@inproceedings{ganesh-etal-2023-survey,
title = "A Survey of Challenges and Methods in the Computational Modeling of Multi-Party Dialog",
author = "Ganesh, Ananya and
Palmer, Martha and
Kann, Katharina",
editor = "Chen, Yun-Nung and
Rastogi, Abhinav",
booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlp4convai-1.12",
doi = "10.18653/v1/2023.nlp4convai-1.12",
pages = "140--154",
abstract = "Advances in conversational AI systems, powered in particular by large language models, have facilitated rapid progress in understanding and generating dialog. Typically, task-oriented or open-domain dialog systems have been designed to work with two-party dialog, i.e., the exchange of utterances between a single user and a dialog system. However, modern dialog systems may be deployed in scenarios such as classrooms or meetings where conversational analysis of multiple speakers is required. This survey will present research around computational modeling of {``}multi-party dialog{''}, outlining differences from two-party dialog, challenges and issues in working with multi-party dialog, and methods for representing multi-party dialog. We also provide an overview of dialog datasets created for the study of multi-party dialog, as well as tasks that are of interest in this domain.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ganesh-etal-2023-survey">
<titleInfo>
<title>A Survey of Challenges and Methods in the Computational Modeling of Multi-Party Dialog</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ananya</namePart>
<namePart type="family">Ganesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Kann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Advances in conversational AI systems, powered in particular by large language models, have facilitated rapid progress in understanding and generating dialog. Typically, task-oriented or open-domain dialog systems have been designed to work with two-party dialog, i.e., the exchange of utterances between a single user and a dialog system. However, modern dialog systems may be deployed in scenarios such as classrooms or meetings where conversational analysis of multiple speakers is required. This survey will present research around computational modeling of “multi-party dialog”, outlining differences from two-party dialog, challenges and issues in working with multi-party dialog, and methods for representing multi-party dialog. We also provide an overview of dialog datasets created for the study of multi-party dialog, as well as tasks that are of interest in this domain.</abstract>
<identifier type="citekey">ganesh-etal-2023-survey</identifier>
<identifier type="doi">10.18653/v1/2023.nlp4convai-1.12</identifier>
<location>
<url>https://aclanthology.org/2023.nlp4convai-1.12</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>140</start>
<end>154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Survey of Challenges and Methods in the Computational Modeling of Multi-Party Dialog
%A Ganesh, Ananya
%A Palmer, Martha
%A Kann, Katharina
%Y Chen, Yun-Nung
%Y Rastogi, Abhinav
%S Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ganesh-etal-2023-survey
%X Advances in conversational AI systems, powered in particular by large language models, have facilitated rapid progress in understanding and generating dialog. Typically, task-oriented or open-domain dialog systems have been designed to work with two-party dialog, i.e., the exchange of utterances between a single user and a dialog system. However, modern dialog systems may be deployed in scenarios such as classrooms or meetings where conversational analysis of multiple speakers is required. This survey will present research around computational modeling of “multi-party dialog”, outlining differences from two-party dialog, challenges and issues in working with multi-party dialog, and methods for representing multi-party dialog. We also provide an overview of dialog datasets created for the study of multi-party dialog, as well as tasks that are of interest in this domain.
%R 10.18653/v1/2023.nlp4convai-1.12
%U https://aclanthology.org/2023.nlp4convai-1.12
%U https://doi.org/10.18653/v1/2023.nlp4convai-1.12
%P 140-154
Markdown (Informal)
[A Survey of Challenges and Methods in the Computational Modeling of Multi-Party Dialog](https://aclanthology.org/2023.nlp4convai-1.12) (Ganesh et al., NLP4ConvAI 2023)
ACL