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Abstract

U.S. Federal Regulators receive over one mil-
lion comment letters each year from businesses,
interest groups, and members of the public, all
advocating for changes to proposed regulations.
These comments are believed to have wide-
ranging impacts on public policy. However,
measuring the impact of specific comments is
challenging because regulators are required to
respond to comments but they do not have to
specify which comments they are addressing.
In this paper, we propose a simple yet effective
solution1 to this problem by using an iterative
contrastive method to train a neural model aim-
ing for matching text from public comments
to responses written by regulators. We demon-
strate that our proposal substantially outper-
forms a set of selected text-matching baselines
on a human-annotated test set. Furthermore, it
delivers performance comparable to the most
advanced gigantic language model (i.e., GPT-
4), and is more cost-effective when handling
comments and regulator responses matching in
larger scale.

1 Introduction

Policymakers rely on information provided by ex-
ternal stakeholders to help design new regulations.
For U.S. federal regulators, this process is formal-
ized by the Administrative Procedures Act which
requires that whenever an agency is going to make
a policy change (known as a "rule"), they must first
publish a proposed rule and accept public comment.
Then, in the final rule, the agency must respond to
comments they received. The number of comments
received by regulators has been growing over time,
and the federal government now regularly received
more than a million comments per year.

Existing research suggest that public comments
can have substantial impacts on public policy (Yac-
kee, 2019). However, measuring the influence of in-

1https://github.com/bradhackinen/comment_
response_linking

dividual organizations or tracking patterns of influ-
ence over time has been limited by the challenging
nature of the data. Both comments and regulator
responses are in gigantic scale and take the form
of complex natural language text. Prior attempts at
large-scale analysis have borrowed insights from
the research field of NLP by measuring the lexical
overlap between comments and rule text, with re-
searchers assuming that a high degree of overlap
is suggestive of influence (Bertrand et al., 2021;
Dwidar, 2022; Carpenter et al., 2022) . However,
this approach provides at best a noisy measure of
influence, which is difficult to verify. Therefore, we
aim for pursuing a more precise and efficient mea-
sure based on analyzing the regulator’s responses to
comments and then matching comments to specific
responses. Given that some responses are positive,
with agencies accepting commenter’s suggestions
while others are negative, with the agency rejecting
the comment, it is very important to link the right
comments to the right responses.

In this paper, we propose a simple yet effec-
tive iterative contrastive learning paradigm to train
a neural-based comment-response matcher in an
unsupervised manner. Specifically, we first con-
struct a pseudo training dataset comprising of hard
positive and negative samples generated by the
inital setup of our proposed comment-response
matcher (SBERT (Reimers and Gurevych, 2019)
as the backbone). This matcher is then optimized
on the obtained training pseudo data and subse-
quently utilized to generate the hard positive and
negative examples for the next iteration. Through
empirical evaluation on a human-annotated test
set, our proposed comment-response matcher not
only surpasses selected unsupervised text-matching
benchmarks utilized in previous literature but also
achieves comparable performance with the state-of-
the-art gigantic language model – GPT-4 (OpenAI,
2023), while remaining more cost-effective to de-
ploy on the full-scale comment-response matching.
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Figure 1: An overview of the iterative training scheme
for our proposed comment-response matcher.

2 Comment-Response Matcher

In this paper, we aim to design a text matching
model (Section 2.1) that can effectively and effi-
ciently assess the semantic relevance between the
public comment text and responses produced by
regulators. In essence, given a comment chunk
from public c = {c1, · · · , cm} and a regulator’s
response r = {r1, · · · , rn}, where each ck is
a token in the comment and each rk is a token
in the response, our goal is to learn a function
f : (c, r) → s that predicts the score s indicat-
ing the likelihood that comment c and regulator’s
response r pertain to the same topic, and that the
concern in c is addressed in r.

As illustrated in Figure 1, we employ an itera-
tive contrastive learning paradigm with the training
procedure (Section 2.2) consisting of two steps per-
formed alternatingly, namely hard pos./neg. mining
and model updating.

