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Abstract
The process of identifying obligations in a le-
gal text is not a straightforward task, because
not only are the documents long, but the sen-
tences therein are long as well. As a result of
long elements in the text, law is more difficult
to interpret (Coupette et al., 2021). Moreover,
the identification of obligations relies not only
on the clarity and precision of the language
used but also on the unique perspectives, expe-
riences, and knowledge of the reader. In particu-
lar, this paper addresses the problem of identi-
fying obligations using machine and deep lear-
ning approaches showing a full comparison bet-
ween both methodologies and proposing a new
approach called NOMOS based on the combi-
nation of Positional Embeddings (PE) and Tem-
poral Convolutional Networks (TCNs). Quan-
titative and qualitative experiments, conducted
on legal regulations 1, demonstrate the effecti-
veness of the proposed approach.

1 Introduction

In the legal context, obligations can be defined as
"a legal constraint imposed by law and addressed
to a juridical person" (Iacono et al., 2021). They
are often enforceable and backed by legal conse-
quences in case of non-compliance establishing
the rights and duties between parties, and regula-
ting their interactions within a legal framework. In
other words, an obligation represents a commit-
ment to perform a specific action or refrain from
certain behaviors. The interpretation of an obliga-
tion is not straightforward because it depends on
several elements : the clarity of the text, the preci-
sion of the language, and moreover, the evaluation,
the knowledge, and the experience of the reader.
Consequently, two or more individuals may per-
ceive different obligations when presented with the
same legal text. Besides, even the most straightfor-
ward legal obligations are not always self-standing,

1. Regulation (EU) 2023/988 (’General Product Safety
Regulation’ or ’GPSR’)

and often encompass several sentences. They can
also be fragmented on the paragraph level, whe-
reby the paragraph begins with a generic phrase,
followed by several sub-paragraphs, each of which
introduces a different obligation that still relies on
the initial generic phrase for correct interpretation.
This sub-paragraph structure creates complications
for traceability (Kiyavitskaya et al., 2008).

In this paper, we present a comparison of several
machine learning and deep learning methodologies
for extracting obligations together with a solution
based on the combination of Positional Embed-
dings (PE) and Temporal Convolutional Networks
(TCNs). The contribution of this work is two-fold.

1. A full comparison between machine learning
and deep learning methodologies on a set of
different legislation containing a variety of
obligations.

2. NOMOS, a network based on the use of a
PE layer able to encode the position of the
embeddings in order to maintain a tempo-
ral relation between words, and a TCN for
extracting the main features from the embed-
dings and classifying the sentences.

The remainder of the paper is organized as fol-
lows. Section 2 contains a description of the exis-
ting methods for extracting obligations in the legal
domain. Section 3 presents the methodologies for
identifying obligations and the solution we adopted.
Quantitative and qualitative experimental results
are shown in Section 4. Finally, conclusions are
drawn in Section 5.

2 Related Work

In the last years, the automatic analysis of le-
gal texts has gained significant attention, and nu-
merous studies and approaches have emerged that
are capable of dealing with classifying complex
legal texts. Glaser et al. (2018) carried out expe-
riments to classify legal clauses and sentences in
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the German Civil Code, legal texts in a different
domain, and rental contracts, to investigate the por-
tability of their models. They selected a taxonomy
of 9 classes for classifying legal sentences, inclu-
ding for example Duty, Prohibition, Definition, and
Consequence, the system being based on the func-
tion of the sentence for the subject of the law. The
dataset consisted of 913 sentences that had been
manually classified by legal professionals. They
chose 6 types of models : Multinomial Naive Bayes
(MNB), Linear Regression (LR), Support Vector
Machine (SVM), Multilayer Perceptron (P), Ran-
dom Forests (RF), and an Extra Trees Classifier
(ETC). The limitations of this study include the
contract law focus – contract datasets being gene-
rally more restricted in scope and variation when
compared to regulatory datasets – and the many
semantic classes of legal sentences applied on a
relatively small dataset.

In de Maat et al. (2010), the authors evalua-
ted traditional machine learning methods, namely
SVMs, against a knowledge-based method of stan-
dard phrases. Their dataset was divided into 13
classes of sentences, including definitions, permis-
sions, enactment dates, and obligations. While they
were able to reach over 90% accuracy for recall
and precision with the SVM, the authors found
that it did generalize well compared to the pattern-
based classifier on laws that were not included in
the training set. This led them to conclude that the
pattern-based classifier is the better choice because
the classification criteria are transparent and cus-
tomizable. It should be noted that only 181 out of
584 sentences were obligations.

