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Abstract

Optimizing accuracy and performance while
eliminating hallucinations of open-domain con-
versational large language models (LLMs)
is an open research challenge. A particu-
larly promising direction is to augment and
ground LLMs with information from struc-
tured sources. This paper introduces Conver-
sational Tables (cTBLS), a three-step archi-
tecture to retrieve and generate dialogue re-
sponses grounded on retrieved tabular infor-
mation. cTBLS uses Transformer encoder em-
beddings for Dense Table Retrieval and obtains
up to 125% relative improvement over the re-
triever in the previous state-of-the-art system
on the HYRBIDIALOGUE dataset. cTBLS then
uses a shared process between encoder and de-
coder models to perform a coarse+fine tabular
knowledge (e.g., cell) ranking combined with
a GPT-3.5 LLM response generator to yield
a 2x relative improvement in ROUGE scores.
Finally, human evaluators prefer cTBLs +80%
of the time (coherency, fluency) and judge in-
formativeness to be 4x better than the previous
state-of-the-art.

1 Introduction

Equipping conversational AI with multimodal ca-
pabilities broadens the range of dialogues that hu-
mans have with such systems. A persisting chal-
lenge in multimodal conversational AI is the devel-
opment of systems that produce conversationally
coherent responses grounded in textual and non-
textual modalities (Sundar and Heck, 2022).

It is well-established that large language mod-
els (LLMs) possess real-world knowledge stored
within their parameters, as demonstrated by re-
cent research (Roberts et al., 2020; Heinzerling
and Inui, 2021). Nevertheless, the incorporation
of conversation-specific extrinsic knowledge into
these models to yield precise responses remains an
active area of investigation. While humans can eas-
ily retrieve contextual information from tables by

examining rows and columns, LLMs often struggle
to identify relevant information amidst conversa-
tional distractions.

HYBRIDIALOGUE (Nakamura et al., 2022), a
dataset of conversations grounded on structured
and unstructured knowledge from tables and text,
introduces the task of responding to messages by
utilizing information from external knowledge and
prior dialogue turns. The authors also present an
approach and experimental results on HYBRIDIA-
LOGUE that represents the current state-of-the-art
(SoTA).

This paper proposes an extension to the SoTA
approach of HYBRIDIALOGUE in the form of
Conversational Tables (cTBLS) 1, a novel three-
step encoder-decoder architecture designed to aug-
ment LLMs with tabular data in conversational set-
tings. In the first step, cTBLS uses a dual-encoder
Transformer-based (Vaswani et al., 2017) Dense
Table Retriever (DTR) to retrieve the correct table
from the entire corpus based on the user’s query.
The second step employs a fine-tuned dual-encoder
Transformer to track system state and rank cells in
the retrieved table according to their relevance to
the conversation. Finally, cTBLS utilizes GPT-3.5
to generate a natural language response by prompt-
ing it with the ranked cells.

While previous research separated knowledge
retrieval and response generation between encoder
and decoder models, this paper demonstrates that
LLM decoders can perform these tasks jointly
when prompted with knowledge sources ranked
by language model encoders. Furthermore, by
pre-training the Dense Table Retriever to perform
retrieval over a corpus of tables, cTBLS can be
extended to new knowledge sources without re-
training, by appending additional knowledge to the
corpus.

Compared to the previous SoTA, experiments

1Our code will be available at https://github.com/
avalab-gt/cTBLS
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Figure 1: cTBLS for conversations on HYBRIDIALOGUE. Dense Table Retrieval identifies the table most relevant
to the initial query. The retrieved table is provided to the state tracker for follow-up queries. State Tracking ranks
cells in the table based on their ability to answer a follow-up query. Response Generation utilizes a LLM Decoder
provided with the ranked cell information and the follow-up query to convert tabular data into a natural language
response and continue the conversation. Details on individual components are provided in Section 3.

on cTBLS show up to 125% relative improvement
in table retrieval and a 2x relative improvement in
ROUGE scores. In addition, human evaluators pre-
fer cTBLs +80% of the time (coherency, fluency)
and judge informativeness to be 4x better than the
previous SoTA.

Our contributions are as follows:

1. The introduction of Conversational Tables
(cTBLS), a novel three-step encoder-decoder
architecture designed to augment LLMs with
tabular data in conversational settings.