2.1 Model Architecture
Our proposed comment-response matcher func-
tions as a binary classifier essentially compris-
ing two components: a text encoder with SBERT2

(Reimers and Gurevych, 2019) as its underlying
structure, followed by a scoring layer yielding the
likelihood of a pair of comment and response being
a match. More formally, given a pair of randomly
sampled comment chunk and response ci and rj ,
we first separately acquire the embeddings for these
two textual units:

vci = S-BERT (ci), (1)

vrj = S-BERT (rj) (2)

Then the probability of rj responds to ci (a match)
is computed with the negative exponent of cosine

2We also considered BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), Legal-BERT (Chalkidis et al., 2020) and
other different versions of SBERT for text encoder, but eventu-
ally chose SBERT with version of multi-qa-mpnet-base-dot-v1
for its observed superior performance.

distance between vci and vrj :

p(match|vci , vrj ) = exp(−α∗(1−vci ·vrj )) (3)

where α serves as a hyper-parameter that controls
the decay rate of the matching probability. A
greater value of α results in a more pronounced
decrease in matching probability when cosine dis-
tance increases. Throughout the training process,
we optimize the model with cross-entropy loss.

2.2 Training Scheme
Generally, we use contrastive learning paradigm
(Hadsell et al., 2006) to train our proposed
comment-response matcher. More concretely, we
optimize the text encoder in the matcher on selected
hard positive and negative samples to effectively
capture signals indicating the semantic relevance
between public comments and responses from the
regulator. This process is therefore arguably con-
ducive to accurately predict whether a comment is
discussed in a given response. The training scheme
for the matching model spans several iterations,
with each iteration consisting of two steps:

-1: Hard Pos./Neg. Mining. As illustrated in Fig-
ure 1, our preliminary regulatory data for rulemak-
ing is structured in the form of rule observations
(§3.1). Each of these rule observations consists of
a set of comment chunks and a set of responses as-
sociated with a particular rule. As this raw dataset
does not have any explicit ground-truth labels about
matching between responses and comments within
the rule, we make the model training entirely rely
on the labels of created pseudo positive and neg-
ative comment-responese sample pairs. To do so,
we first identify a set of "positive pairs" from the
raw data. More specifically, for each response, we
find its most similar comment chunk within the
same rule observation. This similarity is calculated
based on the embeddings of the model’s text en-
coder optimized from the prior iteration. In this
way we obtain 11,828 positive comment-response
pairs.

In order to improve the robustness and efficiency
of model training, within one training step, we first
draw a batch of M comment/response strings and
then extract hard positive and negative samples as-
sociated with strings in the batch. Subsequently, we
update the encoder-based matching model on these
hard positive/negative samples utilizing in-batch
contrastive learning (Wu et al., 2020; Zhou et al.,
2022). In practice, we initially apply the match-
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ing model, derived from the last training iteration,
to all comment/response strings, yielding a total
of 11, 828 × 2 = 23, 656 embeddings. We then
pair each of the M strings in the sampled batch
with all embeddings, compute the loss, and gen-
erate a loss matrix l ∈ RM×23656. Subsequently,
we perform argmax on each row of l to identify
the response-comment pair corresponding to the
maximum loss, ultimately producing M hard posi-
tive/negative samples. Each hard positive sample
refers to a possibly matched pair which the model
struggles to allocate high matching probability to,
whereas each hard negative sample refers to a pos-
sibly mismatched pair to which the model tends to
assign high matching probability.

-2: Model Updating. Once hard posi-
tives/negatives for a training step are obtained, in
this phase, we update weights of the comment-
response matching model by minimizing the cross-
entropy loss as described in Section 2.1. This
allows us to pull the matched comments and re-
sponses closer and push the unmatched ones far
apart. The model updated in the current iteration
will be fixed and serve as the text encoder to mine
hard positive and negative samples again for the
next training iteration.

3 Experiments and Analysis

3.1 Experimental Setup

Datasets. As mentioned in §2.2, our preliminary
regulatory data for rule-making is structured in the
form of rule observations where each rule observa-
tion is with a hierarchy depicted as follows:

• A rule observation (about one rule document)

– A set of comment documents associated with
the rule (Comment A, B, . . .)

* A set of comment chunks in Comment A
(Comment A-1, A-2, . . .)

* A set of comment chunks in Comment B
(Comment B-1, B-2, . . .)
...

– A set of regulator’s responses extracted from
the rule document (Response A, B, . . .)

