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Abstract

This paper formulates a new task of extract-
ing privacy parameters from a privacy policy,
through the lens of Contextual Integrity (CI),
an established social theory framework for rea-
soning about privacy norms. Through extensive
experiments, we further show that incorporat-
ing CI-based domain-specific knowledge into a
BERT-based SRL model results in the highest
precision and recall, achieving an F1 score of
84%. With our work, we would like to motivate
new research in building NLP applications for
the privacy domain.

1 Introduction

A privacy policy informs users about a company’s
information handling practices. However, privacy
policies are lengthy documents, full of incomplete
and vague statements that impose a significant cog-
nitive burden on the reader to infer whether a given
service respects their privacy (Bhatia et al., 2016a;
Bhatia and Breaux, 2018; Reidenberg et al., 2015).

This challenge has inspired many recent works
in applying natural language processing and ma-
chine learning techniques to automatically process
privacy policies and retrieve the relevant infor-
mation (Harkous et al., 2018; Ravichander et al.,
2019). While these efforts help in identifying para-
graphs in the privacy policy that mention sensitive
information (Evans et al., 2017; Bhatia and Breaux,
2015), opt-out clauses (Sathyendra et al., 2016)
or description of data collection practice (Sadeh
et al., 2014), they focus on the policy as a whole
rather than on the privacy implication of the indi-
vidual privacy statements that it contains. In partic-
ular, they do not aim to identify relevant and often
missing contextual information that is critical for
unambiguously understanding the scope of individ-
ual statements. This paper focuses on a new NLP

∗currently at Google

task that aids the analysis of privacy policies at this
more fine-grained level.

To illustrate the problem, consider a typical ex-
ample of an ambiguous privacy statement: “Ya-
hoo collects information about your transactions
with us and with some of our business partners,
including information about your use of finan-
cial products and services that we offer." At first
glance, the statement may seem to provide all the
relevant information about a first-party collection
of transactional data. However, it in fact misses
some crucial contextual information. To under-
stand what is missing, we use the contextual in-
tegrity (CI) framework (Nissenbaum, 2009). CI
defines privacy as an appropriate flow of informa-
tion which is expressed in terms of five essential CI
parameters: Sender, Recipient, Subject, Informa-
tion Type, and Transmission Principle. The latter is
a constraint on the information flow expressing the
condition under which information is being trans-
ferred. The statement in our example specifies only
3 out of the 5 necessary parameters (highlighted in
bold) – Subject, Recipient, and Information Type.
This leaves the sender of the information and trans-
mission principle to the reader’s interpretation. In
some cases, the relevant missing information ap-
pears in different places in the policy, for example,
under different sections such as “When do we col-
lect your information” or “Our partners”. These,
however, do not help in contextually positioning the
above statement so that the reader can determine
whether their expectations have been met.

In this paper, we show that existing NLP mod-
els and techniques can assist a human annotator in
identifying relevant privacy parameters in the pol-
icy text. The proposed novel NLP task can support
the following applications: automate comparative
analysis of privacy policies using the theory of
contextual integrity (Shvartzshnaider et al., 2019a;
Sanfilippo et al., 2019); extraction and enforcement
of prescribed CI-based policy from legal and co-
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operate document (Shvartzshnaider et al., 2019a;
Sanfilippo et al., 2019), an enhanced auditing of
existing privacy policies for correctness and consis-
tency (Andow et al., 2019).

2 Contextual Integrity Primer

The theory of Contextual Integrity (CI) defines pri-
vacy as appropriate information flow in accordance
with governing privacy norms. As mentioned in
the introduction, CI provides a framework to cap-
ture and compare information flows against estab-
lished norms. To perform an analysis of the privacy
implications of a given information flow, CI re-
quires identifying five essential parameters: actors
(sender, receiver, subject), the type of information
(attribute), and the condition or purpose of the in-
formation exchange (transmission principle). It
is critical to state all five parameters to ensure a
non-ambiguous privacy implication analysis. A
misalignment of parameter values–i.e., an informa-
tion flow that deviates from the established norm–
constitutes a potential privacy violation.

For example, consider a medical context, an es-
tablished norm states that a patient (sender) could
share their (subject) medical information (informa-
tion type) with their doctor (receiver) confidentially
(transmission principle). An information flow (e.g.,
generated by an app or a system) that deviates from
this norm (e.g., by changing the value of TP to
public and/or sending the medical information to a
different receiver) potentially violates the patient’s
privacy and requires further investigation. CI pro-
vides a heuristic to examine violating information
flows in terms of how they contribute to values,
functions, and purposes of a particular context (Nis-
senbaum, 2009).

CI and Privacy Policies By identifying the val-
ues of CI parameters in a privacy statement, we
can reason about privacy implications in a way that
more closely aligns with users’ privacy expecta-
tions and societal norms.

