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Introduction

We are excited to welcome you to NLP4ConvAI 2023, the 5th Annual Workshop on NLP for Conversa-
tional AI, co-located with ACL 2023 at Toronto, Canada.

The goal of this workshop is to bring together NLP researchers and practitioners in different fields, along-
side experts in speech and machine learning, to discuss the current state-of-the-art and new approaches
in conversational AI, and to shed light on future directions. Following the success of the four previous
editions of NLP for Conversational AI workshops at ACL & EMNLP, NLP4ConvAI 2023 is a one-day
workshop including keynotes, oral presentations and posters.

We received 53 submissions this year, consisting of 38 long papers and 15 short papers. We had a total
of 54 program committee (PC) members. At least three PC members reviewed each of the papers. We
accepted 20 papers: 15 long papers and 5 short papers. These numbers give an overall acceptance rate
of 38%, with the long and short papers acceptance rate being 39% and 33% respectively. Out of the
20 accepted papers, six are being presented as oral presentations and the remaining in a poster session.
We have also identified one best paper (Generating Video Game Scripts with Style) and two outstanding
papers (On the Underspecification of Situations in Open-domain Conversational Datasets, and Conver-
sational Recommendation as Retrieval: A Simple, Strong Baseline).

In addition, the workshop program consists of five invited talks given by leading practitioners in indu-
stry and academia. We thank our five keynote speakers, Diyi Yang (Stanford University), Larry Heck
(Georgia Institute of Technology), Vipul Raheja (Grammarly), Nurul Lubis (Heinrich Heine University
Düsseldorf) and Jason Weston (Meta AI) for their inspiring, informative and thought provoking talks. We
would also like to thank all the authors for submitting their work at the workshop, the program committee
members for diligently reviewing the submissions and giving valuable feedback to the authors, and the
ACL organizing committee for supporting us throughout the process.

We hope you will enjoy NLP4ConvAI 2023 at ACL and contribute to the future success of our commu-
nity!

NLP4ConvAI 2023 Organizers
Abhinav Rastogi, General Chair
Georgios Spithourakis, Program Chair
Yun-Nung (Vivian) Chen and Bing Liu, Publication chairs
Yu Li, Diversity & Publicity Chair
Elnaz Nouri, Sponsorship Chair
Alon Albalak, Shared Task Chair
Alexandros Papangelis, Advisory Board
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Keynote Talk: Inclusive Conversational AI for Positive Impact
Diyi Yang

Stanford University
2023-07-14 09:10:00 – Room: Harbour B

Abstract: Conversational AI has revolutionized the way we interact with technology, holding the poten-
tial to create positive impact on a variety of domains. In this talk, we present two studies that develops
inclusive conversational AI techniques to empower users in different contexts for social impact. The
first one looks at linguistic prejudice with a participatory design approach to develop dialect-inclusive
language tools for low-resourced dialects in conversational question answering, together with efficient
adaptation of models trained on Standard American English (SAE) to different dialects. The second
work introduces CARE, an interactive conversational agent that supports peer counselors by generating
personalized suggestions. CARE diagnoses suitable counseling strategies and provides tailored exam-
ple responses during training, empowering counselors to respond effectively. These works showcase the
potential of how inclusive language technologies can address language and communication barriers and
foster positive impact.

Bio: Diyi Yang is an assistant professor in the Computer Science Department at Stanford University. Her
research goal is to understand the social aspects of language and build socially responsible NLP systems
for social impact. Her work has received multiple best paper nominations or awards at top NLP and
HCI conferences (e.g., ACL, EMNLP, SIGCHI, and CSCW). She is a recipient of IEEE AI 10 to Watch
(2020), the Intel Rising Star Faculty Award (2021), the Samsung AI Researcher of the Year (2021), the
Microsoft Research Faculty Fellowship (2021), and the NSF CAREER Award (2022).
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Keynote Talk: Build it for One @ Right Place Right Time:
Leveraging Context in Conversational Systems

Larry Heck
Georgia Institute of Technology

2023-07-14 09:40:00 – Room: Harbour B

Abstract: Recent years have seen significant advances in conversational systems, particularly with the
advent of attention-based language models pre-trained on large datasets of unlabeled natural language
text. While the breadth of the models has led to fluid and coherent dialogues over a broad range of to-
pics, they can make mistakes when high precision is required. High precision is not only required when
specialized skills are involved (legal/medical/tax advice, computations, etc.), but also to avoid seemingly
trivial mistakes such as commonsense and other relevant ‘in-the-moment’ context. Much of this context
centers on and should be derived from the user’s perspective. This talk will explore prior and current
work on leveraging this user-centric context (build it for one) and the user’s specific situation (right place
right time) to improve the accuracy and utility of conversational systems.

Bio: Larry Heck is a Professor in ECE and Interactive Computing, co-Executive Director of the AI Hub,
Farmer Chair of Advanced Computing Concepts, and a GRA Eminent Scholar at Georgia Tech. He is a
Fellow of the IEEE, inducted into the Academy of Distinguished Engineers at Georgia Tech, and named
a Distinguished Engineer at Texas Tech. After receiving the PhD EE from Georgia Tech, he joined SRI,
followed by VP of Research at Nuance, VP of Search and Advertising at Yahoo!, Chief Speech Scientist
and Distinguished Engineer at Microsoft, Principal Scientist with Google Research, and CEO of Viv
Labs and SVP at Samsung.
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Keynote Talk: Building Better Writing Assistants In the Era
of Conversational LLMs

Vipul Raheja
Grammarly

2023-07-14 13:30:00 – Room: Harbour B

Abstract: Text revision is a complex, iterative process. It is no surprise that human writers are unable
to simultaneously comprehend multiple demands and constraints of the task of text revision when pro-
ducing well-written texts, as they are required to cover the content, follow linguistic norms, set the right
tone, follow discourse conventions, etc. This presents a massive challenge and opportunity for intelligent
writing assistants, which have undergone an enormous shift in their abilities in the past few years and
months via large language models. In addition to the quality of editing suggestions, writing assistance
has undergone a monumental shift in terms of being a one-sided, push-based paradigm, to now being
a natural language-based, conversational exchange of input and feedback. However, writing assistants
still lack in terms of their quality, personalization, and overall usability, limiting the value they provide
to users. In this talk, I will present my research, challenges, and insights on building intelligent and
interactive writing assistants for effective communication, navigating challenges pertaining to quality,
personalization, and usability.

Bio: Vipul Raheja is an Applied Research Scientist at Grammarly. He works on developing robust
and scalable approaches centered around improving the quality of written communication, leveraging
Natural Language Processing and Machine Learning. His research interests lie at the intersection of
large language models and controllable text generation for writing assistance. He also co-organizes the
Workshop on Intelligent and Interactive Writing Assistants (In2Writing). He received his Masters in
Computer Science from Columbia University and in the past, worked at IBM Research, and x.ai on
building conversational scheduling assistants.
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Keynote Talk: Dialogue Evaluation via Offline Reinforcement
Learning and Emotion Prediction

Nurul Lubis
Heinrich Heine University Düsseldorf

2023-07-14 15:00:00 – Room: Harbour B

Abstract: Task-oriented dialogue systems aim to fulfill user goals, such as booking hotels or searching
for restaurants, through natural language interactions. They are ideally evaluated through interaction
with human users. However, this is unattainable to do at every iteration of the development phase due
to time and financial constraints. Therefore, researchers resort to static evaluation on dialogue corpora.
Although they are more practical and easily reproducible, they do not fully reflect real performance of
dialogue systems. Can we devise an evaluation that keeps the best of both worlds? In this talk I explore
the usage of offline reinforcement learning and emotion prediction for dialogue evaluation that is practi-
cal, reliable, and strongly correlated with human judgements.

Bio: Nurul Lubis received the B.Eng. degree (cum laude) in 2014 from Bandung Institute of Techno-
logy, Bandung, Indonesia and the M.Eng. and Dr.Eng. degrees in 2017 and 2019, respectively, from
Nara Institute of Science and Technology (NAIST), Nara, Japan. She received the NAIST Best Student
Award in 2019. She was a recipient of the Japanese Ministry of Education, Culture, Sports, Science
and Technology (MEXT) scholarship from 2014 to 2019. She was a research intern at Honda Research
Institute Japan, Co. Ltd., Saitama, Japan and is currently a postdoctoral researcher at the Heinrich Heine
University Düsseldorf, Düsseldorf, Germany. Her research interests include emotion in spoken language,
affective dialogue systems, and dialogue policy optimization with reinforcement learning and variational
methods.

ix



Keynote Talk: Improving Open Language Models by
Learning from Organic Interactions

Jason Weston
Meta AI

2023-07-14 15:50:00 – Room: Harbour B

Abstract: We discuss techniques that can be used to learn how to improve AIs (dialogue models) by
interacting with organic users “in the wild”. Training models with organic data is challenging becau-
se interactions with people in the wild include both high quality conversations and feedback, as well
as adversarial and toxic behavior. We thus study techniques that enable learning from helpful teachers
while avoiding learning from people who are trying to trick the model into unhelpful or toxic responses.
We present BlenderBot 3x, an update on the conversational model BlenderBot 3, trained on 6M such
interactions from participating users of the system. BlenderBot 3x is both preferred in conversation to
BlenderBot 3, and is shown to produce safer responses in challenging situations. We then discuss how
we believe continued use of these techniques – and improved variants – can lead to further gains.

Bio: Jason Weston is a research scientist at Meta AI, USA and a Visiting Research Professor at NYU. He
earned his PhD in machine learning at Royal Holloway, University of London and AT&T Research in Red
Bank, NJ (advisors: Alex Gammerman, Volodya Vovk and Vladimir Vapnik) in 2000. From 2002-2003
he was a research scientist at the Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
From 2003-2009 he was a research staff member at NEC Labs America, Princeton. From 2009-2014 he
was a research scientist at Google, NY. Jason’s papers include best paper awards at ICML and ECML,
and a Test of Time Award for his work A Unified Architecture for Natural Language Processing: Deep
Neural Networks with Multitask Learning, ICML 2008 (with Ronan Collobert).
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Response Generation in Longitudinal Dialogues:
Which Knowledge Representation Helps?

Seyed Mahed Mousavi, Simone Caldarella, Giuseppe Riccardi
Signals and Interactive Systems Lab, University of Trento, Italy

mahed.mousavi@unitn.it,giuseppe.riccardi@unitn.it

Abstract
Longitudinal Dialogues (LD) are the most
challenging type of conversation for human-
machine dialogue systems. LDs include the
recollections of events, personal thoughts, and
emotions specific to each individual in a sparse
sequence of dialogue sessions. Dialogue sys-
tems designed for LDs should uniquely inter-
act with the users over multiple sessions and
long periods of time (e.g. weeks), and engage
them in personal dialogues to elaborate on their
feelings, thoughts, and real-life events. In this
paper, we study the task of response generation
in LDs. We evaluate whether general-purpose
Pre-trained Language Models (PLM) are appro-
priate for this purpose. We fine-tune two PLMs,
GePpeTto (GPT-2) and iT5, using a dataset of
LDs. We experiment with different representa-
tions of the personal knowledge extracted from
LDs for grounded response generation, includ-
ing the graph representation of the mentioned
events and participants. We evaluate the perfor-
mance of the models via automatic metrics and
the contribution of the knowledge via the Inte-
grated Gradients technique. We categorize the
natural language generation errors via human
evaluations of contextualization, appropriate-
ness and engagement of the user.

1 Introduction

The state-of-the-art dialogue systems are designed
for assisting the user to execute a task, holding
limited chit-chat conversations with shallow user
engagement, or information retrieval over a finite
set of topics. The personalization in these sys-
tems is limited to a stereotypical user model. This
user model is implicitly inferred from conversa-
tions with many users, or is limited to a superficial
list of persona statements (e.g., "He likes dogs")
(Zhang et al., 2018). The dialogue sessions are
disconnected and the shared information across
sessions is negligible and close to none.

Longitudinal Dialogue (LD) is one of the most
challenging types of conversation for human-

machine dialogue systems. LDs are multi-session
interactions that encompass user-specific situations,
thoughts, and emotions. Dialogue systems de-
signed for LDs should interact uniquely with each
user about personal life events and emotions over
multiple sessions and long periods of time (e.g.
weeks). Through each session in LDs, the dialogue
system must learn about the user’s personal space
of events and participants and social interactions,
and engage the user in personal dialogues regard-
ing their thoughts, feelings, and personal and world
events.

Figure 1 shows an example of three types
of human-machine dialogues: task-based, open-
domain chit-chat and LD. The user dialogues with
the tasked-based dialogue system consists of either
independent command-and-control exchanges such
as on Day 1, or a task-driven dialogue such as on
Day 2. The user model in this system is not per-
sonal as it adopts a stereotypical model -implicitly -
inferred from dialogue corpora with multiple users.
In the open-domain chit-chat dialogue, the dialogue
does not include the execution of any explicit task,
and the model engages the user in a conversation
about movies and news. A common characteristic
of task-based and open-domain dialogues is the
fact that there is no personal information carried
to the next dialogue session. The system does not
update/modify the user model with each dialogue
session and the level of personalization is intact
from one interaction to the other (Personalization
in the natural language processing and dialogue
models could be added based on the voice user
interface requirements and could include the ex-
ploitation of personal information such as contact
directory, preferences, etc.).

In contrast, the model designed for the LD must
account for three main differences compared to
the other two systems; A) the contents of the LD
are not about general information or knowledge
matters as LDs encompass personal emotions, user
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Figure 1: Examples of a task-based dialogue, a chat-chit, and a Longitudinal Dialogue (LD) in two different
sessions. The dialogue system for LDs needs to learn about the user in a timely manner and engage her in a personal
conversation encompassing her life events, thoughts, and emotions.

and time-specific situations, and participants; B)
the sessions are not disconnected dialogues and we
can not model them as stand-alone interactions. In
contrast, they belong to a multi-session interaction
unique to the individual user, where the informa-
tion shared in each interaction creates a common
ground between the machine and the user. For each
interaction, the system must engage the user in
a dialogue respecting the common ground based
on the information shared in the previous interac-
tions, as well as the novel information in the new
dialogue history; C) the machine has to extract
the personal information presented in the user re-
sponses to construct and update the user model
and respond coherently. Similar to a natural inter-
action between human speakers, the model has to
gradually become acquainted with the user through-
out the dialogues and not from a superficial list of
sentence-based persona descriptions.

There has been limited research on personal con-
versations with users over a long period of time.
Engaging the user to elaborate on personal situa-
tions and emotions is a challenging task and design-
ing appropriate collection/elicitation methodolo-
gies is not straightforward. As a result, research on
multi-session dialogues resorts to crowd-sourcing
datasets with superficial persona statements and
pretended longitudinality (Xu et al., 2022a,b; Bae
et al., 2022). Meanwhile, studies on LDs have been
limited to inferring user’s attributes such as age

and gender (Welch et al., 2019b), or next quick-
response selection from a candidate set of “yes,”
“haha,” “okay,” “oh,” and “nice” (Welch et al.,
2019a).

In this work, we study the task of response gen-
eration in LDs. Response generation in LDs is
subject to appropriateness and accuracy as well as
personalization and engagement of the user. The
level of personalization in LDs is beyond a set of
personal preferences and can not be learned from
a limited set of persona statements ("I like cars"
does not necessarily imply that I like to talk about
cars in my interactions). The generated response
needs to respect individuals’ states, profiles, and
experiences that vary among users and dialogue
sessions. Therefore, we can not collect a massive
knowledge base of user models that can suit all
individuals and scenarios. The dialogue system
should learn about each user and derive the individ-
ual user model through/from the previous dialogue
sessions to generate a personal response that is co-
herent with respect to the dialogue context as well
as the previous dialogue sessions.

