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Abstract

In law, it is important to distinguish between
obligations, permissions, prohibitions, rights,
and powers. These categories are called de-
ontic modalities. This paper evaluates the
performance of two deontic modality classi-
fication models, LEGAL-BERT and a Fusion
model, in a low-resource setting. To create
a generalized dataset for multi-class classifi-
cation, we extracted random provisions from
European Union (EU) legislation. By fine-
tuning previously researched and published
models, we evaluate their performance on our
dataset against fusion models designed for low-
resource text classification. We incorporate fo-
cal loss as an alternative for cross-entropy to
tackle issues of class imbalance. The experi-
ments indicate that the fusion model performs
better for both balanced and imbalanced data
with a macro F1-score of 0.61 for imbalanced
data, 0.62 for balanced data, and 0.55 with fo-
cal loss for imbalanced data. When focusing on
accuracy, our experiments indicate that the fu-
sion model performs better with scores of 0.91
for imbalanced data, 0.78 for balanced data,
and 0.90 for imbalanced data with focal loss.

1 Introduction

Obligations, permissions, prohibitions, rights,
and/or powers are deontic modalities that com-
monly appear in legal documents. Precise identifi-
cation of deontic modalities within legal texts holds
importance for understanding and determining le-
gal positions, responsibilities, and legal actions. It
can contribute to automated compliance checking
(Amor and Dimyadi, 2021; Dimyadi and Amor,
2013; Hashmi et al., 2018; Abdelmoneim, 2012),
norm identification (Aires et al., 2017, 2019), and
generation and analysis of legal policies and argu-
mentation. Deontic modality classification (DMC)
allows machines to efficiently interpret regulatory
texts and easily adapt to changes in legislation (Ab-
delmoneim, 2012; Dias, 2022). Thus, by pursuing

the objectives of this research, we aim to address
the limitations of traditional human or rule-based
approaches and manual processing by leveraging
neural networks for DMC.

DMC is a Natural Language Processing (NLP)
task, in which, given a text with N normative state-
ments S=(s1, s2, s3, ..., sn), a classifier is trained
to label deontic modalities in each statement (Sun
et al., 2023). Limited datasets are available for
DMC. Waltl et al. (2017) constructed a dataset
based on the German tenancy law containing 913
sentences in German. The Data Protection Reg-
ulation Compliance (DAPRECO) (Robaldo et al.,
2020) dataset contains GDPR data represented in
LegalRuleML (Athan et al., 2013). DAPRECO
contains around 966 instances with 271 obligations,
76 permissions, and 619 constitutive rules. Rather
than using or constructing a dataset that focuses
on a particular legal topic or domain (e.g., GDPR,
tenant law), we aimed to enhance the generaliz-
ability of the results by randomly extracting 200
provisions from EU regulations.

Prior DMC research that relied on machine learn-
ing is commonly based on annotated datasets with
little or no information about the annotation pro-
cess and the agreement scores. As far as agree-
ment scores are reported, scores of between .74
and .82 are reported, which is higher than observed
by Braun (2023), who, after examining 29 publi-
cations on legal datasets, found average agreement
scores of .76 (Cohen’s kappa), .675 (Fleiss’ kappa),
and .677 (Krippendorff’s alpha), with the highest
Krippendorff’s alpha value not exceeding .78. Our
research relies on an annotated dataset that resulted
from multiple revision rounds by the annotators
and an arbiter. We believe this approach yielded
high-quality annotations, but with a limited num-
ber of annotated provisions. This is why we test
fusion models, which are designed for low resource
settings.

With this research on DMC, we aim to answer
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the following questions -

1. Does a fusion model outperform a BERT-
based model? (RQ1)

2. Which strategy (imbalanced dataset, balanced
dataset, focal loss) provides the best results
for the BERT-based and the fusion model?
(RQ2)

To answer these questions, we explore a model of
contrasting design - a pretrained language model
on EUR-Lex data called LEGAL-BERT - and a
fusion model that is smaller, not pre-trained, and
designed specifically for low-resource text classifi-
cation. The models are experimented on a manu-
ally curated multi-class sentence level classification
data, with the help of three annotators, preserving
different interpretations of the law and the genuine
disagreement regarding the deontic class.