This analysis can help in identifying potentially
confusing or misleading statements, e.g., when one
of the five parameters such as transmission princi-
ple or receiver is missing or ambiguous (Shvartzsh-
naider et al., 2019a). Furthermore, one can use the
identified parameters to formalize the expressed
informational norms and privacy rules in formal
logic (Shvartzshnaider et al., 2019b; Datta et al.,
2011). These formalisms can in turn be used to
build systems that enforce the specified rules or

automatically audit information flows to detect rule
violations.

3 Related Work

Several recent efforts have focused on identify-
ing important and relevant privacy statements us-
ing constituency parsing (Sathyendra et al., 2017,
2016; Evans et al., 2017), logistic regression (Am-
mar et al., 2012) and crowdsourcing (Wilson et al.,
2016b) techniques. These works focus on other
aspects of privacy policy analysis such as opt-out
disclosure, right to information access, etc.

As we discuss in Section 4, our work explicitly
looks to map the privacy statement to a fixed set
of parameters. We also show that Question An-
swering (QA) models do not perform satisfactorily
when applied to our task. Similar limitations of
the reading comprehension models were observed
by Ravichander et al. (2019), who composed the
PRIVACYQA dataset, an annotated corpus consist-
ing of 1750 questions about the contents of privacy
policies such as “What data does this game collect?”
and “Will my data be sold to advertisers?”.

In prior work on automatic privacy statement
analysis, Bhatia et al. (2016b) extracted privacy
statements on information handling practices such
as “collecting your e-mail address” or “sharing
your location” using a typed dependency parser
and crowdworker annotations. More relevant to
our efforts, Bhatia and Breaux (2018) applied Se-
mantic Roles theory to manually annotate five pri-
vacy statements and identify action verbs (action
data) such as “collection”, “retain”, “use”, “trans-
fer” and associated semantic roles that capture who
performs the action, how the action is carried out,
etc.

Andow et al. (2019) developed PolicyLint to
analyze privacy policy using sentence-level NLP
techniques to capture statements in a four-element
tuple (actor, action, data object, entity) to identify
contradictory statements. Andow et al. (2020) used
a simplified 3-tuple statement abstraction (actor,
data object, entity), and identify incorrect and am-
biguous statements. Trimananda et al. (2022) build
on this effort to audit the traffic and privacy poli-
cies in Oculus VR systems. Per CI theory, both
OVRseen and PoliCheck capture insufficient infor-
mation to perform a privacy implication analysis,
which requires five CI parameters. Nevertheless,
we can use PolicyLint and PoliCheck libraries to
help process privacy policies to generate statements
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that we can feed into our annotation pipeline.
Shvartzshnaider et al. (2019a) crowdsourced pri-

vacy policies annotation to compare policy ver-
sions, identifying missing contextual information
and overloading of parameters that contribute to
users’ inability to understand the prescribed infor-
mation practices. Our work automates the task of
annotating privacy policies with the CI parameters.

4 Task Formulation

The CI parameter extraction task is as follows.
Given a privacy statement stmt, apply a mapping
function M to extract the CI parameters: sender,
receiver (r), subject (s), attribute (att), transmission
principle (tp):

M(stmt) = (s, r, sub, att, tp)

The main challenge behind the task is identifying
the lexical items in the statement that correspond to
the contextually relevant values to help downstream
NLP tasks perform the privacy analysis. This is
not a trivial task as privacy policies are not written
with CI in mind. Often, policies are written by le-
gal and policy teams whose primary concern is not
readability. Many privacy statements are missing
essential CI parameters and often comprise syn-
tactically complex sentences (Bhatia and Breaux,
2018).

In the absence of an automatic way to extract
CI parameters, researchers have employed crowd-
sourcing and manual annotation to perform the
analysis (Shvartzshnaider et al., 2019a). However,
these methods do not scale due to the high cost
of annotation by experts and hence we propose
an ML-based approach by training or mapping ex-
isting models trained on NLP tasks to extract CI
parameters. Further, we expand on a growing body
of research in human-in-the-loop ML-assisted vali-
dations (Section 5.3) to evaluate the precision and
recall of the model annotations.

5 Methods

In this section, we describe our method to perform
the CI parameter extraction task by incorporating
the contextual semantics of CI parameters to mod-
ify two conventional NLP techniques: Syntactic
Dependency Parser (DP) and BERT-based Seman-
tic Role Labeling (SRL). We then describe how
these individual techniques can be integrated into
an end-to-end model to extract CI parameters from
privacy policies. In addition, in our evaluation

(Section 6), we also compare our method to three
baseline models tailored to address the CI param-
eter extraction task: Question-Answering, BERT,
and Hidden Markov Model.

5.1 Enhancing NLP tasks using CI

We focus on Syntactic DP and SRL-based ap-
proaches and describe how we have incorporated
CI-based domain-specific knowledge.

