentence aggregation.

Cheung and Penn (2013) proposed a quantitative
measure of the degree of sentence aggregation at
the shallow semantic level of caseframes. How-
ever, their method only accounts for limited types
of aggregation and cannot be used to analyze ag-
gregation in sentences with substantial rewriting.
Wolhandler et al. (2022) proposed a metric to mea-
sure how information in a summary is dispersed in
source documents in the multi-document summa-
rization setting. They found that most summaries in
certain datasets can be generated using information
from only one source document.

The aggregation metric proposed in this work
is inspired by the Shapley value, which is used to
measure the contributions of individual players in
a cooperative game (Shapley, 1953). Shapley val-
ues have been applied to settings such as feature
attribution (Lundberg and Lee, 2017; Dhamdhere
et al., 2019) and explaining training data contribu-
tion (Parvez and Chang, 2021).

3 Method

In this section, we propose AGGSHAP, an auto-
matic metric to quantify the degree of aggregation
of a summary sentence using the Shapley value.
Shapley value is a concept from cooperative game
theory used to determine the contributions of indi-
vidual players to the outcome of a coalition game.
We consider how much information in a summary
sentence is covered as a coalition game in which
source sentences are players. The Shapley value
of a source sentence can be interpreted as its con-
tribution to covering information in the summary
sentence. The AGGSHAP score of a summary sen-
tence captures the dispersion of source sentences’
Shapley values. The degree of aggregation of a
multi-sentence summary is the mean AGGSHAP
scores of summary sentences.

3.1 Shapley Value Formulation
Let D = {d1, ..., d|D|} denote a source document
with |D| source sentences and S = {s1, ..., s|S|}
denote a corresponding summary with |S| sum-
mary sentences.

We formulate the contribution of a source sen-
tence di to a summary sentence s using the Shapley
value. We first define a score function v(s, C) that
maps a subset of source sentences C ⊆ D and
a summary sentence s to a real value. This rep-
resents how much information in a summary sen-
tence is covered by the subset of source sentences.
We will specify different possible instantiations
of the score function v(s, C) in Section 3.2 using
ROUGE scores or probabilities from a conditional
language model.

The Shapley value of source sentence di with
respect to the summary sentence s is defined as

ϕi(v(s, ·)) =
∑

C⊂D\{i}

|C|!(|D| − |C| − 1)!

|D|! [v(s, C ∪ {i})− v(s, C)]

(1)
where 1

|D|! is a normalization factor equal to the
number of all permutations formed by |D| source
sentences. Given a source sentence subset C,
|C|!(|D| − |C| − 1)! is the number of orders in
which sentences in C appear before di and sen-
tences in D \ (C ∪ {i}) can appear after di. We
multiply the marginal gain of di entering into C by
this factor because the marginal gains are the same
for all such orders. We present a working example
in the Appendix.

The time complexity for computing exact Shap-
ley values is exponential in the number of source
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sentences. Therefore, we use a Monte-Carlo
method to sample subsets of source sentences and
get an unbiased estimator of ϕ̃i(v(s, ·))

Measure Aggregation as Information Dispersion
We define the final AGGSHAP score based on the
dispersion of source sentences’ Shapley values. We
choose the coefficient of variation1 (CV(s) :=
σ(ϕi(v(·))
µ(ϕi(v(·))) ) as the dispersion metric as it is scale-
invariant. Next, we normalize the CV such that
AGGSHAP ∈ [0, 1].2

AGGSHAP(s) := − CV(s)√
k − 1

+ 1 ∈ [0, 1] (2)

The AGGSHAP of a summary sentence is max-
imized when only one of the source sentences
has a non-negative Shapley value. Conversely,
AGGSHAP is minimized when source sentences’
Shapley values are at the same level (i.e. variance
is close to 0).

3.2 Score Function Instantiations

We experimented with two methods of specifying
v(s, C), one based on lexical overlaps and another
based on language model probabilities.

Measuring support using lexical overlap. Lex-
ical overlap between a source and a summary
sentence is one way to measure the informa-
tion of s covered by a subset of source sen-
tences C: vROUGE(s, C) = avg(ROUGE1(s, C) +
ROUGE2(s, C) + ROUGEL(s, C)). We use
ROUGE recall scores in these calculations. One
potential issue with lexical overlap is that it is a
crude proxy of semantic relatedness, and does not
account for issues such as paraphrasing.

Measuring support using LM predictions.
Given a sequence-to-sequence (seq2seq) condi-
tional text generation model,M, parametrized by
θM, the probability of a target sequence of n to-
kens s = (s1, ..., sn) conditioning on the source
text with m tokens d = (d1, ..., dm) reflects how
likely the target sequence s is to be generated. The
log-likelihood of the target sequence is:

L(s|d; θM) =

n∑

i=1

log p(si|s<i, d; θM) (3)

1σ and µ are standard deviation and mean. The coefficient
of variation goes to infinity when the mean is close to zero. To
avoid this, we take ϕi(v(·) = max(ϕi(v(·)), 0).

2Proof in the Appendix.

We use the normalized log probability of the sum-
mary sentence as the value function:

vLM(s, C) =
1

n
L(s|d; θM) (4)

vLM(∅, s) is the (unconditional) score from a lan-
guage model with no input document.

We call the two versions of the metric AG-
GSHAP-ROUGE and AGGSHAP-LM, respec-
tively.

4 Evaluations of AGGSHAP

We validate the effectiveness of AGGSHAP
through two experiments. First, we show fusional
sentences can be distinguished from extractive
ones. Next, we compute correlations between AG-
GSHAP or word overlap metrics on the one hand
and direct assessment of aggregation on the other.

4.1 Validating AGGSHAP in Sentence Fusion

In this section, we will show that AGGSHAP ef-
fectively distinguishes instances that are a fusion
of a pair of source sentences from sentences that
do not require aggregation. Our assumption is that
fusional instances require a higher level of aggre-
gation and thus should be ranked higher in terms
of a measure of aggregation compared to extractive
instances.

Dataset. The POC (Points of Correspondence)
dataset introduced by Lebanoff et al. (2019a) con-
sists of 1,599 summary sentences and their sup-
porting source sentence pairs from the validation
and test set of the CNN/DM. The data points are
deemed fusional by human annotators. The fu-
sional instances are constructed as follows: first,
the two source sentences most similar to the sum-
mary sentence based on ROUGE are selected as
candidate sentences. Next, human annotators judge
if the summary sentence is the fusion of these two
sentences. Additionally, we extract 1,599 highly
extractive summary sentences that are unlikely to
require aggregation from the CNN/DM test set.
These sentences are those that have at least 90%
trigram overlap with a source sentence. We call
this CNN/DM-EXTRACTIVE.

AGGSHAP Implementation. For all experi-
ments and analyses in this work, we take the 30
most similar source sentences, based on ROUGE-
1 F-score, to the summary sentence as the source
document. We use NLTK for sentence tokenization
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Figure 1: AGGSHAP score distributions of CNN/DM
extractive and PoC fusional instances using the two
variants. Gaussian kernel density estimators are fitted
for each group. Mean AGGSHAP scores are annotated.

unless they are provided in the dataset. We use
PEGASUS (Zhang et al., 2019)3, a state-of-the-art
encoder-decoder model for abstractive summariza-
tion, for computing AGGSHAP-LM. We sample 15
subsets of source sentences to compute the source
sentence’s Shapley value. For this particular experi-
ment, we use PEGASUS fine-tuned on CNN/DM.4

Results. Figure 1 shows the distributions of AG-
GSHAP of fusional and extractive sentences mea-
sured by AGGSHAP-ROUGE and AGGSHAP-
LM. Extractive instances and fusional instances
have mean AGGSHAP-LM 0.519 and 0.678, re-
spectively and mean AGGSHAP-ROUGE 0.515
and 0.696. The two groups are statistically sig-
nificantly different with p < 0.05 according to the
Student’s t-test. AGGSHAP are effective automatic
metrics capturing the difference between sentence
fusion and single sentence extraction.