We report on the experiment setup, the various
results, highlight the future opportunities for im-
proving the models in order to give more insight on
the challenges associated with low-resource DMC
in EU legislation, and report the limitations of the
proposed models.

2 Related Work

DMC has traditionally relied on rule-based ap-
proaches, resulting in a labor-intensive process
prone to human biases (Wyner and Peters, 2011).
Various studies have been conducted that have
adopted machine-learning approaches to automati-
cally detect deontic clauses. Sun et al. (2023) pro-
posed a new method for BERT fine-tuning termed
as DeonticBERT, classifying obligations, permis-
sions, prohibitions, and other sentences from Ger-
man tenancy law and Chinese social security poli-
cies, reported F1 scores of .89 (DeonticBERT) and
.94 (BiLSTM). Liga and Palmirani (2022) found
scores of .82 (obligations), .55 (permissions), .89
(constitutive rules) for the classification of obliga-
tions, permissions, and constitutive rules in 707
GDPR provisions by performing transfer learning
based on BERT by leveraging the symbolic infor-
mation of LegalXML formats. Bakker et al. (2022),
focusing on Dutch legislation, came to .52 and .74
accuracy scores, by describing a method, by us-
ing rule-based and transformed based approach,
to extract structured representations in the FLINT
language. Waltl et al. (2019) and Glaser et al.
(2018) evaluated a rule-based & machine learn-
ing approach, reporting an average of F1 scores of

.83 when for German tenancy law, among other
things, classifying duties, permissions, and prohi-
bitions. Joshi et al. (2021) found .90 precision and
recall scores, with BERT, for the classification of
obligations, permissions, and prohibitions in con-
tractual provisions. Shaghaghian et al. (2020), also
focusing on contracts, achieved F1 scores of .92
for the classification of obligations by exploring
various language, whereas Chalkidis et al. (2018)
found F1 scores of .90 and .84 for obligations and
prohibitions, respectively, in contractual provisions
by utilising hierarchical BiLSTM. Dragoni et al.
(2018), remarkably, reported precision scores of
between .96 and 1.00 by combining various Nat-
ural Language Processing techniques towards ex-
traction of obligations, permissions, and prohibi-
tions in two Australian laws. Various other studies
may be included that focus on classifying legal
rules, including O’Neill et al. (2017), Waltl et al.
(2017), Peters and Wyner (2016), Gao and Singh
(2014), Francesconi (2010), de Maat et al. (2010),
Francesconi and Passerini (2007), and Biagioli et al.
(2005). A more complete and detailed overview
will be available at van Dijck et al. (in preparation).

Our study adds to previous studies by comparing
different approaches, including fusion-models for
low resource settings, using focal loss to address
class imbalance, performing multi-class classifi-
cation based on randomly selected statutory provi-
sions from EU regulations, and building and testing
models for annotators separately due to genuine
disagreement amongst the annotators.

3 Methods

The architecture and parameters of both LEGAL-
BERT and the fusion model were optimized ac-
cording to their performance on the data from one
of the three annotators. Focal loss was used to ad-
dress significant class imbalance by providing more
weight to difficult-to-classify examples and less
weight to examples in the majority class(es). Fur-
thermore, the final fine-tuned versions of both mod-
els were trained separately on the three different
datasets (one per annotator) for multi-class classifi-
cation, where the full provisions were split into sep-
arate sentences or clauses for simplicity and where
the possible labels were ‘Obligation’,‘Permission’,
‘Power’, ‘Prohibition’, ‘Right’ or ‘None’ (i.e., non-
annotated text).
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3.1 Data Collection and Annotation