5.1.1 CI-based Dependency parsing
Dependency parsing is the task of identifying syn-
tactic roles or dependency types for each of the
words in a sentence. This involves parsing a sen-
tence and identifying the syntactic structure denot-
ing the grammatical rules that govern a language.
The parser (Honnibal and Johnson, 2015) uses a
non-monotonic transition system that allows for a
large number of parse trees for each intermediate
state. This modified arc-eager transition system has
been shown to repair earlier parsing mistakes. It
allows for overwriting previous parsing decisions
and achieves a higher accuracy as compared to the
greedy parsing approaches. Not all the dependency
types identified for the English language are rele-
vant in our study. We use the DP outputs to identify
the relevant CI parameters in the privacy statement.

To identify CI parameters at a single sentence
level using local relationships, we run a typed de-
pendency parser (DP) on the text of the policies.
We accept paragraphs as input, split them into sen-
tences, and parse each sentence using the Spacy
I/O1 dependency parser. The model (Honnibal and
Montani, 2018) achieves near state-of-the-art per-
formance on most NLP tasks2. Based on our anal-
ysis of DP outputs for a sample of statements, we
identified the dependency types that mapped to spe-
cific CI parameters as shown in Table 1.

CI Parameter Type Dependency types
Attribute dobj, parataxis, nsubj-

pass
Sender/Receiver nsubj, pronouns
Transmission Principle xcomp, ccomp, advcl,

oprd
Subject poss, agent

Table 1: Mapping of dependency types corresponding
to CI parameters. To represent dependencies we use the
Stanford Typed Dependency Manual (De Marneffe and
Manning, 2011) notations.

1https://spacy.io
2https://spacy.io/usage/facts-figures
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For example, for the following statement from
the Google privacy policy, the DP parser will
return the following dependency type tags (white
nodes), which are mapped to the corresponding CI
parameter (gray nodes):

When you use Google services, we may collect and process

advcl

TP

pron

Receiver

information about your actual location.

dobj

Info. type

poss

Subject

Note that, as is evident in Table 1, the dependency
types cannot distinguish between the parameter of
sender and receiver. For this, we defer to the task
of SRL to identify based on the semantic meaning
of the word.

CI-based Semantic Role Labeling Semantic
Role Labeling (SRL) is the task of mapping words
or phrases in a sentence to a semantic role such
as that of an agent, goal, or result (Jurafsky and
Martin, 2014). Often, in the classic natural lan-
guage processing pipeline, this task is considered
to have subsumed syntactic and parts-of-speech
tasks within it (Tenney et al., 2019). For example,
the task of distinguishing between a sender and a
receiver can be done through SRL, but not through
syntactic DP.

Similar to DP, we map the semantic roles to
the relevant CI parameters. Table 2 shows the
CI parameter mapping based on a verb’s syntac-
tic arguments. For example the verb “collect" has
the following associated arguments (see PropBank
corpus (Martha et al., 2005)): ARG0: agent, entity
acquiring something, ARG1: thing acquired, ARG2:
source, ARG3: more specific attribute of ARG1 being
collected, ARG4: benefactive.
To recover the predicate argument structure of a
sentence we use an out-of-the-box AllenNLP im-
plementation of the Bidirectional LSTM and SRL
BERT models (Stanovsky et al., 2018; Shi and
Lin, 2019). The first approach uses a bidirectional
LSTM model for sequence tagging that allows for
multiple overlapping tuples per sentence by ex-
tending deep BIO taggers for semantic role label-
ing, trained on the Open information extraction
task. The second approach uses two sequence-to-
sequence BERT models, one for predicate sense
disambiguation, and another for argument identifi-
cation and classification, with relevant parts of the

sentence and predicate as part of the input, with a
sequence of semantic role labels for outputs. For
example, for the following statement, the BERT
SRL model returns:

We collect technical information when you visit our websites

ARG0 V ARG1 ARGM-TMP

or use our mobile applications or services

ARGM-TMP

Example 1: SRL processed statement from a Walmart privacy policy

Based on the syntactic analysis of privacy policy
statement sentences, we mapped the arguments
onto the CI parameters. In the above example, ARG0
is mapped to Recipient. ARG1 is an Attribute, and
ARGM-TMP is the TP. For each of the verbs, these
mappings are slightly different, as shown in Table 2.
This approach, although crude, covers a significant
class of privacy policy statements that prescribe the
flow of information.

“Sending" action
verbs

“Receiving"
action
verbs

Sender ARG2 ARG0
Receiver ARG0 ARG2

Attribute ARG1, C-ARG1
TP ARGM-TMP, ARGM-ADV, ARGM-MNR

ARGM-PNC, ARGM-CAU

Table 2: Mapping semantic roles (notations) to specific
CI parameters.

5.1.2 CI-related Semantic Frames
The SRL model returns verb-argument predicates
for all the identified verbs in a sentence. Some
of these verbs are not relevant to information ex-
change. For example, in the statement in Exam-
ple 1, the verb “visits” does not convey seman-
tically meaningful information regarding the ex-
change of technical information.