We investigate the applicability of general-
purpose Pre-trained Language Models (PLM) for
grounded response generation in LDs. We study
whether PLMs can generate a response that is co-
herent with respect to the dialogue history and
grounded on the personal knowledge the user has
shared in previous interactions. We conversation-

2



Figure 2: An example of a longitudinal dialogue. The user responses in the previous dialogue session are used as
personal knowledge for grounded response generation. The knowledge is presented to the model as A) Unprocessed
text (RAW); B) Bag of Head nouns (BOH); and C) Personal Space Graph (PSG) of events and their participants in
linearized format. The model then encodes the dialogue history and the knowledge piece and generates a response
candidate (the last agent turn in the dialogue example).

ally fine-tuned two recent PLMs, GePpeTto (GPT-
2) (De Mattei et al., 2020) and iT5 (Sarti and Nis-
sim, 2022), using a dataset of LDs about real-life
events, feelings, and situations that the user has
experienced. We use the responses each individ-
ual user shared in the previous dialogue sessions
with the system as personal knowledge and eval-
uate whether grounding the generation on such
knowledge results in more appropriate and per-
sonal responses. In previously published research
on grounded generation, the knowledge sequence
is provided to the model as-is. In this work, we
experiment with three different representations of
the knowledge piece; A) Raw as unprocessed text,
similar to the previously published research; B) bag
of head nouns as a distilled syntactic representation
of the knowledge; C) graph representation of the
events and participants mentioned in the user re-
sponses (Mousavi et al., 2021b). An example of a
dialogue and different representations of the corre-
sponding personal knowledge is shown in Figure 2.

We evaluate the performance of the models and
the impact of different knowledge representations
through automatic and human evaluations, as well
as explainability studies using the Integrated Gra-
dients technique (Sundararajan et al., 2017). Our
contributions can be summarised as follows:

• To the best of our knowledge this is the first
study on the task of response generation in
LDs.

• We conversationally fine-tune two PLMs with
and without grounded response generation on

personal knowledge. We study the perfor-
mance of the models and how different repre-
sentations of knowledge can affect generation
quality.

• We evaluate and compare the performance of
the models using automatic evaluation, includ-
ing explainability studies, and human evalua-
tions, including studying the sub-dimensional
errors made by each model.

2 Literature Review

Grounded Response Generation PLMs have
achieved comparably well performance for open-
domain chit-chats (Zhang et al., 2020), goal-
oriented agents (Thulke et al., 2021) and question
answering (Zhao et al., 2020). However, such mod-
els can generate inappropriate and/or generic re-
sponses which can lead to ethical problems and
low user engagement (Zhang et al., 2020). Re-
search to address this problem and improve the
generation quality includes grounding the genera-
tion on external knowledge content. The selection
of the knowledge source to ground the generation
has been studied as an individual component (He-
dayatnia et al., 2020), as well as a joint task along
with response generation (Zhao et al., 2020; Huang
et al., 2021).

Personal Dialogue Research on personalized
response generation has focused on persona de-
scriptions and synthetic sets of user preferences
and profiles. Zhang et al. (2018) collected Persona-
Chat dataset of open-domain dialogues using crowd
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workers, where the workers were instructed to im-
personate as speakers with synthetic personas of 5
sentences. This dataset has been studied for per-
sonal response generation by fine-tuning PLMs
(Wolf et al., 2019; Kasahara et al., 2022), by learn-
ing the users’ persona from the dialogues samples
rather than the persona descriptions (Madotto et al.,
2019), or investigating different representations of
persona statements (Huang et al., 2022). While
the mentioned work focused on personalization in
open-domain dialogues, Joshi et al. (2017) gener-
ated profiles consisting of gender, age, and food
preference permutations for the user side in restau-
rant booking dialogues, which was used in another
work (Siddique et al., 2022) to generate personal-
ized responses in a task-based dialogue.

Multi-session Dialogue Studies on multi-
session dialogues have been limited to simulated
longitudinality and superficial persona. Xu et al.
(2022a) extended the Persona-Chat dataset to a
multi-session chat dataset with 4 to 5 sessions, by
instructing crowd-workers to impersonate the role
of returning dialogue partners in the first session
(extracted from the Persona-Chat dataset) after a
random amount of time. The workers were explic-
itly asked not to discuss any personal and real-life
matters but play the role defined by the persona
statements. This approach was further used by Bae
et al. (2022) to extend an existing dataset of persona
chats in Korean to multi-session dialogues. Xu et al.
(2022b) proposed a framework for persona memory
in multi-session dialogues and collected a dataset
of persona chats in Chinese via crowd workers.

3 Experiments

3.1 Dataset

The dataset of LDs used in this work (Mousavi
et al., 2021a) consists of two dialogue sessions for
each individual user. The first dialogue session
is a set of personal human-machine conversations
with real users encompassing their personal life
events and emotions. These dialogues are collected
from a group of 20 Italian native speakers receiving
therapy to handle their distress more effectively.
Throughout the interaction, the machine prompts
the user to engage her in the recollection of daily
life events the user has experienced, while the user
shares details about the events and participants that
have activated her emotions by answering a set of
questions.

For each user, the first session is then followed

by a follow-up dialogue. These dialogues were
elicited from 4 psychotherapists and 4 trained an-
notators supervised by the psychotherapists. In
the second dialogue session, the user tends to share
more details about her feelings and the possible evo-
lution of the previously mentioned events. Mean-
while, the listener provides personal suggestions
and asks questions to expand or disambiguate previ-
ously stated facts or feelings. A mock-up example
of a second dialogue session and the corresponding
user response in the previous dialogue is shown in
Figure 2. This dataset consists of 800 2-session
LDs in the mental health domain with an average
of 5 turns per dialogue.

3.2 Models

We fine-tuned two state-of-the-art PLMs using the
dataset of LDs.

GePpeTto: Italian GPT-2 The first model we
experimented with is GePpeTto (De Mattei et al.,
2020), a PLM based on GPT-2 small (12 layers of
decoder, 117M parameters) (Radford et al., 2019),
trained for the Italian language (13 GB corpus
size). We fine-tuned the model using AdamW
optimizer (Loshchilov and Hutter, 2017) with an
early-stopping wait counter equal to 3 and a history
window of 2 last turns.

iT5: Italian T5 The second PLM in our ex-
periments is iT5 (Sarti and Nissim, 2022), a PLM
based on T5 (Raffel et al., 2020), trained on the Ital-
ian portion of mC4 corpus (275 GB corpus size).
We experimented with iT5-Small (12 layers, 60M
parameters) and iT5-Base (24 layers, 220M pa-
rameters) 1. We fine-tuned this model class using
AdaFactor optimizer (Vaswani et al., 2017) with
early stopping wait counter equal to 3 and a history
window of 4 last turns.

3.3 Grounded Response Generation

For each user, we extracted her responses in the first
dialogue session as personal knowledge to ground
the response generation for the second dialogue ses-
sion. We experimented with three representations
of the knowledge piece:

• (A) RAW: We provide the responses of the
user in the previous dialogue as an unpro-
cessed knowledge piece. The average length
of knowledge with this representation is 126.7
tokens.

1We were unable to use iT5-Large due to lack of GPU
memory
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• (B) Bag of Head nouns (BOH): We automat-
ically parse the user responses 2 and extract
the head nouns as a distilled syntactic repre-
sentation of the knowledge.

• (C) Personal Space Graph (PSG): We repre-
sent the knowledge by the personal graph of
the events and participants mentioned by the
user Mousavi et al. (2021b). The predicates
in a sentence represent an event, and its corre-
sponding noun dependencies (subject, object)
represent the participants. In this graph, the
participants are the nodes while the predicates
are the relations (edges) among the partici-
pants. We obtain a linear representation of the
graph using an approach inspired by Ribeiro
et al. (2021) in which the authors observed
that providing a linearized representation of
the graph to the PLMs results in outperform-
ing the models with a graph-specific structural
bias for the task of graph-to-text generation.

4 Evaluations

The fine-tuning of the models was done using 80%
of the dialogues (640 second-session dialogues,
1284 samples with different turn levels), while the
remaining data was split into 10% (80 dialogues,
160 samples with different turn levels) as the val-
idation set for parameter engineering and early-
stopping, and 10% as unseen test set. Each split
was sampled at the dialogue level to guarantee no
history overlap among splits. An example of a sec-
ond dialogue session and the generated responses
are presented in Appendix Table 5.

4.1 Automatic Evaluation

The results of the automatic evaluation of the mod-
els is presented in Table 1. The perplexity scores
cannot be used to compare the performance be-
tween GePpeTto and iT-5 model classes as the
vocabulary distributions in the pre-training phase
of the two PLMs are not identical. However, the
scores are comparable among iT5 variations as the
same model class pre-trained using the same data.
In fact, the perplexity scores indicate that iT5-Base
demonstrates a better performance than iT5-Small
in all combinations with knowledge representations.
Therefore, we select iT5-Base among the iT5 mod-
els and focus the rest of the analysis on GePpeTto
and iT5-Base.

2the dependency parser used is spaCy: spacy.io

Models nll ppl
GePpeTto 2.76 15.84
+RAWKnowl. 2.79 16.33
+BOHKnowl. 2.85 17.38
+PSGKnowl. 2.77 16.06

iT5-Small 2.18 8.84
+RAWKnowl. 2.19 8.95
+BOHKnowl. 2.18 8.88
+PSGKnowl. 2.19 8.93

iT5-Base 2.05 7.79
+RAWKnowl. 2.04 7.70
+BOHKnowl. 2.12 8.40
+PSGKnowl. 2.09 8.07

Table 1: Automatic evaluation of the models indicates
that incorporating the knowledge slightly increases the
models’ perplexity (Perplexity scores can not be com-
pared among models since the vocabulary distributions
of pre-training data are not identical).

Figure 3: Perplexity score trends of the models over
increasing size of the training set. The performance
of GePpeTto variations is considerably improved after
observing 50% of the fine-tuning training set.

Considering the small size of the LD dataset
compared to the data used in the pre-training phase,
we studied the impact of fine-tuning the models
by optimizing the models over increasing size of
the training set. The extension of the training set
was gradual (the small portions are subsets of the
big portions) and the performance of models was
evaluated by measuring the perplexity score on the
unseen test set. The results are presented in Fig-
ure 3. The performance of both models is improved
considerably after observing the first 25% and 50%

5
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Figure 4: Lexical similarity among generated responses
measured by BLEU-4 score. The results indicate a
higher similarity among the responses generated by iT5-
Base models.

of the train set, thus the fine-tuning has been more
effective. However, in the second half of the data,
both models show a steady trend while iT5-Base
achieves a gradual improvement.

To investigate the impact of grounding on the
response lexicalization of the models, we measured
the diversity in the generated responses for the
test set samples via BLEU-4 score, Figure 4. We
observed that there is a higher similarity among
responses generated by iT5 models, while the
responses generated by GePpeTto variations are
more diverse. A similar finding has been observed
in the literature about the performance of auto-
regressive models compared to encoder-decoder
architectures regarding novelty in sequence genera-
tion (Tekiroğlu et al., 2022; Bonaldi et al., 2022).
Further, responses generated by iT5-Base with
BOH and PSG representations have the lowest lex-
ical similarity. The responses with the highest lex-
ical similarity are generated by iT5-Base with no
grounding and RAW representation. Nevertheless,
there is a negligible lexical similarity between the
generated responses and the ground truth.

4.2 Human Evaluation

We sampled 50% of the unseen test set (42 di-
alogue histories, 80 samples with different turn
levels) and evaluated the generated responses via
human judges. We evaluated the responses accord-
ing to four criteria using the protocol proposed by
Mousavi et al. (2022):

• Correctness: evaluating grammatical and syn-

tactical structure of the response.
• Appropriateness: evaluating the response to

be a proper and coherent continuation with
respect to the dialogue history.

• Contextualization: evaluating whether the
response refers to the context of the dia-
logue (not generic) or it consists of non-
existing/contradicting information (hallucina-
tion cases).

• Listening: whether the generated response
shows that the speaker is following the dia-
logue with attention.

The annotators were asked to evaluate the re-
sponse candidates and select a decision for each
criterion from a 3-point Likert scale as positive (eg.
Correct, Appropriate), negative (eg. Not Correct,
Not Appropriate), and "I don’t know". We recruited
35 native Italian crowd-workers through Prolific
crowd-sourcing platform3. The workers were asked
to perform a qualification task consisting of evalu-
ating 5 samples (sampled from the validation set)
in an identical setting to the main task. For the
main evaluation, each crowd-worker annotated 3
response candidates for 10 dialogue histories, and
each sample was annotated by 7 crowd-workers.
We also asked the annotators to motivate their de-
cisions for appropriateness and contextualization
criteria by providing an explanation to point out
possible errors in the generated response. More-
over, the ground truth was also included in the
candidate set to be evaluated.

The Inter Annotator Agreement (IAA) level mea-
sured by Fleiss’ κ, presented in Appendix Table 4,
indicates high levels of subjectivity and complexity
in Contextualization criterion, suggesting that it
has been difficult for the annotators to assess this
aspect of the responses.

The results of the human evaluation of responses
are presented in Table 2 (the scores are obtained
by majority voting). The evaluation of GePpeTto
models shows that grounding generally worsens
the performance of GePpeTto, regardless of the
representation format, as the best performance is
achieved by GePpeTto with no knowledge ground-
ing. Nevertheless, BOH and PSG representations
slightly improve the grammatical correctness of
this model. The highest level of Contextualiza-
tion among grounded GePpeTto models is achieved
by PSG representation. Regarding iT5-Base varia-

3Prolific: https://www.prolific.co/
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Models
Human Evaluation

nll ppl Correctness Appropriateness Contextualization Listening

Ground Truth - - 97.62% 100.0% 97.62% 97.62%
GePpeTto 2.76 15.84 83.33% 66.67% 69.05% 64.29%

+RAWKnowl. 2.79 16.33 83.33% 59.52% 57.14% 57.14%
+BOHKnowl. 2.85 17.38 92.86% 45.24% 52.38% 42.86%
+PSGKnowl. 2.77 16.06 90.48% 54.76% 64.29% 50.00%

iT5-Base 2.05 7.79 100.0% 66.67% 73.81% 66.67%
+RAWKnowl. 2.04 7.70 85.71% 80.95% 80.95% 76.19%
+BOHKnowl. 2.12 8.40 92.86% 80.95% 85.71% 83.33%
+PSGKnowl. 2.09 8.07 95.24% 73.81% 90.48% 83.33%

Table 2: Human Evaluation of the fine-tuned models. The results show the impact of different representations of the
knowledge source for grounded response generation in LDs. Refined representations of the knowledge (BOH and
PSG) generally result in better performances than RAW representation.

tions, the results indicate that grounding improves
the models’ performance considerably with respect
to Appropriateness, Contextualization, and Listen-
ing. However, it decreases the model’s Correct-
ness with the highest decrease caused by RAW
representation. PSG representation achieves the
highest level of Contextualization and Listening
overall, besides the highest level of Correctness
among grounded models. Therefore, refined repre-
sentations of the knowledge (BOH and PSG) gen-
erally result in better performances compared to
RAW representation. Nevertheless, there is still
a huge gap between the performance of the best-
performing model and the ground truth, suggesting
the grounded PLMs are not suitable dialogue mod-
els for LDs in the mental health domain.