On the other hand, Iacono et al. (2021), trained a
neural network classifier for legal obligations found
in Italian law. Their classifier contained fewer ca-
tegories (i.e. : no obligation, relevant obligation,
and irrelevant obligation, based on their impact
on financial institutions) and the dataset contained
10.628 clauses (the distribution of the categories
within the training clauses is not provided). The
labels for the training corpus were provided by
non-expert annotators. Their model of choice was
the pre-trained UmBERTo2 2, to which they ad-
ded a ReLu activation function for classification.
The results showed an unreliable performance in
distinguishing between relevant and non-relevant
obligations, but significantly improved accuracy on
the binary task of obligation versus no obligation,

2. https://huggingface.co/Musixmatch/
umberto-wikipedia-uncased-v1

reaching an F-score of 0.97 for detecting not obliga-
tions and 0.91 for detecting obligations. However,
the performance of the non-expert annotators in
distinguishing between relevant and irrelevant obli-
gations was also evaluated and found lacking. An
additional limitation of this study was the absence
of a validation dataset employed by the authors to
evaluate the performance of their model.

In O’Neill et al. (2017), the authors performed a
study on classifying sentences in financial regula-
tions. In this study, the extraction of deontic moda-
lities from regulatory texts was treated as a probabi-
listic rather than a logical problem. The training da-
taset was labeled by expert annotators and divided
into 596 obligations, 607 permissions, and 94 pro-
hibitions. For testing, the authors relied on a gold
standard test set with separate documents of EU
and UK financial laws. Then, they used word2vec
embeddings specific to the legal domain coupled
with pre-trained Google News embeddings as input
to the classifiers. The authors compared a set of
traditional machine learning algorithms, including
LR and SVM, to a set of deep learning algorithms
such as LSTM, CNN-LSTM, and BiLSTM. When
applying feature transformation and Information
Gain (IG) feature selection on Google News em-
beddings, SVM outperformed all the other tradi-
tional methods on the test set but only reached an
accuracy of 56.12%. On the other hand, the ANN
models produced significantly better results than
SVM, with two versions of BiLSTM reaching an
accuracy of over 81%. However, the results are not
aggregated per sentence classes across the board,
making it difficult to know what the performance is
when it comes to detecting obligations in particular.

The use of Temporal Convolutional Networks
(TCNs) in the legal domain is not yet widespread.
In the state-of-the-art, there are just a few examples
of the use of TCNs for generic sentence classifica-
tion tasks. For example, in Zuo et al. (2020), the
authors described a bidirectional temporal convo-
lutional network combined with an attention me-
chanism for sentence classification, reaching an
accuracy rate of 91.47% on a public dataset. The
main issue of such an approach is related to its ef-
fectiveness only in classifying short sentences like
news.

In this work, we propose a comparison of 3 state-
of-the-art approaches, namely : Tf-Idf and SVM,
TCN, and BERT. In our analysis, we focus only
on TCN over LSTM because of its ability to auto-
matically extract features without the use of any
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Convolutional layer, and moreover, because TCN
possesses very long effective history sizes allowing
the network to look very far into the past to make a
prediction. We also present a novel approach based
on the combination of Positional Embeddings and
TCN that we adopted for detecting obligations in
law texts.

3 Methodologies

In Sec. 2, we described the common approaches
that can deal with obligation extraction. In our
study, we selected and compared 3 methodologies,
namely : 1) Term Frequency-Inverse Document
Frequency (Tf -Idf ) and Support Vector Machine
(SVM), 2) Temporal Convolutional Neural Net-
works, and 3) Bidirectional Encoder Representa-
tions from Transformers (BERT). Moreover, we
propose our solution for obligation classification.
Each methodology is detailed in the sections below.

3.1 Tf-Idf and SVM
Term Frequency-Inverse Document Frequency

(Tf -Idf ) is a method that measures how relevant
a term is within a document relative to a collec-
tion of documents (i.e. corpus). It proportionally
increases the frequency of the appearance of a word
in a document, and balances it by the number of
documents that include the word. So, words that
are very common in every document have a low
rank even if they appear many times but it is likely
that they are meaningless for the analysis of the
document.
Tf -Idf is calculated by multiplying two me-

trics : 1) Term frequency (Tf ) : which calculates
how many times a word appears in a document, and
2) Inverse document frequency (Idf ) : which com-
putes the inverse document frequency of a word
across a set of documents.