To reduce the number of false positives, we pro-
vide a list of verbs to the algorithm which highly
correlates with information exchanges. The choice
of verbs is based on a frequency analysis of verbs,
along with filtering out verbs that are not related
to information flows (as shown in Table 11 in the
Appendix). It is helpful to think of this approach
through the lens of the linguistic theory of Frame
semantics (Fillmore et al., 1976), which posits that
the specific meaning of words (frame elements) can
be understood only as part of a particular context
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(semantic frames). In our approach, we would in-
voke CI-related semantic frames. Specifically, we
look for SRL-predicates that are associated with
any transfer of information (actual or perceived).
This includes a list of verbs such as “sending”,
“sharing”, “transmitting” and others that frequently
appear in privacy policy text as identified by our
POS analysis of the OPP-115 policies. In addition
to invoking a general semantic frame, we differ-
entiate between different roles of associated argu-
ment with each predicate. In particular, for predi-
cates like “sending”, “sharing”, “transmitting” the
ARG2 is typically associated with the agent role
of a “sender”, the ARG1 captures what was “sent”
and ARG0 is associated with the receiving agent
role. For verbs like “gather”, “collect”, “receive”,
“acquire” the roles are reversed: ARG0 is typically
associated with a “sending” agent role, the ARG1
describes what is “Received”, and ARG2 is asso-
ciated with the “receiving” agent role. Grouping
the verbs signifying a “sending” or a “receiving”
action helps us map the corresponding arguments
to the relevant CI parameters for Senders and Re-
ceivers. The mapping for TP and Attribute remains
the same for all verbs. Finally, our SRL mapping
does not include a semantic role mapping of the
Subject parameter. We operate on the assumption
that the CI subject parameter in most statements is
the user.

5.1.3 Clues from CI to Improve SRL

We first gather the arguments from the SRL model
and map them to CI parameters, as shown in Ta-
ble 2. Identifying the arguments for all verbs in the
privacy statement results in high recall numbers.
Nevertheless, the precision suffers because not all
of the verbs need to be invoked. To reduce the num-
ber of false positive mappings, we implement an
Algorithm 1 which analyzes all the relevant SRL
verbs to check whether any of them appear as part
of the Transmission Principle (TP) relative to an-
other verb. Specifically, after the arguments are
mapped to CI parameters, we iterate through each
verb in the sentence and remove it if it has already
been mapped as part of a TP for another verb.

Algorithm 1
Args← SRL(sentences)
Dict(V erb, CIparams)← MapToCI(Args)
for all verbi ∈ Dict(V erb : CIparams) do

for all verbj ∈ Dict(V erb : CIparams) do
if verbi ∈ Dict[verbj ][TP ] then
RemoveMappings(Dict(verbi))

end if
end for

end for

For example, in the following statement, the
SRL model will pick up two predicates (verbs) and
corresponding arguments:

collect: We collect your personal information

ARG0 V ARG1

when you are sharing your post.
ARGM-TMP

sharing: We collect your personal information

when you are sharing your post.

ARGM-TMP ARG0 V ARG1

These arguments will be mapped to CI parame-
ters, as described in the previous section. The verb
“share" is redundant in this context since it is part of
the TP of the verb “collect." Once we identify the
redundant verb, we ignore all arguments associated
with it, i.e., our algorithm does not consider these
results. We do keep those parameters that overlap
with the parameters produced by non-redundant
verbs. For instance, in our example, we ignore the
verb “share" and the associated with it arguments.
Specifically, the [ARG0: you] and the [ARG1:
your post] which otherwise will be mapped to a CI
sender and attribute parameters, respectively.

5.2 Expert Annotation Task

We perform model-assisted annotation of close to a
thousand privacy statements that discuss informa-
tion exchanges across 50 policies (see Table 9 in
the Appendix) from the OPP-115 Corpus (Wilson
et al., 2016a).

5.2.1 Data processing
To extract relevant statements, we relied on exist-
ing OPP-115 corpus annotations of “data practices”
in each of the segments of the policy. We limit our
CI parameter extraction to labeled segments of the
policy that discuss information exchanges such as
segments labeled as “First Party Collection/Use”,
“Third party sharing/collection”, and “Data Reten-
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tion”. We also cleaned that data to remove short
parts of speech that are intrinsically captured by a
syntactic parser.

The selected statements from the privacy poli-
cies were then presented to a human annotator, one
of the authors who is an expert on CI. The expert
then marked the valid results for each of the pri-
vacy statement sentences and CI parameters, which
form the ground truth. A sentence was marked
as a “valid” flow if it prescribed an information
exchange of any kind. Otherwise, by default, all
sentences are considered “invalid.” Overall, the
extraction phase resulted in a total of 2808 privacy
statement sentences, out of which 994 were labeled
as valid, containing 4048 CI parameters. On av-
erage, a policy contains 18 valid statements, with
outliers of 4 and 45 valid statements. Furthermore,
our dataset contains: a) 4333 SRL labels (2846 true
positives and 1487 false positives), 5974 DP labels
(2484 true positives and 3490 false positives). Ta-
ble 8 in the Appendix shows the annotation labels
breakdown for each CI parameter.