Textual data in rule observations comes from two
main resource: rules published in the Federal Reg-
ister from 2000-2022, and comments submitted
to regulations.gov from 2000-2022. As one rule
document contains paragraphs other than regulator

responses to public comments (e.g., background
information, summary of comments), we extract
only responses from each rule document using a su-
pervised paragraph classifier developed for another
parallel research project. We leverage some exter-
nal metadata of rules publicly accessible in federal-
register.gov and reginfo.gov to attach comments to
the rules downloaded from the different resource.
As one comment document can be extensively long,
we chop it into a series of comment chunks by
grouping adjacent paragraphs in the comment fol-
lowing 1000 token limit. Paragraphs longer than
1000 tokens are deemed as single chunks. After
applying some pre-processing constraints (more
details in Appendix B), we finally obtain a dataset
covers 6,727 rules, 17,452 responses, 10,456 com-
ments chopped into 193,143 comment chunks.

For test data construction, we uniformly (see Ap-
pendix B) sample 160 pairs of comment chunk
and response from all possible combination in
the dataset, and recruite seven students from the
law program of our institution to annotate this
test set. Annotators were asked to score the rel-
evance of each comment chunk to the accompa-
nying response using a 5-point Likert scale (see
Appendix A for detailed annotation instructions).
Each sample was assigned to multiple annotators,
thus we received 3-5 independent evaluations for
each testing pair.

We include more details about our dataset con-
struction pipeline in Appendix B.

Baselines. We compare our proposal with three
baseline text matching algorithms (see Figure 2).
They are: (1) Normalized BM25 (Robertson and
Zaragoza, 2009), as a widely used term weighting-
based ranking model usually applied for informa-
tion retrieval. We calculate BM25 scores for the
corresponding responses and comments tied to the
same rule. These scores are then normalized on
a per-rule basis; (2) RoBERTa Score (Liu et al.,
2019), which employs the vanilla RoBERTabase as
text encoder, transforming both comments chunks
and responses into embeddings, which are then
used for matching score computing. As we em-
ploy the same scoring layer (in Section 2.1), this
baseline is essentially equivalent to our proposed
matching model in iteration 0; (3) SBERT Score
(Reimers and Gurevych, 2019), which employs the
SBERT (multi-qa-mpnet-base-dot-v1)3 as text en-

3https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1
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Figure 2: Scatter plots illustrating the correlation between human judgement and seven comment-response matching
methods (including Ours (RoBERTa) and Ours (SBERT), which are RoBERTa and SBERT applied our iterative
contrastive learning framework) on the 160 test samples. The Pearson’s correlations are shown at bottom-right. The
best performance achieved by our proposal is highlighted in the bolded box.

coder. The score computing of this baseline is in a
manner similar to the RoBERTa Score introduced
above; (4) Llama-2-Chat (70B) (Touvron et al.,
2023), currently the top-performing fundamental
gigantic language model within the open-sourced
Llama family. We essentially deem it as a human
evaluator by providing it with the same guidelines
giving to human annotators and then task it to as-
sign a score on the 5-point Likert scale for each
pair of comment and response; (5) GPT-4 (Ope-
nAI, 2023), currently the state-of-the-art gigantic
language model, leading in both open-sourced and
closed-sourced domains. We prompt it to assign
scores for comment-response pairs in the same
manner as Llama-2-Chat (70B) introduced above4.

Implementation Details. As in Section 2.1, we
use SBERT(multi-qa-mpnet-base) (Reimers and
Gurevych, 2019) as the backbone text encoder
to demonstrate our proposed comment-response
matcher, given its superior performance. However,
to validate the model-agnostic nature of our pro-
posed iterative contrastive learning framework, we

4The detailed prompt for Llama-2-Chat (70B) and GPT-4
is in Appendix A.

also test with the vanilla RoBERTabase (Liu et al.,
2019) as an alternate backbone text encoder, aiming
to discern if improvements brought by the iterative
contrastive learning framework extend beyond just
one particular text encoder. For both, We take the
mean of the contextualized representation of the
last hidden layer as text embeddings. For the scor-
ing layer, we set hyper-parameter α = 50. For
training, we use AdamW (Loshchilov and Hutter,
2017) with with lr = 1e−5 and batch size = 8. We
conduct 5 iterations of model training, with each
iteration detailed in §2.2.

3.2 Experimental Results

To investigate how well the baselines and our pro-
posed comment-response matching model align
with human judgments, in Figure 2, we use scat-
ter plots to visualize their correlations with human
scores, as well as report the Pearson’s r correlation
score. We can observe that even though GPT-4’s
predictions show the highest correlation with the
5-point Likert human annotations, our proposed
matching model also demonstrates strong perfor-
mance as ranked in the second place, outperform-
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ing all left baselines by a considerable margin.