To gain better insight into the errors made by
each model, we investigated the reasons provided
by the annotators for their judgments. These re-
sults, presented in Figure 5, are complementary to
the evaluation decisions, Table 2, and point out the
errors that resulted in the negative evaluation of a
response by the annotators. The analysis shows that
grounding reduces the cases of genericness in re-
jected responses by GePpeTto, but results in more
cases of hallucinations in the outputs of this model.
The same trend is observed in iT5-Base with RAW
representation. Furthermore, refined knowledge
representations slightly escalate the genericness
issue in rejected responses of iT5-Base. Neverthe-
less, grounding does have any positive impact on
the cases of incoherence in rejected responses of
the PLMs.

4.3 Generation Explainability

According to the human evaluation results, iT5-
Base with knowledge grounding achieves the best
performance among PLMs. We investigated the
contribution of personal knowledge and different
representations on the model’s performance at in-
ference time. We studied the attribution scores
of the input tokens using the Integrated Gradients
technique (Sundararajan et al., 2017; Sarti et al.,
2023) based on backward gradient analysis. We ex-
perimented with two thresholds for the attribution
scores:

• Positive Contribution: Based on the assump-
tion that elements with positive scores have a
positive influence on the model’s performance,
we investigated the tokens with positive attri-
bution scores, However, tokens with small at-
tribution scores have negligible contributions
and thus this analysis can be noisy.

• Significant Contribution: To identify the to-
kens with significant contributions to the gen-
eration, we selected the top-25% of the tokens
in the input sequence (knowledge and history)
according to their attribution score. We then
investigated what portion of these tokens be-
long to each segment of the input vector. For
a fair comparison, the values are normalized
over the segment length.

According to Positive Contribution analysis,
74% of the tokens in the RAW representation have
a positive contribution to the generation with the
majority (30%) of tokens being verbs and nouns.
This percentage for BOH (Bag of Head Nouns) rep-
resentation changes to 79.0%. This result suggests
the importance of nouns for the model inference.
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Figure 5: Explanations provided by the crowd-workers to motivate their negative judgments in Appropriateness
and Contextualization criteria, represented by the percentage of the times the error category (x-axis) was selected.
The figure is obtained by considering all the votes (i.e. not majority voting). Note that the labels are not mutually
exclusive.

Models Knowl. History
iT5-Base
+RAWKnowl. 44.6% 55.4%
+BOHKnowl. 39.5% 60.5%
+PSGKnowl. 38.7% 61.3%

Table 3: Percentage of tokens with significant contri-
bution to the generation (top-25%) in knowledge and
history segments of the input vector for each model.

Regarding the PSG representation, 55.6% of the to-
kens have a positive contribution to the generation
(excluding the tags used for linearization), with the
majority (68%) of tokens being events rather than
participants.

The analysis of the tokens with significant con-
tributions is presented in Table 3. Regarding the
model with RAW representation, the percentage of
tokens with high attribution scores is almost bal-
anced between the knowledge and history segments.
However, for the models with refined representa-
tions of knowledge (BOH and PSG), the dialogue
history contains moderately more significantly con-
tributing tokens.

5 Conclusion

We studied the task of response generation in Lon-
gitudinal Dialogues (LD), where the model should
learn about the user’s thoughts and emotions from
the previous dialogue sessions and generate a per-
sonal response that is coherent with respect to the
user profile and state, the dialogue context, as

well as the previous dialogue sessions. We fine-
tuned two state-of-the-art PLMs for Italian, using
a dataset of LDs in the mental health domain. We
experimented with grounded generation using user
responses in the previous dialogue session as user-
specific knowledge. We investigated the impact of
different representations of the knowledge, includ-
ing a graph representation of personal life events
and participants mentioned previously by the user.

Our evaluations showed there is still a huge gap
between the performance of the general-purpose
PLMs with knowledge grounding and the ground
truth. Nevertheless, we observed that a) refined
representations of the knowledge (such as BOH
and PSG) can be more informative and less noisy
for a grounded generation; b) the encoder-decoder
model exhibited more diversity in the outputs com-
pared to the auto-regressive model; c) knowledge
grounding reduces the cases of genericness in re-
sponse, though it can result in more hallucinated
responses.

Limitations

The dataset used in this work is in Italian and there
may be language-specific limitations in the model
performance. GePpeTto is the only candidate for
auto-regressive models for the Italian language at
the time of this research. Therefore, its perfor-
mance may be limited due to the small number of
parameters. We were unable to experiment with
iT5-Large model due to computation power limita-
tions.
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Appendix

Models Inter Annotator Agreement Level measured by Fleiss’κ
Appropriateness Contextualization Correctness Listening IAA per Model

GePpeTto 0.27 0.14 0.64 0.15 0.32±0.10

+RAWKnowl. 0.42 0.22 0.36 0.27 0.36±0.11

+BOHKnowl. 0.23 0.05 0.31 0.11 0.27±0.05

+PSGKnowl. 0.30 0.39 0.34 0.26 0.42±0.06

iT5-Base 0.24 0.19 0.06 0.18 0.27±0.04

+RAWKnowl. 0.18 0.03 0.30 0.21 0.19±0.06

+BOHKnowl. 0.21 0.17 0.58 0.24 0.26±0.09

+PSGKnowl. 0.17 0.06 0.27 0.14 0.19±0.12

IAA per 0.31±0.09 0.20±0.06 0.43±0.20 0.25±0.10
-Dimension Fair Poor Moderate Fair

Table 4: Inter-Annotator Agreement (IAA) level calculated by Fleiss’ κ for each model and criterion. Low IAA
level for Contextualization suggests a high level of subjectivity in this criterion.

Dialogue Example

Knowledge
User Responses 
from Previous 

Dialogue:

I only worked in the morning, after lunch I went to the bank with 
Martina to activate her prepaid card since the one she is using now is 
about to expire. I accompanied Paolo to fix the bike and then I went to 
the dentist. When I came back, I made sauce for the week and then I 
ironed. I ran a lot but it was not a very stressful day. I hope to be able to 
go to bed early to be able to rest!"

Dialogue 
History

Dialogue
Stimulus:

I remember you had a positive feeling about what I read in your notes 
[yesterday] "I only worked in the morning, after lunch I went to the bank 
with Martina to activate her prepaid card since the one she is using now 
is about to expire. I ran a lot but it was not a very stressful day. I hope to 
be able to go to bed early to be able to rest!". Do you have any new 
thoughts on this?"

User:
I think that working in the morning and in the afternoon was not tiring, 
actually it was pleasant. I was also able to go to bed early enough, and I 
am well rested.

Response 
Candidates

Ground Truth Good! Did you even manage to spend time with your daughter?

GePpeTto I see. Do you often find yourself away from each other?

 +RAW Knowl.  I see. Maybe you could try doing more flexible jobs to increase your 
anxiety.

 +BOH Knowl. I'm glad to hear that! Have a nice day!

+PSG Knowl. Good, it's important to know yourself.

iT5-Base I'm glad you feel rested enough. Have you tried any relaxation 
exercises?

 +RAW Knowl. I'm glad you were able to go to bed early. If you want to write me about 
this, we can talk about it anytime.

 +BOH Knowl. I'm glad you rested well. Did you try any relaxation exercises?

+PSG Knowl. I'm happy to you rested well. If you want to write more about this, we 
can talk about it anytime.

Table 5: Example of a second dialogue session, the corresponding user turns in the first session as personal
knowledge, and the generated responses (English translation).
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Abstract

Advances of open-domain conversational sys-
tems have been achieved through the creation
of numerous conversation datasets. However,
many of the commonly used datasets contain
little or no information about the conversa-
tional situation, such as relevant objects/people,
their properties, and relationships. This ab-
sence leads to underspecification of the prob-
lem space and typically results in undesired
dialogue system behavior. This position paper
discusses the current state of the field associ-
ated with processing situational information.
An analysis of response generation using three
datasets shows that explicitly provided situa-
tional information can improve the coherence
and specificity of generated responses, but fur-
ther experiments reveal that generation systems
can be misled by irrelevant information. Our
conclusions from this evaluation provide in-
sights into the problem and directions for future
research.

1 Introduction

Human communication heavily relies on informa-
tion about a situation–a set of observable informa-
tion about relevant objects, their properties, and
relationships in the world at a specific time and
place. Crucial information can often be implicitly
assumed during a conversation, particularly when it
can be inferred from co-observed facts (e.g., “they
are talking at the front desk in a hotel.”) or shared a
priori (e.g., “the person was staying in the hotel”).

Incorporating such information is essential for
both the development and evaluation of conversa-
tional technologies. To illustrate this point, we
show a conversation example from DailyDialog (Li
et al., 2017), along with responses generated by
three systems: BlenderBot2 (Komeili et al., 2022;
Xu et al., 2022), GPT-3 (Brown et al., 2020), and

∗This work was done while the first author was at Carnegie
Mellon University.

A: Hello. I’m leaving. Here is my key.
B: [Sytem output]

No situational information in input

BlenderBot2: Thank you. It is very kind of
you. Do you want me to lock the door?
GPT-3: Thanks. Have a safe trip.
ChatGPT: Okay, take care.

+Situation: They are in a hotel. Person A has a car and
is carrying a suitcase. It is raining outside.

BlenderBot2: Sure. Do you want me to load
your luggage in the car? It’s raining.
GPT-3: Thank you for staying with us. Do
you need help with your luggage?
ChatGPT: Okay, thank you. Drive safe and
stay dry.

Table 1: Responses from three systems with and without
situational information as input. When the situation is
unknown, the responses are grounded on their internal
assumptions (top). However, when a few situational
statements are given, all the systems recognized the
same situation (Person A is checking out of a hotel) and
generated engaging responses (bottom).

ChatGPT (GPT-3.5) in Table 1.1 DailyDialog is a
widely used2 dataset of multi-turn conversations in
English. The original example does not describe
a surrounding environment explicitly, resulting in
ambiguity regarding the situation. Person A could
be a traveler leaving a hotel or someone handing
over their house key, among other possibilities. The
response generated by BlenderBot2 is somewhat
relevant to the latter situation but clearly inappro-
priate in the former. In contrast, the response gen-
erated by GPT-3 is appropriate in the former situa-
tion but not in other contexts. ChatGPT’s response
is neutral, though less engaging. This ambiguity
underscores the fundamental problem caused by

1See Appendix A.2 for the generation setup.
2Based on Semantic Scholar, the dataset paper (Li et al.,

2017) is cited by over 700 papers as of April 2023.
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the underspecification of the situation. The provi-
sion of situational information, such as “they are
in a hotel,” narrows down the range of ideal be-
haviors, which helps generation systems produce
context-specific responses and establishes a more
solid standard for judging quality. This issue is not
limited to this particular dataset. Many common
open-domain conversational datasets contain little
or no additional information besides conversation
history (the Twitter dataset (Ritter et al., 2011);
DREAM (Sun et al., 2019); MuTual (Cui et al.,
2020); inter alia). This task setting, which requires
systems to infer almost all information solely from
previous utterances, poses unnecessary challenges
and may lead to undesired system behavior.

In this position paper, we discuss the current
state of open-domain conversational datasets con-
cerning how situations are represented (§2). Specif-
ically, we consider situational statements3 that pro-
vide partial information about immediately observ-
able (e.g., today’s weather), commonly known (e.g.,
umbrellas are often used on rainy days), or directly
derivable facts related to the task, speaker, and
goals (e.g., the hotel’s check-out and a guest’s
required action). Some of these elements have
already been effectively integrated into modern
conversational systems, particularly for closed-
domain, task-oriented dialogues. We argue that
open-domain conversational tasks and datasets
should be equipped with some form of situational
information. Additionally, we conducted case stud-
ies on several datasets to explore the potential ben-
efits and challenges associated with situational in-
formation (§3). Our analysis indicates that distin-
guishing between relevant and irrelevant situational
information can be challenging for data-driven re-
sponse engines, offering opportunities for future
research.

2 Status Quo

In open-domain response generation tasks, systems
generate responses in natural language based on in-
put dialog history (a list of utterances from previous
turns). Dialog history often serves as the primary,
and sometimes sole, source of context information
in many datasets. In this section, we discuss how
conventional task design can be improved through
the explicit inclusion of situational information.

3The situation of a conversation consists of numerous pred-
icates that describe various aspects of surroundings. By a situ-
ational statement, we mean a single predicate that describes
part of a situation.

2.1 Open-domain Conversational Datasets

The recent advancement of open-domain conversa-
tional technologies can be largely attributed to the
development of large-scale conversation datasets,
which facilitate the training of data-driven language
generation models. However, many commonly
used datasets lack crucial situational information.
Below, we provide a brief overview of representa-
tive datasets in the field.4

Collection of naturally occuering conversation
data can be costly (Godfrey et al., 1992). This
bottleneck was greatly alleviated by public web
resources that contain naturalistic textual conversa-
tions. For instance, millions of conversations can
be scraped automatically from Twitter (Ritter et al.,
2010). Likewise, many large-scale datasets were
produced from social media (Wang et al., 2013;
Sordoni et al., 2015; Shang et al., 2015; Hender-
son et al., 2019). While conversations on social
media are essentially text chat and do not cover
many of the dailylife interactions, online language
learning coursewares contain conversation exam-
ples in diverse scenarios (Li et al., 2017; Sun et al.,
2019; Cui et al., 2020). DailyDialog (Li et al.,
2017) is one of the datasets built from English
learning materials and 13k multi-turn conversation-
swe spanning various topics and scenarios. These
(semi-)automatically harvested datasets are gener-
ally large and effectively used for pre-training lan-
guage models (Humeau et al., 2019; Shuster et al.,
2020). However, they contain only conversation
history.

Some prior studies have created conversational
datasets enriched with various semantic and prag-
matic features. Notably, multi-modal and task-
oriented datasets generally allocate dedicated rep-
resentations for essential situational information
such as physical signals (Haber et al., 2019; Moon
et al., 2020) and task-specific information or do-
main knowledge (Budzianowski et al., 2018), but
their coverage is limited to one or a few specialized
domains. For open-domain conversation systems,
the use of focused information has been explored
for improving response quality, such as related doc-
uments (Zhou et al., 2018; Dinan et al., 2019) and
user-based features such as persona (Zhang et al.,
2018; Majumder et al., 2020; Dinan et al., 2020b),
emotion (Rashkin et al., 2019), social norms (Kim

4For a more comprehensive literature review, refer to sur-
vey papers on available resources (Serban et al., 2017; Kann
et al., 2022).
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et al., 2022), and behavior (Ghosal et al., 2022;
Zhou et al., 2022). Sato et al. (2017) explored the
utilization of time information as well as user types
for analyzing conversations on Twitter. Though
these studies demonstrate that integrating surround-
ing information improves response quality in var-
ious aspects such as informativeness and engage-
ment, the scope has been limited to specific modal-
ities, domains, and semantic categories. Moreover,
detecting certain features, like internal emotion and
plans, can be non-trivial in practice. Observable
situational information has received little attention.
Otani et al. (2023) aimed to represent such informa-
tion in free-form English texts, but the available re-
sources are limited, and it remains unclear whether
existing datasets can be extended to include situa-
tional information.

2.2 Necessity of Situational Information

Most importantly, the absence of situational infor-
mation leads to the underspecification of the prob-
lem space. Without knowing the situation in which
an utterance is expressed, its interpretation cannot
always be determined. For instance, the request
“please call Pat” could mean at least two actions:
speaking to Pat in person or making a phone call.