Annotation reliability We assessed the reliabil-
ity of the expert by co-coding with another author
annotating 10 of the 50 policies to achieve a sub-
stantial to excellent agreement with Cohen’s Kappa
score range of 0.67-0.88 on the CI parameter an-
notations. Table 7 shows the corresponding break-
down of Cohen’s Kappa score (McHugh, 2012) for
each of the CI parameters.

Parameter Cohen’s Kappa
Agreement
score

Sender 0.88
Receiver 0.80
Attribute 0.63
Subject 0.73
TP 0.68

Table 3: The Cohen’s Kappa agreement scores for CI
parameters annotation.

5.3 ML-assisted expert validations

The outputs of the methods we have proposed in
Section 5 may have an overlap with the ground
truth. However, for CI parameters like the trans-
mission principle, it is not clear if relying on an
exact string match or a fuzzy match would consis-
tently capture what makes any output a transmis-
sion principle. Hence, comparing the outputs with

the expert annotations requires a careful analysis
that goes beyond unigram/bigram/trigram match or
fuzzy match of the two spans of text. Instead, we
perform a validation of the outputs generated by
the model, where the expert can confirm if the out-
put matches the expectation and criteria for the five
CI parameters3. Such a human-in-the-loop annota-
tion process is necessary to check for any inconsis-
tencies as shown in prior work for image annota-
tions (Zurowietz et al., 2018; Marques and Barman,
2003), knowledge-oriented text tasks (Klie et al.,
2018), clinical text annotations (South et al., 2012).
The task involved comparing against ground-truth
human annotations, and selecting among the model-
based outputs, the ones that match the definition
of a contextual integrity parameter. For example,
although the model generated output “has an xx%
match as per fuzzy match with the ground truth
parameter:”, it still does not capture the critical
component that defines the transmission principle.
Similarly, we see patterns for other CI parameters
that are not easily definable in terms of rules that
can scale with the number of models we compare
against. This limitation is one that is highlighted
in human-in-the-loop annotations and validations
with domain expertise (Monarch, 2021), and im-
proving the scaling of this process is left for future
work.

5.4 Baseline Models

Question Answering As an exploratory exper-
iment, we used an open domain QA model (Al-
lenNLP library with the BiDAF model with GloVe
embeddings4) to answer CI-related questions re-
garding each privacy statement. For example, to
identify the marked CI parameters in the following
privacy statement, we asked a variation of these
questions: “Who is transferring?”, “What is being
transferred?”, “Who is the subject?”, “Who is the
receiver/recipient?”, “Why, When, and How is the
transfer facilitated?”:

We transfer information about you

Sender Attribute Subject

if Yahoo is acquired by or merged with another company.

TP

BERT We frame the CI parameter extraction task
as a sequence-to-sequence transformation problem

3See Figure 3 in the Appendix of a screenshot of the
choices that the annotation tool built for this purpose

4bidaf-model-2017.09.15-charpad.tar.gz
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to fine-tune a Bidirectional Encoder Representa-
tions from Transformers (BERT) model (Devlin
et al., 2018) on our dataset to map a sequence of
words in privacy statements to a corresponding se-
quence of CI tags. The input sentence is tokenized
as a sequence, and the output sequence is a per-
token mapping between {None, Sender, Receiver,
Attribute, TP and Subject} parameters. For train-
ing and testing, we transformed our dataset into
the CoNLL2003 format and used the AllenNLP
re-implementation of (Gardner et al., 2018) with
the train-test split ratio as 80/20 and values of hy-
perparameters taken from (Gardner et al., 2017).

Hidden Markov Model As a baseline, we also
formulate the CI parameter extraction as a part-
of-speech (POS) tagging task and use a Hidden
Markov Model (HMM) probabilistic model (Ju-
rafsky and Martin, 2014) for annotating words
in a sentence. Specifically, we train a trigram
HMM by converting the dataset to CoNLL-2003
format (Sang and De Meulder, 2003) with CI pa-
rameters as the target labels and an 80/20 train-test
split. By default, HMM relies on the Markov as-
sumption that the probability of a particular state
only depends on the preceding state. However, in
order to enrich our HMM model, we consider the
two previous states when predicting the current CI
parameter, turning it into a trigram model. Further,
we obtain the final transition probability distribu-
tion by linearly combining unigram, bigram, and
trigram probability distributions:

P (ti | ti−1, ti−2) = λ1P (ti | ti−1, ti−2)+

λ2P (ti | ti−1) + (1− λ1 − λ2)P (ti)

The parameters λ1 and λ2 are fine-tuned on the
validation set with values 0.42 and 0.48 providing
the best results. The Viterbi algorithm (Forney,
1973) is used in the decoding phase for the ex-
tended model.

6 Evaluation

We now compare the performance of the different
models on the CI Annotation task using the dataset
in Section 5.2 with some common baseline models
repurposed for CI.

