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Abstract
Dialogue state tracking (DST) is designed to
track the dialogue state during the conversa-
tions between users and systems, which is the
core of task-oriented dialogue systems. Main-
stream models predict the values for each slot
with fully token-wise slot attention from dia-
logue history. However, such operations may
result in overlooking the neighboring relation-
ship. Moreover, it may lead the model to as-
sign probability mass to irrelevant parts, while
these parts contribute little. It becomes severe
with the increase in dialogue length. Therefore,
we investigate sparse local slot attention for
DST in this work. Slot-specific local semantic
information is obtained at a sub-sampled tem-
poral resolution capturing local dependencies
for each slot. Then these local representations
are attended with sparse attention weights to
guide the model to pay attention to relevant
parts of local information for subsequent state
value prediction. The experimental results on
MultiWOZ 2.0 and 2.4 datasets show that the
proposed approach effectively improves the
performance of ontology-based dialogue state
tracking, and performs better than token-wise
attention for long dialogues.

1 Introduction

Task-oriented dialogue systems aim to assist users
to complete certain tasks and have drawn great at-
tention in both academia and industry (Young et al.,
2010, 2013; Chen et al., 2017). As the core of task-
oriented dialogue systems, dialogue state tracking
(DST) is designed to track the dialogue states dur-
ing the conversation between users and systems,
which is generally expressed as a list of {(domain,
slot, value)} representing user’s goal (Rastogi et al.,
2017, 2018). The estimated dialogue states are used
for subsequent actions.

To achieve the dialogue state, value prediction is
made for each slot given the dialogue history. At
each turn, the model inquires of the dialogue his-
tory and predicts the state values accordingly (Xu

and Hu, 2018; Ren et al., 2018; Wu et al., 2019;
Zhang et al., 2019; Heck et al., 2020). With it, how
to extract appropriate context information in the
noisy dialogue history is crucial and challenging
(Hu et al., 2020). Yang et al. (2021) make an em-
pirical study about the effect of different contexts
on the performance of DST with several manually
designed rules. It indicates that the performance
of DST models benefits from selecting appropriate
context granularity.

In recent mainstream models, a fully token-wise
slot attention mechanism is widely used to cap-
ture slot-specific information with dialogue history.
The attention assigns an attention weight to each
token, measuring the relationship of each token
in dialogue history for the specified slot, and then
attends them with these weights. Although encour-
aging results have been achieved, it also brings
some risks. First, such operations disperse the dis-
tribution of attention, which results in overlooking
the neighboring relation (Yang et al., 2018). Some
entities (e.g., restaurant and attraction names) in
spoken dialogue are generally informal, diverse,
and local-compact, where the non-semantic tokens
may be included. Moreover, a limitation of the
used softmax computation is that the probability
distribution in the outputs always has full support
(Martins and Astudillo, 2016), i.e., softmax(z) > 0
for every vector z. It may lead a model to assign
probability mass to implausible parts of dialogue
history. Involving noise may make the model diffi-
cult to focus on the essential parts, and it may be
more severe with the increase in dialogue length
(Peters et al., 2019).

To tackle this problem, we propose a sparse
local slot attention mechanism for this task. In
our approach, local semantic information is firstly
achieved at a sub-sampled temporal resolution cap-
turing local dependencies for each slot. Then, these
local information is attended with sparse attention
weights generated by sparsemax function (Martins
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Figure 1: A demonstration of our model: (a) the entire framework, (b) the proposed sparse local slot attention.

and Astudillo, 2016), which outputs sparse poste-
rior distributions by assigning zero probability to
irrelevant contents in the dialogue history.

We conduct experiments to verify our approach
on MultiWOZ 2.0 and 2.4 datasets. The contribu-
tions can be addressed as follows: 1) We propose
a sparse local slot attention mechanism to lead the
model to focus on relevant local parts to the spe-
cific slot for the DST task; 2) We demonstrate that
the performance of DST benefits from introducing
local information with our proposed approach, and
make an empirical study that shows that our model
performs better in state prediction for name-related
slots and long dialogues than the models based on
fully token-wise attention.