More concretely, BM25 tends to underestimate
the relevance between comments and responses, as-
signing low scores to many pairs that humans con-
sider highly relevant in topic. As sharing the same
rating scale with human, the predictions of GPT-
4 align closely with human judgements, whereas
Llama-2-Chat (70B) correlation with human is way
less desirable. Interestingly, GPT-4 demonstrates
a strong tendency to consistently assign score ‘2’
to samples that humans rated within the range of
[1,3], which may indicate that GPT-4 is cautious
to determine a comment-response pair as entirely
irrelevant. The vanilla RoBERTa without any tun-
ing on our dataset extremely overestimates the rel-
evance between comments and responses by as-
signing high similarity scores indiscriminately to
both matched and unmatched sample pairs. On the
other hand, SBERT, being a superior text matching
model pre-trained on semantic search as a close
analogue to our task, aligns more closely with hu-
man judgment, yet the similarity scores it produces
for both matched and unmatched samples still fall
within a relatively narrow range. When our pro-
posed contrastive learning framework is applied to
RoBERTa and SBERT, the correlation of these two
base text encoders with human judgments increases
from 0.22 and 0.70 to 0.71 and 0.79 respectively,
bringing the improved SBERT’s performance re-
markably close to that of GPT-4 (0.82). It demon-
strates the model-agnostic behavior of our iterative
contrastive learning framework when effectively
interacting with different base encoders. Hence,
we believe that with a more advanced base encoder,
we could potentially match or even surpass the per-
formance of GPT-4.

To assess the effectiveness of the iterative con-
trastive learning scheme, Figure 3 showcases the
performance of the RoBERTa- and SBERT-based
comment-response matchers on the test set across
different training iterations applying iterative con-
trastive learning. We can see the model’s per-
formance is improved iteratively across iterations,
with the most notable enhancement occurring after
the first iteration.

Even though GPT-4 achieves slightly superior
correlation with humans in our experiments, from
the perspective of real-world application, the cost
of deploying the model is also critical. Compared
with our SBERT-based matcher, prompting GPT-
4 using our designed instruction template incurs

Figure 3: The performance (Pearson’s correlation) of
the RoBERTa- and SBERT-based comment-response
matcher on our test set after each training iteration.
“Iteration 0” represents the matcher initialized with
RoBERTabase and SBERT(multi-qa-mpnet-base), thus
with the correlation score equals to RoBERTa and
SBERT score in Figure 2.

an additional cost of $4.63 on the test set based
on its current pricing rate. Given the context that
every year U.S. Federal Regulators receive an over-
whelming volume of comment letters (usually over
one million) from businesses, interest groups, and
members of the public, our proposed SBERT-based
matcher would be a more feasible option for such
practical scenario due to its efficiency and cost-
effectiveness.

4 Conclusion

In this paper, we propose a simple yet effective con-
trastive learning approach following the iterative
data construction - model updating training scheme,
aiming for automatically matching the responses
in policy regulations and relevant comments they
respond to. Our empirical study on a real-world
test set demonstrates that our proposal outperforms
a set of selected benchmarks for text matching
in terms of correlation with human annotations,
achieves comparable performance but is more cost-
effective than the most advanced gigantic large
language model (i.e., GPT-4) for comments and
regulator responses in larger scale. Our proposed
approach can be easily adapted to other text match-
ing applications dealing with text in rather different
complexity, such as name matching (Peng et al.,
2015), or extended to other more-resourced scenar-
ios like semi-supervised settings, which we will
leave as our future work.

5 Limitations

The main limitation of our method is that, while
it provides a substantial improvement over BM25
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on our task, it is not as accurate as current large
language models. It seems reasonable to guess that
the cost of employing GPT4 and its successors will
decline over time, and at some point, the compu-
tational efficiency of our approach may not be so
important. Another limitation is that our approach
depends on particular aspects of our task that may
not be applicable in other domains. Specifically,
our unsupervised training method relies on the ex-
istence of many groups of responses and comments
in the data with the property that positive pairs are
only possible within a group. This lets us make
good guesses about a subset of the true positive
pairs with only a weak model, and generate a large
number of true negative pairs by matching strings
across groups. However, it is interesting to con-
sider what other tasks and data might have a similar
structure.
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A Prompt Templates for GPT-4

See next page.