To cater to diverse domains within EU legisla-
tion in English without utilizing any translation
services, we constructed a dataset by extracting
200 provisions from EU law1. To extract these
200 unique diverse provisions, an extractor was
used by first querying the SPARQL endpoint pro-
vided by EU publications office2 for regulations
that are in force and not repealed. The random se-
lection of articles of EU regulations was expected
to enhance the generalizability of the results, at
least with respect to EU legislation. On obtain-
ing the provisions, three annotators annotated text
as ‘Obligation’, ‘Permission’, ‘Power’, ‘Prohibi-
tion’, ‘Right’, or no annotation. The annotators
were law students with different nationalities who
also had received basic training in NLP. They en-
gaged more than three months in over ten practice
rounds to familiarize themselves with the annota-
tion guidelines. Subsequently, the annotators la-
beled the same provisions and had the possibility
to revise annotations after receiving feedback on
where they disagreed. An arbiter corrected the
annotations not made in accordance with the anno-
tation guidelines. The agreement scores increased
at each step. The annotation process and inter-
rater and intra-rater agreement scores are reported
elsewhere (van Dijck et al., in preparation). The
annotation guidelines will be made available at
https://doi.org/10.34894/ZJJ.

The possibility of genuine disagreement is the
reason why we trained models for the three annota-
tors separately. The first annotator, A1, made 567
annotations, 445 of which were obligations, 83 per-
missions, 17 prohibitions, 13 rights, and 9 power
sentences. A2 annotated 561 sentences - 436 obli-
gations, 77 permissions, 16 prohibitions, 16 rights,
and 16 power sentences. A3 labeled 566 sentences
- 436 obligations, 79 permissions, 16 prohibitions,
15 rights, and 20 power sentences. There were
also 225 non-annotations, which were shuffled and
split equally into three separate sets and added to
the datasets of each annotator in order to learn the
models to distinguish deontic and non-deontic sen-
tences. Normal data distribution and neutral skew-
ness (skewness between -0.05 and 0.05) were pre-
ferred as they generally lower the misclassification

1https://eur-lex.europa.eu/homepage.
html visited on September 20, 2023

2http://publications.europa.eu/webapi/
rdf/sparql visited on September 20, 2023

rate and bias of classifiers (Trafimow et al., 2018;
Larasati et al., 2019; Liu et al., 2019). Since the
datasets were highly skewed towards the ‘Obliga-
tion’ class (> 2 right-skewness), we undersampled
(randomly) the obligations so that each dataset con-
tained less than 100 instances of obligations, thus,
reducing the skewness to around 1. The resulting
balanced datasets were stored separately in order to
investigate the impact of the class imbalance on the
classifiers. The class distribution of each dataset is
provided in Table 1.

Class A1 A2 A3
None 75 75 75

Obligation 444 435 435
(88) (79) (82)

Permission 83 77 79
Power 9 16 20
Prohibition 17 16 16
Right 13 16 15

Skewness 2.18 2.11 2.05
(0.99) (0.95) (0.93)

Total 641 635 640
(285) (279) (287)

Table 1: Class distribution of the data per annotator (the
number of instances after the sample reduction is given
in parentheses)

The three datasets annotated by each of the anno-
tators (A1, A2, A3) are referred to as A1, A2 and
A3 respectively in further sections of the paper.

3.2 Classification Models

LEGAL-BERT. LEGAL-BERT (Chalkidis et al.,
2020) is a variation of the BERT model (De-
vlin et al., 2018), having the same architecture as
BERT but pre-trained from scratch on large cor-
pora of legal texts in order to learn the domain-
specific vocabulary and deeper semantics. The pre-
training data includes EU and UK legislation, Euro-
pean Court of Justice (ECJ/CJEU) cases, European
Court of Human Rights (ECtHR) cases, US court
cases, and US contracts (Chalkidis et al., 2020).
This in-domain knowledge of LEGAL-BERT has
shown to earn significant performance gains over
the fine-tuned BERT model, especially for more
complex tasks such as multi-label classification
(Chalkidis et al., 2020). Furthermore, Liga and
Palmirani (2022) conducted experiments on deon-
tic rule classification considering obligation, per-
mission, constitutive and non-rule samples, which
showed that, even on class-unbalanced and limited
data (n = 831), the weight average accuracy of 81%
produced by LEGAL-BERT outperforms a BERT
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model. We use EURLEX-BERT-BASE (uncased),
trained on EUR-Lex data, for testing on our dataset.