2 Related Works

Dialogue state tracking (DST) is the core of task-
oriented dialogue systems. In the early years,
DST highly relies on hand-crafted semantic fea-
tures to predict the dialogue states (Williams and
Young, 2007; Thomson and Young, 2010; Wang
and Lemon, 2013), which is hard to handle lexical
and morphological variations in spoken language
(Lee et al., 2019). Benefiting from the rapid de-
velopment of deep learning methods and their suc-
cessful application in natural language processing,
neural method-based DST models have been pro-
posed. (Mrkšić et al., 2017) proposes a novel neural
belief tracking (NBT) framework with learning n-
gram representation of the utterance. Inspired by
it, sorts of neural network-based models have been
investigated for DST task (Nouri and Hosseini-Asl,
2018; Ren et al., 2018; Zhong et al., 2018; Hu et al.,

2020; Ouyang et al., 2020; Wu et al., 2019) and
achieves encouraging results.

Pre-trained models have brought natural lan-
guage processing to a new era in recent years.
Many substantial works have shown that the pre-
trained models can learn universal language repre-
sentations, which are beneficial for downstream
tasks (Mikolov et al., 2013; Pennington et al.,
2014; McCann et al., 2017; Sarzynska-Wawer et al.,
2021; Devlin et al., 2019). More recently, very
deep pre-trained language models, such as bidirec-
tional encoder representation from the transformer
(BERT) (Devlin et al., 2019) and generative pre-
training (GPT) (Radford et al., 2018), trained with
an increasing number of self-supervised tasks have
been proposed to make the models capturing more
knowledge from a large scale of corpora, which
have shown their abilities to produce promising
results in downstream tasks. In view of it, many
pieces of research of DST have explored to estab-
lish the models on the basis of pre-trained language
models (Hosseini-Asl et al., 2020; Kim et al., 2020;
Lee et al., 2019; Zhang et al., 2019; Chen et al.,
2020; Chao and Lane, 2019; Ye et al., 2021b; Heck
et al., 2020; Lin et al., 2020).

Related to extracting slot-specific information,
most of the previous studies rely on dense token-
wise attention (Lee et al., 2019; Wang et al., 2020;
Ye et al., 2021b). However, several pieces of re-
search have indicated that local information may
be missing with it (Yang et al., 2018; Shaw et al.,
2018; Sperber et al., 2018; Luong et al., 2015; Yang
et al., 2022). Motivated by it, we investigate intro-
ducing local modeling in this task. The most rele-
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vant research is (Yang et al., 2021), which makes a
comprehensive study of how different granularities
affect DST. However, this research employs simple
hand-crafted rules to neglect several utterances in
a dialogue history. Our proposed approach in this
work is data-driven.

3 Dialogue State Tracking with Sparse
Local Slot Attention

3.1 Encoding

As shown in Figure 1(a), BERTcontext is used for
encoding the dialogue context, whose parameters
are fine-tuned during training. Let’s define the dia-
logue history DT = {R1, U1, ..., RT , UT } as a set
of system responses R and user utterances U in T
turns of dialogue, where R = {Rt}Tt=1 and U =
{Ut}Tt=1. We define ET = {B1, ..., BT } as the di-
alogue states of T turns, and each Et is a set of slot
value pairs {(S1, V1), ..., (SJ , VJ)} of J slots. The
context encoder accepts the dialogue history till
turn t, which can be denoted as Xt = {Dt, E

′
t−1},

as the input and generates context vector represen-
tations Ht = BERTcontext(Xt).

Another pre-trained BERTsv is employed to en-
code the slots and candidate values. Its parame-
ters remain frozen during training. For those slots
and values containing multiple tokens, the vector
corresponding to the [CLS] token is employed to
represent them. For each slot Sj and value Vj ,
hSj = BERTsv(Sj), hVj = BERTsv(Vj).