It is expected that novel n-grams can also sepa-
rate the two groups of sentences because they are
used as selection criteria for the dataset curation.
Therefore they have an unfair advantage in this
dataset in particular. As a strong baseline, the novel
bigrams are 0.143 for fusional instances and 0.579
for extractive instances. Moreover, one should note
that novel n-grams only offer an overview of how
different the summary is written compared to the
document. They do not provide information about
the source of the supporting information.

AGGSHAP on the other hand allows fine-
grained analysis of the contributions from each
source sentence, which is not trivial for novel n-
grams. Since computing Shapley values of source
sentences is an intermediate step of AGGSHAP,

3google/pegasus-cnn_dailymail from hugging-
face (Wolf et al., 2020).

4In fact, AGGSHAP is flexible in the choice of similarity
measure and language model.

    White House weighing whether Obama should meet 
with Raul Castro.

[...]The President is headed to Panama for a regional summit , and Julie 
Pace of The Associated Press reports one of the big questions is whether 
he'll make history and have a face-to-face meeting with Cuban leader Raul 
Castro. [...]

[...]And so what the White House is going to be weighing is whether this 
meeting would be a way to generate more progress or whether it would be 
a premature reward for the Castros .[...]

0.330

0.194

   Experts question if packed out planes are 
putting passengers at risk.

[...]With increasing numbers of people taking to the skies, some experts are 
questioning if having such packed out planes is putting passengers at 
risk.[...]

[...]More than squabbling over the armrest, shrinking space on planes 
putting our health and safety in danger?[...]

0.691

0.06

AggSHAP-R: 0.427

(a) Multi-sentence Fusion

(b) Single-sentence Simplification
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Figure 2: Eamples of multi-sentence fusion and single-
sentence simplification from PoC. Document sentences
with the two highest Shapley values are shown.

we can see if the magnitude of a source sentence’s
Shapley value aligns with human judgments. That
is, whether sentences with higher Shapley values
are indeed supporting sentences. We find for 95%
(1,520/1,599) of the fusional summary sentences,
the highest Shapley value is assigned to one of
the PoC supporting source sentences. For 50%
(802/1,599) of the fusional sentences, the sen-
tences with the top-2 highest Shapley values are the
same as the pair of supporting sentences in PoC. In
Figure 2, the sentence fusion example shows that
the distribution of source sentences’ Shapley val-
ues is flatter. In contrast, the extractive case results
in a distribution with a narrow spike.

4.2 Human Evaluation of AGGSHAP

To the best of our knowledge, there is no direct
assessment of multi-sentence aggregation. In or-
der to measure how AGGSHAP aligns with human
intuition about aggregation, we compute the corre-
lations between human ratings of aggregation and
AGGSHAP.

We designed the annotation procedure to directly
quantify the degree of aggregation as the number
of source sentences which cover all information
in a summary sentence. Specifically, two of the
authors of the paper are presented with 100 in-
stances randomly sampled from the CNN/DM test
set. To avoid trivial extractive cases, we filtered out
summary sentences that have less than 0.3 novel
bi-grams. Each instance consists of a summary
sentence and the 10 most similar source sentences
sorted in the decreasing order of the percentage of
extractive bi-grams. We asked annotators to select
the source sentence if it covers information in the
summary sentence and does not cover the same
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piece of information as previously chosen source
sentences. Finally, the number of supporting source
sentences is the human rating of aggregation. We
include the detailed protocol and additional analy-
sis in the appendix.

The inter-annotator agreement measured by
Krippendorff’s alpha (Krippendorff, 2011) is 0.604.
We used bootstrapping method with bootstrap sam-
ple size of 50 to get the 95% confidence interval of
[0.431, 0.743].

We compare AGGSHAP to other metrics quanti-
fying the level of abstractiveness in summarization.
Novel n-grams is the percentage of novel words
or n-grams in a summary that is not present in the
source document. Abstractivity (Bommasani and
Cardie, 2020) derives from the notion of coverage,
a measure of extractiveness, proposed by Grusky

et al. (2018). ABS(D,S) = 1 −
∑

f∈F(D,S) |f |
|S| ,

where F(D,S) is the set of extractive fragments
in a summary extracted by greedily matching text
spans shared between D and S. |f | is the number
of tokens in extractive fragment f .

NN-2 Abs. AggSHAP-LM AggSHAP-R
0.354 0.360 0.375 0.554

Table 2: Spearman correlation of various metrics and
human ratings of aggregation. Abs. stands for abstrac-
tivity. All correlations have p-value < 1.0× 10−5.

Table 2 presents the Spearman correlation be-
tween measures of aggregation and abstractivity
and direct measure of aggregation by human an-
notators. AGGSHAP-ROUGE demonstrates the
strongest correlation with human judgment among
all measures whereas AGGSHAP-LM shows a sim-
ilar level of correlation to novel n-grams and ab-
stractivity. We speculate that the CNN/DM dataset
is more extractive, thus quantifying supporting
information with lexical overlaps in AGGSHAP-
ROUGE is more effective than that using language
model prediction.

5 Analysis

Given our automatic tool for measuring aggrega-
tion, we can use it to investigate the current state
of multi-sentence aggregation in abstractive sum-
marization. First, we study whether widely used
datasets have sufficient signals to train summariza-
tion systems to perform multi-sentence aggrega-
tion (Sec. 5.1). Next, Sec. 5.2 presents how well
summarizers that are trained or fine-tuned on one

of these datasets (CNN/DM) perform aggregation.
Finally, we are interested in whether the quality
of a summary is affected by its degree of aggrega-
tion. (Sec. 5.3)

5.1 Aggregation in Summarization Datasets

In this section, we first apply AGGSHAP to mea-
sure the degree of aggregation in datasets from
various genres. We are interested in the following
questions in frequently used datasets: Q1. What is
the level of aggregation exhibited by reference sum-
maries in abstractive summarization datasets? Q2.
Previous work reported word overlaps as intrinsic
characteristics of a dataset. What is the relation-
ship between aggregation and lexical overlaps? We
answer these questions based on observation of the
Table 3.

The implementation of AGGSHAP is described
in Sec. 4.1. We use PEGASUS (Zhang et al.,
2019) fine-tuned on corresponding datasets for AG-
GSHAP-LM.

Datasets. We conduct analysis on aggregation
in human-written summaries of six abstractive
summarization datasets. From the news do-
main, we analyze single-document summarization
datasets CNN/Dailymail (Hermann et al., 2015),
XSUM (Narayan et al., 2018), Newsroom (Grusky
et al., 2018) and a multi-document summarization
dataset Multinews (Fabbri et al., 2019). We also
report results on PubMed (Cohan et al., 2018), a
long-document dataset of scientific papers, and
WikiHow (Koupaee and Wang, 2018), a dataset
of articles describing a procedural task.

A1. Datasets examined show a different level
of aggregation as measured by AGGSHAP, but
datasets in the news domain share a similarly
low level of aggregation except XSUM, as ex-
pected. Kryscinski et al. (2020) characterize CN-
N/DM as a benchmark dataset for the field. We
show that CNN/DM has a rather low level of ag-
gregation, novel n-grams and abstractivity. Multi-
News and Newsroom display a similar level of
aggregation and percentage of novel words as CN-
N/DM. Despite being a multi-document summa-
rization dataset, we find that there is a substantial
portion of summaries that rely on extraction from
only one of the source documents in Multi-News.

The XSUM dataset has significantly higher AG-
GSHAP scores and novel n-grams compared to
other datasets. Models that are trained on this
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CNN/DM XSUM Multi-News Newsroom PubMed Wikihow PoC (Fus.) CNN/DM (Ext.)
AGGSHAP-LM 0.677 0.800 0.588 0.557 0.688 0.732 0.678 0.519
AGGSHAP-R 0.678 0.828 0.674 0.560 0.737 0.686 0.696 0.515

ABS 0.217 0.319 0.173 0.176 0.109 0.211 0.117 0.036
NN-1 0.203 0.356 0.277 0.202 0.171 0.359 0.143 0.044
NN-2 0.548 0.816 0.604 0.499 0.494 0.723 0.571 0.143
NN-3 0.738 0.956 0.764 0.615 0.696 0.908 0.802 0.254

Table 3: Top section: Mean aggregation scores in the test sets. Bottom section: Measures based on lexical overlap.
Higher Novel n-grams (NN) and Abstractivity (ABS) suggest more novel phrases are used in summaries, which
potentially indicates aggregation. Datasets that have the highest value on the measured dimension are boldfaced
and the lowest values are underlined. The right section shows statistics of the PoC dataset.