Additionally, without sufficient knowledge of
the world state, systems may produce meaningless
or contradictive responses even if they appear natu-
ral. In the research community, the inconsistency
within generated responses is recognized to be one
of the unsolved problems (Nie et al., 2021; Shus-
ter et al., 2022). This problem may be attributed
to the underspecified task setting. As previous ex-
amples suggest, the interpretation of human com-
munication often relies on unspoken information.
When situational information is absent, systems
must assume implicit parameters of the world state
on their own, which may not always be correct. For
instance, the inconsistency of personality informa-
tion had been a common challenge for chat bots (Li
et al., 2016) and was alleviated by explicitly mod-
eling user-based features (Zhang et al., 2018). Fur-
thermore, training on this problem formulation may
force systems to learn superficial patterns.

The challenge of evaluating conversation sys-
tems is also compounded by the broadness of the
problem space. Previous studies have discred-
ited the use of automatic evaluation methods in
response generation tasks (Liu et al., 2016). Al-
though techniques such as considering multiple

Training Validation Test Avg. turn

SUGAR 1,214 102 25 1.0
CICERO 15,171 5,325 25 3.0
ConvAI2 16,878 1,000 25 4.7

Table 2: Datasets used in this study. For manual eval-
uation, we sampled 25 examples from the test split of
each dataset (not presented in this table).

reference responses may alleviate this problem to
some extent (Sai et al., 2020), it remains a sig-
nificant challenge. Furthermore, even in the task
of response selection, reliably evaluating system
output is non-trivial due to the potential for false
negatives when confusing distractor statements are
included in the pool of candidate responses (He-
dayatnia et al., 2022).

3 Situated Response Generation

In order to analyze the impact of incorporating sit-
uational information into response generation, we
conducted an empirical analysis using two neural
generation models and three English datasets.5

3.1 Datasets

We used the following English datasets.

1. SUGAR (Otani et al., 2023): This dataset con-
sists of single-turn conversations in different
help-seeking scenarios. Each example includes
12 sentences that describe situational informa-
tion across six categories, including date, time,
location, speaker’s behavior, environment, and
speaker’s possession. Some of the statements
are irrelevant and serve as distractors. SUGAR
represents datasets that provide rich situational
information.

2. CICERO (Ghosal et al., 2022): This dataset is a
compilation of three datasets, including DailyDi-
alog (Li et al., 2017), MuTual (Cui et al., 2020),
and DREAM (Sun et al., 2019). CICERO is an
example of conversational datasets that do not
explicitly present situational information.6

3. ConvAI2 (Zhang et al., 2018; Dinan et al.,
2020b): This dataset is designed for persona

5The purpose of this analysis is to find out if there are any
notable patterns associated with the inclusion of situational
statements rather than benchmarking response generation sys-
tems.

6Although CICERO includes annotations of common-
sense reasoning about target utterances, we did not use them
as they include unobservable facts. We only used CICERO for
the pre-filtering it underwent.
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A Hi, Mike! how are you feeling now?
B How did you know I was here? is it Tom?
A I was talking with Bob yesterday and I learnt your

right leg had been injured. How did it happen?
B [System output]

Generated situational statements
Person B’s leg had a surgery last night. It is afternoon
now. Person A and Person B are in the hospital. Person B
injured his right leg when he was playing baseball. Person
A has been informed. Person A has a phone. Person B has
a leg brace on. Person B’s leg is injured. Person B’s leg is
getting better. Person A’s car is in the parking lot.

Table 3: An example of generated situational statements.
This conversation is taken from the CICERO dataset.
These statements represent an assumption about the sit-
uation. In practice, situational information is perceived
in some way rather than generated.

chats, with each conversation featuring the
speaker’s persona information in 4-5 sentences.7

ConvAI2 is a dataset with user-based features.

We selected 25 test instances for manual evaluation
from the test split of each dataset. For CICERO
and ConvAI2, which consist of multi-turn conver-
sations, we randomly selected one target turn from
each dialogue, and considered its preceeding ut-
terances as conversation history. We chose targets
of test instances the second to the fourth turn to
reduce the cognitive load during evaluation. As
the test split for ConvAI2 is not publicly available,
we used its validation split as our test data and
selected 1,000 examples for validation from the
training split. Table 2 shows the dataset sizes after
our filtering process.

3.2 Generating Situational Statements

CICERO and ConvAI2 do not contain descrip-
tions of situational information. We utilized a
Transformer-based generation model to automat-
ically generate situational statements for these
datasets, which allowed us to analyze how sys-
tems could generate situated responses within a
specific context (See Appendix A.1 for details). Ta-
ble 3 shows an example of generated situational
statements.

To generate the situational information descrip-
tions, we used the SUGAR dataset to fine-tune
COMETDIS

TIL (West et al., 2022), which is a GPT-
2-XL model (Radford et al., 2019) trained on
common-sense knowledge data. We concatenated
a previous utterance, a response, and a reference

7We used revised persona statements.

situational statement into one sequence and trained
the model to minimize a cross-entropy loss over
the situation part. We also fine-tuned another
COMETDIS

TIL (West et al., 2022) model without ref-
erence responses in input to avoid including the
gold-standard information in testing instances. In
input sequences, each text was headed by special
symbols indicating the text type: <utterance> for
an utterance, <response> for a response, and <sit-
uation category> for a situational statement. The
<situation category> symbol is one of date, time,
location, behavior, environment, and possession.

Using the fine-tuned model, we added 10 situa-
tional statements to each example, including one
each for date, time, location, and behavior, and
three each for environment and possession. Fi-
nally, for quality control, one of the authors man-
ually checked the test samples from CICERO and
ConvAI2 (25 for each) and corrected context state-
ments when required (e.g., conflicting facts). The
reference responses were hidden during the manual
verification to avoid bias. This manual verification
process ensures the quality of the test dataset in
order to minimize the confusion of annotators in
the following manual evaluation of responses.

3.3 Setup

Systems: Considering the reported performance
and the availability of implementations, we chose
the following baseline systems:

1. BlenderBot2 (BB2): A Transformer-based re-
sponse generation model that is pre-trained on
multiple conversational datasets. We used a dis-
tilled 400M-parameters model in the ParlAI li-
brary (Miller et al., 2017).

2. GPT-3: A Transformer-based causal language
model that is pre-trained on a massive collec-
tion of documents. We used GPT-3-DaVinci
(175B parameters) through OpenAI API. For
each dataset, we manually selected four high-
quality training examples and embeded them in
a prompt.

We fine-tuned BB2 on the mixture of the aforemen-
tioned datasets in a multi-task learning setting. We
up-sampled SUGAR and CICERO to balance the
data sizes. To alleviate the randomness of system
output, we trained two BB2 models with different
random seeds, and for each model, we generated
one response by beam search with width 2. We ob-
tained top-2 generations from GPT-3 with a beam
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width of 4. Appendix A.2 describes implementa-
tion details.

Evaluation: We recruited three annotators on
Amazon Mechanical Turk to evaluate each re-
sponse.8 We employed three criteria: (1) grammat-
icality (whether the response is grammatically cor-
rect), (2) Coherence (whether the response is coher-
ent and contextually appropriate), and (3) context-
specificality (whether the response is specifically
relevant to the given context.) The latter two crite-
ria were defined based on prior work (Thoppilan
et al., 2022; Zhou et al., 2022).9 Table 4 shows
some examples. We collected a total of 1,800 bi-
nary judgments for each criterion in our evaluation.
The inter-annotator agreement was relatively low,
with a Fleiss’ kappa of 0.38, likely due to the sub-
jective nature of the quality assessment. The agree-
ment for evaluating BB2 was notably low, possibly
because its responses are often not fluent, making it
difficult for annotators to rate individual criteria. In
contrast, GPT-3’s responses were fluent, resulting
in a Fleiss’ kappa of 0.48. To minimize the im-
pact of this variance, we calculated the final score
of each response by averaging the ratings of three
annotators and manually reviewed responses with
high variance.

3.4 Results

Figure 1 shows the average scores of responses.
GPT-3 was highly capable of generating fluent re-
sponses based on its internal assumptions about
the situations. The annotators was likely inferred
the assumed situations to interpret the GPT-3’s re-
sponses, resulting in higher ratings. In the example
below, GPT-3 produced appropriate responses re-
gardless of the presence of situational information.

Example 1
A: “Hi, Mike! how are you feeling now?”
B: “How did you know I was here? is it Tom?”
A: “I was talking with Bob yesterday and I learnt
your right leg had been injured. How did it hap-
pen?”

GPT-3 (Without situational information in input)
(a) “Yeah, I slipped on the stairs and I sprained my

8Prior work provides multiple empirical results showing
that automatic evaluation metrics are not strongly correlated
with human judgments (Liu et al., 2016; Deriu et al., 2022).
Therefore, we solely rely on manual evaluation in this study.
See Appendix B for details.

9We adopted the definitions of Zhou et al. with modified
terminology.

ankle.”
(b) “It was a sports accident. I was playing basket-
ball and I sprained my ankle.”

GPT-3 (+Situation: “Person A and Person B are in the

hospital.”, ..., “Person B injured his right leg when he was

playing baseball.”)
(c) “Yeah, I was playing baseball and I twisted my
ankle.”
(d) “Yeah, I had a surgery last night. It happened
when I was playing baseball. I’m feeling much
better now, thanks.”

On the other hand, BB2 struggled to identify
generalizable patterns through fine-tuning when
situational information was not provided. This was
evident in SUGAR, where only a single utterance
was provided as input to the system. The following
example shows responses generated by BB2.

Example 2 A: “Could you help me take a bus?”

BB2 (Without situational information in input)
(a) *“Sure. shall I book a taxi as well? I can also
book a ride for you to and from work.”
(b) “Sure. would you like me to bring your bags,
too? they are heavy.”

BB2 (+Situation: “The speaker has a bus schedule.” ...

“There is a backpack near the desk.”)
(c) “Sure. shall I pull up your bus schedule? it will
show you when the bus is coming.”
(d) “Sure. would you like me to get your bag ready?
it will go in your backpack.”

BB2 produced more coherent and context-
specific responses when situational information
was explicitly provided. However, as the examples
above indicate, BB2’s responses were not as fluent
as GPT-3’s, resulting in lower overall performance.

We observed that in some examples, GPT-3 se-
lected information that was not directly relevant
to the immediate previous utterance and returned
unnatural responses like the example below.

Example 3 A: “Could you help me stretch?”
GPT-3 (Without situational information in input)
“Absolutely. Let me know which muscles you want
to focus on and I can show you some stretches.”
GPT-3 (+Situation: “The speaker is wearing a jogging

suit and running shoes.”, ..., “There is a beach ball at home.”

... “The nearest beach is open.”)
*“Of course! Let’s go to the beach and play with
the beach ball while we stretch.”
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Input Situation Response Coh. Spe.

1 Please start my car. The speaker’s car is functioning. Sure, I’ll do that right now. ✓
2 Please start my car. The speaker’s car is out of gas. Sure, I’ll do that right now.
3 Please start my car. The speaker’s car is out of gas. Sorry, but I’m afraid your car is out of

fuel. Would you like me to call a taxi
for you instead?

✓ ✓

4 Please start my car. The speaker’s car is out of gas. Sorry, but I can’t. Would you like me
to call a taxi for you instead?

(*) ✓

5 What is the weather like
today?

It’s currently raining outside. It’s sunny and warm. ✓

6 Can I get some beer,
please?

No beer is left, but wines are
available.

Yes, I’ll get it right now for you.

7 Can I get some beer,
please?

There are beer and some snacks
in the kitchen.

Yes, I’ll get it right now for you. Would
you also like me to bring some food?

✓ ✓

Table 4: Examples for the coherence (denoted as Coh) and context-specificity (denoted as Spe) ratings. ✓ means
the criterion is satisfied. (*) The response is not coherent because it does not explain why the car is unavailable.

Gra Coh Spe

0.82
0.63

0.770.84 0.81 0.77

SUGAR

BB2
GPT-3

Gra Coh Spe

0.83
0.60 0.69

0.91 0.89
0.76

CICERO

Gra Coh Spe

0.81
0.59 0.67

0.93 0.88
0.72

ConvAI2

(a) Without situational information in input

Gra Coh Spe

0.85
0.73 0.810.87

0.71 0.76

SUGAR

BB2
GPT-3

Gra Coh Spe

0.87
0.65 0.75

0.93 0.84 0.82
CICERO

Gra Coh Spe

0.81
0.64 0.69

0.94
0.82 0.74

ConvAI2

(b) With situational information in input

Figure 1: Manual evaluation results. The values displayed represent the average scores of responses in three criteria:
(1) grammatical correctness, (2) coherence, and (3) specificity to the context.

Furthermore, as shown in Example 1 and Table 5,
semantic consistency within the top-k responses im-
proved when more situational information is given,
although this was not evaluated in our experiments.
This behavior is fundamentally rooted in the de-
sign of the task. Having inconsistent and mutually-
exclusive top-k candidates is not a problem when
systems need to ground them on nothing.

3.5 GPT-3’s Robustness to Distractors

GPT-3 demonstrated superior performance in re-
sponse generation, but our observations suggest
that it can be misled by irrelevant situational
statements (distractors) and return suboptimal re-
sponses. To further investigate the model’s robust-
ness to distractors, we evaluated GPT-3 on SUGAR
with varying numbers of situational statements.

[· · · ]
A I just have my dog, trooper.
B My wife is thinking about getting our kids a dog.

What kind is yours?
A [System output]

Without context
1st: I have a border collie. He’s a great companion.
2nd: He’s a lab mix. He’s a great companion.

+A has a pet bulldog named Trooper.
1st: Trooper is a bulldog. He’s the best!
2nd: He’s a bulldog. He’s a great companion!

Table 5: Top-2 response generation results from GPT-3.
The example was taken from CICERO.

Experimental Setup: We controlled the number
of distractors by extending the SUGAR dataset,
whose examples have about six distractors. We
created instances with 5, 10, and 15 distractors
by sampling statements from the whole dataset
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as necessary. We selected 30 examples at ran-
dom for this experiment and manually fixed contra-
dictions within situational statements. We gener-
ated two responses for each example using GPT-3
through OpenAI’s API, employing the same hyper-
parameter setting used in the previous experiment.

Evaluation: We recruited two annotators on
Amazon Mechanical Turk to evaluate each re-
sponse. Based on previous annotation results, we
updated the annotation guidelines and qualifica-
tion criteria10, resulting in substantial agreement
(Fleiss’ kappa of 0.76). We calculated average
scores for three dimensions: (1) grammaticality,
(2) coherence, and (3) context-specificity.

Results: The evaluation scores of GPT-3 are pre-
sented in Figure 2. The grammaticality and context-
specificity of responses remained at the same level
regardless of the number of distractors, which sug-
gests that GPT-3 is highly capable of integrating
provided information into fluent English expres-
sions. On the other hand, the coherence of a re-
sponse, which requires the model to discern rele-
vant information, exhibits a different trend. The
scores are high when no or five distractors were
presented (0.86 and 0.90 for 0 and 5 distractors,
respectively), but the coherence scores decreased
when more distractors were added (0.77 and 0.81
for 10 and 15 distractors, respectively).11 This is
exemplified by the following model outputs.

Example 4 A: “Please lock the door.”

No distractors (“The speaker is dressed in nice clothing.”

..., “The door is unlocked.”, ..., “The windows are open.”)
“Sure, and do you want me to close the windows
too?”

5 distractors (+ “The speaker has a printout titled, Interior

design for beginners.”, “Person A’s doctor told him he should

lose weight.”, ...)
? “Sure, and do you need any help with the interior
design project?”12

10 distractors (+ “The speaker has laundry piled up in

the room.”, “Person A has scissors in the house.”, ...)
? “Sure, and should I turn off the windows too?”

10See Appendix B.
11There was a minor improvement in performance when

the number of distractors rises from 10 to 15. The model
might adapt to avoid conflating excessive information when it
recognized a majority of the presented situational statements
as irrelevant in training examples.