3.2 Sparse Local Slot Attention

To extract slot-specific information, we propose
sparse local slot attention (SLSA). As shown in
Figure 1(b), sparse local slot attention accepts the
dialogue history Ht and the representation hSj of
the specific slot Sj . To obtain local information,
we employ a convolutional layer whose kernel has
size l and stride m over the context vector repre-
sentation of dialogue history. The convolutional
kernel accepts the local area in the dialogue history
representation and multiplies it with the learnable
parameters to obtain the local semantic representa-
tions.

H′
t = ReLU(Conv(Ht) +Ht) (1)

After that, multi-head attention with the sparse-
max function is employed to retrieve relevant in-
formation for each slot. It generates sparse distri-
bution to each local area. The sparsemax function

returns the Euclidean projection of the input vec-
tor z onto the probability simplex ∆K−1 := {p ∈
RK |1Tp = 1,p ≥ 0}. The projection is likely
to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (Martins and As-
tudillo, 2016).

Sparsemax(z) := arg min
p∈∆K−1

||p− z||2 (2)

Then the output is concatenated with each slot
to generate slot-specific representations through a
feed-forward layer.

Q
Sj

t = hSjWQ + bQ (3)

K
Sj

t = H′
tWK + bK (4)

V
Sj

t = H′
tWV + bV (5)

α
Sj

t = Sparsemax(
Q

Sj

t K
Sj

t

T

√
dk

)V
Sj

t (6)

C
Sj

t = W2ReLU(W1[hSj ,α
Sj

t ] + b1) + b2

(7)

Where WQ,bQ,WK ,bK , WV , and bV are the
parameters of the linear layers for projecting query,
key, and value respectively. dk = dh/N in which
dh is the hidden size of the model, and N is the
number of heads.

3.3 Slot Self-Attention
Slot self-attention is introduced to communicate in-
formation across different slots. Each sub-layer in
the self-attention layer consists of the self-attention
block and two fully connected layers of ReLU acti-
vation with layer normalization and residual con-
nection. Let Ct = [CS1

t , ...,CSJ
t ] and F1

t = Ct at
the first sub layer, then for the l-th sub-layer,

F̃l
t = LayerNorm(Fl

t), (8)

Gl
t = MultiHead(F̃l

t, F̃
l
t, F̃

l
t) + F̃l

t. (9)

For the l-th feed forward sub-layer,

G̃l
t = LayerNorm(Gl

t), (10)

Fl+1
t = FFN(G̃l

t) + G̃l
t. (11)

The output of the final layer is regarded as the final
slot specific vector FL+1

t = [fS1
t , ..., fSJ

t ].

3.4 Slot Value Matching
A Euclidean distance-based value prediction is per-
formed for each slot, the nearest value is chosen to
predict the state value.
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p(V j
t |Xt, Sj) =

exp(−d(hVj , f
Sj

t ))
∑

V ′
j∈νj exp(−d(hV ′

j , f
Sj

t ))

(12)

where d(·) is Euclidean distance function, and νj
denotes the value space of the slot Sj . The model
is trained to maximize the joint probability of all
slots. The loss function at each turn t is denoted
as the sum of the negative log-likelihood, Lt =∑J

j=1− log(p(V j
t |Xt, Sj)).

4 Experiments

4.1 Datasets

We conduct experiments using a couple of main-
stream datasets of task-oriented dialogue: Mul-
tiWOZ 2.0 and 2.4 datasets. MultiWOZ2.0
(Budzianowski et al., 2018) is currently the largest
open-source human-human conversational dataset
of multiple domains. MultiWOZ 2.4 is the latest
version and fixes the incorrect and inconsistent an-
notations (Ye et al., 2021a).

