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Abstract
The paper presents a monolithic approach to
grammatical error detection, which uses one
model for all languages, in contrast to the indi-
vidual approach, which creates separate mod-
els for each language. For both approaches,
pre-trained embeddings are the only exter-
nal knowledge sources. Two sets of embed-
dings (Flair and BERT) are compared as well
as two approaches to the problem of multi-
lingual rammar detection, building individual
and monolithic systems for multilingual gram-
mar error detection. The system submitted to
the test phase of the MultiGED-2023 shared
task ranked 5th of 6 systems. In the subse-
quent open phase, more experiments were con-
ducted, improving results. These results show
the individual models to perform better than
the monolithic ones and BERT embeddings
working better than Flair embeddings for the
individual models, while the picture is more
mixed for the monolithic models.

1 Introduction

The MultiGED-2023 shared task on Multilingual
Grammatical Error Detection (MGED; Volodina
et al., 2023) presents six datasets, in the languages
Czech, German, Italian, and Swedish as well as
two in English; all well-resourced languages with
more than 10 million speakers. Although not
strictly required, the task did encourage the sub-
mission of multilingual systems. This work com-
pares both approaches, multilingual and individual
models for each language.

The NTNU system aimed to answer two re-
search questions with its submission:

(i) the feasibility of using Flair embeddings (Ak-
bik et al., 2018) provided by the FlairNLP
framework (Akbik et al., 2019a) vs. the more
traditional BERT embeddings, and
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(ii) the impact of training RNNs using language-
specific and multilingual embeddings, re-
spectively, to address the problem.

Consequently, no other external resources — or
synthetic data — were used. The submission to
the test phase of the shared task was a multilingual
system, which ranked 5th of 6 systems.

The rest of the paper is structured as follows:
first, Section 2 discusses relevant background,
and Section 3 briefly describes the dataset. Sec-
tion 4 outlines the proposed method and Section 5
presents the results, while Section 6 provides a dis-
cussion. Finally, Section 7 concludes and outlines
ideas for future work.

2 Background

Grammatical error detection (GED) has received
increased attention in the research community.
Figure 1 shows the number of publications about
GED registered in the Web of Science1 over the
last 31 years, most of which are categorized as
computer science disciplines. The results were ob-
tained by searching for the query “Grammatical
Error Detection” and asking for a citation report,
from which the chart was downloaded at the time
of submission.

Bryant et al. (2023) summarized the state-of-
the-art of the closely related field of grammati-

1http://www.webofscience.com

Figure 1: Number of GED publications registered in
the Web of Science per year from 1991 (1) to 2022 (27).
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cal error correction (GEC) as of November 2022,
citing various neural network methods, including
LSTMs and Transformers, but not contextualized
Flair embeddings. The authors cite the following
core approaches: 1) classifiers, 2) statistical ma-
chine translation, 3) neural machine translation, 4)
edit-based approaches, and 5) language models for
low-source and unsupervised GEC.

2.1 Flair Embeddings
Flair embeddings (Akbik et al., 2018) are contex-
tualized embeddings trained without explicit no-
tions of words and contextualized by their sur-
rounding text. As they were launched, the em-
beddings were evaluated on four classic sequence
labeling tasks: Named Entity Recognition (NER)-
English, NER-German, Chunking, and Part-of-
Speech (POS)-tagging. Akbik et al. reported im-
proved scores on several datasets. The embed-
dings are trained with a forward-backward Recur-
rent Neural Network (RNN), and can be stacked
before being applied to a particular problem.

Flair embeddings are pre-trained on large unla-
beled corpora, they capture word meaning in con-
text, and they model words as sequences of char-
acters, which helps them with modeling rare and
misspelled words. Thus, applying them to a se-
quence labeling problem such as GED is an in-
teresting research option. Akbik et al. (2019b)
launched pooled contextual embeddings to ad-
dress the shortcoming of dealing with rare words
in underspecified context. The pooled embeddings
aggregate contextualized embeddings as they are
encountered in a dataset. The Flair embeddings
are released for all of the languages studied in
MultiGED-2023, as well as in a multilingual ver-
sion, covering more than 300 languages.2