12This response might be acceptable given that the speaker
has a printout about interior design.
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Figure 2: Manual evaluation results with varying num-
ber of distractors. Criteria: (1) grammatical correctness,
(2) coherence, and (3) specificity to the context.

15 distractors (+ “Person A has a telescope in the house.”,

“Person A owns an exercise bike.”, ...)
*“Sure, and would you like me to help you with the
laundry too?”

The coherence score was relatively low (0.86)
when no distractors were presented. We conjec-
ture the model may have learned to copy phrases
to generate responses instead of reasoning over in-
put texts. We found that the model’s responses
tended to sound abrupt, as shown in the following
example:

Example 5 Person A: “Can you assist me with
brushing my teeth?”

No distractors (“The speaker has a dental cleaning sched-

uled.”, ..., “There is no more toothpaste in the house.”)
*“Sure, I can help you get some toothpaste at the
store. Would you like me to come with you?”

4 Discussion

Models’ internal assumptions: As discussed in
Section 2, the lack of sufficient situational infor-
mation often makes the interpretation of utterances
ambiguous. In such a setting, systems need to learn
to make various assumptions about the world state
to produce naturally-sounding language, which can
be regarded as a form of hallucination. Responses
generated in this way can be useless in real applica-
tions, where the world state is predetermined. Our
empirical analysis also indicates that the systems’
consistency can be improved with detailed situa-
tional information, which is also aligned with the
initial motivation of background-based conversa-
tional tasks like persona chat. On the other hand,
our results indicates that GPT-3 can generate accu-
rate responses even without the provision of situa-
tional information. This observation suggests that
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large-scale language models might have already
captured information about typical world states and
appropriate behavior through pre-training. Never-
theless, there is no guarantee that the model’s inter-
nal assumption will always align perfectly with the
actual world state. Hence, there remains a necessity
to provide the model with situational information
in some form.

Resource acquisition: Simple collections of tex-
tual conversations can be easily obtained at scale
from the web, but acquiring their situational infor-
mation is more difficult. For example, although
conversations on Twitter may be grounded in the
weather, sport events, and news on a particular day,
automatically extracting such alignments may be
challenging. The connection between utterances
and related information is often obscure, and man-
ual intervention is likely required to obtain high-
quality annotations. As a potential remedy for this
challenge, we attempted automatic generation of
situational information in our case study. The qual-
ity of the generated result was fair, but we needed to
manually revise the test instances. Recent studies
have demonstrated promising results in inducing
world knowledge from PLMs (West et al., 2022;
Ghosal et al., 2022). The future advancement in
this line of work may make it possible to annotate
existing open-domain conversation datasets with
situational information in a post-hoc manner.

Availability: Different platforms of conversa-
tional systems have access to different types of
situational information. Smart speakers may be
equipped with physical sensors to observe visual
and audio information. On the other hand, virtual
assistants and text-based chatbots may not have
access to such information. However, it is likely
that there are some available signals that human
communicators and systems could refer to, such as
approaching holidays and personal information ob-
tained through previous conversations. Finch et al.
(2019) demonstrated that mentioning recent events
can improve user engagement in chit-chat. Further-
more, if conversation systems have access to the
Internet, which is often the case, they can access
diverse kinds of information through external APIs.
Access to APIs can also facilitate conversational
assistance with task-specific information in various
domains (Liang et al., 2023).

Representation: Prior work has demonstrated
that a substantial range of surrounding information

can be represented and integrated by textual repre-
sentations (Zhou et al., 2018; Zhang et al., 2018;
Rashkin et al., 2019; Kim et al., 2022; Otani et al.,
2023), and our study has also shown that textual
statements can inform response generation models
of situational information. However, it is impor-
tant to note that certain types of information might
be more effectively represented using alternative
formats, such as images, audio signals, numerical
values, or logical expressions. Future work should
explore and develop methods to better represent
situational information and incorporate it into com-
putational models.

Adequacy: When situations are taken into ac-
count, a different problem arises. Our findings indi-
cate that it is not straightforward to identify relevant
situational information and integrate it into a co-
herent response, even with just 10 situational state-
ments. Additionally, there is a technical limitation
on the length of input that a model can handle. situ-
ational information can typically be obtained from
various sources, and often, an excessive amount of
information is present. Humans can quickly focus
on crucial information and discard the rest, other-
wise, it would take forever to read, process, and
reason over surrounding information. Researchers
have identified the Frame Problem (McCarthy and
Hayes, 1969) that describes the dilemma of a rea-
soning system in determining which aspects of a
situation change and which remain constant after
an action. To date, there has been no satisfactory
solution to this questions, making the challenge of
situated conversation an interesting open challenge.

Common ground: Knowledge about situations
is closely related to common ground–the informa-
tion shared by conversation participants. Without
common ground, conversation participants would
need to convey every parameter of their message,
which is extremely inefficient. The importance
of common ground is widely recognized, and
decades of dialogue research have been devoted
to developing systems that can effectively estab-
lish common ground with their interlocutors by
inferring, presenting, requesting, accepting, and
repairing individual beliefs about various informa-
tion through conversations (Traum and Allen, 1994;
Clark, 1996; Poesio and Rieses, 2010; inter alia).
In this paper, we did not delve into the problem
of common ground, but the consideration of situa-
tions, which is our main proposal, is the first step
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towards computational modeling of grounding.

5 Related Work

Conversation history: There is a rich line of
work on how to induce useful contextual informa-
tion from conversation history, for example, by
designing dedicated components for capturing con-
textual information (Tian et al., 2017; Sankar et al.,
2019) and using external knowledge (Young et al.,
2018; Wu et al., 2020; inter alia). While conversa-
tion history contains rich information, we need to
also incorporate situational information, which is
often unspoken, and to this end, we should think
about how to design tasks and datasets.

Prompt design: Our analysis is closely related
to work on in-context learning, or prompting, with
PLMs. In particular, much attention has been paid
to the effective provision of demonstrative exam-
ples (Zhao et al., 2021; Liu et al., 2022; Min et al.,
2022). This paper discussed the problem from a
different perspective, namely what clues should be
included in prompts (situations) and how PLMs
perform (misleading by distractors). Our obser-
vation regarding the latter is consistent with prior
work that revealed the vulnerability to perturbations
in input (Elazar et al., 2021; Pandia and Ettinger,
2021). Future work should explore ways to ro-
bustly identify relevant situational information to
generate optimal responses.

6 Conclusion

Our main claim is that situational information,
which may or may not be stated explicitly by
humans, should be represented and incorporated
as input in open-domain conversational tasks and
datasets in order to advance the capabilities of con-
versation systems. We posited that the absence of
situational information results in an underspecified
problem space, causing a severe problem for both
the development and evaluation of conversation
systems. Our experiments on three textual datasets
highlight the benefits and difficulties of providing
explicit and implicit situational information to re-
sponse generation systems, which motivates future
research on situated conversation systems.

Limitations

Firstly, we did not address the fundamental chal-
lenge of determining an adequate amount of sit-
uational information. It is very difficult, if not

impossible, to describe all the situations required
to perform rationale reasoning, so we need to give
up somewhere, relying on the reasoning capability
of NLP systems.

Secondly, we did not use large-scale data or con-
duct an extensive search for optimal hyperparam-
eters and prompts (for GPT-3) in our experiments
as the primary goal of this study was to raise at-
tentions to potential issues and benefits associated
with situational informaiton. The models may have
performed better with different configurations. We
did not examined the capabilities of larger PLMs
in conducting situated conversations at scale. In
our empirical analysis, we opted for GPT-3 due to
its transparency about technical details compared
with later versions of GPT.

Finally, while situational information can aid in
the development of truthful and creative response
generation systems, it does not address well-known
issues associated with conversational technologies,
such as safety and bias. In fact, poorly chosen sit-
uational information may even amplify undesired
bias by linking two irelevant concepts together. To
mitigate this problem, researchers and developers
should exercise caution when collecting data and
carefully monitor system output.

Ethics Statements

The use of crowdsourcing: We recruited human
evaluators in Amazon Mechanical Turk. Our evalu-
ation task does not collect any personal information
other than anonymized worker IDs and country of
residence (due to our location-based worker qualifi-
cation). We do not plan to release this information
to the public. We set the task reward based on
trial studies so that the estimated hourly rate would
reach at least $9.00.

The risk in the inclusion of situational infor-
mation: While we believe that incorporating sit-
uational information can have a positive impact
on conversational technologies in general, as pre-
viously mentioned, it is not intended to address
well-known issues concerning the toxic behavior
of language generation models. Rather, it may in-
troduce another source for models to learn undesir-
able associations between concepts and language.
Therefore, the data and system output should be
closely monitored, either manually or through au-
tomatic methods such as debiasing techniques (Liu
et al., 2020; Dinan et al., 2020a).
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Max iterations 5,000
Batch size 16
Gradient accumulation 16
Optimizer Adam
Weight decay 0.01
Gradient clipping max norm of 1.0
Learning rate (LR) 0.000005
LR warmup (linear) 300 steps
Dropout 0.1

Table 6: Hyperparameters for the COMETDIS
TIL -based situ-

ation generator

by spaCy13 (en-core-web-sm model) and NLTK14.
Our tools and resources do not involve license re-
strictions on the use for research purposes. We will
release our code and pre-trained model parameters.

A.1 Situation Generation

We employed COMETDIS
TIL (West et al., 2022), which

is based on GPT2-XL (Radford et al., 2019) (1.5B
parameters), for situation generation. COMETDIS

TIL is
trained on a large-scale collection of event-centric
common-sense triples, ATOMIC20

20, which may
serve as a useful inductive bias for situation genera-
tion. The goal of situation generation is to generate
statements of observable situational information
for a given conversation. Reference responses were
added to the input along with an previous utter-
ance for the training and validation data. However,
to prevent introducing clues about the reference
result, responses were not included in generating
situational statements for the test instances in CI-
CERO and ConvAI2.

We fine-tuned a model on the SUGAR dataset
using two different input settings. The first setting
concatenats a previous utterance, a response, and a
reference situational information into one sequence.
The second setting concatenated a previous utter-
ance and a reference situational information into
one sequence for generating situational statements
on test instances, for the aforementioned reason. In
both cases, each text was headed by special sym-
bols indicating the text type: <utterance> for an ut-
terance, <response> for a response, and <situation
category> for a situational statement. The <situa-
tion category> symbol is one of date, time, location,
behavior, environment, and possession. The model
was optimized to minimize a cross-entropy loss
with a label smoothing factor of 0.1 for the tokens
in the situational information. Table 6 shows the hy-

13https://spacy.io/
14https://www.nltk.org/

Max epochs 10
Batch size 16
Optimizer Adam
Weight decay None
Gradient clipping max norm of 1.0
Learning rate (LR) 0.00001
LR warmup (linear) 100 steps
LR decay (based on validation) coef. of 0.5
Dropout 0.1

Table 7: Hyperparameters for BlenderBot2

perparameters for the training step. We evaluated
the average token-level perplexity on the valida-
tion split every 100 steps and terminated training
if the value did not improve for 5 consecutive vali-
dations. The training process took approximately
four hours on an NVIDIA TITAN RTX GPU with
the DeepSpeed (Rasley et al., 2020) library.

To generate situations on the CICERO and Con-
vAI2 datasets, we concatenated a conversation his-
tory and a response (for the training and validation
splits) followed by one of the situation categories
as input. We generated three candidates for each
category using nucleus sampling (p = 0.9). As the
model was trained on SUGAR, which only con-
tains single-turn conversations, we observed that
feeding many previous utterances impaired the gen-
eration quality. Therefore, we limited the number
of previous utterances in the input to 3. Finally,
for quality control, one of the authors manually
checked the test samples from CICERO and Con-
vAI2 (25 for each) and corrected situational state-
ments when required (e.g., conflicting facts). The
reference responses were hidden during the manual
verification to avoid bias. This manual verification
process ensures the quality of the test dataset in
order to minimize the confusion of annotators in
the following manual evaluation of responses.

A.2 Response Generation

BlenderBot2: We used the pre-trained Blender-
Bot2 model with 400M parameters15 with web
search turned off. We concatenated persona state-
ments (for ConvAI2), situational statements, and a
conversation history with newline symbols
n. We denoted text types by dedicated pre-
fixes as practiced in pre-training of BlenderBot2,
namely, a persona statement is headed by text
your persona:, situational statements is headed
by context:, and each utterance in a conversa-
tion history is headed by either <speaker1> or

15https://parl.ai/projects/blenderbot2/
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<speaker2 which corresponds to the speaker of
the utterance. a We followed the original configu-
ration of hyperparameters (Table 7). We evaluated
a model on the validation set every 1/4 epoch and
terminated training if the average token-level per-
plexity score on the validation set did not improve
five times in a row. In our experiments, training
finished at around two epochs, taking about 4 hours
on one NVIDIA TITAN RTX. For generation, we
used nucleus sampling with p = 0.9.

GPT-3: We generated responses with GPT-3 with
a few-shot learning mannar. We picked four high-
quality examples from the training and validation
splits for each dataset and provided them with a
short instruction in a prompt. Table 8 shows an
example of our prompt. We generated responses
with top-p=0.9 and temperature=0.7.

ChatGPT: We used the same prompt as that
of GPT-3 for generating responses with ChatGPT
through OpenAI’s interactive demo page 16. Al-
though the application scope of ChatGPT is highly
related to the topic of this paper, ChatGPT is un-
der active development, and there is no established
method to reproduce results. Therefore, we only
used ChatGPT for performing a few case studies
like the example in Table 1.

B Crowdsourced Evaluation

B.1 First Experiment

In the first experiment we rectuited crowd workers
on Amazon Mechanical Turk. We set the follow-
ing qualification requirements for filtering workers:
(1) at least 1,000 HITs are approved so far, (2) ≥
99% approval rate, (iii) living in US. Each HIT
involves judgment of three response candidates.
Workes were paid $0.30 for each HIT. We used the
guidelines and interface developed by (Zhou et al.,
2022). Figure 3 shows the annotation guidelines.
To monitor the performance of workers, we embed-
ded one dummy response in each HIT. We created
the dummy responses to be a clearly bad response.

Initially, we followed Zhou et al. (2022) and
also evaluated if the responses are interesting or
not, but we found the inter-annotator agreement
of this criterion is high enough to draw a reliable
conclusion (Fleiss’ kappa of 0.2). Therefore, we
removed this criterion from our final results.

16https://chat.openai.com/

B.2 Second Experiment
In the second experiment, we recruited workers
who met the following qualifications: (1) The
Mechanical Turk Masters Qualification has been
granted by the platform, (2) Number of HITs ap-
proved ≥ 1,000, (3) HIT approval rate ≥ 95%, (4)
Location is US. We increased a reward based on the
numbder of distractors. ($0.35 for 10 distractors
and $0.40 for 15 distractors.)
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Figure 3: Evaluation guidelines. We developed the instructions based on the work of Zhou et al. (2022)
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Two people are having a conversation in the following examples. Both people are helpful and
friendly.

# Example 1
Context:
1. Today is Monday.
2. It is afternoon now.
3. <speaker1> and <speaker2> are at school.
4. <speaker2> is studying English.
5. <speaker1> has a phone.
6. <speaker1> has alrady finished lunch.
7. <speaker2> has an English book with her.
8. The nearby restaurant is open.
9. Final exams are coming soon.
10. <speaker2> has not had lunch yet.
Conversation:
<speaker1>: Hi, Lily. Where were you at lunchtime? I was looking for you in the dining hall.
<speaker2>: Oh, sorry, I missed you . My English class ran late again.
<speaker1>: That’s been happening quite often recently . Maybe it’s because the final exams
are coming up.