2. Experimental results demonstrating that
Dense Table Retrieval, which utilizes neural
models fine-tuned with a summary of tabular
information, outperforms sparse techniques
based on keyword matching for table retrieval.

3. The presentation of evidence that augmenting
state-of-the-art LLM decoders using knowl-
edge sources ranked by encoder language
models leads to better results on automatic
(ROUGE-Precision) and human (Coherence,
Fluency, and Informativeness) evaluation
for knowledge-grounded response generation
while limiting the number of API calls to these
models.

This paper presents the cTBLS system and
demonstrates its application to the HYBRIDIA-
LOGUE dataset. In Section 2, we review the ex-
isting literature in the fields of Table Question

Answering and Knowledge Grounded Response
Generation. Section 3 describes the various com-
ponents of cTBLS as presented in Figure 1. In
Section 4, we evaluate the performance of cTBLS
against previous methods for conversations over
tables and report experimental results from auto-
matic and human evaluations. Finally, Section 5
concludes the paper and outlines potential direc-
tions for future research.

2 Related Work

2.1 Table Question Answering

Table Question Answering is a well-researched
precursor to conversations over tables. In WIK-
ITABLEQUESTIONS, Pasupat and Liang (2015)
transform HTML tables into a knowledge graph
and retrieve the correct answer by converting natu-
ral language questions into graph queries. FRETS
(Jauhar et al., 2016) uses a log-linear model con-
ditioned on alignment scores between cells in ta-
bles and individual QA pairs in the training set.
Cho et al. (2018) introduce NEOP, a multi-layer
sequential network with attention supervision to
answer queries conditioned on tables. Hannan
et al. (2020) propose MANYMODALQA, which
uses a modality selection network and pre-trained
text-based QA, Table-based QA, and Image-based
QA models to jointly answer questions over text,
tables, and images. Chen et al. (2020c) present
HYBRIDER, which performs multi-hop QA over
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tables using keyword-matching for cell linking fol-
lowed by BERT (Devlin et al., 2019) for reason-
ing. Chen et al. (2020a) propose OTT-QA, which
uses a fusion retriever to identify relevant tables
and text and a cross-block reader based on a long-
range Sparse Attention Transformer (Ainslie et al.,
2020) to choose the correct answer. Heck and Heck
(2020) perform multi-task fine-tuning of Trans-
former encoders by modeling slot filling as ques-
tion answering over tabular and visual information
in Visual Slot. Herzig et al. (2020) and Yin et al.
(2020) extend BERT for Table Question Answering
by pre-training a masked language model over text-
table pairs in TAPAS and TaBERT, respectively.
Recent work building off the Transformer architec-
ture for Table Question Answering includes (Eisen-
schlos et al., 2021; Li et al., 2021; Herzig et al.,
2021; Zayats et al., 2021; Zhao et al., 2022; Huang
et al., 2022; Yang et al., 2022; Chen, 2022). Jin
et al. (2022) provide a comprehensive survey of
advancements in Table Question Answering.

2.2 Knowledge Grounded Response
Generation

Early work related to grounding responses gener-
ated by language models in real-world knowledge
was motivated by the need to improve prior in-
formation for open-domain dialogue (Heck et al.,
2013; Hakkani-Tür et al., 2014; Hakkani-Tür et al.,
2014; Huang et al., 2015; Jia et al., 2017). More
recently, knowledge grounded response generation
has been applied to mitigate the hallucination prob-
lem (Maynez et al., 2020; Shuster et al., 2021) in
LLMs. RAG (Lewis et al., 2020) fine-tunes LLMs
using Dense Passage Retrieval (Karpukhin et al.,
2020) over a Wikipedia dump to ground responses
for Open Domain Question Answering. KGPT
(Chen et al., 2020b) and SKILL (Moiseev et al.,
2022) pre-train a Transformer encoder (Vaswani
et al., 2017) with English Wikidump for Natural
Language Generation. Fusion-in-Decoder (Izac-
ard and Grave, 2021) fine-tunes decoder models
using evidence acquired through Dense Passage
Retrieval.