4.2 Implementation Details

The BERTcontext is a pre-trained BERT-base-
uncased model, which has 12 layers with 768 hid-
den units and 12 self-attention heads. Another
BERT-base-uncased model is used as the BERTsv.
For the sparse local slot attention, window size and
stride are investigated in the experiment. Padding
is added on both sides of the input if needed. The
number of attention heads is 4. Adam optimizer is
adopted with a batch size of 16, which trains the
model with a learning rate of 4e-5 for the encoder
and 1e-4 for other parts. The hyper-parameters are
selected from the best-performing model over the
validation set. We use a dropout with a probability
of 0.1 on the dialogue history during training.

4.3 Main Results

The main results are shown in Table 1. As we can
see, our model achieves the best performance on all
the datasets. We utilize the Wilcoxon signed-rank
test, the proposed method is statistically signifi-
cantly better (p < 0.05) than baselines. For the
MultiWOZ 2.0 dataset, our proposed SLSA model
(window size is 3 and stride is 1) achieves a JGA of
54.83% performing better than STAR with a JGA
of 54.53%, which is the previous SOTA. Moreover,
on the latest refined version MultiWOZ 2.4 fixing

Table 1: The joint goal accuracy (JGA) of different
models. SLSA denotes our proposed sparse local slot
attention.

Model MW2.0 MW2.4

TRADE (Wu et al., 2019) 48.93 54.97
SOM (Kim et al., 2020) 51.72 66.78
TripPy (Heck et al., 2020) - 59.62
SimpleTOD (Hosseini-Asl et al., 2020) - 66.78
SUMBT (Lee et al., 2019) 46.65 61.86
DS-DST (Zhang et al., 2019) 52.24 -
DS-Picklist (Zhang et al., 2019) 54.39 -
SAVN (Wang et al., 2020) 54.52 60.55
SST (Chen et al., 2020) 51.17 -
STAR (Ye et al., 2021b) 54.53 73.62
SLSA 54.83 77.92

Table 2: The results on the MultiWOZ 2.4 dataset using
our model with different settings.

JGA (%) SA (%)

SLSA 77.92 99.06
w/o Sparse 75.79 98.96
w/o Local 74.65 98.89
w/o Both 73.88 98.84

many annotations in the test set, our model obtains
a JGA of 77.92%. To sum up, our proposed model
achieves a slight improvement on the original Mul-
tiWOZ 2.0 dataset, and a significant improvement
on the latest refined MultiWOZ 2.4 dataset with
a clean test set. We also make an investigation
about the effects of local granularities, as shown in
Appendix A.1.

4.4 Ablation Study
To further verify the proposed approach, we present
some results that show the effectiveness of the
components in the proposed approaches. Table
2 presents the joint goal accuracy and slot accuracy
obtained when we progressively remove the com-
ponents in our proposed model on MultiWOZ 2.4
dataset. On one hand, comparing SLSA and "w/o
Local" (or "w/o Sparse" and "w/o both"), when
the local pattern component is removed, the perfor-
mance of corresponding model decreases. On the
other hand, comparing SLSA and "w/o Sparse" (or
"w/o Local" and "w/o both" when the sparse com-
ponent is removed, the performance of the corre-
sponding model decreases. It shows that the sparse
and the local components are effective and impor-
tant to the proposed model.

4.5 Error Analysis
An error analysis of each slot for the previous
SOTA model STAR and our models on MultiWOZ
2.4 is shown in Figure 2, in which the lower the
better. The four slots with the highest error rates
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Figure 2: The error rate per slot of STAR and our models
on MultiWOZ 2.4 dataset.

Figure 3: Joint goal accuracy per turn of STAR and our
models on MultiWOZ 2.4 dataset.

are hotel-type with 3.62%, attraction-name with
2.52%, restaurant-name with 2.32% and hotel-
name with 2.17%. It can be noticed that the
later three are name-related whose values are di-
verse, local-compact, and may includes several non-
semantic tokens. Our proposed models perform
better than STAR on these three slots, evidenced by
that the error rates are lower. In addition, our model
performs better in several categorical slots such as
hotel-internet, hotel-parking, hotel-stars and book
stay. We make a case study shown in Appendix
A.2 to have a straightforward understanding of our
proposed approach.