· · ·

# Example 5
Context:
1. Today is Sunday.
2. It is daytime now.
3. <speaker9> and <speaker10> are in the hotel.
4. <speaker10> is working at the hotel.
5. <speaker9> has a car.
6. <speaker9> is carrying a suitcase.
7. <speaker10> has a computer.
8. The door is closed.
9. <speaker9>’s keys are on the desk.
10. It is raining outside.
Conversation:
<speaker9>: Hello. I’m leaving. Here is my key.
<speaker10>:

Table 8: Example of the prompt for GPT-3 and ChatGPT. The examples are taken from CICERO.
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Abstract

In addressing the task of converting natural lan-
guage to SQL queries, there are several seman-
tic and syntactic challenges. It becomes in-
creasingly important to understand and remedy
the points of failure as the performance of se-
mantic parsing systems improve. We explore
semantic parse correction with natural language
feedback, proposing a new solution built on the
success of autoregressive decoders in text-to-
SQL tasks. By separating the semantic and syn-
tactic difficulties of the task, we show that the
accuracy of text-to-SQL parsers can be boosted
by up to 26% with only one turn of correction
with natural language. Additionally, we show
that a T5-base model is capable of correcting
the errors of a T5-large model in a zero-shot,
cross-parser setting.

1 Introduction

The task of parsing natural language into structured
database queries has been a long-standing bench-
mark in the field of semantic parsing. Success at
this task allows individuals without expertise in the
downstream query language to retrieve informa-
tion with ease. This helps to improve data literacy,
democratizing accessibility to otherwise opaque
public database systems.

Many forms of semantic parsing datasets ex-
ist, such as parsing natural language to program-
ming languages (Ling et al., 2016; Oda et al., 2015;
Quirk et al., 2015), Prolog assertions for exploring
a database of geographical data (Zelle and Mooney,
1996), or SPARQL queries for querying a large
knowledge base (Talmor and Berant, 2018). The
current work discusses parsing natural language
into a structured query language (SQL), perhaps
the most well-studied sub-field of semantic parsing.

Most text-to-SQL works frame the task as a one-
shot mapping problem. Methods include transition-
based parsers (Yin and Neubig, 2018), grammar-
based decoding (Guo et al., 2019; Lin et al., 2019),

Figure 1: Example item from the SPLASH dataset.
An incorrect parse from a neural text-to-SQL model is
paired together with natural language feedback com-
menting on how the parse should be corrected.

and the most popular approach as of late, sequence
to sequence (seq2seq) models (Scholak et al., 2021;
Qi et al., 2022; Xie et al., 2022).

In contrast to the one-shot approach, conversa-
tional text-to-SQL aims to interpret the natural lan-
guage to structured representations in the context
of a multi-turn dialogue (Yu et al., 2019a,b). It
requires some form of state tracking in addition to
semantic parsing to handle conversational phenom-
ena like coreference and ellipsis (Rui Zhang, 2019;
Hui et al., 2021; Cai et al., 2022).

Interactive semantic parsing frames the task as
a multi-turn interaction, but with a different ob-
jective than pure conversational text-to-SQL. As
a majority of parsing mistakes that neural text-to-
SQL parsers make are minor, it is often feasible
for humans to suggest fixes for such mistakes us-
ing natural language feedback. Displayed in Fig-
ure 1, SPLASH (Semantic Parsing with Language
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Assistance from Humans) is a text-to-SQL dataset
containing erroneous parses from a neural text-to-
SQL system alongisde human feedback explaining
how the interpretation should be corrected (Elgo-
hary et al., 2020). Most similar to SPLASH is
the INSPIRED dataset (Mo et al., 2022), which
aims to correct errors in SPARQL parses from the
ComplexWebQuestions dataset (Talmor and Be-
rant, 2018). While the interactive semantic parsing
task evaluates a system’s ability to incorporate hu-
man feedback, as noted in Elgohary et al. (2020),
it targets a different modeling aspect than the tra-
ditional conversational paradigm. Hence, good
performance on one does not guarantee good per-
formance on the other task.

We make the following contributions: (1) We
achieve a new state-of-the-art on the interactive
parsing task SPLASH, beating the best pub-
lished correction accuracy (Elgohary et al., 2021)
by 12.33% using DestT5 (Dynamic Encoding of
Schemas using T5); (2) We show new evidence that
the decoupling of syntactic and semantic tasks im-
proves text-to-SQL results (Li et al., 2023), propos-
ing a novel architecture which leverages a single
language model for both tasks; (3) We offer a new
small-scale test set for interactive parsing1, and
show that a T5-base interactive model is capable of
correcting errors made by a T5-large parser.

2 Dataset

In this work, we evaluate our models on the
SPLASH dataset as introduced in Elgohary et al.
(2020). It is based on Spider, a large multi-
domain and cross-database dataset for text-to-SQL
parsing (Yu et al., 2018). Incorrect SQL parses
were selected from the output of a Seq2Struct
model trained on Spider (Shin, 2019). Seq2Struct
achieves an exact set match accuracy of 42.94% on
the development set of Spider.

Alongside the incorrect parse, an explanation
of the SQL query is generated using a rule-based
template. Annotators were then shown the original
question q alongside the explanation and asked to
provide natural language feedback f such that the
incorrect parse p′ could be resolved to the final gold
parse p.

Each item in the SPLASH dataset is associated
with a relational database D. Each database has a
schema S containing tables T = {t1, t2, ...tN} and
columns C = {c11, ..., c1n1

, c21, ..., c
2
n2
, cN1 , ..., cNnN

},

1https://github.com/parkervg/DestT5

where N is the number of tables, and ni is the
number of columns in the i-th table. Figure 1 dis-
plays an example item from the SPLASH dataset,
excluding the full database schema S for brevity.

3 Model

3.1 Dynamic Schema Encoder

In converting natural language to SQL, a parser
must handle both the semantic challenges in se-
lecting the correct tables and columns from the
database schema, and generate valid SQL syntax.
As shown in Li et al. (2023), decoupling the schema
linking and skeleton parsing tasks in text-to-SQL
improves results when applied to the Spider dataset.
We take a similar approach with the SPLASH
dataset, separating the semantic and syntactic chal-
lenges of text-to-SQL by introducing an auxiliary
schema prediction model. This auxiliary model
serializes only the most relevant schema items into
the input for the final seq2seq text-to-SQL model.

The task of the schema prediction is to output
only those schema items (tables, columns, values)
that appear in the gold SQL p. The inputs can be
represented as follows.

d = t1 : c
1
1, ..., c

1
n1
|...|tN : cN1 , ..., cNnN

(1)

x = ([CLS], q, [SEP ], d, [SEP ], p′, [SEP ], f)
(2)

Where d represents a flattened representation of
the database schema S, q is the question, p′ is the
incorrect parse from SPLASH, and f is the natural
language feedback. For each schema item, the task
is to predict the presence or absence of the item in
the final gold SQL parse p.

By introducing this auxiliary schema prediction
model, the final text-to-SQL model should only be
tasked with stitching together the predicted schema
items into valid SQL logic. As shown in the exam-
ple in Figure 2, the text-to-SQL model is able to
filter out the unnecessary “join” clauses from the
incorrect parse, given the only table predicted by
the schema prediction is “Flights”.

This approach was validated by carrying out a
simple experiment. We serialize only those “gold”
schema items that appear in the translated SQL and
fine-tune a T5-base model2 on the Spider dataset
to achieve a best 78.10% execution accuracy. This

2https://huggingface.co/tscholak/t5.1.1.lm100k.base
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Figure 2: Model architecture. In “Schema Prediction”, the database schema is filtered to only the relevant items
ỹ1 using a classifier or generator described in Section 3.1. In “Text-to-SQL”, the output of the schema prediction
model is used to generate the final parse ỹ2.

beats the vanilla T5-base model3 by 18.7%, demon-
strating that successful schema prediction sets up a
text-to-SQL model to predict the final query with
high accuracy.

Schema Classifier We adopt the RoBERTa-large
schema prediction described in Li et al. (2023) for
our classification model. To alleviate the label im-
balance problem caused by sparse schema targets,
focal loss is used as the loss function (Lin et al.,
2017). Focal loss adds a factor (1 − pt)

γ to stan-
dard cross entropy loss, reducing relative loss for
well-classified examples and putting more focus on
misclassified examples.

L2 =
1

N

N∑

i=1

FL(yi, ŷi) +
1

M

N∑

i=1

ni∑

k=1

FL(yik, ŷ
i
k)

(3)
Where FL denotes the focal loss function. yi is

the ground truth label of the i-th table, either 0 or
1 indicating the presence or absence, respectively.
Similarly, yik is the ground truth label of the k-th
column in the i-th table.

Rather than using a hard probability threshold,
hyperparameters k1 and k2 are introduced. Tak-
ing the probabilities from the cross-encoder, only

3https://huggingface.co/tscholak/1zha5ono

the top-k1 tables and top-k2 columns are kept and
serialized into a ranked schema serialization, de-
scending by probability.

Schema Generator In addition to the previously
discussed RoBERTa-large cross-encoder, we also
experiment with a generative schema prediction
model. T5 (Text-to-Text Transfer Transformer) is a
transformer-based encoder-decoder model that con-
verts all NLP problems into a text-to-text format
(Raffel et al., 2020). In our task setup, the en-
coder applies its bidirectional attention mechanism
over the features from SPLASH and the serialized
schema items, depicted in Equation 2. The decoder,
then, generates the correct SQL parse, employing
teacher forcing during the training phase. It is fine-
tuned using standard cross-entropy loss.

L1 = −
M∑

i=1

yi log(ŷi) (4)

The target label yi will always take the form
of tokens comprising the gold schema items, i.e.,
those tables and columns that appear in the correct
SQL parse. We format the multi-label targets y as
text following the structure shown below. Note that
this is the same structure we use to serialize the
flattened database schema d in Equation 1.

[db_id] | [table] : [column] (...)
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Schema Model F1 Precision Recall
Generator 88.98 90.84 89.18
Classifier 34.50 22.12 94.41

Table 1: Performance of schema prediction models in
predicting gold schema items on the SPLASH test set.
Note that the classification-based method of Li et al.
(2023) trades low precision for high recall5.

As the theoretical output space of ŷ is the un-
constrained vocabulary of the T5 model, schema
hallucinations are possible, and column/table pairs
may be generated that do not exist in the database
context4. A trade-off in this approach, however, is
that the generation objective allows us to bypass
the need for hyperparameters k1 and k2, as we sim-
ply keep the greedy argmax of ŷ directly at each
timestep. As shown in Table 1, this optimization
objective results in far greater precision than the
classification approach but suffers a drop in recall.

3.2 Text-to-SQL Encoder/Decoder

We use a T5-base model to encode the unified input
(with schema predictions) and generate the SQL
query (Raffel et al., 2020).

3.3 SQL Normalization

We follow the same normalization procedure de-
scribed in Li et al. (2023). Specifically, we normal-
ize both the incorrect parses and gold SQL queries
by (1) replacing table aliases with their original
names, (2) adding an ASC keyword if ORDER BY
doesn’t already specify, (3) lower-casing all text,
and (4) adding spaces around parentheses and re-
placing double quotes with single quotes.

4 Experiments

4.1 Experimental Setup

We run a series of experiments on the SPLASH
dataset to evaluate the robustness of the proposed
method. The training set contains 2,775 unique
questions from the train split of Spider. SPLASH
annotators were also asked to generate paraphrases
for a single piece of feedback to improve diversity,
resulting in a total of 7,481 items in the train split.
The SPLASH test set is based on 506 items from

4We note that Scholak et al. (2021) offers a solution for
these schema hallucinations, but leave the integration of Picard
to future work.

5Not considered in this table is the ranking-enhanced na-
ture of the RoBERTa-large method.

Figure 3: DestT5 error rates on the SPLASH test set,
using the Spider exact match metric. As the distance (
# Required Edits) from the incorrect parse to the gold
query increases, error rates also increase.

the Spider dev split, coming out to 962 total test
items with paraphrasing.

4.2 Evaluation Metrics

Exact Set Match (EM) This metric evaluates
the structural correctness of the predicted SQL. It
checks for an orderless set match between each
component in the predicted and gold query, ignor-
ing predicted values. Many early text-to-SQL mod-
els only report EM accuracy.

Execution Accuracy (EX) Execution accuracy
compares the execution results of the predicted
SQL query and the gold SQL query. Since
two SQL queries that do not have an exact
set match may execute to the same results
(e.g. “...ORDER BY val ASC LIMIT 1” and
“SELECT MAX(val)”), this metric serves as a per-
formance upper bound. However, this metric can
suffer from a high false positive rate. For this rea-
son, we use the test suite execution accuracy with
optimized database values described in Zhong et al.
(2020).

4.3 Implementation Details

Text-to-SQL All text-to-SQL models use a fine-
tuned T5-base. We use the same hyperparame-
ters specified in the PICARD codebase6. Models
were fine-tuned with Adafactor (Shazeer and Stern,
2018) with a learning rate 1e-4, batch size 16 for
256 epochs. A linear warm-up for the first 10%
of training steps is employed, followed by cosine
decay.

6https://github.com/ServiceNow/picard
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Shuffled Feature EM% Change

Schema Model EM% Feedback Incorrect Parse

All
None 41.17 - -
Generator 51.35 -2.17 -28.27
Classifier 49.79 -2.7 -11.64

- Question
Generator 48.96 -4.47 -30.77
Classifier 35.97 -11.23 -29.94

- Explanation
Generator 53.43 -1.77 -18.09
Classifier 49.27 -2.08 -17.57

- Question
- Explanation

Generator 47.00 -5.53 -38.68
Classifier 38.98 -12.47 -36.9

Table 2: Results on SPLASH test set with various features and schema prediction models. Generator refers to the
T5-large model, and Classifier refers to the RoBERTa-large model of Li et al. (2023). The models are evaluated on
the test set with shuffled features to examine the extent to which they utilize the unique interactive components of
the parsing task. In bold is DestT5.

Schema Generation T5-large was used for the
schema generation model. It was fine-tuned using
Adafactor with a constant learning rate of 1e-4 and
a batch size of 4 for 512 epochs.

Schema Classification For the schema classifica-
tion model, we follow the implementation and hy-
perparameters described in Li et al. (2023). Specifi-
cally, we train a cross-encoder based on RoBERTa-
large (Liu et al., 2019). AdamW (Loshchilov and
Hutter, 2017) with a batch size of 32 and a learning
rate of 1e-5 is used for optimization. Focal loss
is used to alleviate the label-imbalance problem
that comes from sparse schema targets. The thresh-
old hyperparameters k1 and k2 are set to 4 and
5, respectively. Specifically, only the top-4 tables
and top-5 columns with the highest logits are kept
and serialized as a ranked input to the text-to-SQL
model.

4.4 Evaluation
Unlike the Spider dataset, performance on the
SPLASH dataset is more nuanced and must be
viewed holistically. To this end, we plot both “Ex-
act Match %” and “Shuffled Feature Change” in
Table 2. The ideal model is one that achieves a com-
petitive exact match metric, while experiencing a
large drop in performance with shuffled feedback
and incorrect parses7. We find the highest exact
match accuracy when removing the explanation
of the incorrect parse, and by using a T5-based

7We note that a T5-base model fine-tuned with the Spider
train set achieves 50.00 EM on the SPLASH test set.

generative schema prediction model. This model,
denoted in bold in Table 2, is later referred to as
DestT5 (Dynamic Encoding of Schemas using T5).
Achieving an EM score of 53.43%, DestT5 beats
the previous best score of NL-EDIT by 12.33%
(Elgohary et al., 2021).