Recent research also includes a dual-stage ap-
proach where LLMs generate knowledge sources
based on prompts (Yu et al., 2022; Bonifacio et al.,
2022; Jeronymo et al., 2023). Closest to our work,
Wizard of Wikipedia (Dinan et al., 2018) jointly op-
timizes an encoder-decoder Transformer to produce
dialogue responses conditioned on retrieved knowl-

edge and dialogue context but does not extend their
approach to the multiple modalities. REPLUG (Shi
et al., 2023) ensembles output responses generated
by prompting large language models with inputs
from a dense retriever in a zero-shot setting. How-
ever, this requires multiple API calls to state-of-the-
art LLMs. LLM-AUGMENTER (Peng et al., 2023)
incorporates external knowledge in LLM responses
by matching keywords in dialogue state to can-
didate knowledge sources obtained through web-
search. A survey of knowledge fusion in LLMs
is available in Colon-Hernandez et al. (2021) and
Richardson and Heck (2023).

In contrast to prior research that focuses on
either Table Question Answering or Knowledge
Grounded Response Generation, our work, cTBLS,
addresses the challenge of generating responses
grounded on tabular knowledge. Moreover, while
cTBLS is fine-tuned to retrieve tables and filter
out incorrect references, it leverages the power of
SoTA pre-trained LLMs for response generation.
Furthermore, by fine-tuning open-source table and
knowledge retrievers to remove inaccurate refer-
ences, cTBLS reduces the number of API calls to
the SoTA LLMs.

3 Method

The challenge of developing conversational sys-
tems grounded in tabular information consists of
three tasks, namely table retrieval, system state
tracking, and response generation. Table retrieval
requires identifying the most relevant table in the
dataset based on a given natural language query.
System state tracking is responsible for ranking the
cells in the table, enabling the system to provide
responses to follow-up queries about the table. Fi-
nally, response generation involves converting the
ranked cells into a natural language response.

3.1 Table Retrieval

Table retrieval is a prerequisite to answering queries
when the exact table to converse over is unspecified.
The objective is to identify the correct table from
a vast corpus. cTBLS proposes formulating table
retrieval as document retrieval by assigning a rele-
vance score to each table based on its relevance to
the natural language query. Inspired by Karpukhin
et al. (2020) and Huang et al. (2013), cTBLS uses
a dual-encoder-based Dense Table Retrieval (DTR)
model. The DTR model pre-computes a vector-
ized embedding of all tables in the corpus. Given a
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Figure 2: An example of table-associated text in the
context of Wikipedia, where the input to the DTR text-
encoder includes the page title, the introduction to the
article, the section title, and the introduction paragraph.

query at inference, the retrieved table is closest to
the query in the embedded space, indicated by the
upper-left portion of Figure 1.

The DTR model consists of a table encoder and
a question encoder, initialized from RoBERTa-base
(Liu et al., 2019). The input to the table encoder
comprises the table’s title and, if available, textual
information associated with the table. Figure 2
presents an example of table-associated text in the
context of Wikipedia, where introductions from the
page and section provide additional grounding. The
input to the question encoder is the current query to
be answered. Taking the average over the sequence
of the last hidden state at the table and question
encoder results in 768-dimensional embeddings of
the table information and the query.

The DTR model is optimized through a con-
trastive prediction task, which aims to maximize
the similarity between embeddings of a given
query q and the table to be retrieved τ while mini-
mizing the similarity to other incorrect tables τni

for i = 1, . . . , N . As per (Karpukhin et al., 2020),
normalized embedding vectors are utilized to opti-
mize the objective in Equation 1:

arg min
τ

(
− log

eq·τ

eq·τ +
∑N

i=1 e
q·τni

)
(1)

Given a batch B of d-dimensional query embed-
dings Q and table embeddings T, the DTR model
computes the similarity QTT (∈ RB×B) between
every query and table in the batch. This similar-
ity computation enables the sampling of negatives
from other query-table pairs, resulting in B2 train-
ing samples in each batch, consisting of B positive
pairs along the diagonal and B2 −B negatives.

3.2 Coarse System State Tracking

Given a table, system state tracking involves rank-
ing cells in the table by their relevance to conver-
sational queries. In contrast to quesiton-answering,
conversational queries require leveraging informa-
tion from external modalities in conjunction with
prior dialogue turns to generate coherent responses
(Sundar and Heck, 2022). cTBLS addresses sys-
tem state tracking through two sub-tasks - coarse
and fine system state tracking. Coarse system state
tracking ranks cells in the table, while fine system
state tracking identifies fine-grained information in
the most relevant cell to answer the query.

cTBLS uses a RoBERTa-base dual-encoder ar-
chitecture for coarse system state tracking. The
cell encoder embeds all cells and associated hyper-
linked information, and the question encoder gen-
erates embeddings for the dialogue history (Dh)
that includes the current turn’s query as well as
previous queries and responses.