6.1 Baseline Performance
Table 4 shows the results of our expeditionary ex-
periment. The overall F1 scores for the QA model
indicate poor results for the extraction of all CI pa-
rameters. In our experiment, QA outputs multiple

phrase predictions for each of the parameters. For
precision, we calculate true positives as a fraction
of all positives predicted for each parameter. For
recall, we calculate the fraction of true positives to
all correct parameters.

Recall Precision F1

Attribute 0.21 0.15 0.17
Receiver 0.08 0.06 0.07
Sender 0.03 0.02 0.02
Subject 0.07 0.02 0.03
TP 0.21 0.16 0.18

Table 4: Precision, Recall, and overall F1 score for
QA Comprehension model used for the CI parameter
extraction task. The recall and precision values for
a parameter are calculated by macro averaging over
privacy statements.

This result aligns with previous uses of QA in the
privacy domain (Ravichander et al., 2019), which
observed that compared to a human annotator, us-
ing standard reading comprehension models for pri-
vacy policies returns unsatisfactory results. These
experiences suggest that QA models require addi-
tional heuristics to filter the many false positives as
a result of operating on a paragraph level and not
on sentence-level statements.

Table 5 shows the results of training a trigram
Hidden Markov Model and a fully-supervised
BERT for the CI-parameter extraction task. Both
models perform relatively poorly for our task, es-
pecially when it comes to the “Sender” parameter.
HMM’s overall F1 scores are slightly better for de-
tecting other parameters, with the highest F1 score
achieved for the TP parameter in both models.

Recall Precision F1
CI Param. HMM BERT HMM BERT HMM BERT

Attribute 0.67 0.61 0.57 0.51 0.62 0.55
Receiver 0.44 0.53 0.52 0.36 0.47 0.43
Sender 0.08 0.12 0.15 0.16 0.10 0.14
TP 0.80 0.75 0.68 0.55 0.74 0.64

Table 5: F1 Scores for fully-supervised HMM and fine-
tuned BERT model. The recall and precision values are
calculated on word level over the whole test set.

6.2 CI Improved Performance
Table 6 shows precision and recall for both DP
(Spacy (Honnibal and Montani, 2018)) and SRL

91



Figure 2: Histogram of F1 scores across privacy policies

models (AllenNLP BERT SRL (0.8.5) and (2.1.0)).
Both DP and the two SRL models have high re-
call numbers. However, in DP the precision is
lower, indicating that although DP identifies all the
relevant instances, it also produces a large num-
ber of false positives. Overall, compared to DP,
both SRL models have higher precision and re-
call. The AllenNLP (2.1.0) SRL-adapted structured
BERT model (Shi and Lin, 2019), with compara-
ble results5 to robust models like RoBERTa (Liu
et al., 2019) and T5 (Raffel et al., 2019) on
CoNLL SRL datasets (Pradhan et al., 2013), pro-
duced better results compared to the earlier version
(0.8.5) (Stanovsky et al., 2018). Furthermore, com-
pared to DP, the SRL models have slightly higher
recall numbers and much higher precision. We,
however, note that SRL did not process 49 valid
statements missing 159 valid CI parameters. In
this case, the statements were ignored by our SRL
algorithm because the semantic frame was not trig-
gered as they contained verbs that our algorithm
did not track. Some of these verbs are not always
associated with information exchange, like “sell”
and “rent”.

6.2.1 Improved SRL
Table 6 shows the results for SRL after applying our
algorithm incorporating domain-specific heuristics
on both BERT SRL model versions. The precision
results have improved across all the parameters,
affecting recall only slightly. We note that our F1
metric is calculated on the phrase prediction level.

Performance across Policies: Figure 2 shows
F1 score distributions for the annotated policies.
The majority of policies (31) have F1 scores in the

5https://paperswithcode.com/sota/coreference-resolution-
on-conll-2012
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ll

Prec
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on

F1
Model CI

Parameters
DP Attribute 0.68 0.43 0.53

Subject 0.79 0.26 0.39
TP 0.76 0.61 0.68

SRL (0.8.5) Attribute 0.92 0.70 0.80
Receiver 0.94 0.74 0.83
Sender 0.95 0.63 0.75
TP 0.89 0.69 0.78

SRL (2.1) Attribute 0.88 0.71 0.79
Receiver 0.88 0.75 0.81
Sender 0.90 0.64 0.75
TP 0.93 0.70 0.80

CI-SRL (0.8.5) Attribute 0.90 0.75 0.82
Receiver 0.88 0.79 0.83
Sender 0.90 0.73 0.81
TP 0.88 0.81 0.84

CI-SRL (2.1) Attribute 0.88 0.78 0.83
Receiver 0.87 0.81 0.84
Sender 0.88 0.76 0.82
TP 0.84 0.83 0.84

Table 6: F1 Scores for all the models: DP, SRL models
and Improved SRL (CI-SRL). The recall and precision
values for each parameter are calculated by macro aver-
aging over privacy statements.

range of 80-89, which is consistent with the average
F1 scores per parameter. Nine policies perform
much better giving a high F1 value of more than
90, six policies are within the 75-80 range, and four
policies in the 60-75 F1 range. Refer to Table 9 in
the Appendix for the F1 scores for each policy.