Figure 3: Pearson correlations between AGGSHAP-
ROUGE and other measures as a function of dataset’s
percentage of novel bigrams.

dataset may be more likely to perform abstrac-
tion, multi-sentence aggregation, and utilize ex-
ternal knowledge. We inspected examples from
the XSUM dataset with high AGGSHAP scores
and their source sentences’ Shapley values. We
find that contributions to the summary sentence are
shared among multiple source sentences.

A2. AGGSHAP and abstractiveness show
strong correlations in the near-extractive
datasets. The correlation between the two de-
creases in more abstractive datasets. We ob-
serve from Figure 3 that correlations between AG-
GSHAP-ROUGE and lexical overlap-based ab-
stractiveness measures and AGGSHAP-LM de-
crease for datasets that have a higher proportion of
novel bigrams. Since AGGSHAP-ROUGE has a
moderately strong Spearman correlation with hu-
man ratings of aggregation (Table 2), decreases
in correlations between AGGSHAP-ROUGE and
other measures suggest that using semantic simi-
larity measures beyond lexical overlap is necessary
for investigating higher-level aggregation in more
abstractive datasets.

We also notice that low novel n-gram does not
necessarily imply the dataset is extractive. For ex-

ample, PubMed summaries have a low proportion
of novel n-grams, but they display a similarly high
level of aggregation in terms of AGGSHAP as Wik-
ihow. We speculate that mentioning proper nouns
of studies in summaries is common in scientific
papers, which contributes to low level of novel n-
grams.

5.2 Aggregation in Current Models

We analyze the level of aggregation of summaries
generated by recent abstractive summarization
models trained or fine-tuned on the CNN/DM
dataset. Similar analysis can be conducted on other
datasets, but we focus on CNN/DM as it is one
of the most frequently used datasets by models
proposed over the years. We can then analyze
how systems improve in aggregation. The systems-
generated summaries are provided by the authors
of the model and collected by Fabbri et al. (2021)
under the MIT License. We follow the implemen-
tation details described in Section 4.1.

Table 4 shows the performance of summaries
according to ROUGE and various measures of ag-
gregation level and abstractiveness5. Overall, we
find that recent abstractive summarizers display a
lower level of aggregation and novel n-grams than
human-written summaries across the board. Some
recent models such as BART and PEGASUS use
fewer novel words on average to achieve higher
ROUGE scores compared to previous models, and
they display a wider range of AGGSHAP scores.

We manually inspected some summaries from
systems with high AGGSHAP scores. We find that
BART and PEGASUS summaries often involve
simple rewriting operations such as paraphrasing
and concatenating text spans from multiple sen-
tences, which may explain how they achieve higher
AGGSHAP scores despite a lower proportion of

5Full results in the Appendix.
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ROUGE-1/2/3/L AGGSHAP-LM AGGSHAP-R NN-1 NN-2 NN-3 ABS
Reference - 0.678 0.677 0.203 0.548 0.738 0.217
M10 - Bottom-Up 0.412 / 0.187 / 0.106 / 0.382 0.553 0.579 0.155 0.355 0.497 0.019
M11 - Improve-abs 0.399 / 0.172 / 0.093 / 0.373 0.527 0.580 0.153 0.328 0.458 0.025
M17 - T5 0.448 / 0.221 / 0.134 / 0.417 0.543 0.557 0.171 0.364 0.486 0.011
M18 - NeuralTD 0.400 / 0.176 / 0.100 / 0.372 0.520 0.540 0.173 0.369 0.497 0.018
M21 - UniLM 0.431 / 0.204 / 0.122 / 0.401 0.554 0.559 0.032 0.164 0.284 0.023
M22 - BART 0.442 / 0.213 / 0.129 / 0.410 0.555 0.554 0.022 0.125 0.225 0.015
M23 - Pegasus (huge news) 0.441 / 0.215 / 0.130 / 0.410 0.580 0.570 0.029 0.176 0.303 0.018

Table 4: Models’ ROUGE scores (partial, adapted from SummEval (Fabbri et al., 2021)) and aggregation statistics.
The highest aggregation scores and percentages of novel n-grams are bolded.

novel n-grams. Bottom-Up (M10) and Improve-
abs(M11) have aggregation scores on par with PE-
GASUS and BART. However, the quality of the
generated text is significantly lower as shown by
ROUGE. Enabling multi-sentence aggregation in
abstractive summarization is a promising open re-
search area, since there is still a large gap in aggre-
gation between system-generated summaries and
reference summaries.

5.3 Aggregation Versus Summary Quality

We are interested in whether systems can perform
aggregation as well as generate high-quality sum-
maries. Kryściński et al. (2018) reported a negative
result where novel n-grams negatively correlate
with ROUGE scores. Inspired by this, we inspect
if there is a similar trade-off between aggregation
and summaries’ quality.

We use the human annotations from Sum-
mEval (Fabbri et al., 2019) (11 abstractive mod-
els evaluated on Coherence, Factuality, Fluency
and Relevance) and NeR18 (Grusky et al., 2018)
(7 systems evaluated on Coherence, Fluency, Infor-
mativeness, Relevance). We compute system-level
correlations between AGGSHAP and human judge-
ment scores. We follow the definition of system-
level correlation in (Louis and Nenkova, 2013), as
follows: first, we compute a system-level score
of the system by averaging the scores of interest
over all instances in the dataset. Next, we compute
Kendall’s τ between the rankings of the systems.

SummEval Newsroom
COH FAC FLU REL COH FLU INF REL

NN-1 0.090 -0.310 -0.270 -0.240 -0.520 -0.520 -0.520 -0.430
NN-2 -0.050 -0.380 -0.270 -0.310 -0.900 -0.900 -0.710 -0.810
NN-3 -0.020 -0.420 -0.310 -0.350 -0.810 -0.810 -0.620 -0.710
ABS 0.050 -0.490 -0.160 -0.270 -0.330 -0.330 -0.330 -0.240

AGG-LM -0.117 -0.450 -0.243 -0.283 -0.810 -0.810 -0.619 -0.714
AGG-R -0.133 -0.467 -0.259 -0.267 -0.714 -0.714 -0.714 -0.619

Table 5: System-level Kendall’s tau correlation coef-
ficients between metrics of interest (AGGSHAP and
novel n-grams) and human judgments. AGG are the
abbreviated version of AGGSHAP.

Table 5 shows the results of these correlation
computations. Both AGGSHAP and abstractive-
ness measures have consistent negative correlations
with human ratings of quality. AGGSHAP show
moderate negative correlations in factuality and
weak negative correlations in relevance, indicat-
ing systems that attempt to aggregate are likely to
introduce factual error into the summary. Weak
correlations are shown in coherence and fluency
dimensions because neither abstractiveness metrics
nor AGGSHAP measure the inter-sentence connec-
tions of a summary.

One of the findings from SummEval is that refer-
ence summaries have lower scores than extractive
systems (e.g. lead-3) across all four dimensions.
This indicates that human judges prefer nearly ex-
tractive summaries in this dataset. Therefore, sys-
tems that are able to perform multi-sentence aggre-
gation might not be rewarded by current evaluation
schemes. To track the progress of aggregation in
summarization systems, human annotators should
directly assess the degree of aggregation.