To rank cells based on their relevance to the
follow-up query, as illustrated in the upper-right
section of Figure 1, the question and cell encoders
are optimized using a triplet loss configuration.
This optimization aims to minimize the distance be-
tween the anchor Dh and the positive cell c, while
pushing the negative cell c further away from Dh

by a margin m (Equation 2).

arg min
ci

(max{d(Dh, c)− d(Dh, c) +m, 0}) (2)

d(x, y) = ||x− y||2 (3)

For our approach, we utilize an anchor-positive-
negative triplet consisting of the complete dialogue
history (including queries and responses from pre-
vious turns) concatenated with the current query as
the anchor, the correct cell as the positive, and other
cells from the same table that are not relevant to
the query as negatives. We measure the distance be-
tween the anchor and the positive and between the
anchor and the negatives using the 2-norm distance
function d(·).

3.3 Fine System State Tracking and Response
Generation

In contrast to coarse system state tracking, fine sys-
tem state tracking involves identifying the exact
phrase that answers the query from a ranked subset.
The extracted phrase is converted into a natural lan-
guage response that is coherent within the context
of the conversation.
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cTBLS employs GPT-3.5 (Brown et al., 2020)
to perform fine system state tracking and response
generation jointly. GPT-3.5 is prompted to generate
a natural language response to a follow-up query
conditioned on cells of the table ranked by their
relevance to the query as obtained from the coarse
state tracker. The prompt includes the dialogue
history, ranked knowledge sources, and the query to
be answered. The bottom-right section of Figure 1
outlines this process.

4 Experiments

4.1 HYBRIDIALOGUE

The HYBRIDIALOGUE dataset (Nakamura et al.,
2022) comprises 4800 natural language conversa-
tions grounded in text and tabular information from
Wikipedia. Crowdsourced workers break down
multi-hop questions from the OTT-QA dataset
(Chen et al., 2020a) into natural questions and con-
versational responses related to tabular data. On
average, dialogues in the dataset consist of 4-5 con-
versation turns, with a total of 21,070 turns avail-
able in the dataset. Examples of conversations can
be found in Figures 3 and 4.

4.2 Table Retrieval

The first conversation turn of HYBRIDIALOGUE

requires selecting the correct table based on the
input query for which we use the Dense Table Re-
triever outlined in Section 3.1. The Dense Table
Retriever is fine-tuned for 20 epochs using Adam
(Kingma and Ba, 2014) with a learning rate of 1e-6
and a linear learning schedule with five warmup
steps. The loss function is a modification of the
contrastive loss implementation from ConVIRT
(Zhang et al., 2022), with image embeddings re-
placed by table embeddings. The table retriever
used in the HYBRIDIALOGUE paper (Nakamura
et al., 2022) was the BM25Okapi Retriever (Trot-
man et al., 2014) from rank-bm25. According to
the results presented in Table 1, cTBLS-DTR out-
performs BM25 in terms of Mean Reciprocal Rank
(MRR), Top-1 Accuracy, and Top-3 Accuracy on
HYBRIDIALOGUE.

4.3 Coarse State Tracking

Coarse state tracking ranks cells from a table based
on their relevance to a query. As before, the dual-
encoder coarse state tracker of cTBLS consists of
RoBERTa-base fine-tuned using Adam with a learn-
ing rate of 1e-6 and a linear learning schedule with

MRR
@10

Top 1
Acc

Top 3
Acc

BM25 0.491 0.345 0.460
cTBLS-DTR 0.846 0.777 0.901

Table 1: BM25 vs cTBLS-DTR for retrieval on first turn
of conversation, results on HYBRIDIALOGUE testing
dataset. cTBLS-DTR obtains up to 125% relative im-
provement over sparse table retrieval