According to Devlin et al. (2018), BERT models
can be fine-tuned for downstream tasks by adding a
dropout layer with a ratio of 0.1 and a classification
layer of size 768. Chalkidis et al. (2020), on the
other hand, suggested increasing the ratio to 0.2 for
LEGAL-BERT, whereas Liga and Palmirani (2022)
added two linear layers on top of the pretrained
model, each activated using ReLu and having a
dropout of 0.2, and a final output layer, activated
with a softmax function. These three fine-tuning
strategies were evaluated and compared based their
performance on the data from annotator A1.

In terms of hyper-parameters, our initial experi-
ments using the values (learning rate of 1e-5 and
drop-out rate of 0.2) suggested by Chalkidis et al.
(2020) indicated that there is overfitting. A batch
size of 32 was unsuitable for our GPU resources
and the model continued to underfit at 4 epochs.
Thus, we optimized our model for learning rate
∈ {4e−6, 6e−6, 8e−6, 1e−5, 2e−5}, batch size
∈ {4, 8, 16}, and epochs ∈ {5, 6}. The LEGAL-
BERT model was trained using Cross-Entropy (CE)
loss and Adam optimizer. Given the class imbal-
ance of the data (Lin et al., 2017), Focal loss (FL)
with γ ∈ {0, 5} with step increments of 1 was also
investigated (Cao et al., 2022).

Fusion model. We investigated the fusion model
architecture proposed by Maheen et al. (2022),
which aims to utilize the strengths of CNN and
(Bi)LSTM architectures - the spatial invariance of
CNNs and the long-term dependencies capturing of
RNNs, while minimizing the effect of their respec-
tive weaknesses – the limited global context and
vanishing gradient. CNN layers slide a fixed-size
window of length (n) over the word embeddings to
extract local features, which are subsequently fed
into the (Bi)LSTM layers to learn the sequential
dependence of the words. The baseline model had
the following structure:

CNN + Attention layer + BiLSTM +
CNN

Fine-tuning efforts involved testing different fu-
sion chain configurations by adding/removing lay-
ers and/or replacing BiLSTM with LSTM lay-
ers and searching over different layer sizes, as
recommended by Maheen et al. (2022) and pre-
sented in Table 2. This was implemented by us-
ing RandomSearch from the keras-tuner li-
brary on 10 trials.

Layer Minimal Maximum Step
value value size

CNN_1 16 96 16
CNN_1 dropout 0.1 0.5 0.1
Attention layer 16 128 16
(Bi)LSTM 32 256 32
(Bi)LSTM dropout 0.1 0.5 0.1
CNN_2 32 256 32
CNN_2 dropout 0.1 0.5 0.1
CNN_3 32 256 32
CNN_3 dropout 0.1 0.5 0.1

Table 2: Layer sizes of the fusion chain

The investigated fusion variants were as follows:
1. CNN + A + BiLSTM
2. CNN + A + BiLSTM + CNN
3. CNN + A + BiLSTM + CNN + CNN
4. CNN + A + BiLSTM + CNN + BiLSTM
5. CNN + A + LSTM
6. CNN + A + LSTM + CNN
7. CNN + A + LSTM + CNN + CNN
8. CNN + A + LSTM + CNN + LSTM

where A stands for attention vector.
The fusion models were trained using Sparse

Categorical Loss and Adam optimizer with a learn-
ing rate in the range of 2e-5 to 1e-3, following a
step size of 2e-5 over 20 epochs, as suggested by
Maheen et al. (2022). Preliminary tests showed that
in our case the fusion performs best with smaller
batch sizes (than the proposed 50), thus, we used a
batch size of 4. Similar to LEGAL-BERT, we also
experimented with focal loss in the fusion models.
Early stopping was employed as a regularization
technique with patience of 4 epochs.

4 Results

4.1 LEGAL-BERT

The best fine-tuning strategy for LEGAL-BERT
was first identified. LEGAL-BERT was trained on
all three available datasets (A1, A2, and A3) and
its variations (imbalanced, balanced, and focal loss
for imbalanced data) with the available fine-tuning
strategies (namely Devlin et al. (2018)/ Chalkidis
et al. (2020)/ Liga and Palmirani (2022)).