6 Conclusion

In this paper, we propose AGGSHAP to quantify
aggregation operations in abstractive summariza-
tion. Our metric effectively distinguishes sentences
that require multiple points of dependencies from
those that do not in a dataset containing fusional
summary sentences. Moreover, it has a stronger
correlation with human ratings of aggregation than
existing n-grams overlap measures. We use AG-
GSHAP to compare the levels of aggregation in
summarization datasets and conclude that most re-
cent summarization datasets from the news domain
contain limited instances of reference summaries
that require aggregation. We show that abstractive
summarization models rarely perform semantic ag-
gregation beyond simple concatenation of text units.
Finally, we find improvements in the dimension of
aggregation may not be rewarded by current evalu-
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ation schemes of general summarization qualities.
Future evaluations should thus focus specifically
on the issue of aggregation, ideally in a domain or
setting whether aggregation is necessary to derive
a reference summary or a useful conclusion.
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Limitations

Computation Efficiency. As noted in the method
section 3.2, computation of the Shapley value
has exponential time complexity. We ad-
dress this issue by using Monte-Carlo sam-
pling method but it is still computationally
expensive to conduct analysis of aggregation
at a large scale. For each sentence evalu-
ated, it requires (#Number of source sentences×
#Shapley value sample) times of forward pass to
compute the estimated Shapley values of source
sentences. We only conducted analysis on the test
set of the datasets and, for example, it took 24 hours
on a single V100 GPU with 16GB of memory to
evaluate AGGSHAP-LM of CNN/DM (11490 sum-
maries with 3 sentences per summary on average).

Interpretation. In this work, we mainly focused
on analyzing how summary sentences aggregate
information that is faithful to the source document,
and we did not address cases where information
has to be drawn from external knowledge. AG-
GSHAP is not suitable for interpreting low-quality
examples as the fundamental assumption of AG-
GSHAP is to quantify the degree of aggregation
by how well the summary sentence is supported
by the source. AGGSHAP may fail to find any
supporting information from the source and con-
sider the low-quality example to have a high level
of aggregation.

Potential Risks. All scientific artifacts in this
study have been made publicly available and con-
sistent with their intended use and access condi-
tions.
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A Appendix

A.1 Human Annotation Details

We give the following instructions to the annota-
tors:

1. Read the summary sentence

2. Read the supporting sentences in the order
presented in the spreadsheet (supporting sen-
tence_0 to supporting sentence_9)

• If the supporting sentence covers the
information in the summary sentence
and this piece of information has not
been covered by previous supporting sen-
tences then highlight it.

• If two sentences are identical or very sim-
ilar in content, highlight both.

• If no single supporting sentence covers
information in the summary sentence, en-
ter missing

To evaluate the inter-annotator agreement of the
selected supporting sentence (i.e. how well anno-
tators agree on which source sentences are sup-
porting sentences), we computed the Krippendorff
alpha of annotated instances. The Krippendorff
alpha is 0.714 with a 95% confidence interval of
[0.579, 0.835] from bootstrapping with bootstrap
sample size of 100.

We manually inspected some instances where
two annotators do not agree on the number of sup-
porting sentences. We found that most ambiguities
came from judging whether two supporting sen-
tences are very similar in content or not.

A.2 Full results of Table 4

See Table 6.

A.3 Examples of Human-written Summaries

Table 7-10 shows randomly sampled reference sum-
mary sentences from the six datasets we evalu-
ated. We sampled examples that are extractive
AGGSHAP-LM < 0.45 and are of higher level of
aggregation AGGSHAP-LM > 0.7

A.4 Examples of System-generated
Summaries

Table 11 shows an example in which the refer-
ence summary contains aggregations of informa-
tion from multiple points in the source text. The
summary generated by PEGASUS (Zhang et al.,
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ROUGE-1/2/3/L AGGSHAP-LM AGGSHAP-R NN-1 NN-2 NN-3 ABS
Reference - 0.678 0.677 0.203 0.548 0.738 0.217
M8 - Pointer Generator 0.392 / 0.172 / 0.100 / 0.360 0.486 0.517 0.129 0.250 0.344 0.002
M9 - Fast-abs-rl 0.406 / 0.177 / 0.098 / 0.381 0.515 0.524 0.149 0.347 0.482 0.014
M10 - Bottom-Up 0.412 / 0.187 / 0.106 / 0.382 0.553 0.579 0.155 0.355 0.497 0.019
M11 - Improve-abs 0.399 / 0.172 / 0.093 / 0.373 0.527 0.580 0.153 0.328 0.458 0.025
M12 - Unified-ext-abs 0.404 / 0.179 / 0.104 / 0.368 0.470 0.502 0.138 0.258 0.351 0.013
M13 - ROUGESal 0.402 / 0.180 / 0.105 / 0.368 0.488 0.515 0.149 0.285 0.387 0.018
M14 - Multi-task (Ent + QG ) 0.395 / 0.176 / 0.104 / 0.363 0.492 0.520 0.141 0.275 0.373 0.015
M15 - Closed book decoder 0.398 / 0.176 / 0.103 / 0.364 0.484 0.512 0.137 0.261 0.355 0.013
M16 - SENECA 0.415 / 0.184 / 0.105 / 0.381 0.521 0.568 0.161 0.340 0.453 0.013
M17 - T5 0.448 / 0.221 / 0.134 / 0.417 0.543 0.557 0.171 0.364 0.486 0.011
M18 - NeuralTD 0.400 / 0.176 / 0.100 / 0.372 0.520 0.540 0.173 0.369 0.497 0.018
M20 - GPT-2 (supervised) 0.398 / 0.176 / 0.099 / 0.367 0.470 0.506 0.010 0.043 0.063 0.010
M21 - UniLM 0.431 / 0.204 / 0.122 / 0.401 0.554 0.559 0.032 0.164 0.284 0.023
M22 - BART 0.442 / 0.213 / 0.129 / 0.410 0.555 0.554 0.022 0.125 0.225 0.015
M23 - Pegasus (huge news) 0.441 / 0.215 / 0.130 / 0.410 0.580 0.570 0.029 0.176 0.303 0.018

Table 6: Models’ ROUGE scores (Adapted from SummEval (Fabbri et al., 2021)) and aggregation statistics. The
highest aggregation scores and percentages of novel N-grams are bolded. We remove M19 BertSum-abs from the
analysis as no punctuation at the end of sentences resulting in misleadingly high aggregation scores.

Aggregation Candidate Summary [Agg-LM, Agg-ROUGE]
Example 1:
(1) Investigators found that a number of flavors were labeled ’healthy’ -
brimming with fiber, protein and antioxidants, while being low in fat and
sodium.

FDA Investigators found that a number of fla-
vors were labeled ’healthy’ - brimming with
fiber and antioxidants, while being low in fat
and sodium . [0.431, 0.414]

Example 2:
(1) ’( CNN ) Five years ago , Rebecca Francis posed for a photo while lying
next to a dead giraffe .
(2) The trouble started Monday , when comedian Ricky Gervais tweeted the
photo with a question .

Rebecca Francis ’ photo with a giraffe was
shared by Ricky Gervais . [0.759, 0.801]

Table 7: CNN/DM extractive (Top) and higher-level aggregation (Bottom)

2019) contains aggregations from three source sen-
tences, as does the human summary, while the sum-
mary generated by improve-abs (Kryściński et al.,
2018) is produced by compressing a single sen-
tence.

A.5 Abstractive Models in Section 5.2

Here we cite the list of abstractive summariza-
tion models we evaluated for aggregation. We
evaluated the summaries generated by the fol-
lowing systems: (M8) Pointer Generator (See
et al., 2017), (M9) Fast-abs-rl (Chen and Bansal,
2018), (M10) Bottom-up (Gehrmann et al., 2018),
(M11) Improve-abs (Kryściński et al., 2018), (M12)
Unified-ext-abs (Hsu et al., 2018), (M13) ROUGE-
Sal (Pasunuru and Bansal, 2018), (M14) Multi-
task(Ent+QG) (Guo et al., 2018), (M15) Closed
book decoder (Jiang and Bansal, 2018), (M16)
SENECA (Sharma et al., 2019a), (M17) T5 (Raf-
fel et al., 2020), (M18) NeuralTD (Böhm et al.,
2019), (M20) GPT-2 (supervised) (Ziegler et al.,
2019), (M21) UniLM (Dong et al., 2019), (M22)
BART (Lewis et al., 2020) and (M23) PEGA-

SUS (Zhang et al., 2019).
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Aggregation Candidate Summary [Agg-LM, Agg-ROUGE]
Example 1:
(1) Joseph Fox photographed the mudlarkers who comb the shore of London’s
River Thames.