We analyzed the privacy statements for which
our heuristic algorithm achieved low precision
scores to understand the reasons behind the poor
performance. Our SRL-based algorithm performed
poorly on statements with semantically complex
sentences. Semantically complex statements com-
prise multiple verb-predicates with related argu-
ments that result in a large number of false pos-
itives. We also noticed a large number of false
positives in long connected sentences that due to
improper punctuation appear as a single sentence
to our algorithm.

These cases are not only problematic for an NLP
task but also require significant cognitive effort
to analyze the privacy implications of the pre-
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scribed information flows. Rather than adapting
our method to yield better results in these cases, we
can use it to detect these complex sentences so that
they can be restated more clearly.

7 Discussion

In this paper, we describe an NLP-based method to
perform automatic CI annotation of privacy state-
ments. This work has several implications for dif-
ferent stakeholders, some of which were discussed
in (Shvartzshnaider et al., 2019a).

For consumers, who often find privacy policies
too lengthy and complex to read, the CI annotation
provides the ability to query the privacy policies
for specific flows it prescribes. These can involve
asking about mentions of specific “senders" and
“recipients" in the privacy policies, the type of in-
formation being collected or shared, and listing the
conditions and purposes. Beyond enumerating the
prescribed CI parameters, the method enables con-
textual queries that reflect up to five CI parameters.
For example, instead of asking about mentions of
“location information," the query can include the
senders, and recipients of interest, such as third
parties, and contractors. The query can be further
refined to include specific constraints under which
location data is transferred, e.g., when the user is
using the app.

The CI abstraction also allows for querying dif-
ferent privacy policies, potentially, from different
sectors. Moreover, it can serve as a way to com-
pare different versions of the same privacy policy
to examine the new changes that were introduced
in the latest version. We can identify which new
flows were added or removed and, consequently,
what data types, senders, recipients, subjects, and
conditions were changed.

Finally, combining with existing crowdsourc-
ing methodologies of learning users’ privacy ex-
pectations (Apthorpe et al., 2018; Shvartzshnaider
et al., 2016; Apthorpe et al., 2019), we can per-
form a large-scale analysis of what privacy policies
align with users’ expectations and existing societal
norms.

For relevant agencies like the Federal Trade
Commission, the CI-based analysis of privacy poli-
cies can serve as a robust auditing technique for
prescribed data handling practices. Using the CI
framework, the resulting information flows can
be automatically compared with existing regula-
tion (Apthorpe et al., 2019) and users’ privacy ex-

pectations (Shvartzshnaider et al., 2016; Apthorpe
et al., 2018). Furthermore, the analysis can help
detect privacy statements with missing contextual
information that results in ambiguous flows. Ulti-
mately, we envision our work used as part of the
overall evaluation framework for performing dy-
namic and static analysis of digital services, similar
to (Sanfilippo et al., 2019). Specifically, the CI an-
notated policy fed into an automatic test suite for
possible violation of privacy policy, regulation, or
societal expectations.

7.1 Limitations

As discussed in Section 6, our methods result in
high F1 scores (>80%) of annotations. Neverthe-
less, there are cases where our approach does not
perform as well. Our evaluation of different models
shows that a better SRL model coupled with do-
main knowledge heuristic improves results. Previ-
ous results (Shvartzshnaider et al., 2019a) showed
that crowdworkers are able to identify CI param-
eters with high precision. Coupled with our ap-
proach, crowdworkers can filter the false positives
and increase the precision further. Eliminating the
need for validation of model outputs in the eval-
uation phase would also make it easy to evaluate
better models in the future.

8 Conclusion

In this paper, we formulate the new CI parameter
extraction NLP task for the analysis of privacy state-
ments. We adapt several conventional NLP models
(QA, HMM, BERT, DP and SRL) to perform the
task and demonstrate that it cannot be solved triv-
ially. In our evaluation of privacy statements of 50
real-world privacy policies, we show that a method
combining clues from CI with syntactic DP cou-
pled with type-specific SRL obtains the highest F1
score. We build on this insight to devise an algo-
rithm that incorporates CI-based domain-specific
knowledge to achieve higher precision and recall.
The proposed algorithm post-processes ML outputs
and increases automation of a tedious task that has
so far been performed manually. Further improve-
ments of this task, leveraging domain knowledge
for complex scenarios will directly benefit down-
stream applications ranging from aiding the design
and analysis of privacy policies to building systems
that meet users’ privacy expectations by construc-
tion.
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Appendix

A Annotation reliability

We assessed the reliability of the expert by co-
coding with another author annotating 10 of the 50
policies to achieve a substantial to excellent agree-
ment with Cohen’s Kappa score range of 0.67-0.88
on the CI parameter annotations. Table 7 shows
the corresponding breakdown of Cohen’s Kappa
score (McHugh, 2012) for each of the CI parame-
ters.