Table 3 shows that the strategy of Devlin et al.
(2018) performed best across all scenarios (imbal-
anced, balanced, focal loss for imbalanced data) for
the A1 dataset, whereas regularization of Chalkidis
et al. (2020) and the additional neural layers of
Liga and Palmirani (2022) had a negative impact.
However, the latter two approaches benefited from
using focal loss (2% increase in accuracy).

For A2 and A3, although the models yielded
high accuracy, the results surpassed their respective
training performance, indicating a possible prob-
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Annotator Imbalanced data Balanced data Focal loss
A1 0.902/ 0.870/ 0.850 0.783/ 0.675/ 0.518 0.902/ 0.891/ 0.876

A2* 0.780/ 0.759/ 0.770 0.789/ 0.800/ 0.656 0.832/ 0.759/ 0.843
A3* 0.865/ 0.859/ 0.891 0.767/ 0.767/ 0.522 0.818/ 0.891/ 0.807

Table 3: Accuracy results for the datasets of different annotators according to the LEGAL-BERT fine-tuning
architecture of Devlin et al. (2018)/ Chalkidis et al. (2020)/ Liga and Palmirani (2022) (highest results for each
annotator are in bold); * Models trained on datasets from this annotator yield a test accuracy higher than their
training accuracy

Epochs Batch size Lr = 4e-6 Lr = 6e-6 Lr = 8e-6 Lr = 1e-5 Lr = 2e-5

5
4 0.876 0.860 0.876 0.881 0.902
8 0.876 0.876 0.876 0.870 0.850

16 0.813 0.834 0.850 0.845 0.870

6
4 0.813 0.850 0.803 0.881 0.876
8 0.839 0.881 0.865 0.870 0.865

16 0.575 0.767 0.860 0.865 0.860

Table 4: Test accuracy results of the baseline LEGAL-BERT, dropout = 0.1, for different hyperparameters

lem in the training process. Even after balancing,
the data had a moderate skewness of 0.9-1%, which
might have caused the easily classifiable examples
in the data to be allocated to the test set during the
train/test split. Therefore, the performance of the
LEGAL-BERT finetuned according to Devlin et al.
(2018) and trained on data from A1 is considered
further and evaluated.

The results of the experiments with various hy-
perparameters, for A1 dataset, is shown in Table 4.

Focal loss. The accuracy obtained with LEGAL-
BERT could have been caused by the highly
skewed dataset (i.e., a high number of instances
with ‘obligation’ class, as seen in Table 1). To cater
to this imbalanced data, the fine-tuning strategy
was further investigated by replacing the ‘Cross
Entropy’ loss function with ‘Focal loss’ for imbal-
anced A1 data. For focal loss, a gamma value of 2
was chosen. The accuracy of the model trained on
the imbalanced data from A1 remained the same
(0.9) and decreased with other gamma values (Ta-
ble 5).

LEGAL-BERT FUSION
γ = 0 0.902 0.896
γ = 1 0.870 0.876
γ = 2 0.902 0.870
γ = 3 0.876 0.876
γ = 4 0.891 0.865
γ = 5 0.870 0.891

Table 5: Performance (accuracy) of LEGAL-BERT and
CNN + attention + BiLSTM + CNN trained on the data
from A1 with Focal Loss depending on the different γ
values; FL is equivalent to CE for γ = 0

Class imbalance. With the A1 dataset, LEGAL-

BERT performed with an average macro F1-score
of 0.44 for all variations of data (imbalanced, bal-
anced, focal loss with imbalanced data) (Table 6).

In Table 6, it can be observed that balancing the
classes (manually) significantly lowered the preci-
sion of the LEGAL-BERT model (30% decrease)
when recognizing the ‘obligation’ class. It seem-
ingly drew the attention of the model towards the
permissions and the non-deontic sentences and min-
imizes the false positives of these classes (around
10% higher recall than the imbalanced data). Fo-
cal loss increased the F1-score on the ‘Permission’
class by 6% but decreased for the ‘None’ class.