Using the scripts provided from Elgohary et al.
(2021) to count SQL edits, we plot error rates on the
SPLASH test set for both gold query difficulty and
the number of edits. “Difficulty” is defined by Yu
et al. (2018) and classifies each SQL query into one
of four categories depending on the complexity of
the query. As seen in the heatmap, error rates share
a positive correlation with both SQL difficulty and
# edits required to reach the gold parse.

4.5 Generalizing to Other Parsers

In recent years, massive strides have been made in
the task of semantic parsing. Since the release
of the SPLASH dataset, variations of T5 have
largely taken the top spots in the Spider leader-
board. As of April 2023, all 6 models in the top 10
with corresponding publications build off of some
T5 model. It is fair, then, to ask if performance
on the SPLASH dataset actually corresponds to
the ability to fix errors made with modern parsing
systems, such as those utilizing T5.

To this end, we evaluate DestT5 on the crowd-
sourced test sets9 based on errors made by EditSQL
(Rui Zhang, 2019), TaBERT (Yin et al., 2020), and
RAT-SQL (Wang et al., 2020). Additionally, we

9https://github.com/MSR-LIT/NLEdit
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Seq2Struct (SPLASH) EditSQL TaBERT RAT-SQL T5-Large

Spider Dev EM% 41.3 57.6 65.2 69.7 71.2
Spider Dev EX% - - - - 74.4

NL-EDIT
SPLASH Test Set EM% 41.1 28 22.7 21.3 -
SPLASH Test Set EX% - - - - -
EM ∆ w/ Interaction +20.3 +8.9 +5.9 +4.3 -
EX ∆ w/ Interaction - - - - -

DESTT5 (OURS)
SPLASH Test Set EM% 53.43 31.82 31.47 28.37 26.1
SPLASH Test Set EX% 56.86 40.3 28.84 36.53 30.43
EM ∆ w/ Interaction +26.15 +10.16 +8.13 +5.71 +2.83
EX ∆ w/ Interaction - - - - +3.3

Table 3: Evaluating zero-shot generalization of DestT5 to other modern parsers. Shown are the scores without
interaction on the full Spider dev set, as well as the ∆ w/ Interaction on the Spider dev set following single-turn
corrections with NL-EDIT and DESTT5. This change is a byproduct of the size of the test sets (962, 330, 267, 208,
and 112 left-to-right), and it is expected to increase proportional to the reported Test Set EM%/EX% as the size of
the dataset increases. We indicate instances where the scores are not publicly available for a given model with -.

Text-to-SQL Model Schema F1 # Hallucinated Schema Items
T5-large8 79.00 92
T5-base 73.92 121
DestT5 80.09 59

Table 4: Analysis of the schema items produced by the final text-to-SQL model. DestT5, with an auxiliary schema
prediction model, identifies the presence of gold schema items with a higher F1 than a T5-large text-to-SQL model
alone.

compile a new, small-scale test set of errors made
by a fine-tuned T5-large model10 on the Spider dev
set. It contains 112 items annotated with feedback
referencing the erroneous parse made by the model
and is later referred to as the “T5-large Test Set”.

Table 3 plots the end-to-end accuracy of DestT5.
As mentioned in Elgohary et al. (2021), there is a
notable drop in the end-to-end gains as the accuracy
of the base parser improves. This is likely due to
the fact that as parsers improve, most of the errors
are based on very complex gold SQL queries.

4.6 Error Analysis

4.7 Errors on T5-Large Test Set

Figure 4 depicts the outputs of a randomly selected
set of interactions from the T5-large test set. We
discuss some of the examples below.

10https://huggingface.co/tscholak/3vnuv1vf

In Example 1, the original T5-large text-to-SQL
model fails to map the phrase “all lines” to both
columns line_1 and line_2. However, even with
the feedback “Find line_2 as well”, the auxiliary
schema prediction model fails to select “line_2” as
a schema candidate. As a result, the final DestT5
text-to-SQL is not equipped with enough context
to generate the correct parse.

In Example 2, an ‘easy’ gold query
(“SELECT MIN(loser_rank) FROM matches”) is
incorrectly parsed. This is likely due to the same
reason described in Lin et al. (2020), characterized
by difficulty in mapping “predominantly” to
spoken by the largest percentage of the population:
it remains challenging for large pre-trained models
to ground terms like “best rank” to the DB schema.
Pre-training tasks have been proposed in attempts
to further improve schema grounding in LLMs, but
more work can be done to align LLMs with lexical
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Figure 4: Example outputs of DestT5 on errors made with a T5-large text-to-SQL model. When the schema
prediction model fails to identify schema items, the final text-to-SQL output is incorrect. However, when the schema
prediction model is correct, it allows the text-to-SQL component to focus its efforts on generating valid SQL syntax,
faithful to the feedback. See section 4.7 for more detailed analysis of these examples.

constructs grounded to the syntax of semantic
parsing tasks (Deng et al., 2021; Yin et al., 2020).
In one turn of interaction with DestT5, this syntax
error is corrected.

Example 4 displays an interaction parsing
long feedback with mixed success. The inter-
action allows DestT5 to remedy the missed se-
mantic mapping from “most horsepower” to the
“ORDER BY horsepower” clause, but it hallucinates
the “Cars_data” from the “model” table, failing
to learn from the feedback saying otherwise.

5 Discussion

5.1 Impact of Auxiliary Schema Prediction

Table 2 displays the EM of a standard text-to-SQL
model with no auxiliary schema prediction (with
all schema items directly serialized as input). As
shown, the score drops from 51.35% with an auxil-
iary generator to 41.17% without. We hypothesize
that given the increased number of features in in-
teractive semantic parsing (explanation, feedback,

incorrect parse), distilling the role of the text-to-
SQL model to primarily handling syntax parsing
prevents excessive proliferation of feature interac-
tions.

Table 4 displays the schema F1 scores of var-
ious text-to-SQL models. Schema F1 is calcu-
lated by comparing those schema items (tables,
columns) generated in the predicted parse to the
schema items in the gold SQL. As shown, imple-
menting a dedicated schema prediction model into
a text-to-SQL pipeline helps identify those gold
schema items with a higher F1 score, and mini-
mizes schema hallucinations (i.e. generating ta-
bles/columns not present in the database schema).

How often does the text-to-SQL model use the
predicted schemas? We evaluate the usage rates
of the predicted schema items by the final text-to-
SQL model. Specifically, we examine the rate at
which DestT5 either predicts a schema item not
directly serialized by the schema prediction model,
or fails to integrate a schema item that was serial-
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ized. We find that on the SPLASH test set, there
are 112 instances of overpredictions by the text-
to-SQL model and 210 underpredictions. There
is an average distance of 0.81 between the seri-
alized schema items and gold schema items, and
0.93 between the schema items predicted by the
text-to-SQL model and gold. This indicates that,
if the text-to-SQL model were explicitly restricted
to use only the schema items generated by the aux-
iliary schema prediction model, performance will
improve. We leave this and other combinations of
the two models (such as joint training) to future
work.

5.2 Evaluating Interactive Parsing

The goal of interactive semantic parsing is not
to parse the most interactions correctly on the
SPLASH test set, but more specifically to parse
those interactions correctly that the original text-to-
SQL model parsed incorrectly. For example, if a
hypothetical interactive parsing model A achieves
a high EM% on the SPLASH test set, but the “∆
w/ Interaction” metric with modern parsers is small,
then the model serves minimal utility in an actual
conversational setting. On the other hand, if a
model B performs poorly on the SPLASH test
set but demonstrates a high “∆ w/ Interaction”, we
would deem this model as the better interactive
semantic parser.

We argue, then, that the “Correction Acc. (%)”
metric from SPLASH should be replaced in favor
of the end-to-end accuracy, referred to as “∆ w/
Interaction” in Elgohary et al. (2021).

Specifically, future work should include Execu-
tion Accuracy (EX%) along with Exact Set Match
(EM%). As the set of errors made by modern
parsers increasingly drifts towards more difficult
gold SQL parses, it becomes more likely that the
EM% and EX% scores will be disjoint. Examining
the errors by T5-large, it was common for a gold
parse to be expressed with an “EXCEPT SELECT”
clause, whereas the predicted SQL executed identi-
cally with a “NOT IN” clause.

Additionally, as depicted in Table 3, the EX%
score is higher than EM% for all test sets except for
TaBERT. This is due to the fact that TaBERT does
not predict values. Instead, it uses the placeholder
“value” instead of string values, and “LIMIT 0” in
limit clauses11. Though these instances are not

11We find this odd, as the feedback provided in the TaBERT
test set comments on the values

judged as incorrect with EM, they are penalized
with EX.

6 Conclusion

We present a new model, DestT5 (Dynamic
Encoding of Schemas using T5), which achieves a
new state-of-the-art correction accuracy on the in-
teractive parsing dataset SPLASH. By using T5 as
a schema prediction model, we display better per-
formance compared to classification-based meth-
ods. We validate our results on a new test set for
interactive semantic parsing based on a modern
parser, and offer recommendations for evaluating
future systems.

Limitations

As mentioned in Table 3, one limitation of the cur-
rent study is the small scale of the test sets with
modern parsers. We encourage future work to em-
phasize the development and evaluation on these
test sets, specifically those which more closely re-
flect the current SoTA in text-to-SQL (e.g. T5).
Additionally, though we have shown using an auxil-
iary schema prediction model greatly improves the
performance of a text-to-SQL system, the addition
of a model for the text-to-SQL task is a limitation
given the time and training resources required.
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Abstract
Dialogue state tracking (DST) is designed to
track the dialogue state during the conversa-
tions between users and systems, which is the
core of task-oriented dialogue systems. Main-
stream models predict the values for each slot
with fully token-wise slot attention from dia-
logue history. However, such operations may
result in overlooking the neighboring relation-
ship. Moreover, it may lead the model to as-
sign probability mass to irrelevant parts, while
these parts contribute little. It becomes severe
with the increase in dialogue length. Therefore,
we investigate sparse local slot attention for
DST in this work. Slot-specific local semantic
information is obtained at a sub-sampled tem-
poral resolution capturing local dependencies
for each slot. Then these local representations
are attended with sparse attention weights to
guide the model to pay attention to relevant
parts of local information for subsequent state
value prediction. The experimental results on
MultiWOZ 2.0 and 2.4 datasets show that the
proposed approach effectively improves the
performance of ontology-based dialogue state
tracking, and performs better than token-wise
attention for long dialogues.

1 Introduction

Task-oriented dialogue systems aim to assist users
to complete certain tasks and have drawn great at-
tention in both academia and industry (Young et al.,
2010, 2013; Chen et al., 2017). As the core of task-
oriented dialogue systems, dialogue state tracking
(DST) is designed to track the dialogue states dur-
ing the conversation between users and systems,
which is generally expressed as a list of {(domain,
slot, value)} representing user’s goal (Rastogi et al.,
2017, 2018). The estimated dialogue states are used
for subsequent actions.

To achieve the dialogue state, value prediction is
made for each slot given the dialogue history. At
each turn, the model inquires of the dialogue his-
tory and predicts the state values accordingly (Xu

and Hu, 2018; Ren et al., 2018; Wu et al., 2019;
Zhang et al., 2019; Heck et al., 2020). With it, how
to extract appropriate context information in the
noisy dialogue history is crucial and challenging
(Hu et al., 2020). Yang et al. (2021) make an em-
pirical study about the effect of different contexts
on the performance of DST with several manually
designed rules. It indicates that the performance
of DST models benefits from selecting appropriate
context granularity.

In recent mainstream models, a fully token-wise
slot attention mechanism is widely used to cap-
ture slot-specific information with dialogue history.
The attention assigns an attention weight to each
token, measuring the relationship of each token
in dialogue history for the specified slot, and then
attends them with these weights. Although encour-
aging results have been achieved, it also brings
some risks. First, such operations disperse the dis-
tribution of attention, which results in overlooking
the neighboring relation (Yang et al., 2018). Some
entities (e.g., restaurant and attraction names) in
spoken dialogue are generally informal, diverse,
and local-compact, where the non-semantic tokens
may be included. Moreover, a limitation of the
used softmax computation is that the probability
distribution in the outputs always has full support
(Martins and Astudillo, 2016), i.e., softmax(z) > 0
for every vector z. It may lead a model to assign
probability mass to implausible parts of dialogue
history. Involving noise may make the model diffi-
cult to focus on the essential parts, and it may be
more severe with the increase in dialogue length
(Peters et al., 2019).

To tackle this problem, we propose a sparse
local slot attention mechanism for this task. In
our approach, local semantic information is firstly
achieved at a sub-sampled temporal resolution cap-
turing local dependencies for each slot. Then, these
local information is attended with sparse attention
weights generated by sparsemax function (Martins
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Figure 1: A demonstration of our model: (a) the entire framework, (b) the proposed sparse local slot attention.

and Astudillo, 2016), which outputs sparse poste-
rior distributions by assigning zero probability to
irrelevant contents in the dialogue history.

We conduct experiments to verify our approach
on MultiWOZ 2.0 and 2.4 datasets. The contribu-
tions can be addressed as follows: 1) We propose
a sparse local slot attention mechanism to lead the
model to focus on relevant local parts to the spe-
cific slot for the DST task; 2) We demonstrate that
the performance of DST benefits from introducing
local information with our proposed approach, and
make an empirical study that shows that our model
performs better in state prediction for name-related
slots and long dialogues than the models based on
fully token-wise attention.

2 Related Works

Dialogue state tracking (DST) is the core of task-
oriented dialogue systems. In the early years,
DST highly relies on hand-crafted semantic fea-
tures to predict the dialogue states (Williams and
Young, 2007; Thomson and Young, 2010; Wang
and Lemon, 2013), which is hard to handle lexical
and morphological variations in spoken language
(Lee et al., 2019). Benefiting from the rapid de-
velopment of deep learning methods and their suc-
cessful application in natural language processing,
neural method-based DST models have been pro-
posed. (Mrkšić et al., 2017) proposes a novel neural
belief tracking (NBT) framework with learning n-
gram representation of the utterance. Inspired by
it, sorts of neural network-based models have been
investigated for DST task (Nouri and Hosseini-Asl,
2018; Ren et al., 2018; Zhong et al., 2018; Hu et al.,

2020; Ouyang et al., 2020; Wu et al., 2019) and
achieves encouraging results.

Pre-trained models have brought natural lan-
guage processing to a new era in recent years.
Many substantial works have shown that the pre-
trained models can learn universal language repre-
sentations, which are beneficial for downstream
tasks (Mikolov et al., 2013; Pennington et al.,
2014; McCann et al., 2017; Sarzynska-Wawer et al.,
2021; Devlin et al., 2019). More recently, very
deep pre-trained language models, such as bidirec-
tional encoder representation from the transformer
(BERT) (Devlin et al., 2019) and generative pre-
training (GPT) (Radford et al., 2018), trained with
an increasing number of self-supervised tasks have
been proposed to make the models capturing more
knowledge from a large scale of corpora, which
have shown their abilities to produce promising
results in downstream tasks. In view of it, many
pieces of research of DST have explored to estab-
lish the models on the basis of pre-trained language
models (Hosseini-Asl et al., 2020; Kim et al., 2020;
Lee et al., 2019; Zhang et al., 2019; Chen et al.,
2020; Chao and Lane, 2019; Ye et al., 2021b; Heck
et al., 2020; Lin et al., 2020).