B Details for Regulatory Data
Construction

Our data comes from two main sources: Rules
published in the Federal Register from 2000-2022,
downloaded in bulk XML format from govinfo.gov,
and all comments submitted to regulations.gov
from 2000-2022, downloaded via the API. We ex-
tracted regulator responses to comments from the
rules using a supervised classifier under develop-
ment for a parallel research project. We extract
comment text with the tika parser5, employing
OCR when necessary to extract text from image-
only PDFs. The comment text is split into para-
graphs, and body paragraphs are identified using
a simple rule-based classifier. Finally, we group
very short paragraphs (often improperly split by
page breaks or other formatting issues) with adja-
cent paragraphs to form larger comment "chunks"
500-100 characters long. Paragraphs longer than
1000 characters are included as single chunks. Be-
sides this rule-based chunk generation strategy, we
believe topic segmentation techniques (Xing et al.,
2020; Xing and Carenini, 2021) can potentially
lead to comment chunks in better quality if the
training data for segmentation in reasonable size is
available.

Linking comments to the appropriate rules re-
quires additional data. We collect rule metadata
from federalregister.gov and reginfo.gov and link
regulations.gov documents to Proposed Rules, and
Proposed Rules to Rules using Federal Register
document numbers, agency docket identifiers, and
Regulation Identification Numbers (RIN). This
gives us a database of rules where, for each rule,
we can identify the set of comments that the agency
would likely be responding to.

The structure of the data is important for our
training strategy. Each rule may contain multiple
responses, and be linked to multiple comments with
several paragraphs each. We can be reasonably
confident that each response in a rule is responding
to a small number of paragraphs from the linked
comments. It is also unlikely that that a given
response is related to comment paragraphs from
other rules.

When selecting the training data in our iterative

5https://tika.apache.org/0.7/parser.html

algorithm, we restrict our sample to rules with 1-
10 comments, and fewer than 1000 unique linked
comment paragraphs. We also select at most 10
responses from each rule. This gives us a base
sample of 6,727 rules, 17,452 responses, 10,456
linked comments, and 193,143 comment chunks.

To evaluate the quality of the similarity scores
learned on the full training set, we used an early
iteration of the model to retrieve all pairs with a
score greater than 0.1 on a subset of the data. Then
we grouped the pairs into bins of width 0.1 by score
and kept 10 observations per bin per response. This
sampling approach gives us a relatively uniform
distribution of match qualities for our test sample.
Finally, we sampled 4 random batches of 40 pairs
from this binned sample and distributed them to
human annotators. The annotators were not shown
the scores used to construct the sample.

Our annotators consisted of seven students from
the law program of our institution.All of the stu-
dents had been working with us for several months
and were familiar with our data. The annotators
were asked to score the relevance of each com-
ment chunk to the accompanying response using a
5-point Likert scale (see Appendix A for the anno-
tation instructions). Each sample was assigned to
multiple annotators, and we received 3-5 indepen-
dent evaluations for each pair.
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Content of Prompt

I will give you a pair of comment-response texts in each turn, you should give a number between 1 and 5.
The number should indicate degree of overlap between the topics discussed in the two texts and how likely it
is that the agency’s response text is intended as a response to the selected comment text:

1 = Incorrect match. Comment and response text are clearly discussing very different issues. The agency is
definitely not responding to this comment text in the response text.

2 = Poor match. Comment and response text are somewhat related, but appear to be discussing different
specific issues. It is unlikely that the agency is responding to this comment text in the response text.

3 = Partial Match. Comment and response text are discussing related issues but the degree of overlap is
either imperfect or somewhat ambiguous.

4 = Good match. Comment text appears closely related to the agency’s response. It is likely that the agency
is responding to this comment text.

5 = Perfect match. Comment text contains the exact argument or information that the agency is responding
to in the response text. The agency is definitely responding to this specific comment text.

Note:

1. The response text could also be addressing other comments as well. This should not detract from the score.
For example, if the regulator is clearly responding to two different comments A and B, and the selected
comment text appears to exactly match the summary of comment A, then enter a ‘5’.

2. Sometimes there is a tension between recognizing that the comment is likely the one being discussed,
and whether there is a good topic match. For example, both the comment and response might identify the
commenter by name making it clear that this is the correct comment. However, if the topics do not match,
the score should still be low (keep in mind this is only a sample of the comment text - it is likely that there is
another omitted sample of the comment text that would be a better match).

Please give me the answer of the following comment-response pair in such format: number - explanation.
###

Comment Text: ...

Response Text: ...

Table 1: The prompt templates we applied for the GPT-4 comment-response matching prediction. Text in blue is the
content of annotation scheme we also showed to the annotators to label our test data.
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