MRR@10
SentenceBERT (Reimers and Gurevych, 2019) 0.603

TaPas (Herzig et al., 2020) 0.689
cTBLS - RoBERTa-base 0.683

Table 2: System state tracking results on HYBRIDIA-
LOGUE. cTBLS achieves nearly the same Mean Recip-
rocal Rank (MRR) @ 10 as TaPaS, without additional
table pre-training on SQA (Iyyer et al., 2017)

five warmup steps. In contrast to table retrieval,
the state tracker uses triplet margin loss with a
margin of 1.0 (Equation 2) instead of contrastive
loss (Equation 1). The results, as demonstrated
in Table 2, show that fine-tuning RoBERTa-base
solely on HYBRIDIALOGUE surpasses the perfor-
mance of SentenceBERT (Reimers and Gurevych,
2019). Furthermore, it nearly attains the same
MRR @10 as TaPas (Herzig et al., 2020), even
without additional table pre-training on the SQA
dataset (Iyyer et al., 2017).

4.4 Fine State Tracking and Response
Generation

cTBLS uses GPT-3.5 (text-davinci-003) with the
existing dialogue context, the current query, and
the retrieved references from coarse state track-
ing to obtain a natural language response. Since
fine-tuning the best available version of the model
is cost prohibitive, we opt to prompt GPT-3.5 to
generate responses instead.

Top-1 Top-3 Top-10
cTBLS - RoBERTa-base 0.559 0.778 0.925

Table 3: Top-k accuracy for cTBLS on coarse system
state tracking. cTBLS ranks the correct cell as the top
reference in 56% of follow-up queries on HYBRIDI-
ALOGUE. The correct cell is ranked in the Top-3 and
Top-10 retrievals in approximately 78% and 93% of
conversations, respectively.

63

https://github.com/dorianbrown/rank_bm25


Model TR KR RG ROUGE-1 ROUGE-2 ROUGE-L
- BM25 Top-1 DialoGPT 0.207 0.042 0.181
- BM25 Top-3 DialoGPT 0.212 0.045 0.186
- BM25 Top-1 GPT3.5 0.428 0.207 0.369
- BM25 Top-3 GPT3.5 0.475 0.242 0.413

- DTR Top-1 DialoGPT 0.222 0.051 0.195
- DTR Top-3 DialoGPT 0.226 0.059 0.199
- DTR Top-1 GPT3.5 0.494 0.255 0.424
- DTR Top-3 GPT3.5 0.560 0.295 0.479

HYBRIDIALOGUE Gold Top-1 DialoGPT 0.438 0.212 0.375
cTBLS NoK Gold - GPT3.5 0.487 0.229 0.422
cTBLS Top-1 Gold Top-1 GPT3.5 0.603 0.304 0.517
cTBLS Top-3 Gold Top-3 GPT3.5 0.642 0.322 0.548

Table 4: Ablation study on automatic evaluation metrics ROUGE-1, ROUGE-2, and ROUGE-L Precision. Using
Dense Table Retrieval (DTR) improves results over BM25 across Top-1 and Top-3 knowledge for DialoGPT and
GPT3.5. Furthermore, using Top-3 knowledge sources results in better results than using only Top-1 knowledge
sources for DialoGPT and GPT3.5 using both table retrieval methods. cTBLS No Knowledge (NoK), Top-
1 Knowledge, Top-3 Knowledge, and HYBRIDIALOGUE use ground truth table retrieval. cTBLS exhibits a 2x
relative improvement in ROUGE Precision over HYBRIDIALOGUE. TR: Table Retrieval, KR: Knowledge Retrieval,
RG: Response Generation

The results presented in Table 3 demonstrate
that the coarse state tracker successfully retrieves
the correct cell in approximately 56% of conver-
sations during inference. Furthermore, it achieves
Top-3 and Top-10 retrievals in approximately 78%
and 93% of conversations, respectively. Moti-
vated by these results, the fine state tracker of
cTBLS is evaluated in two different configurations
by prompting GPT-3.5 augmented with the Top-1
and Top-3 knowledge references (cTBLS Top-1
and cTBLS Top-3). Due to limits on token length
associated with the OpenAI API, we remove stop-
words from the knowledge provided in the prompt
and do not experiment with Top-10 knowledge aug-
mentation.

Since LLMs store factual information in their
weights (Roberts et al., 2020; Heinzerling and
Inui, 2021), we compare to few-shot prompting
(using two examples) with no knowledge sources
(cTBLS-NoK). Furthermore, to enable a meaning-
ful comparison with existing research (Nakamura
et al., 2022), we measure cTBLS against the sys-
tem proposed by HYBRIDIALOGUE that utilizes a
fine-tuned DialoGPT-medium (Zhang et al., 2019)
model augmented with Top-1 knowledge.

