@inproceedings{mavi-etal-2023-retrieval,
title = "Retrieval-Augmented Chain-of-Thought in Semi-structured Domains",
author = "Mavi, Vaibhav and
Saparov, Abulhair and
Zhao, Chen",
editor = "Preo{\textcommabelow{t}}iuc-Pietro, Daniel and
Goanta, Catalina and
Chalkidis, Ilias and
Barrett, Leslie and
Spanakis, Gerasimos and
Aletras, Nikolaos",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nllp-1.18",
doi = "10.18653/v1/2023.nllp-1.18",
pages = "178--191",
abstract = "Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mavi-etal-2023-retrieval">
<titleInfo>
<title>Retrieval-Augmented Chain-of-Thought in Semi-structured Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Mavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abulhair</namePart>
<namePart type="family">Saparov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preo\textcommabelowtiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catalina</namePart>
<namePart type="family">Goanta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Spanakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.</abstract>
<identifier type="citekey">mavi-etal-2023-retrieval</identifier>
<identifier type="doi">10.18653/v1/2023.nllp-1.18</identifier>
<location>
<url>https://aclanthology.org/2023.nllp-1.18</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>178</start>
<end>191</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
%A Mavi, Vaibhav
%A Saparov, Abulhair
%A Zhao, Chen
%Y Preo\textcommabelowtiuc-Pietro, Daniel
%Y Goanta, Catalina
%Y Chalkidis, Ilias
%Y Barrett, Leslie
%Y Spanakis, Gerasimos
%Y Aletras, Nikolaos
%S Proceedings of the Natural Legal Language Processing Workshop 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F mavi-etal-2023-retrieval
%X Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.
%R 10.18653/v1/2023.nllp-1.18
%U https://aclanthology.org/2023.nllp-1.18
%U https://doi.org/10.18653/v1/2023.nllp-1.18
%P 178-191
Markdown (Informal)
[Retrieval-Augmented Chain-of-Thought in Semi-structured Domains](https://aclanthology.org/2023.nllp-1.18) (Mavi et al., NLLP-WS 2023)
ACL