Given a term t and a document d, Tf is defined
as follows :

tf(t, d) =
ft,d∑

t′∈d ft′,d
(1)

Where ft,d is the number of times that term t occurs
in the document d. The denominator represents the
occurrence of the same terms t′ in the document d.

While Idf is the logarithmically scaled inverse
fraction of the documents that contain the word :

idf(t,D) =
N

1 + |{d ∈ D : t ∈ d}| (2)

Where :

— D is the corpus ;
— N is the total number of documents in the

corpus N = |D| ;
— |{d ∈ D : t ∈ d}| represents the number of

documents where the term t appears. We add
1 to the denominator because if t /∈ D, the
previous expression leads to a zero division.

Then, given the Eq. 1 and 2, Tf -Idf is calculated
as :

tf -idf(t, d,D) = tf(t, d)× idf(t,D) (3)

A high-term frequency and a low-term document
frequency in the whole collection lead to a high
weight in Tf -Idf , hence filtering out the com-
mon terms. In Natural Language Processing (NLP),
Tf -Idf is usually used with a classical machine
learning technique to deal with sentence classifi-
cation problems. For this work, our decision fell
on Support Vector Machine (SVM). As shown in
Glaser et al. (2018), combining Tf -Idf and SVM
is successful in classifying semantic types of legal
sentences.

SVM can handle high-dimensional data like the
one corresponding to text and perform well with
small datasets, as it requires a small number of
support vectors to define the boundary. SVM can
model non-linear decision boundaries by using the
kernel trick, which maps the data into a higher-
dimensional space where the data becomes linearly
separable. Moreover, it uses only a subset of the
training data to make predictions, which makes it
very efficient and less prone to overfitting.

3.2 TCN
Temporal Convolutional Network (TCN) pro-

posed by Bai et al. (2018) is a dilated-causal ver-
sion of Convolutional Neural Network (CNN). Of-
ten Recurrent Neural Networks (RNNs) (Zaremba
et al., 2014), Long Short-Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997), and
Gated Recurrent Unit networks (GRUs) (Chung
et al., 2014) are associated with sequence modeling
tasks. This process is usually performed in 2 steps :
1) low-level feature extraction using a CNN that
encodes the spatial-temporal information, and 2)
one or more RNN (LSTM, or GRU) layers that
capture high-level temporal information. The main
disadvantage of such an approach is that it requires
two separate models. TCN captures both levels of
information hierarchically.

As mentioned in Bai et al. (2018), the main fea-
tures of TCNs are : 1) the dilated-causal convo-
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FIGURE 1 – TCN Component Architecture (Bai et al.,
2018). (a) A dilated casual convolutional neural network.
(b) TCN residual block. (c) An example of residual
connections.

lution layers in the architecture do not share any
information from future to past (Fig. 1a) and 2)
the architecture manages sequences of any lengths
and maps them to an output sequence of the same
length (Fig. 1b and c). Fig. 2 shows the architecture
of the network used for the methodology compari-
son. The dilated-causal convolutional layer is able
to let the network look back up to (k − 1)d time
steps (where d is the number of steps) to achieve
an exponentially larger receptive field with fewer
parameters and layers. d is exponentially increased
with the depth of the network : d = O(2i), where
i = 0, · · · , n is the level of the network. Fig. 1a
shows how the dilated-causal convolution on the
first hidden layer is applied every two steps where
i = 1. The arrangement of the dilated-causal convo-
lutional layers ensures that some filter is applied to
each input within the history allowing a long effec-
tive history. Fig. 1b shows the residual block (He
et al., 2016) of TCN composed of 2 dilated-causal
convolutional layers, weight normalization, ReLU
activation, and dropout. It is worth noting that, for
the correct execution of the residual connection,
there is an optional 1 × 1 convolution layer that
is applied if the number of input channels differs
from the number of the output channels from the
dilated causal convolutional layers.

3.3 BERT
Bidirectional Encoder Representations from

Transformers (BERT) is a pre-trained deep bidi-

FIGURE 2 – TCN Network for sentence classification
(Henkel, 2021).