In addition to the authors’ experiments, Flair
embeddings have previously been applied to
sequence labeling in the biomedical domain
(Sharma and Jr., 2019; Akhtyamova and Cardiff,
2020), achieving similar performance to alter-
natives like BERT (Bidirectional Encoder Rep-
resentations from Transformers; Devlin et al.,
2019), despite being computationally cheaper.
Santos et al. (2019) and Consoli et al. (2020)
achieved state-of-the-art results on doing NER on
Portuguese literature in the geoscience domain.
Wiedemann et al. (2019) compared Flair embed-

2https://github.com/flairNLP/flair/bl
ob/master/resources/docs/embeddings/FLAI
R_EMBEDDINGS.md

dings to BERT in a word sense disambiguation
task, and argued that the latter models were bet-
ter able to find the right sense of polysemic words.
Syed et al. (2022) combined Flair and BERT em-
beddings for concept compilation in the medical
domain, reporting improved results with a hybrid
artificial neural network model, which concate-
nates the two embedding types. The FlairNLP
framework also offers this functionality.

3 Data and preprocessing

Six datasets in five languages were used for the
MultiGED-2023 shared task, ranging from 8k to
35k sentences.3 The data loaded unproblemat-
ically, with the exception of line 96487 in the
Swedish training corpus, a UTF-8 character that
broke scripts. Specifically, embeddings were cre-
ated with wrong dimensions. This character was
replaced by the string ‘FOO’ in the experiments
on this corpus to work around this problem. Ad-
ditionally, line 149 in the Swedish test corpus and
line 5351 in the Italian test corpus caused some
problems. Because the FlairNLP framework, in
contrast to, for instance, OpenNMT (Klein et al.,
2017), parses the vertical format directly, no other
preprocessing steps were necessary.

For the English Realec corpus, only a develop-
ment and a test file were provided. More details
are provided by Volodina et al. (2023).

4 Method

The FlairNLP framework was used to conduct the
experiments presented below. After the data was
loaded, it was passed to a processing pipeline,
which is a sequence-to-sequence labeler consist-
ing of a bi-directional LSTM (long short-term
memory; Hochreiter and Schmidhuber, 1997) with
an optional Conditional random field (CRF; Laf-
ferty et al., 2001) classifier on top. Next, the
model uses the training and development corpora
for training, as well as F1 scoring.

The architecture of the models can be adapted,
e.g., in terms of recurrent neural network (RNN)
layers, RNN type (RNN, LSTM or GRU — gated
recurrent unit), the number of hidden units and
training epochs, and the optional use of CRF. Ad-
ditionally, the Tensorboard4 system was used to
monitor training progress.

3https://github.com/spraakbanken/mult
iged-2023/

4Part of TensorFlow (Abadi et al., 2015).
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FlairNLP can combine several corpora into a
MultiCorpus object, which builds a monolithic
model of several corpora. This object can be used
to train and test a single model on a collection of
corpora, analogously to how a Corpus object can
be used to do training and inference of one cor-
pus for same. In the following, such a monolithic
MGED model is considered multilingual, in con-
trast to several smaller, individual models, one for
each language or dataset. While it is possible to
have different models for different languages and
direct input by means of language identification
prior to inference, this distinction is made for clar-
ity in separating the approaches.

Since the Realec corpus only came with devel-
opment and test files, it was used differently than
the other corpora: the English language was cov-
ered by the monolithic models and the individual
model for the English FCE corpus, so the Realec
test corpus was tested on this model and submit-
ted to CodaLab (Pavao et al., 2022) for evaluation.
The Realec dev corpus was not used in training.

4.1 Exploring Embeddings vs. Architecture

As a Bi-LSTM-CRF model is sensitive to initial-
ization, a wide range of RNN layers (2, 6, 12, 24),
hidden units (128, 256, 512) were explored as well
as using GRUs and standard LSTMs. While there
is a scope for tweaking the results, none of these
configurations resulted in markedly better perfor-
mance, with the exception of models with very few
layers that were unable to converge to anything but
same-labeling the entire corpus. For the results re-
ported in Section 5, the choice for RNN type was
LSTM, and the number of layers was 10.