4.6 Performance for Long Dialogues

Figure 3 depicts the joint goal accuracy per turn of
our models and STAR on MultiWOZ 2.4 dataset.
Joint goal accuracy per turn is to measure the perfor-
mance for long dialogues. It is considered correct
if and only all of the values are correctly predicted
for each slot until the n-th turn. In the beginning,
the performance of these two models for short turns
is comparable. Then it decreases as the dialogue
length becomes longer since the previous states are
employed as part of the input where some mistakes
may be included. The trend of our model is a lit-
tle milder. For very long dialogues whose length
is larger than 7, our model performs better than

STAR. It shows our model performs better for the
long dialogues DST.

5 Conclusion

In his work, we propose a sparse local slot attention
for dialogue state tracking to alleviate allocating at-
tention weights to content unrelated to the specific
slot of interest. In our approach, local semantic
information is firstly achieved at a sub-sampled
temporal resolution capturing local dependencies
for each slot. Then, these local information is at-
tended with sparse attention weights generated by
sparsemax function. The experimental results show
that, comparing to several existing models based
on dense token-wise attention, our approach effec-
tively improves the performance of ontology-based
dialogue state tracking in the state prediction for
name-related slots and long dialogues.
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Limitations

In this work, we propose a sparse local slot atten-
tion (SLSA) mechanism to make the model pay
attention to slot-specified local areas in dialogue
history, and then attend them with sparse distribu-
tion generated by sparsemax to neglect some re-
dundant parts. This paper shows the effectiveness
of our proposed approaches in state prediction for
some specified slots and long dialogues. While we
show that the model with SLSA is competitive in
dialogue state tracking, there are limitation of that
provide avenues for future works. First, it is not as
easy to apply SLSA to generation-based dialogue
state tracking. Different from ontology-based man-
ners, the condition may be different in the case of
generative DST since entire successive information
involved in language modeling may be important
for language generation. Therefore, how to handle
the local and sparse properties for the generative
model need to further consider. Second, convo-
lution operation considers a fixed bounded local
context. It is a challenge to handle local properties
of various lengths.
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Table 3: The results with different sizes ls and strides
ms of the local window in our model.

Setup SLSAconv

l = 1,m = 1 74.82
l = 3,m = 1 77.92
l = 3,m = 2 76.45
l = 3,m = 3 76.87
l = 5,m = 1 74.89
l = 5,m = 3 74.46
l = 5,m = 5 73.44

A Appendix

A.1 Effects of Different Locality Granularities
We compare our model with different sizes and
strides of the window of the local pattern to see
how different granularities affect the performance
on MultiWOZ 2.4 dataset, as shown in Table 3.

It shows that the best result is achieved when the
size of 3 and the stride of 1, while the performance
is not improved by enlarging the size of the local
window or decreasing it. Note that, as mentioned
in the experimental settings, in the main results,
the hyperparameters of window size and stride are
selected by tuning on the validation set.

A.2 Case Study
Figure 4 and 5 demonstrate the predicted states of
STAR and our model on two pieces of dialogues
from the MultiWOZ 2.4 dataset. We color the in-
put with the weights generated by sparse local slot
attention in our model and the dense token-wise at-
tention used in STAR. Note that in our model, one
position with a dark background means the local
area around this position is focused. It is different
from STAR, in which one position denotes a token.

As shown in Figure 4, although STAR captures
the relevant information for attraction-name but
not the best. Our models are able to focus on the
local area covering the entity. As shown in Figure
5, the user says "nothing in particular" indicating
he/him does not prefer "a certain area". STAR
fails to capture this information, and its attention is
scattered. Our model realizes this and successfully
gets the user’s point. Although the values "none"
and "do not care" indicate the attraction-area does
not need concrete values, they denote the user’s
different intentions.

Figure 4: The predicted dialogue states for slot
attraction− name with STAR and our model on dia-
logue PMUL1424.

Figure 5: The predicted dialogue states for slot
attraction − area with STAR and our model on di-
alogue PMUL2415.
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