All photographs taken by Joseph Fox. [0.192,
0.300]

Example 2:
(1) <n> Protesters allege Edir Frederico Da Costa, 25, was "brutally beaten"
by Met Police officers earlier this month.
(2) <n> The Independent Police Complaints Commission (IPCC) is investi-
gating the treatment of Mr Da Costa, who died six days after he was stopped
by police.
(3) <n> Mr Da Costa, known by friends as Edson, died on 21 June, six
days after being stopped in a car in Woodcocks, Beckton, in Newham, east
London.

Protesters have faced off with police in a
demonstration over the death of a man after a
traffic stop. [0.799, 0.854]

Table 8: XSUM extractive (Top) and higher-level aggregation (Bottom) instances

Aggregation Candidate Summary [Agg-LM, Agg-ROUGE]
Example 1:
(1) source sent: (PHOTOS: Scenes from Eric Cantor HQ) Asked about
his future plans, Cantor replied: “That’s probably between my wife and
me.” Addressing his colleagues earlier, Cantor’s words drove Speaker John
Boehner (R-Ohio) to tears.

"That’s probably between my wife and me,"
he said. [0.182, 0.382]

Example 2:
(1) More than 90% of the parts needed to restore a 1967 Mustang convert-
ible are available new as Ford-licensed reproduction components, allowing
enthusiasts to basically build from scratch a new Mustang of that era.
(2) To build up a Mustang using the body shell, the powertrain, suspension
and brakes, the electrical systems, the interior and trim can either be bought
new or transferred from an existing car to the new body.

Just in time for classic car buffs’ Christmas,
Ford has added a brand-new shell for the ’67
Mustang convertible to its Ford Restoration
Parts line, giving enthusiasts a chance to build
their own from scratch, the Los Angeles Times
reports. [0.818, 0.834]

Table 9: Multi-news extractive (Top) and higher-level aggregation (Bottom) instances

Aggregation Candidate Summary [Agg-LM, Agg-ROUGE]
Example 1:
(1) source sent: If you don’t have a water bottle or hot compress pad, you can
pour warm water (104-108 degrees Fahrenheit) into a basin and immerse the
injured area in the water for 30-45 minutes.It’s normal to feel severe pain as
the tissue begins to warm up, so do not be alarmed about this.

Pour warm water into a basin. [0.323, 0.306]

Example 2:
(1) Disney Parks park maps aren’t just written in English and Spanish.
(2) ,
(3) Parade routes differ between the different parks.
(4) The parade route will be marked on the map by some type of dotted or
broken line.

Visit the Disney Park that the parade will be
shown in. [0.818, 0.856]

Table 10: WikiHow extractive (Top) and higher-level aggregation (Bottom) instances

Source:
British jihadis have posted pictures of junk food and drinks such as Burger King, Pringles and mojitos which they have had
carried across the Turkish border into Syria. [...] It’s not the first time ISIS fighters have been caught with fast food sneaked
across the border. Last month a delighted fighter known only as Ghareeb posted a picture of a McDonalds bag on his social
media page.
Reference summary:
ISIS fighters have posted pictures on social media of Western junk food .
Pegasus generated:
ISIS fighters have been posting pictures of food and drinks smuggled in .
Improve-abs generated: british jihadis have posted pictures of junk food and mojitos .

Table 11: Example of summary sentences aggregating information from three source sentences in CNN/DM dataset.
Human editor aggregates British jihadis and a delighted fighter know as Ghareeb as ISIS fighters, and aggregates
junk food such as Burger King, Pringles and McDonalds as Western junk food.
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Abstract

Multi-stage long document summarization,
which splits a long document as multiple seg-
ments and each of which is used to generate
a coarse summary in multiple stage, and then
the final summary is produced using the last
coarse summary, is a flexible approach to cap-
ture salient information from the long docu-
ment. Even if the coarse summary affects the
final summary, however, the coarse summa-
rizer in the existing multi-stage summarization
is coarsely trained using data segments that
are not useful to generate the final summary.
In this paper, we propose a novel method for
multi-stage long document summarization. The
proposed method first generates new segment
pairs, ensuring that all of them are relevant to
generating the final summary. We then incorpo-
rate contrastive learning into the training of the
coarse summarizer, which tries to maximize
the similarities between source segments and
the target summary during training. Through
extensive experiments on six long document
summarization datasets, we demonstrate that
our proposed method not only enhances the
existing multi-stage long document summariza-
tion approach, but also achieves performance
comparable to state-of-the-art methods, includ-
ing those utilizing large language models for
long document summarization.

1 Introduction

Long document summarization aims to compress a
long document, such as meeting minutes, reports,
and scientific articles, into a concise text that cap-
tures salient information. Since the number of to-
kens in a long document usually exceeds the limit
of the summarization models, various summariza-
tion approaches (Mao et al., 2022; Beltagy et al.,
2020; Tay et al., 2020; Rohde et al., 2021; Pu et al.,
2023a; Xie et al., 2022) to deal with long document
has proposed. One promising approach among
the long document summarization approaches is

the multi-stage split-then-summarization approach
(Zhang et al., 2022). It first splits the long docu-
ment into source segments and each of which is
used to generate a coarse summary. After split-
ting into source segments and generating a coarse
summary in multiple stages, it produces the final
summary using the last coarse summaries. This ap-
proach offers flexibility in processing documents of
arbitrary length by adjusting the number of stages
and has achieved state-of-the-art performance on
several long document summarization benchmark
datasets. However, there is still room for improve-
ment in terms of the quality of the coarse summary.

It should be noted that the quality of the final
summary depends on the quality of the coarse
summaries. In the previous multi-stage split-then-
summarization approach, Zhang et al. (2022) con-
struct the training data using pairs of long docu-
ments and target summaries for the coarse summa-
rizer because there is no official data for the coarse
summarizer. That is, it first splits the long docu-
ment and the target summary into segments, respec-
tively. Each document segment is then aligned with
a subset of the target segments, maximizing the
ROUGE-1 score between the document segment
and the subset. The resulting aligned pairs are used
to train the coarse summarizer. Even though some
document segments may be irrelevant to the target
summary, aligned pairs derived from these seg-
ments are employed to train the coarse summarizer.
It results in the generation of coarse summaries
that may contain some noise. Figure 1 shows an
example of the construction of the training data for
the coarse summarizer, where the dotted line indi-
cates the alignment of one document segment with
a subset of the target segments. As all document
segments are aligned and used to train the coarse
summarizer, the coarse summarizer may generate
low quality and excessively verbose summaries.

In this paper, we propose a novel approach suit-
able for multi-stage summarization. The proposed
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Figure 1: An example from AMI dataset to show an alignment between document segments and target segments.
Dotted lines indicate the source-focused aligned pairs, while bold lines represent the target-focused aligned pairs.

method first generates aligned pairs that are rele-
vant to the generation of the final summary. Un-
like the previous alignment discussed, the proposed
method executes an alignment in a reverse direction.
Specifically, the proposed method aligns each tar-
get segment with a document segment. By aligning
in this reverse direction, we ensure that only rele-
vant document segments are included in the train-
ing data for the coarse summarizer. Furthermore,
the proposed method incorporates a sub-summary
generation contrastive objective (Liu et al., 2021)
during training of the coarse summarizer to explic-
itly model the similarity between the target seg-
ment and the document segment. This addition of
contrastive objective encourages the coarse sum-
marizer to focus on relevant document segments
and target segments and contributes to further im-
proving the summarization quality of the coarse
summarizer.

We conduct extensive experiments on six long
document summarization datasets to show the su-
periority of the proposed method. We also com-
pare the proposed method with large large lan-
guage models-based long document summariza-
tion. Experimental results imply that the proposed
method contributes to enhancing the efficiency and
effectiveness of the multi-stage long document
summarization approach compared to the existing

method1.

2 Multi-Stage Long Document
Summarization

Let D = {(Si, Ti)}Ni=1 be a set of document-target
summary pairs, where Si is the i-th long document
and Ti is its corresponding summary. The multi-
stage long document summarization approach seg-
ments the long document and then summarizes
the segmented text in multiple stages because the
number of tokens in Si exceeds the limit of the
summarizer. It consists of two stages: C coarse
stages and one fine-grained stage. In each coarse
stage, an input document is divided into document
segments, and then a coarse summarizer generates
coarse summaries from the document segments. In
the fine-grained stage, a fine-grained summarizer
generates the final summary from the last generated
coarse summary.