4.2 System Submitted to the Test Phase of the
Shared Task

The system submitted to the test phase was a
monolithic multilingual system, which used the
multilingual Flair embeddings. The architecture
was a Bi-LSTM-CRF sequence labeler with only
one layer and using no CRF. While the system was
able to learn for all languages simultaneously, the
performance was weak, especially in terms of re-
call and F0.5.

5 Experimental Results

The experiments presented below were all carried
out with the RNN type LSTM, using 10 layers
with 256 hidden units, no use of CRF, and with a

Table 1: Monolithic system submitted to the test phase
of the shared task.

Dataset Precision Recall F0.5

Czech 80.65 6.49 24.54
English (FCE) 81.37 1.84 8.45
English (Realec) 51.34 1.13 5.19
German 83.56 15.58 44.61
Italian 93.38 19.84 53.62
Swedish 80.12 5.09 20.31

tag dictionary of only [c, i]. The experiments con-
sisted of two stages: initially, five systems (includ-
ing only one English model) were developed for
each language using both Flair and BERT embed-
dings; subsequently, two monolithic models were
created employing cased multilingual Flair and
BERT embeddings. After presenting the scores
of the simple system submitted to the shared task,
these two types of experiments will be presented.

5.1 System Submitted to the Test Phase of the
Shared Task

Table 1 shows the results of the system that was
submitted to the test phase of the shared task,
which was discussed above. Using only one RNN,
layer, the monolithic model using Flair embed-
dings did get good precision on some datasets, but
at the cost of recall and F0.5 score. Only the score
on the Italian dataset came close to the models us-
ing 10 layers in F0.5 terms.

5.2 Individual Models for each Language

Figure 2 shows how the English FCE model (as an
example) developed toward convergence and Ta-
ble 2 exhibits the results in tabular form. The FCE
models were chosen randomly as two samples of
the ten models that were built in total. The re-
sults are better for BERT embeddings across all
languages, and the differences are the largest for
the smaller datasets, Swedish and Italian, than the
larger English, German, and Czech, which is high-
lighted in the extra column of Table 2b.

BERT models are available for these languages
in the Huggingface5 interface: Czech (Sido et al.,
2021), English (Devlin et al., 2019), German6,
Italian7, and Swedish (Malmsten et al., 2020).

5https://huggingface.co/
6https://www.deepset.ai/german-bert
7https://huggingface.co/dbmdz/bert-bas

e-italian-cased
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(a) With Flair embeddings.

(b) With BERT embeddings.

Figure 2: Development corpus score per epoch until
convergence for the English FCE model.

Table 2: Comparison of individual models. The ‘Diff’
column shows the difference between the two models
(Flair vs. BERT). The biggest difference in bold, the
smallest in italics.

(a) Individual models built with Flair embeddings.

Dataset Prec. Rec. F0.5

Czech 75.3 39.46 63.73
En (FCE) 65.49 33.01 54.72
En (Realec) 41.52 28.12 37.91
German 78.06 56.37 72.48
Italian 70.29 27.28 53.44
Swedish 57.44 26.85 46.78

(b) Individual models built with BERT embeddings.

Dataset Prec. Rec. F0.5 Diff

Czech 80.2 47.22 70.37 6.64
En (FCE) 71.13 41.5 62.25 7.53
En (Realec) 44.9 35.2 42.56 4.65
German 81.99 65.48 78.05 5.57
Italian 83.45 63.54 78.53 25.09
Swedish 80.64 60.1 75.48 27.7

(a) With Flair embeddings.

(b) With BERT embeddings.

Figure 3: Development corpus score per epoch until
convergence for the monolithic models.

Table 3: Comparison of monolithic models. The ‘Diff’
column shows the difference between the two models
(Flair vs. BERT). The biggest difference in bold, the
smallest in italics.

(a) Monolithic model built with Flair embeddings.

Dataset Prec. Rec. F0.5

Czech 70.21 21.05 47.85
En (FCE) 66.76 10.13 31.52
En (Realec) 41.91 9.23 24.54
German 72.35 33.2 58.54
Italian 84.02 28.89 60.81
Swedish 67.57 19.45 45.2

(b) Monolithic model built with BERT embeddings.