Furthermore, Table 6 shows that the ‘Power’,
‘Prohibition’, and ‘Right’ classes were completely
unrecognized by the model. Even though focal
loss is intended to dynamically scale the loss func-
tion in favor of minority classes, samples below 20
proved insufficient for learning the specific patterns
and expressions for each label. The striking differ-
ence of 30%-40% between the macro and weighted
average accuracy also indicates that the class im-
balance had a considerable impact on the models’
performance.

4.2 Fusion Model

Considering the architecture difference between
LEGAL-BERT and fusion model, we start by iden-
tifying which fusion model architecture provided
a high accuracy. According to the results in Table
7, although the performance difference between
architectures was minor, the models that had the
structure CNN + A + BiLSTM, with or without a
second CNN layer, produced the highest accuracy -
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Precision Recall F1-score Support

None 0.95/ 0.92/ 0.90 0.90/ 1.00/ 0.90 0.92/ 0.96/ 0.90 20/ 23/ 20
Obligation 0.91/ 0.61/ 0.92 0.99/ 0.94/ 0.98 0.95/ 0.74/ 0.95 141/ 18/ 141
Permission 0.80/ 0.83/ 0.82 0.80/ 0.93/ 0.90 0.80/ 0.88/ 0.86 20/ 27/20
Power 0./ 0./ 0. 0./ 0./ 0. 0./ 0./ 0. 2/ 2/2
Prohibition 0./ 0./ 0. 0./ 0./ 0. 0./ 0./ 0. 6/ 7/ 6
Right 0./ 0./ 0. 0./ 0./ 0. 0./ 0./ 0. 4/ 6/ 4

Accuracy 0.90/ 0.78/ 0.90 193/ 83/ 193
Macro avg 0.44/ 0.39/ 0.44 0.45/ 0.48/ 0.46 0.45/ 0.43/ 0.45 193/ 83/ 193
Weighted avg 0.85/ 0.66/ 0.85 0.90/ 0.78/ 0.90 0.87/ 0.71/ 0.87 193/ 83/ 193

Table 6: Classification report of the best-performing LEGAL-BERT models (dropout = 0.1) trained on the A1
dataset (imbalanced/ balanced/ focal loss)

89.6%.

Fusion architecture Test accuracy
CNN + A + BiLSTM 0.896
CNN + A + BiLSTM + CNN 0.896
CNN + A + BiLSTM + CNN + CNN 0.886
CNN + A + BiLSTM + CNN + BiLSTM 0.876
CNN + A + LSTM 0.886
CNN + A + LSTM + CNN 0.886
CNN + A + LSTM + CNN + CNN 0.886
CNN + A + LSTM + CNN + LSTM 0.876

Table 7: Performance of different fusion architectures

Annotator Imbalanced data Balanced data Focal loss
A1 0.896/ 0.904 0.678/ 0.826 0.880/ 0.886
A2 0.829/ 0.896 0.764/ 0.809 0.808/ 0.896
A3 0.881/ 0.871 0.756/ 0.814 0.850/ 0.871

Table 8: Evaluation results (accuracy) for the datasets of
different annotators for ‘CNN + A + BiLSTM’ / ‘CNN +
A + BiLSTM + CNN’ (highest results for each annotator
are in bold)

The specific layer sizes and dropout ratios deter-
mined by the RandomSearch were: CNN_1 size =
48 (dropout = 0.1), attention layer size = 80, BiL-
STM_1 size = 256 (dropout = 0.2), CNN_2 size
= 224 (dropout = 0.3) and learning rate = 9.4e-
4. These parameters were used in the subsequent
analysis. Although the two fusion architectures per-
formed similarly, extracting deeper features with
an additional CNN layer proved to be beneficial,
except for the imbalanced data of A3 (Table 8).
There is no significant difference for the annotators,
except for the fact that models trained on data from
A1 overall achieved the highest accuracy results.
Balancing the obligations class on average caused
around a 10% decrease, whereas focal loss resulted
in an approximately 1.4% decrease across datasets
and model architectures.

Focal loss. Table 5 reveals that focal loss did not
benefit the fusion model. However, using γ = 5, the
prediction accuracy was only 0.05 lower than the

benchmark. Focal loss did not make any significant
difference in the overall classification performance
but it did eliminate the model’s responsiveness to
the ‘Right’ label as seen in Table 9.