FIGURE 3 – Transformer Architecture (Vaswani et al.,
2017).

rectional representation from the unlabeled text by
joint conditioning on both the left and right context.
The architecture consists of several transformer
encoders stacked together, which encapsulate two
sub-layers : 1) a self-attention layer and 2) a feed-
forward layer. Fig. 3 shows the transformer archi-
tecture, BERT is based only on the encoder part. In
order to process the text sequence all at once, the
transformer adds, in addition to the standard word
embedding layer, a special embedding layer with
positional information to the standard encoding sys-
tem together with a segment layer to distinguish
between two or more consecutive sentences (Fig.
4). The maximum size of tokens that can be fed into
the BERT model is 512. The attention mechanism
focuses on the important parts of the information
blending out the unimportant ones and it can be
considered as a mapping between a query and a set
of key-value pairs to an output.

Vaswani et al. (2017) propose a scaled dot-
product attention with multi-head attention on top
of it, which uses 3 matrices, namely : query (Q),
keys (K), and values (V ), representing different
projections of the same input sentence. Therefore,

FIGURE 4 – Transformer Input Embeddings.
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it implements a self-attention mechanism by captu-
ring the relationships between the different words
of the same sentence. The self-attention mechanism
can be formulated as follows :

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

(4)
where : dk is the dimension of the vectors q and k
containing the queries and keys, respectively. The
multi-head attention mechanism uses h linear lear-
ned projections of Q, K, and V . Then, the single at-
tention mechanism is applied to each projection in
parallel to produce outputs that, in turn, are conca-
tenated and projected to produce the final result.
In such a way, it allows the attention function to
extract information from different representations
instead of using a single one. The multi-head atten-
tion function can be defined as follows :

multi-head(Q,K, V ) = concat(head1, · · · , headn)WO

(5)
where headi = 1, · · · , h implements a single at-
tention function characterized by its own learned
projection matrices, and WO is the weight matrix.

In order to have a deeper sense of language
context, BERT uses bidirectional training that takes
both the previous and next tokens into account si-
multaneously. BERT applies the bidirectional trai-
ning of the transformer to language modeling and
learns the text representations. Intuitively, the enco-
der returns the same input vectors but augmented
with more complex information. Since, BERT aims
at predicting words using the so-called Masked
LM (MLM) by randomly masking words in the
sentence and then predicting them, in order to ac-
complish the task of sentence classification, we add
one dense layer on top of BERT’s output to perform
the sentence classification.

3.4 Proposed Method
Fig. 5 shows the architecture of NOMOS. The

network uses the sum of Positional and Word em-
beddings to encode the sentence into the network.
The positional layer brings the advantage of enco-
ding the position of the words in each sentence,
which allows the network to be able to understand
the pattern from the encoding and generalize better
for longer sentences like those in legal texts. The
rest of the network is inspired by the network pre-
sented in Henkel (2021), with the exception that
we used a single TCN layer. Sec. 4.2 describes the

parameters we used for training the network and
how we found them.

4 Experimental Results

To evaluate all the approaches we described in
Sec. 3, a dataset of 74825 sentences has been labe-
led by expert lawyers and it is composed of 35850
obligations and 38975 not obligations. The sen-
tences have been extracted from the Code of Fe-
deral Regulations 3 and Australasian Legal Infor-
mation Institute 4. We divided the dataset accor-
ding to the rule : 70% as the training set, 20% as
the testing set, and 10% as the validation set. We
used the same sentence splitter we applied for pre-
processing the text in all the methodologies we
proposed for this work to split the texts into sen-
tences.

For training and testing, we used a laptop run-
ning Ubuntu 22.04 LTS and equipped with an In-
tel i9-12950HX CPU with 32 GB RAM and an
NVIDIA RTX A5500. We used Tensorflow 5 for
developing the Deep Learning algorithms, while
we relied on Scikit-learn 6 for the machine learning
ones.

4.1 Text Preprocessing
We noticed that often a legal text includes lists

and periods not related to the end of the sentence
that the standard methods based on libraries such as
Spacy 7 or NLTK 8 are not able to manage. There-
fore, we developed a custom-made sentence splitter
methodology that we used for all the described ap-
proaches.

Our preprocessing method is based on detecting
all the periods in the text and, by using a set of rules,
understanding if the period is real or just a dot that
separates numbers, numbered lists, etc. In such a
way, we are able to deal with any list and period in
the text and correctly split it into sentences. Then,
for each sentence, we remove all the stop words
and perform Tf-Idf for the SVM model and the
tokenization method provided by Tensorflow 9 for
the deep learning models.