Dataset Prec. Rec. F0.5 Diff

Czech 54.07 20.43 40.68 -7.17
En (FCE) 68.51 41.04 60.42 28.9
En (Realec) 42.07 35.1 40.46 15.92
German 59.6 26.55 47.72 -10.82
Italian 47.55 20.78 37.8 -23.0
Swedish 50.04 24.36 41.32 -3.88

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

20



5.3 Monolithic Models for all Languages

Figure 3 shows how the monolithic model de-
veloped towards convergence for both embedding
types, and Table 3 exhibits the results in tabular
form. The multilingual and cased BERT model
and the corresponding Flair model were used for
the embeddings. The results are markedly better
for the English datasets but worse for the others,
in particular Italian.

6 Discussion

As expected, the Flair embeddings performed
worse than the more expensive BERT models in-
dividually. The results show that the Flair embed-
dings were performing closer to the BERT mod-
els for the larger corpora, with a larger difference
for the smaller Italian and Swedish corpora. The
masked language model training of BERT could
introduce more imbalances when the corpora have
different sizes. Possibly, the Flair embeddings
need more training data to perform well.

It was a more mixed picture for the mono-
lithic MGED models, where the BERT embed-
dings scored better for the English but worse for
the other languages. Unlike for the individual
models, performance was actually worse than with
Flair embeddings, the reasons for which should be
further explored.

In some experiments, the training process
would get stuck in local minima, which converged
to models that categorized all words as c. Anecdo-
tally, fewer experiments were necessary to make
the experiments using Flair embeddings to con-
verge to a result other than a one-category (thus,
meaningless) result. In contrast, the monolithic
models using BERT embeddings were harder to
get to converge to a result with both correct and
incorrect predictions. Thus, several experiments
were necessary to get a meaningful result out, al-
though those models were performing better.

Furthermore, some experiments on model ar-
chitecture were conducted by changing the RNN
type, number of layers, or the dimensionality of
the hidden state vector. While no notable differ-
ences in results were discovered in this exploratory
phase, a potential for tweaking the models to in-
crease performance on the test set likely remains.

As a consequence of an implementation er-
ror, the results submitted to the test phase of
MultiGED-2023 were revised and turned out to be
better. The errors were due to the FlairNLP sys-

tem outputting a labeling of the test set, which was
different from using the best model from train-
ing on the dataset, which caused minor differences
in scoring. However, the substantial performance
gain in the results presented above compared to
the results submitted to the test phase stems from
the architectural change to the system, whereby
more RNN layers were added. The submitted sys-
tem was simple, as the exploratory phase of get-
ting the setup to produce results reliably had just
been completed. As the scoring in CodaLab was
(and is) available in the open phase, more work
could be done, both in development and compari-
son terms.

For monolithic models, the multilingual BERT
models are resource-demanding. Since the experi-
ments were carried out on a multiuser HPC (high-
performance computing) grid with many outside
factors influencing performance, training times
cannot be compared directly. Approximately and
informally, however, the monolithic jobs with
BERT embeddings could take 36 hours to con-
verge, while the corresponding jobs with Flair em-
beddings converged in 6–8 hours.

7 Conclusion and Future Work

The research questions posed concerned (i) the
feasibility of using Flair embeddings on an MGED
task and (ii) monolithic vs. individual models.

The Flair embeddings were definitely feasible.
For the larger datasets, performance neared BERT
models, and did better on non-English languages
for the monolithic approach. The monolithic ap-
proach did, however, perform worse than the in-
dividual models for both Flair and BERT embed-
dings. Thus, more research is needed to improve
the monolithic approaches, with the gap in perfor-
mance in the presented results too big to ignore.

For future work, hybrid solutions could be ex-
plored, where Flair and BERT embeddings are
stacked. There is also room for further exploring
the parameter space of the sequence-to-sequence
labeling architecture, as well as leveraging newer
and larger language models for embeddings. In
addition, it would be interesting to apply F0.5 scor-
ing in training, as opposed to the default F1 scor-
ing in the FlairNLP framework that was used in
the experiments reported here.
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