Class imbalance. Table 9 provides more insight
into the classification metrics per label for A1. In
general, the majority classes - ‘None’, ‘Obligation’,
and ‘Permission’, were correctly classified by the
models, trained on the imbalanced (with or without
focal loss) and the balanced data from A1. On the
other hand, due to their insufficient sample quantity,
power statements were completely mislabeled.

In contrast to LEGAL-BERT, which was able to
recognize only half of the labels, the fusion model
performed much better achieving an average macro
F1-score of 0.6 across A1 dataset variations. For
smaller classes like ‘Prohibition’ and ‘Right’, the
fusion model achieved 0.67 and 0.33 F1-scores re-
spectively with the imbalanced data. The balancing
of the obligations class yielded an improvement in
the precision and recall of the classes ‘None’ and
‘Prohibition’ (10% increase), yet it proved detri-
mental for the remaining classes.

4.3 Error Analysis

The LEGAL-BERT and fusion model showed con-
siderable overlap in the statements that were mis-
classified: 12/15 of the misclassified statements
by the fusion model were also misclassified by the
LEGAL-BERT-based model, whereas 12/19 of the
misclassified statements by LEGAL-BERT over-
lapped with the misclassifications by the fusion
model. Table 10 shows how the predicted labels
differed for the imbalanced dataset.

Some misclassifications could, particularly in
the fusion model, be considered genuine disagree-
ment. For instance, the statement ‘the electronic
complaint form to be submitted to the odr plat-
form shall be accessible to (...)’ (predicted label
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Precision Recall F1-score Support
None 0.76/ 0.91/ 0.80 0.84/ 0.95/ 0.84 0.80/ 0.93/ 0.82 19/ 22/ 19
Obligation 0.95/ 0.97/ 0.93 0.95/ 0.88/ 0.96 0.95/ 0.92/ 0.95 133/ 32/ 133
Permission 0.84/ 0.67/ 0.84 0.96/ 0.95/ 0.93 0.90/ 0.78/ 0.88 28/ 19/ 28
Power 0./ 0. / 0. 0./ 0./ 0. 0./ 0./ 0. 2/ 3/ 2
Prohibition 0.80/ 1.00/ 0.80 0.57/ 0.67/ 0.57 0.67/ 0.80/ 0.67 7/ 3/ 7
Right 0.50/ 0.50/ 0. 0.25/ 0.20/ 0. 0.33/ 0.29/ 0. 4/ 5/ 4

Accuracy 0.91/ 0.83/ 0.90 193/ 84/ 193
Macro avg 0.64/ 0.67/ 0.56 0.60/ 0.61/ 0.55 0.61/ 0.62/ 0.55 193/ 84/
Weighted avg 0.89/ 0.82/ 0.87 0.91/ 0.83/ 0.90 0.90/ 0.82/ 0.89 193/ 84/ 193

Table 9: Classification report of the CNN + A + BiLSTM + CNN trained on the data from annotator A1 (imbalanced/
balanced/ focal loss)

(fusion) = obligation, true label = right) may be
considered a right (entitlement), yet it can also be
interpreted as an obligation if it is read as ‘shall be
made accessible’. Sometimes, misclassifications
were observed in statements with important terms
in the legislative provisions that the model might
not have been trained on. For instance, the com-
bination ‘only may’ in ‘only activities linked to
the closure of the programme may be carried out
between January and September’ indicates an obli-
gation (true label) whereas the predicted label by
the fusion model was a permission, which would
have been correct if the sentence would not have
contained the word ‘only’. This type of misclassifi-
cation can perhaps be fixed with additional, more
diverse training data. Other misclassifications did
not have obvious explanations. For instance, the
sentence ‘list of parts or equipment which may
pose a serious risk to (...) is set out in annex x to
this regulation’ (predicted label (fusion/LEGAL-
BERT) = obligation/permission, true label = none)
clearly does not contain an obligation.