3. https://www.govinfo.gov/help/cfr
4. https://www.austlii.edu.au/
5. https://www.tensorflow.org/
6. https://scikit-learn.org/stable/
7. https://spacy.io/
8. https://www.nltk.org/
9. https://shorturl.at/nFVXY
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FIGURE 5 – The architecture of NOMOS.

Method Parameters

SVM N-GRAMS C GAMMA KERNEL
(3, 3) 100 0.01 RBF

TCN
SPATIAL

DROPOUT
TCN

FILTER #1
TCN

FILTER #2
DENSE
FILTER DROPOUT

0.1 128 64 32 0.1

NOMOS
SPATIAL

DROPOUT
#TCN

LAYERS
TCN

FILTER
DENSE
FILTER DROPOUT

0.2 1 128 32 0.1

TABLE 1 – The parameters used for training all the algorithms.

4.2 Training Parameters
To find the right parameters of the SVM, we

used a grid-search cross-fold validation approach.
We included in the grid the possibility of using
n-grams for Tf-Idf, multiple kinds of kernels, and
different values of C (the regularization parame-
ter) and gamma (the kernel coefficient). While
for the TCN network described in Sec. 3.2, we
used a Bayesian Optimization (Snoek et al., 2012)
technique combined with cross-fold validation for
finding the following parameters : Spatial Dropout
probability, TCN filters, Dense filters, and Dropout
probability. For our approach, we used the same
Bayesian Optimization technique but we included
the number of TCN layers as a parameter. The
F1-score (see Sec. 4.3) metric, representing the har-
monic mean between precision and recall, has been
used as a function to maximize in the optimization
process. As a network optimizer, we used AdaMax
(Kingma and Ba, 2017) since it is more suitable
for sparsely updated parameters (e.g. embeddings).
BERT has been used with the standard parameters,
we added only a classification layer at the end. In
particular, we used the largest model of BERT 10.
Tab. 1 shows a summary of the best parameters

10. https://huggingface.co/google/bert_uncased_
L-12_H-768_A-12

found during the optimization process.

4.3 Performance Metrics
To evaluate the goodness of the methodologies,

we compared the predictions and the ground truth
sets. In our quantitative comparison, we computed
true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN) sets in order to
calculate the following metrics :

— precision = TP
TP+FP ,

— recall = TP
TP+FN ,

— F1-score = 2×precision×recall
precision+recall .

In the next section, we discuss the results we obtai-
ned from a qualitative and a quantitative point of
view.

Method Precision Recall F1-Score
Tf-Idf+SVM 0.94 0.93 0.93

TCN 0.94 0.94 0.94
BERT 0.95 0.95 0.95

NOMOS 0.95 0.95 0.95

TABLE 2 – Quantitative Results.

4.4 Quantitative Results
Tab. 2 shows the results we obtained in our ex-

periments. BERT and NOMOS reach the highest
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values for all the metrics we considered. For such
a reason, we made a further analysis only conside-
ring these two algorithms to understand how good
they are in distinguishing between the two classes.

Tab. 3 and Tab. 4 show that NOMOS performs
better in identifying the obligations, this is high-
lighted even in Fig. 6, representing the confusion
matrices of both the methods.

FIGURE 6 – Confusion Matrices of (a) BERT and (b)
NOMOS.

Our model is able to provide very effective re-
sults using only 2.5 million parameters compared
to the 28.7 million parameters of BERT.

4.5 Qualitative Results
All the models have been tested on a reference

text, namely : Regulation (EU) 2023/988 11 and
evaluated by an expert. The text includes 643 sen-
tences, 88 of which are obligations. Such an evalua-
tion allows us to understand how well the models
perform and generalize on texts not belonging to
the dataset used for training and testing them.

Tf-Idf and SVM produces a significant number
of false positives. On the test regulation, it finds
205 obligations when there are only 88. Some of
them follow a clear pattern, while other false posi-
tive sentences do not contain any clues as to why
they have been labeled as obligations. For example,
the model is not able to infer the context around
obligation words. Preambular text such as «Direc-
tive 2001/95/EC of the European Parliament and
of the Council (3) lays down the requirement that

11. https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32023R0988

Class Precision Recall F1-Score
Obligation 0.93 0.96 0.945
Not Obligation 0.96 0.93 0.945

TABLE 3 – BERT results for each class.