Parameter Cohen’s Kappa
Agreement
score

Sender 0.88
Receiver 0.80
Attribute 0.63
Subject 0.73
TP 0.68

Table 7: The Cohen’s Kappa agreement scores for CI
parameters annotation.

B Additional Tables

Parameter No. of Labels
Sender 546
Subject 340
Attribute 1133
Receiver 928
TP 1101

Table 8: Annotated CI parameters labels

“Sending” action verbs “Receiving” action verbs
share (1188) acquire (27)
transfer (130) learn (56)
exchange (7) collect (1042)
show (49) receive (376)
send (297) use (346)
supply (59) gather (78)
provide (1142) include (629)
disclose(359) contain (413)
submit (150) ask (13@)
give (101) accept (290)
deliver (109) store (212)
mail (16) require (504)
display (69) save (30)
export (3) record (118)
forward (22) keep (77)
refer (60) combine (51)
release (37) get (21)
tell (44) track (134)
pass (13)

Table 11: Verbs used to trigger SRL semantic frames.
The number in the brackets shows the frequency of
appearance in the OPP-115 corpus.
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Company Recall Precision F1
Liquor 0.86 0.47 0.61
Lodgemfg 0.73 0.55 0.63
New Orleans Online 0.88 0.55 0.68
St. Louis fed 0.82 0.58 0.68
Google 0.79 0.67 0.73
UH 0.78 0.69 0.73
NBC Universal 0.80 0.67 0.73
Sheknows 0.87 0.67 0.75
Instagram 0.87 0.67 0.75
Gawker 0.87 0.67 0.76
Military 0.91 0.66 0.76
Citizen 0.87 0.68 0.76
Everydayhealth 0.84 0.72 0.77
FoxSports 0.94 0.66 0.78
CoffeeReview 0.88 0.70 0.78
Reference 0.95 0.67 0.79
Zacks 0.93 0.69 0.79
News Busters 0.87 0.73 0.79
DCCCD 0.81 0.78 0.80
PlayStation 0.88 0.73 0.80
ABCNews 0.88 0.74 0.80
Yahoo 0.81 0.80 0.80
High Gear Media 0.92 0.72 0.81
PBS 0.85 0.77 0.81
Fortune 0.93 0.72 0.81
Time inc 0.94 0.73 0.82
LatinPost 0.90 0.77 0.83
Lynda 0.90 0.78 0.84
IMDB 0.88 0.80 0.84
MSN 0.87 0.81 0.84
Reddit 0.89 0.80 0.84
Ted 0.97 0.77 0.86
NY Times 0.87 0.86 0.87
AOL 0.98 0.78 0.87
Geocaching 0.91 0.82 0.87
Amazon 0.90 0.84 0.87
TaylorSwift 0.96 0.81 0.88
USA 0.96 0.81 0.88
WashingtonPost 0.94 0.83 0.88
TheAtlantic 0.96 0.83 0.89
Dogbreedinfo 0.92 0.86 0.89
Austincc 0.93 0.85 0.89
Walmart 0.93 0.85 0.89
BankofAmerica 0.87 0.92 0.90
Fool 0.95 0.85 0.90
TicketMaster 0.91 0.89 0.90
SI 0.90 0.93 0.91
TheFreeDictionary 0.92 0.93 0.92
Earthkam 1.00 0.88 0.93
OpenSecrets 1.00 1.00 1.00

Table 9: F1 scores for all annotated policies
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F1 TP FP FN
Model CI

Parameters
DP Attribute 0.35 0.71 0.47 791 1490 322

Subject 0.24 0.75 0.36 255 806 85
TP 0.57 0.81 0.67 895 666 206

SRL (0.8.5) Attribute 0.55 0.85 0.67 960 773 173
Receiver 0.67 0.85 0.75 790 394 138
Sender 0.55 0.86 0.67 470 381 76
TP 0.62 0.74 0.67 814 498 287

SRL (2.1) Attribute 0.64 0.66 0.74 952 626 181
Receiver 0.70 0.85 0.74 787 335 141
Sender 0.70 0.85 0.77 460 288 86
TP 0.72 0.78 0.75 855 325 246

CI-SRL (0.8.5) Attribute 0.60 0.83 0.7 939 617 194
Receiver 0.72 0.81 0.76 754 298 174
Sender 0.64 0.83 0.72 453 251 93
TP 0.76 0.73 0.74 805 258 296

CI-SRL (2.1) Attribute 0.69 0.81 0.75 923 416 210
Receiver 0.78 0.80 0.79 743 212 185
Sender 0.74 0.79 0.77 433 149 113
TP 0.85 0.75 0.79 821 144 280

Table 10: F1 Scores for all the models: DP, SRL models and Improved SRL (CI-SRL). Here, the recall and precision
values for each parameter is calculated using the total number of parameters, and not macro averaging over privacy
statements as in Table 7. TP, FP and FN are the number of True Positive (TP) and False Positive (FP).

Figure 3: Annotation interface. The expert annotator marks which outputs matched the expectation and criteria for
the five CI parameters.
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