5 Discussion

RQ1: Does a fusion model outperform a BERT-
based model? When evaluating with macro F1-
scores, it is seen that the fusion model outperforms
LEGAL-BERT significantly. The similar results for
the three annotators indicate that the models tested
were adaptive to differences in input. Overall, the
findings suggest that fusion models might be a suit-
able approach for testing DMC in a low-resource
setting.
RQ2: Which strategy (imbalanced dataset, bal-
anced dataset, focal loss) provides the best re-
sults for the BERT-based and the fusion model?
LEGAL-BERT performed with a macro F1-score
of 0.45 for imbalanced data (with obligations hav-
ing higher instances), 0.43 on balanced data, and

Fusion LEGAL-BERT

Predicted label True label Predicted label True label

None Obligation None Prohibition
None Prohibition Obligation None
Obligation None Obligation Permission
Obligation None Obligation Permission
Obligation None Obligation Permission
Obligation Right Obligation Permission
Obligation Right Obligation Prohibition
Obligation Right Obligation Prohibition
Obligation Right Obligation Prohibition
Obligation Prohibition Obligation Prohibition
Permission Obligation Obligation Prohibition
Permission None Obligation Right
Permission Power Obligation Right
Permission Power Obligation Right
Prohibition Permission Obligation Right

Permission None
Permission Obligation
Permission Power
Permission Power

Table 10: Misclassfications

0.45 with focal loss as loss function for imbalanced
data. In comparison, the fusion model performed
with a macro F1-score of 0.61 for imbalanced data,
0.62 with balanced data, and 0.55 with focal loss
as loss function for imbalanced data.

As the data was skewed towards the ‘Obligation’
class, evaluating with macro F1-score highlights
the performance of the model per available class.
The fusion model performed better with an increase
of 10-20% with macro F1-scores across variations
of the dataset when compared to LEGAL-BERT.
LEGAL-BERT saw a decrease in performance
when the data was more balanced, whereas the
fusion model performed consistently well across
dataset variations.

It should be noted that the fusion model did
not require any pre-training on large text corpora.
Moreover, the fusion model exhibited a lower dis-
crepancy between the macro and weighted average
accuracy, indicating its higher resilience to class
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imbalance and thus making it more suitable for low-
resource settings. Solely evaluating with accuracy
can misrepresent the true performance of a model.

6 Conclusion and Future Work

Previous research has tested models that were
trained on large corpus or fine-tuned on datasets
of a single domain with data resources ranging
from 500 to 1000 instances to perform DMC. With
the annotation process being time-consuming, we
relied on a carefully annotated dataset of 200 leg-
islative provisions of EU regulations that were ran-
domly sampled and that consequently covered a
variety of legal topics. Legal text can be interpreted
in multiple ways, and instead of curating a sin-
gle dataset based on Inter-Rater Reliability (IRR)
scores, we trained multiple models for each anno-
tator to understand the variation in model behavior.

We tested previously researched BERT-based
models with low resources and evaluated them
against a fusion model designed for low-resource
text classification. LEGAL-BERT model and other
variations through fine-tuning under performed for
imbalanced data and further dropped in perfor-
mance with balanced data despite the large corpora
of EU Legislative text utilized for pre-training. On
the other hand, a fusion model (‘CNN + A + BiL-
STM + CNN’ variation) designed for low-resource
text classification performed consistently well with
both balanced and imbalanced data without the
need for any pre-training on large corpora of text.

Future activities may focus on the challenging
task of creating representative datasets that include
more powers, prohibitions, and rights while main-
taining a sufficient number of obligations and per-
missions. Future research may also include explor-
ing and testing approaches that handle differences
in annotations between annotators as a result of gen-
uine disagreement (as opposed to disagreements
due to mistakes). In this respect, we plan to ex-
plore the ensemble approach for models trained
on each annotator to take into consideration the
disagreements between annotators.

7 Ethical Implications and Limitations

The random sampling benefited the generalizability
of the results yet resulted in class imbalance, as the
dataset contained many obligations but few powers,
prohibitions, and rights.

No ethical concerns were identified. The models
were trained on publicly available data (EU

legislation) and no personal information (names)
of the annotators was included in any model
training.
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