Class Precision Recall F1-Score
Obligation 0.94 0.96 0.95
Not Obligation 0.96 0.94 0.95

TABLE 4 – The results for each class using NOMOS.

consumer products must be safe and that Member
States’ market surveillance authorities must take
action» does contain deontic language but it is not
in itself an obligation. Several similar sentences are
falsely labeled as an obligation. The other pitfall of
this model is false positive statements containing
the verb "may", where the statements express per-
mission rather than an obligation. For example, the
following sentence is a false positive : «For that
purpose, Member States may notify through the Sa-
fety Gate Rapid Alert System corrective measures
taken by their authorities or by economic operators
on the basis of this Regulation, of Union harmoniza-
tion legislation and of Regulation (EU) 2019/1020
in relation to products presenting a less than se-
rious risk.» Lastly, the performance of the model is
inconsistent. For example, «The Commission shall
draw up guidelines for the practical implementa-
tion of the Safety Business Gateway» was labeled
as an obligation while «The Commission shall in-
form consumers and other interested parties of its
action» was not.

TCN finds 153 obligations out of 88 true obliga-
tions, which is already a clear improvement from
the user perspective compared to the SVM. Howe-
ver, it also suffers from excessive false positives as
well as false negatives. The problematic patterns
can be traced back to the verbs “ensure”, “may” and
“provide”, which all feature prominently in the false
positives. For example, the sentence «Product iden-
tification and the provision of information on the
manufacturer and other relevant economic opera-
tors thus ensures that consumers, including persons
with disabilities, and market surveillance authori-
ties obtain accurate information regarding dange-
rous products, which enhances confidence in the
market and avoids unnecessary disruption of trade»
is falsely labeled as an obligation. There are also
several false negatives containing the verb “shall”,
which is highly problematic because this is a com-
mon indicator of a true obligation. An example
of this error is the following sentence, which was
labeled as a non-obligation : «The economic opera-
tor referred to in paragraph 1 of this Article shall,
upon request by the market surveillance authori-
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ties, provide documented evidence of the checks
performed». Lastly, like the SVM, this model also
suffers from inconsistency where similar sentences
receive an opposite label, meaning that the trust of
the user is negatively impacted.

BERT labels 117 sentences as obligations, a
number which is not significantly higher than the
expected amount (88). However, it proves to be un-
reliable in the real world, because a large amount
of these are incorrect. In particular, the model mis-
labels a large number of sentences that contain the
modal verb “should”, which expresses a wish or
a principle rather than an obligation and is overw-
helmingly found in the non-binding preambular
text of regulatory documents. An example of this
includes the following false positive : «Under the
general safety requirement laid down in this Re-
gulation, economic operators should be obliged
to place only safe products on the market.» This
means that the model is not dependable for profes-
sional use. At the same time, it is not consistent,
as the following sentence is not labeled as an obli-
gation : «The technical documentation should be
based on an internal risk analysis carried out by
the manufacturer.»

NOMOS finds 159 obligations in the test do-
cument with 88 true obligations. While the model
is still over-inclusive to some extent, it produces
fewer false negatives compared to the other types
of models, which is an important characteristic for
the user to trust the model. At the same time, it
also does not produce false positives (e.g. : «That
requirement shall not apply where the product can
be used safely and as intended by the manufacturer
without such instructions and safety information.»)
due to misunderstanding the context around the
obligation words, meaning that it is the most robust
algorithm from the user perspective.

4.6 Discussion
Both qualitative and quantitative results show

the effectiveness of NOMOS in detecting obliga-
tions. In particular, in the qualitative results, we
showed how the model deals with a different coun-
try’s legislation not included in the training dataset.
However, the method has 2 limitations : 1) it does
not perform well with passive English obligations
(i.e. sentences where the subject to which the obli-
gation refers, is not explicitly expressed), and 2) the
method is not sufficiently reliable in distinguishing
between obligations directed at private parties and
the ones directed at authorities.

5 Conclusions

In this work, we have presented a comparison of
methodologies for extracting obligations from legal
texts. Apart from showing well-known methodolo-
gies, we proposed our own solution called NOMOS
for dealing with such a classification problem ba-
sed on the combination of positional and word em-
beddings and a Temporal Convolutional Network.
Quantitative and qualitative results demonstrated
the effectiveness of our approach in distinguishing
obligations from non-obligation sentences reaching
a F1-score on both classes of 0.95.

As future directions, we intend to introduce an at-
tention layer to the network in order to focus on the
subject, the verb, and the object of a sentence and
distinguish between obligations directed at private
parties and those directed at authorities.
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