Let K be the number of the maximum input to-
kens of the summarizer. Si is divided into multiple
segments, each with a length of fewer than K to-
kens. That is, Si = {si1,. . . , sini}, where ni is the
number of segments of Si. Similarly, the target
summary Ti = {ti1,. . . , timi} is also divided into
multiple segments, usually split into separate sen-

1The proposed method is publicly available at https://
github.com/Jinhyeong-Lim/Summ-N-ECS
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tences. That is, tij and mi are the j-th sentence
and the number of sentences in Ti, respectively.
To generate training data for the coarse summa-
rizer, Zhang et al. (2022) adopt the ROUGE-based
greedy target alignment function, aligning each
document segment sij with a subset of Ti such that
the ROUGE-1 score between sij and the subset is
maximized. The training data for the coarse sum-
marizer in the k-th stage is constructed as follows:

Dk
coarse−s = ∪Ni=1 ∪ni

j=1 alignsource(sij , Ti).

Here, alignsource(·, ·) is a function to align each
document segment with a subset of target seg-
ments. Since the alignment is executed for each
source segment, all document segments are con-
tained in Dk

coarse−s. The k-th coarse summarizer
is trained with Dk

coarse−s to minimize the negative
log-likelihood (NLL) Lnll between the word distri-
butions predicted by the summarizer and the target
segments.

After training the coarse summarizer, a coarse
summary is obtained using the trained summarizer
from each document segment sij . All ni coarse
summaries are then concatenated to form a new
input for the next stage. The target summary for
the next stage is copied from the original target
summary. It is worth noting that the number of
coarse stages is estimated based on the length of
the long document and the characteristics of the
summarizer. Further details can be found in Zhang
et al. (2022) and Section 4.3.

In the fine-grained stage, the coarse summaries
from the C-th coarse stage are concatenated and
used as input for the fine-grained stage. Since the
number of tokens in the input is shorter than K, a
fine-grained summarizer can be modeled similarly
to a well-known vanilla abstractive summarizer
(Lewis et al., 2020; Zhang et al., 2020). This means
that the fine-grained summarizer is trained on the
dataset from the last coarse stage and produces the
final summary using the last coarse summaries.

3 Improving Multi-Stage Summarization
with Enhanced Coarse Summarizer

This paper presents a new approach to multi-stage
summarization. The proposed method generates
new aligned pairs that include only relevant doc-
ument segments because the greedy target align-
ment function (Zhang et al., 2022) generates some
pairs that contain irrelevant document segments.
In addition, the proposed method incorporates a

contrastive learning into the training of the coarse
summarizer that a document segment and the corre-
sponding target summary should convey the same
meaning, which is not modeled explicitly by the
NLL loss (Xu et al., 2022).

3.1 Target-focused Aligned Pairs
To generate aligned pairs that includes the relevant
document segments, the proposed method designs
a new alignment function. The proposed alignment
function focuses on the target segment that each
target segment tij is aligned with a document seg-
ment sil, maximizing the ROUGE scores between
between tij and sil (Bold lines in Figure 1. The
training data for the coarse summarizer in the k-th
stage can be constructed as follows:

Dk
coarse−t = ∪Ni=1 ∪mi

j=1 aligntarget(tij , Si), (1)

where aligntarget(·, ·) is a function to align each tar-
get segment with a document segment. This align-
ment ensures that irrelevant document segments
are not included in the training data.

The training data constructed by the new align-
ment function, however, has one problem that
there is one-to-many mappings in pairs of docu-
ment segment-target segment, which is also known
as multi-modality problem (Gu et al., 2017; Wei
et al., 2019). That is, one document segment is
mapped to multiple target segments. This can
result in the generation of low quality of coarse
summaries. To alleviate this problem, the pro-
posed method merges the multi-modal data by
concatenating target segments. For example, if
the proposed alignment function generates pairs
{(si1, ti1), (si1, ti4), (si1, ti6)}, these three pairs
are merged into one pair by concatenating three
target segments such that {(si1, ti1 ⊕ ti4 ⊕ ti6)},
where ⊕ is a string concatenate operator.

3.2 Contrastive Learning with Sub-summary
Generation Objective

The summary of a long document comprises mul-
tiple sentences, each of which can be seen as a
sub-summary. Given that a single long document
may encompass multiple subjects, we can consider
the coarse summarizer as mapping each subject
to its corresponding sub-summary, and these sub-
jects are inherently present within the document’s
segments. To achieve improved mapping, the pro-
posed method employs contrastive learning with
a sub-summary generation objective (Liu et al.,
2021).
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Table 1: The statistics of data set used in experiments. The document length and summary length are the averaged
numbers across the dataset.

Dataset Size (|D|) Document length Summary length Type Domain

AMI 137 6007.7 296.6 Dialogue Meeting
ICSI 59 13317.2 488.5 Dialogue Meeting

QMSum 1808 9069.8 69.6 Dialogue Meeting
SummScreen-FD 4348 7605.4 113.7 Dialogue TV Series

SummScreen-TMS 22503 6420.7 380.6 Dialogue TV Series
GovReport 19466 9409.4 553.4 Document Reports

To conduct contrastive learning, the pro-
posed method initially constructs contrastive sub-
summary generation pairs, comprising both posi-
tive and corresponding negative examples. Positive
examples are obtained from data pairs as defined
by Equation (1) while their corresponding negative
examples are derived by substituting document seg-
ments with alternative ones. Here, the method se-
lects the document segment that exhibits the lowest
ROUGE score in comparison to the target segment.

Let {(skpos, tk), (skneg, tk)}N∗mi
k=1 be a constructed

the contrastive sub-summary generation pairs,
where sk∗ and tk are segments of document and
target, respectively. With the contrastive pairs, the
proposed method calculates the NLL values as fol-
lows:

Ltk

pos = − log Π
|tk|
j=1p(t

k
j | tki:j−1, s

k
pos),

Ltk

neg = − log Π
|tk|
j=1p(t

k
j | tki:j−1, s

k
neg),

where Lti
pos and Lti

pos are the negative log likelihood
values of the positive example and negative exam-
ple, respectively. tkj is the j-th token in tk. Then,
the normalized score is obtained by applying the
softmax function to the two NLL values:

su(skpos), su(s
k
neg) = softmax([Ltk

pos, L
tk

neg]),

where su(skpos) and su(skneg) represent the normal-
ized scores of the positive example and negative
example, respectively, indicating their relative rele-
vance scores.

Then, the sub-summary generation contrastive
objective, denoted as Lctr, is defined as follows:

Lctr = 1
N∗mi

∑N∗mi
k=1 max(0, δ − (su(skneg)− su(skpos))),

where δ is a margin that the relevance score be-
tween a positive document segment and a target
segment to be at least larger than the relevance
score of the negative example. The δ is set as 1.

The final loss for the coarse summarizer is de-
fined as

Lcoarse = λ ∗ Lctr + LNLL, (2)

where λ is a hyperparameter to balance the con-
trastive loss.

4 Experiments

4.1 Experimental Settings

This paper conducts the experiments on six long
document summarization datasets: AMI (Car-
letta et al., 2006), ICSI (Janin et al., 2003),
QMSum (Zhong et al., 2021), SummScreen-FD,
SummScreen-TMS (Chen et al., 2022), and Gov-
Report (Huang et al., 2021). Table 1 shows data
statistics of the datasets. For the query-focused
document summarization task using the QMSum
dataset, we follow the settings of Zhang et al.
(2022) such that the query is concatenated into
the beginning of the document at both the training
and the inference time.

The proposed method follows the experimental
settings of Zhang et al. (2022) except the back-
bone summarization models. The proposed method
adopts the BART-large model, pretrained on the
CNN/DM dataset, as the backbone model for the
fine-grained summarizer. The backbone model for
coarse summarizer in the GovReport dataset is set
to BART-large while for other datasets, it is set to
DialogLM (Zhong et al., 2022).