Table 4 presents ROUGE-1, ROUGE-2, and
ROUGE-L precision (Lin, 2004) for all models
assessed. The results demonstrate that superior
downstream performance can be achieved through

improvements in table retrieval. Specifically, when
keeping the number of knowledge sources constant,
we observe an improvement in ROUGE precision
scores when transitioning from BM25 to DTR, and
from DTR to gold table retrieval. The inclusion of
additional knowledge sources leads to an improved
n-gram overlap with the ground truth reference,
as evidenced by the Top-3 knowledge augmented
models outperforming their Top-1 counterparts uti-
lizing the same table retriever, and cTBLS Top-1
outperforming the baseline model cTBLS NoK.
Moreover, cTBLS Top-3 achieves the best perfor-
mance across all automatic metrics, suggesting the
benefits of splitting knowledge retrieval into coarse
and fine state tracking, and utilizing additional
knowledge sources. Finally, all three configura-
tions of cTBLS demonstrate superior performance
to HYBRIDIALOGUE.

4.5 Human Evaluation

To gain a deeper understanding of cTBLS, we con-
ducted human evaluation using the metrics outlined
by Nakamura et al. (2022), namely Coherence,
Fluency, and Informativeness. For the evaluation
of these metrics, we enlisted crowd workers from
Amazon Mechanical Turk (AMT) to assess 50%
of the test data. The evaluation process involved
a comparison between the responses generated by
HYBRIDIALOGUE and cTBLS Top-3.
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cTBLS Top-3 vs HYBRIDIALOGUE

Coherence 0.842
Fluency 0.827

Table 5: Coherence and Fluency - cTBLS Top-3 is more
conversationally coherent than the best performing HY-
BRIDIALOGUE system 84.2% of the time and is more
fluent 82.7% of the time.

In accordance with the methodology delineated
in Nakamura et al. (2022), Coherence was defined
as the degree to which a response continued the con-
versation in a logically coherent manner based on
prior context. Fluency, conversely, was determined
by evaluating absence of grammatical and spelling
errors, and appropriate use of parts of speech.

To ensure the quality of the evaluated responses,
we engaged crowd workers possessing a Masters
qualification on AMT and originating from English-
speaking countries (USA, Canada, Australia, New
Zealand, or Great Britain). Each task required ap-
proximately 30 seconds to complete, and workers
were remunerated at a rate of $0.05 per task. More-
over, to minimize bias and guarantee the depend-
ability of the evaluations, we assigned two crowd
workers to assess each response, with a response
deemed more coherent or fluent only if both evalu-
ations concurred.

The results presented in Table 5 reveal that the re-
sponses generated by cTBLS Top-3 were more co-
herent than those produced by HYBRIDIALOGUE

in 84.2% of cases and exhibited greater fluency
82.7% of the time, suggesting that improvements
in table retrieval, knowledge retrieval, and response
generation lead to better downstream performance.

Informativeness represents the accuracy of
machine-generated responses when compared to
the ground-truth (Nakamura et al., 2022) and serves
as a measure of hallucination in LLMs. Halluci-
nated responses tend to be less informative, deviat-
ing significantly from the ground-truth.

To evaluate informativeness, crowd workers de-
termined whether generated responses were se-
mantically equivalent to the ground truth response.
Each response was assessed by two Turkers, and
a response was deemed more informative only if
there was inter-annotator agreement. The absence
of illustrative examples in the prompting process re-
sulted in responses generated by cTBLS Top-1 and
cTBLS Top-3 being longer than the ground truth re-
sponse. Consequently, the knowledge-augmented

Informativeness
HYBRIDIALOGUE 0.124

cTBLS - NoK 0.306
cTBLS Top-1 0.456
cTBLS Top-3 0.500

Table 6: Human Evaluation Metrics - Fraction of cases
where model response is semantically equivalent to
ground truth response. Using more knowledge sources
results in responses that are more informative, helping
reduce hallucination.

cTBLS responses were considered informative if
all the information provided in the ground truth
was encapsulated in the model response, even if
cTBLS included supplementary information.