All experiments are conducted on one NVIDIA
RTX A6000 GPU with a 48 GiB memory. The
multi-stage long document summarization with
the proposed coarse summarizer is trained for 30
epochs with a batch size of 4. We set the optimizer
to AdamW and the learning rate is set to 2e-5 in the
coarse stage and 3e-5 in the fine-grained stage. The
best checkpoint is chosen by early stopping based
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Table 2: Performances of long document summarization on six long document summarization data sets. ∗ denotes
the ROUGE-L scores without the sentence split. Best performance is in bold, and second best is underlined.

AMI ICSI QMSum-All
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

HMNET (Zhu et al., 2020) 53.02 18.57 24.85∗ 46.28 10.60 19.12∗ - - -
DDAMS (Feng et al., 2021) 53.15 22.32 25.67∗ 40.41 11.02 19.18∗ - - -

UniLM-CP(Dong et al., 2019) 52.67 19.33 50.55 48.43 12.39 46.24 29.19 6.73 25.52
BARTLarge-SLED (Ivgi et al., 2023) - - - - - - 34.20 11.00 22.00∗

DYLE (Mao et al., 2022) - - - - - - 34.42 9.71 30.10
DialogLM (Zhong et al., 2022) 54.49 20.03 50.92 49.56 12.53 47.08 33.69 9.32 30.01
DialogLED (Zhong et al., 2022) 54.80 20.37 52.26 50.11 13.23 47.25 34.50 9.92 30.27
SUMMN (Zhang et al., 2022) 53.44 20.30 51.39 45.57 11.49 43.32 34.03 9.28 29.48

Proposed model 54.85 21.18 52.28 50.27 13.38 47.30 35.31 10.13 30.58

SummScreen-FD SummScreen-TMS GovReport
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

UniLM-CP (Dong et al., 2019) 33.29 6.74 28.21 44.07 9.96 41.73 - - -
TopDownFormer (Pang et al., 2023) 36.84 9.19 31.12 51.02 14.66 49.01 - - -
BARTLarge-SLED (Ivgi et al., 2023) - - - - - - 57.50 26.30 27.40∗

PageSum (Liu et al., 2022) - - - - - - 60.04 27.17 57.21
DYLE (Mao et al., 2022) - - - - - - 61.01 28.83 57.82

DialogLM (Zhong et al., 2022) 35.75 8.27 30.76 45.58 10.75 43.31 - - -
DialogLED (Zhong et al., 2022) 36.70 8.68 31.38 45.22 11.69 42.86 - - -
SUMMN (Zhang et al., 2022) 32.48 5.85 27.55 44.64 11.87 42.53 56.77 23.25 53.90

Proposed model 36.81 9.07 31.21 45.81 11.97 43.35 58.01 25.66 55.30

on the highest average of ROUGE-1/2/L scores on
the validation set. The λ in Equation (2) is set to 1.

The proposed method is compared with the
previous state-of-the-art methods on the datasets.
The performance is measured with ROUGE (Lin,
2004).

4.2 Experimental Results
Table 2 shows the ROUGE scores of the proposed
model compared to the baselines. The proposed
model outperforms SUMMN on all datasets, which
indicates that the enhanced coarse summarizer in
the proposed method improves the multi-stage sum-
marization approach. Furthermore, the proposed
model achieves similarly or even better perfor-
mance compared to other state-of-the-art models.
These results demonstrate that utilizing the pro-
posed coarse summarizer in the multi-stage sum-
marization approach is a reasonable solution for
long document summarization.

We investigate the effectiveness of target-
focused alignment and contrastive learning in the
proposed model. Table 3 shows the results of
an ablation study. If the coarse summarizer is
trained only using Dk

coarse−t, the performance is
dropped by 1.28 on the AMI dataset and 3.2 on
the ICSI dataset compared to the proposed method.

Table 3: Ablation study on test set of AMI and ICSI
datasets. Performance is the ROUGE-1 score.

AMI ICSI

Dk
coarse−t + contrastive learning 54.85 50.27

Dk
coarse−t 53.57 47.07

Dk
coarse−s + contrastive learning 53.79 46.12
Dk

coarse−s (= SUMMN ) 53.44 45.57

However, its performance is better than the one of
SUMMN , which is trained using Dk

coarse−s. This
implies that the target-focused alignment and the
contrastive learning helps improve multi-stage sum-
marization.

4.3 Coarse Summary Analysis

To verify the quality of coarse summaries gen-
erated by the proposed method, we compare the
coarse summaries at different stages with the target
summary. Figure 2 depicts the ROUGE-1 scores
of all datasets for each stage. Stage 1 represents
the model with only one coarse stage and no fine-
grained stage, while Stage i (i > 1) represents i -
1 coarse stages and one fine-grained stage. When
comparing the ROUGE-1 scores of the proposed
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Figure 2: ROUGE-1 scores at different stages.

Table 4: Values for the coarse stage estimation

ICSI QMSum GovReport

d1 13317.2 9069.8 9409.4
K 1024 1024 1024

c1 (Ours) 24.9 37.2 38.4
c1 (SUMMN ) 276.8 68.4 243.2
N̂ (Ours) 1 (0.7) 1 (0.7) 1 (0.6)

N̂ (SUMMN ) 2 (1.9) 1 (0.9) 2 (1.5)

method with SUMMN , the proposed method con-
sistently outperforms SUMMN at all stages. No-
tably, in the ICSI and GovReport datasets, the pro-
posed method at Stage 2 achieves higher perfor-
mance compared to SUMMN at Stage 3. This in-
dicates that our proposed method is more effective
than SUMMN .

We also investigate the effectiveness of the pro-
posed method by estimating the number of coarse
stages. In the multi-stage summarization, the fewer
the coarse stages performed, the greater the ef-
fectiveness of the method. SUMMN proposes a
method to estimate the number of coarse stages. It
is based on the length of the long document and the
characteristics of the summarizer. The number of
coarse stages is computed as follows:

N̂ =

⌈
logK − log d1
log c1 − logK

⌉
,

where d1 and c1 are the average length of document
and coarse segments in coarse stage 1. K repre-
sents the maximum input tokens of the backbone
model.

Table 4 shows the values used to estimate the
coarse stage on three data sets. The estimated num-
ber of coarse stages for the proposed model on ICSI
and GovReport is smaller than those of SUMMN .
This difference arises because the coarse summa-
rizer in SUMMN is trained using pairs of a docu-
ment segment and a set of target segments, whereas

the coarse summarizer in the proposed method is
trained using pairs of a document segment and a
target segment2. As a result, the coarse summa-
rizer in the proposed method exhibits a tendency to
generate more succinct coarse summaries, which
in turn facilitates the generation of superior final
summaries.

4.4 Human Evaluation

This paper conducts human evaluation with AMI
and ICSI dataset to validate the quality of the gen-
erated summaries with respect to fluency and cover-
age. The experimental settings for the human eval-
uation follow those of Zhang et al. (2022). Specifi-
cally, the quality is assessed through three metrics:
Readability, Conciseness, and Coverage. Readabil-
ity takes into account word and grammatical error
rate to assess the fluency of the summary. Con-
ciseness measures how well the summary discards
the redundant information, while Coverage gauges
how well the summary covers each part of the dia-
logue.

We compare the results of the proposed method
and SUMMN because both methods are grounded
in the multi-stage summarization. For source doc-
uments within AMI and ICSI datasets, three hu-
man annotators evaluate the quality of the sum-
maries generated by each model. In this process,
each annotator reviews the source document, the
gold summary, and the generated summary, sub-
sequently rating each summary from 1 to 5 (with
higher scores indicating superior quality) across
the aforementioned metrics.

Table 5 summarizes the performance of the pro-
posed method and the baseline, SUMMN . The
proposed model outperforms SUMMN in both the
AMI and ICSI datasets. Specifically, the Cover-
age score of the proposed method is notably higher
than that of SUMMN . It seems that the coarse
summarizer in the proposed method effectively
generates concise summaries for each document
segment, while the fine-grained summarizer cap-
tures the essence of each segment more compre-
hensively. The results of human evaluation ex-
periments demonstrate that the proposed method
generates better summaries than SUMMN .

2For the sake of simplicity, there is no one-to-many map-
pings.
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Table 5: Human evaluation scores.

AMI ICSI
Readability Conciseness Coverage Readability Conciseness Coverage

SUMMN 3.90 3.45 3.48 3.56 3.28 3.33
Proposed model 4.15 3.58 3.78 3.77 3.55 4.17

Table 6: Performances of LLM-based summarization on three long document summarization data sets.

AMI ICSI QMSum-All
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LongChat-7B-16K (Zero-shot) 26.15 6.77 24.50 18.06 2.07 17.12 23.40 3.86 20.78
Llama 2-13B (Zero-shot) 29.20 6.23 27.77 9.99 0.79 9.46 15.10 1.94 13.40

Llama 2-13B (Few-shot, Source-focused) 28.59 7.09 27.18 23.35 2.62 22.42 21.32 3.16 18.82
Llama 2-13B (Few-shot, Target-focused) 30.49 7.28 29.18 24.66 2.99 23.47 21.48 3.16 19.16

Proposed model 54.85 21.18 52.28 50.27 13.38 47.30 35.31 10.13 30.58

4.5 Comparison with LLM-based Long
Document Summarization

Recent studies have shown that while summaries
generated by large language models (LLMs) con-
sistently outperform those of fine-tuned summa-
rization methods in short document summarization
(Zhang et al., 2023; Pu et al., 2023b), they typi-
cally fall short in the context of long document
summarization (Yang et al., 2023; Nijkamp et al.,
2023; Touvron et al., 2023). For example, Chat-
GPT achieved a score of 28.34 R-1 on the QMSum
dataset (Yang et al., 2023), whose score is below
the 35.31 R-1 obtained in our study. According to
the study (Nijkamp et al., 2023), the performance
of XGen-7B for GovReports was only at 21.28 R-1,
which is substantially inferior compared to exist-
ing long document summarization methods. The
recently introduced Llama 2 (Touvron et al., 2023)
also encountered challenges in long document sum-
marization, achieving only a 15.08 R-1 score on
the QMSum dataset. Apart from LLMs specifically
engineered to handle extended contexts, the major-
ity of LLMs have input context length about 4K
(e.g., Llama2-13B). This implies that even when us-
ing LLMs, a multi-stage summarization approach
remains essential to process long documents.

To probe the efficacy of LLM-based summa-
rization in our experiments, we conducted exper-
iments using the LongChat (Li et al., 2023) and
Llama 2 (Touvron et al., 2023) models and eval-
uated their performance in comparison with the
proposed method. We employed two types of LLM-
based summarization approaches: zero-shot sum-

marization and few-shot multi-stage summariza-
tion. In zero-shot summarization, the model is
provided with both a task prompt and the docu-
ment as input, and then it generates a summary
of the given document. In few-shot multi-stage
summarization, we replace both the coarse and
fine-grained summarizers in the multi-stage sum-
marization with a few-shot LLM summarization
model. Here, we also examined two types of few-
shot LLMs for the coarse summarizer: a source-
focused model, where the few-shot examples are
sampled from source-focused pairs, and a target-
focused model, where the examples are sampled
from target-focused pairs.

Table 6 shows the performance of the LLM-
based summarization across three long-document
datasets. The efficacy of the summary model us-
ing LLMs is inferior to that of existing multi-stage
summarization approaches. In other words, LLMs
have not yet demonstrated strong performance in
long document summarization, indicating an area
for future research. Another interesting observa-
tion is that when using LLMs for multi-stage sum-
marization, LLMs with few-shot examples from
target-focused pairs achieve better performance
than those with few-shot examples from source-
focused pairs. These results suggest that target-
focused pairs play an important role in improving
performance in multi-stage summarization.

4.6 Case study

Table 7 shows sample summaries generated by the
proposed method and SUMMN . Both summaries
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Table 7: Sample output summary of the proposed method on the AMI dataset.

SUMMN The project manager opens the meeting by recapping the events of the previous meeting. The marketing
expert presents the results of market research , which shows that users want a fancy-looking remote control
that is easy to use and has a fancy look and feel. The user interface designer presents the user interface
concept for the remote , which is based on the idea that a remote should be simple and user-friendly. The
industrial designer presents about the internal components of a remote control. The group discusses using
kinetic energy to power the device , using a simple battery for the LCD screen , and using an advanced chip
for the advanced chip. The project manager closes the meeting , telling the team members what their tasks
will be for the next meeting. · · · The Marketing Expert will research how to produce a remote that is
technologically innovative. The User Interface Designer will look at how to make a remote out of wood or
plastic with either a wooden or plastic cover. The Group will not work with teletext. There was a lack of
information on the cost of components and materials.

Proposed
method The project manager recapped the decisions made in the previous meeting. The marketing expert

presented the results of a market study which shows that users of remotes want remotes to have a fancy look
and feel, are interested in speech recognition, and are willing to pay extra for an LCD screen. The interface
specialist presents, suggesting that the remote should be user-friendly and attractive, using large buttons,
speech recognition, and using a little display. The industrial designer presents, presenting the components
design. The group discusses the features they would like to include in the remote, including an LCD screen
and a kinetic energy source. The user interface designer and industrial designer will work together on the
look-and-feel design the group will use default materials. The remote will be single curved, single curved or
double curved. The case will be made of plastic or rubber. The company will use wood. What type of chip
to use. Whether to have a double curved or single curved case · · · the device will have a docking station for
the remote to put the remote in when not in use. what sort of chip the device should have. What kind of
display to include. What shape the remote is to be. Whether speech recognition is a good idea or not.
Whether the remote has to be a changeable case. Choosing between an LCD screen or speech recognition.

Gold The project manager opened the meeting and recapped the decisions made in the previous meeting. The
marketing expert discussed his personal preferences for the design of the remote and presented the results of
trend-watching reports , which indicated that there is a need for products which are fancy , innovative , easy
to use , in dark colors , in recognizable shapes , and in a familiar material like wood. The user interface
designer discussed the option to include speech recognition and which functions to include on the remote.
The industrial designer discussed which options he preferred for the remote in terms of energy sources ,
casing , case supplements , buttons , and chips. The team then discussed and made decisions regarding
energy sources , speech recognition , LCD screens , chips , case materials and colors , case shape and
orientation , and button orientation. · · · The case covers will be available in wood or plastic. The case will
be single curved. Whether to use kinetic energy or a conventional battery with a docking station which
recharges the remote. Whether to implement an LCD screen on the remote. Choosing between an LCD
screen or speech recognition. Using wood for the case

capture the content of the source long document
and exhibit similarities to the gold summary. How-
ever, the summary from the proposed method con-
tains more relevant phrases compared to the one
generated by SUMMN such as “recapped the deci-
sion made in the previous meeting” and “choosing
between an LCD screen or speech recognition”. We
posit that the proposed summarizer has the capacity
to generate concise coarse summaries, which subse-
quently facilitate the production of final summaries
enriched with key phrases.

5 Conclusion

In this paper, we have demonstrated the effec-
tiveness of enhancing the coarse summarizer in
the multi-stage split-then-summarization approach.
To enhance the coarser summarizer, the proposed
method focuses on constructing target-focused
aligned pairs, ensuring that only relevant source
segments are included. Then, the proposed method

incorporates contrastive learning into the training
of the coarse summarizer to reinforce the con-
veyance of the similar meaning between source and
target segments. Experimental results on six long
document summarization datasets show that the
proposed method helps improve the performance
of the multi-stage long document summarization
approach.
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Limitations

While the multi-stage split-then-summarization ap-
proach offers flexibility in processing long docu-
ments by adjusting the number of stages, it requires
lots GPUs with large memory sizes. In our experi-
ments, we used A6000 GPUs with a 48 GiB mem-
ory, and the training process took up to three days
per dataset. It is important to note that the proposed
model is based on the existing multi-stage long doc-
ument summarization approach, which means that
the memory usage during training is similar to the
existing approach, and the footprint remains the
same during inference.

Ethics Statement

We have conducted the proposed model training
and testing using publicly accessible datasets. To
the best of our knowledge, this work does not in-
volve any ethical issues. We believe that this work
complies with the ethical code of ACL.
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