The data in Table 6 indicate that cTBLS Top-3
encompasses the same information as the ground
truth response 50% of the time, a higher rate than
cTBLS Top-1 at 45.6%, exemplifying the benefits
of partitioning retrieval into coarse and fine state
tracking and augmenting with additional knowl-
edge. Based on these findings, we hypothesize that
the attention mechanism in decoder models facili-
tates additional knowledge retrieval. cTBLS NoK
generates the correct response 30.6% of the time,
suggesting that HYBRIDIALOGUE comprises ques-
tions and answers predicated on general world
knowledge embedded in the weights of LLMs. Re-
sponses produced by HYBRIDIALOGUE are infor-
mative in merely 12.4% of instances.

Figure 3 presents a comparison of responses gen-
erated by various configurations of cTBLS on the
HYBRIDIALOGUE dataset. The entire dialogue his-
tory constitutes the context and is depicted as an
exchange between the user (in blue) and the system
(in yellow). The final question box represents the
follow-up query to be addressed, while the last an-
swer chat box indicates the ground truth response.
Knowledge K1, K2, and K3 correspond to cells
of the table retrieved during state tracking, based
on which responses are produced. cTBLS NoK
generates a response solely relying on the context,
cTBLS Top-1 formulates a response conditioned
on K1, and cTBLS Top-3 devises a response based
on K1, K2, and K3.

cTBLS NoK creates a hallucinated response, an-
swering with the random Faroese club B68 Toftir.
Similarly, cTBLS Top-1 hallucinates a response,
opting for B36 Tórshavn, as K1 refers to the sta-
dium Viò Margáir rather than the correct club’s
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Figure 3: Generated responses vs Ground Truth on HYBRIDIALOGUE test set. Questions are in blue and responses
in yellow. K1, K2, and K3 represent the Top 3 knowledge sources ranked by relevance to the query "Which team
plays there?". cTBLS Top-3 is able to leverage K3 to generate the correct response while cTBLS NoK hallucinates
a response and cTBLS Top-1 generates an incorrect response based on K1. Table obtained from Wikipedia available
here

Figure 4: Generated responses vs Ground Truth on HYBRIDIALOGUE test set. Despite selecting the rows of the
table corresponding to Oil and gas industries, cTBLS NoK, Top-1, and Top-3 struggle with counting and hallucinate
a response. Table obtained from Wikipedia available here
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name. In contrast, cTBLS Top-3 produces the accu-
rate response, EB/Streymur, since K3 contains the
necessary information. This example demonstrates
the benefits of augmenting response generation
with additional pertinent knowledge, which aids
in mitigating the hallucination problem (Maynez
et al., 2020).

5 Conclusion

In this paper, we introduce Conversational Ta-
bles (cTBLS), a system designed to address multi-
turn dialogues that are grounded in tabular data.
cTBLS separates tabular dialogue into three dis-
tinct tasks, specifically table retrieval, system state
tracking, and response generation. The dense ta-
ble retrieval system of cTBLS yields an enhance-
ment of up to 125% relative to keyword-matching
based techniques on the HYBRIDIALOGUE dataset,
with regard to Top-1 Accuracy and Mean Recip-
rocal Rank @ 10. Furthermore, cTBLS conducts
system state tracking utilizing a two-step process
shared between encoder and decoder models. This
methodology results in natural language responses
exhibiting a 2x relative improvement in ROUGE
scores. Human evaluators favor cTBLS +80% of
the time (coherency and fluency) and judge infor-
mativeness to be 4x better than the previous state-
of-the-art.

6 Limitations

Although cTBLS enhances LLMs with tabular
knowledge to generate grounded responses, certain
limitations remain to be addressed.

Firstly, the efficacy of cTBLS is constrained by
the total number of knowledge sources employed
during the augmentation process. Token length re-
strictions in the OpenAI API limit the knowledge
augmentation to the top three cells of the table.
Another limitation is the incapacity of cTBLS to
handle queries pertaining to the entire table. Fig-
ure 4 demonstrates one such instance in which the
state tracker module accurately retrieves three rows
of the table corresponding to oil and gas industries,
yet the response generation module fails to utilize
this information when transforming the retrieved
state into a response. Generally, cTBLS encounters
difficulties with counting, comparing the values of
cells, and other mathematical operations, an issue
we aim to address in future research.
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