Related to extracting slot-specific information,
most of the previous studies rely on dense token-
wise attention (Lee et al., 2019; Wang et al., 2020;
Ye et al., 2021b). However, several pieces of re-
search have indicated that local information may
be missing with it (Yang et al., 2018; Shaw et al.,
2018; Sperber et al., 2018; Luong et al., 2015; Yang
et al., 2022). Motivated by it, we investigate intro-
ducing local modeling in this task. The most rele-
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vant research is (Yang et al., 2021), which makes a
comprehensive study of how different granularities
affect DST. However, this research employs simple
hand-crafted rules to neglect several utterances in
a dialogue history. Our proposed approach in this
work is data-driven.

3 Dialogue State Tracking with Sparse
Local Slot Attention

3.1 Encoding

As shown in Figure 1(a), BERTcontext is used for
encoding the dialogue context, whose parameters
are fine-tuned during training. Let’s define the dia-
logue history DT = {R1, U1, ..., RT , UT } as a set
of system responses R and user utterances U in T
turns of dialogue, where R = {Rt}Tt=1 and U =
{Ut}Tt=1. We define ET = {B1, ..., BT } as the di-
alogue states of T turns, and each Et is a set of slot
value pairs {(S1, V1), ..., (SJ , VJ)} of J slots. The
context encoder accepts the dialogue history till
turn t, which can be denoted as Xt = {Dt, E

′
t−1},

as the input and generates context vector represen-
tations Ht = BERTcontext(Xt).

Another pre-trained BERTsv is employed to en-
code the slots and candidate values. Its parame-
ters remain frozen during training. For those slots
and values containing multiple tokens, the vector
corresponding to the [CLS] token is employed to
represent them. For each slot Sj and value Vj ,
hSj = BERTsv(Sj), hVj = BERTsv(Vj).

3.2 Sparse Local Slot Attention

To extract slot-specific information, we propose
sparse local slot attention (SLSA). As shown in
Figure 1(b), sparse local slot attention accepts the
dialogue history Ht and the representation hSj of
the specific slot Sj . To obtain local information,
we employ a convolutional layer whose kernel has
size l and stride m over the context vector repre-
sentation of dialogue history. The convolutional
kernel accepts the local area in the dialogue history
representation and multiplies it with the learnable
parameters to obtain the local semantic representa-
tions.

H′
t = ReLU(Conv(Ht) +Ht) (1)

After that, multi-head attention with the sparse-
max function is employed to retrieve relevant in-
formation for each slot. It generates sparse distri-
bution to each local area. The sparsemax function

returns the Euclidean projection of the input vec-
tor z onto the probability simplex ∆K−1 := {p ∈
RK |1Tp = 1,p ≥ 0}. The projection is likely
to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (Martins and As-
tudillo, 2016).

Sparsemax(z) := arg min
p∈∆K−1

||p− z||2 (2)

Then the output is concatenated with each slot
to generate slot-specific representations through a
feed-forward layer.

Q
Sj

t = hSjWQ + bQ (3)

K
Sj

t = H′
tWK + bK (4)

V
Sj

t = H′
tWV + bV (5)

α
Sj

t = Sparsemax(
Q

Sj

t K
Sj

t

T

√
dk

)V
Sj

t (6)

C
Sj

t = W2ReLU(W1[hSj ,α
Sj

t ] + b1) + b2

(7)

Where WQ,bQ,WK ,bK , WV , and bV are the
parameters of the linear layers for projecting query,
key, and value respectively. dk = dh/N in which
dh is the hidden size of the model, and N is the
number of heads.

3.3 Slot Self-Attention
Slot self-attention is introduced to communicate in-
formation across different slots. Each sub-layer in
the self-attention layer consists of the self-attention
block and two fully connected layers of ReLU acti-
vation with layer normalization and residual con-
nection. Let Ct = [CS1

t , ...,CSJ
t ] and F1

t = Ct at
the first sub layer, then for the l-th sub-layer,

F̃l
t = LayerNorm(Fl

t), (8)

Gl
t = MultiHead(F̃l

t, F̃
l
t, F̃

l
t) + F̃l

t. (9)

For the l-th feed forward sub-layer,

G̃l
t = LayerNorm(Gl

t), (10)

Fl+1
t = FFN(G̃l

t) + G̃l
t. (11)

The output of the final layer is regarded as the final
slot specific vector FL+1

t = [fS1
t , ..., fSJ

t ].

3.4 Slot Value Matching
A Euclidean distance-based value prediction is per-
formed for each slot, the nearest value is chosen to
predict the state value.
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p(V j
t |Xt, Sj) =

exp(−d(hVj , f
Sj

t ))
∑

V ′
j∈νj exp(−d(hV ′

j , f
Sj

t ))

(12)

where d(·) is Euclidean distance function, and νj
denotes the value space of the slot Sj . The model
is trained to maximize the joint probability of all
slots. The loss function at each turn t is denoted
as the sum of the negative log-likelihood, Lt =∑J

j=1− log(p(V j
t |Xt, Sj)).

4 Experiments

4.1 Datasets

We conduct experiments using a couple of main-
stream datasets of task-oriented dialogue: Mul-
tiWOZ 2.0 and 2.4 datasets. MultiWOZ2.0
(Budzianowski et al., 2018) is currently the largest
open-source human-human conversational dataset
of multiple domains. MultiWOZ 2.4 is the latest
version and fixes the incorrect and inconsistent an-
notations (Ye et al., 2021a).

4.2 Implementation Details

The BERTcontext is a pre-trained BERT-base-
uncased model, which has 12 layers with 768 hid-
den units and 12 self-attention heads. Another
BERT-base-uncased model is used as the BERTsv.
For the sparse local slot attention, window size and
stride are investigated in the experiment. Padding
is added on both sides of the input if needed. The
number of attention heads is 4. Adam optimizer is
adopted with a batch size of 16, which trains the
model with a learning rate of 4e-5 for the encoder
and 1e-4 for other parts. The hyper-parameters are
selected from the best-performing model over the
validation set. We use a dropout with a probability
of 0.1 on the dialogue history during training.

4.3 Main Results

The main results are shown in Table 1. As we can
see, our model achieves the best performance on all
the datasets. We utilize the Wilcoxon signed-rank
test, the proposed method is statistically signifi-
cantly better (p < 0.05) than baselines. For the
MultiWOZ 2.0 dataset, our proposed SLSA model
(window size is 3 and stride is 1) achieves a JGA of
54.83% performing better than STAR with a JGA
of 54.53%, which is the previous SOTA. Moreover,
on the latest refined version MultiWOZ 2.4 fixing

Table 1: The joint goal accuracy (JGA) of different
models. SLSA denotes our proposed sparse local slot
attention.

Model MW2.0 MW2.4

TRADE (Wu et al., 2019) 48.93 54.97
SOM (Kim et al., 2020) 51.72 66.78
TripPy (Heck et al., 2020) - 59.62
SimpleTOD (Hosseini-Asl et al., 2020) - 66.78
SUMBT (Lee et al., 2019) 46.65 61.86
DS-DST (Zhang et al., 2019) 52.24 -
DS-Picklist (Zhang et al., 2019) 54.39 -
SAVN (Wang et al., 2020) 54.52 60.55
SST (Chen et al., 2020) 51.17 -
STAR (Ye et al., 2021b) 54.53 73.62
SLSA 54.83 77.92

Table 2: The results on the MultiWOZ 2.4 dataset using
our model with different settings.

JGA (%) SA (%)

SLSA 77.92 99.06
w/o Sparse 75.79 98.96
w/o Local 74.65 98.89
w/o Both 73.88 98.84

many annotations in the test set, our model obtains
a JGA of 77.92%. To sum up, our proposed model
achieves a slight improvement on the original Mul-
tiWOZ 2.0 dataset, and a significant improvement
on the latest refined MultiWOZ 2.4 dataset with
a clean test set. We also make an investigation
about the effects of local granularities, as shown in
Appendix A.1.

4.4 Ablation Study
To further verify the proposed approach, we present
some results that show the effectiveness of the
components in the proposed approaches. Table
2 presents the joint goal accuracy and slot accuracy
obtained when we progressively remove the com-
ponents in our proposed model on MultiWOZ 2.4
dataset. On one hand, comparing SLSA and "w/o
Local" (or "w/o Sparse" and "w/o both"), when
the local pattern component is removed, the perfor-
mance of corresponding model decreases. On the
other hand, comparing SLSA and "w/o Sparse" (or
"w/o Local" and "w/o both" when the sparse com-
ponent is removed, the performance of the corre-
sponding model decreases. It shows that the sparse
and the local components are effective and impor-
tant to the proposed model.

4.5 Error Analysis
An error analysis of each slot for the previous
SOTA model STAR and our models on MultiWOZ
2.4 is shown in Figure 2, in which the lower the
better. The four slots with the highest error rates
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Figure 2: The error rate per slot of STAR and our models
on MultiWOZ 2.4 dataset.

Figure 3: Joint goal accuracy per turn of STAR and our
models on MultiWOZ 2.4 dataset.

are hotel-type with 3.62%, attraction-name with
2.52%, restaurant-name with 2.32% and hotel-
name with 2.17%. It can be noticed that the
later three are name-related whose values are di-
verse, local-compact, and may includes several non-
semantic tokens. Our proposed models perform
better than STAR on these three slots, evidenced by
that the error rates are lower. In addition, our model
performs better in several categorical slots such as
hotel-internet, hotel-parking, hotel-stars and book
stay. We make a case study shown in Appendix
A.2 to have a straightforward understanding of our
proposed approach.

4.6 Performance for Long Dialogues

Figure 3 depicts the joint goal accuracy per turn of
our models and STAR on MultiWOZ 2.4 dataset.
Joint goal accuracy per turn is to measure the perfor-
mance for long dialogues. It is considered correct
if and only all of the values are correctly predicted
for each slot until the n-th turn. In the beginning,
the performance of these two models for short turns
is comparable. Then it decreases as the dialogue
length becomes longer since the previous states are
employed as part of the input where some mistakes
may be included. The trend of our model is a lit-
tle milder. For very long dialogues whose length
is larger than 7, our model performs better than

STAR. It shows our model performs better for the
long dialogues DST.

5 Conclusion

In his work, we propose a sparse local slot attention
for dialogue state tracking to alleviate allocating at-
tention weights to content unrelated to the specific
slot of interest. In our approach, local semantic
information is firstly achieved at a sub-sampled
temporal resolution capturing local dependencies
for each slot. Then, these local information is at-
tended with sparse attention weights generated by
sparsemax function. The experimental results show
that, comparing to several existing models based
on dense token-wise attention, our approach effec-
tively improves the performance of ontology-based
dialogue state tracking in the state prediction for
name-related slots and long dialogues.
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Limitations

In this work, we propose a sparse local slot atten-
tion (SLSA) mechanism to make the model pay
attention to slot-specified local areas in dialogue
history, and then attend them with sparse distribu-
tion generated by sparsemax to neglect some re-
dundant parts. This paper shows the effectiveness
of our proposed approaches in state prediction for
some specified slots and long dialogues. While we
show that the model with SLSA is competitive in
dialogue state tracking, there are limitation of that
provide avenues for future works. First, it is not as
easy to apply SLSA to generation-based dialogue
state tracking. Different from ontology-based man-
ners, the condition may be different in the case of
generative DST since entire successive information
involved in language modeling may be important
for language generation. Therefore, how to handle
the local and sparse properties for the generative
model need to further consider. Second, convo-
lution operation considers a fixed bounded local
context. It is a challenge to handle local properties
of various lengths.
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Table 3: The results with different sizes ls and strides
ms of the local window in our model.

Setup SLSAconv

l = 1,m = 1 74.82
l = 3,m = 1 77.92
l = 3,m = 2 76.45
l = 3,m = 3 76.87
l = 5,m = 1 74.89
l = 5,m = 3 74.46
l = 5,m = 5 73.44

A Appendix

A.1 Effects of Different Locality Granularities
We compare our model with different sizes and
strides of the window of the local pattern to see
how different granularities affect the performance
on MultiWOZ 2.4 dataset, as shown in Table 3.

It shows that the best result is achieved when the
size of 3 and the stride of 1, while the performance
is not improved by enlarging the size of the local
window or decreasing it. Note that, as mentioned
in the experimental settings, in the main results,
the hyperparameters of window size and stride are
selected by tuning on the validation set.

A.2 Case Study
Figure 4 and 5 demonstrate the predicted states of
STAR and our model on two pieces of dialogues
from the MultiWOZ 2.4 dataset. We color the in-
put with the weights generated by sparse local slot
attention in our model and the dense token-wise at-
tention used in STAR. Note that in our model, one
position with a dark background means the local
area around this position is focused. It is different
from STAR, in which one position denotes a token.

As shown in Figure 4, although STAR captures
the relevant information for attraction-name but
not the best. Our models are able to focus on the
local area covering the entity. As shown in Figure
5, the user says "nothing in particular" indicating
he/him does not prefer "a certain area". STAR
fails to capture this information, and its attention is
scattered. Our model realizes this and successfully
gets the user’s point. Although the values "none"
and "do not care" indicate the attraction-area does
not need concrete values, they denote the user’s
different intentions.

Figure 4: The predicted dialogue states for slot
attraction− name with STAR and our model on dia-
logue PMUL1424.

Figure 5: The predicted dialogue states for slot
attraction − area with STAR and our model on di-
alogue PMUL2415.
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Abstract
We propose LLM-EVAL, a unified multi-
dimensional automatic evaluation method for
open-domain conversations with large language
models (LLMs). Existing evaluation methods
often rely on human annotations, ground-truth
responses, or multiple LLM prompts, which
can be expensive and time-consuming. To ad-
dress these issues, we design a single prompt-
based evaluation method that leverages a uni-
fied evaluation schema to cover multiple dimen-
sions of conversation quality in a single model
call. We extensively evaluate the performance
of LLM-EVAL on various benchmark datasets,
demonstrating its effectiveness, efficiency, and
adaptability compared to state-of-the-art evalu-
ation methods. Our analysis also highlights the
importance of choosing suitable LLMs and de-
coding strategies for accurate evaluation results.
LLM-EVAL offers a versatile and robust solu-
tion for evaluating open-domain conversation
systems, streamlining the evaluation process
and providing consistent performance across
diverse scenarios.

1 Introduction

Effective evaluation of open-domain conversation
systems is a critical yet challenging problem in
natural language processing research (Smith et al.,
2022). Accurate and consistent evaluation meth-
ods are essential for understanding and improv-
ing the performance of dialogue systems. Tradi-
tional automatic evaluation metrics, such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004),
are insufficient for capturing the nuances of natu-
ral language conversations (Liu et al., 2016; De-
riu et al., 2021), leading to the development of
various advanced metrics (Tao et al., 2018; Ghaz-
arian et al., 2019; Sai et al., 2020; Huang et al.,
2020; Mehri and Eskenazi, 2020b; Phy et al., 2020;
Zhang et al., 2021a; Li et al., 2021; Fu et al., 2023;
Liu et al., 2023). However, most existing meth-
ods require annotation data , human references, or

LLM-Eval
{evaluation schema}

Score the following dialogue response gener-
ated on a continuous scale from 0.0 to 5.0.

Context:

: My cat likes to eat cream.
: Be careful not to give too much, 

though.

Dialogue response :

: Don't worry, I only give a little bit 
as a treat.

Appropriateness: 3.0

Content: 2.5

Grammer: 4.0

Relevence: 2.0

Figure 1: An illustration of our proposed LLM-EVAL
framework, which leverages a unified multi-dimensional
evaluation schema and a single prompt to efficiently
evaluate open-domain conversations with large language
models.

multiple prompts, which could be expensive, time-
consuming, or prone to errors.

In this paper, we address the problem of eval-
uating open-domain conversation systems with a
focus on large language models (LLMs) (Figure
1). Our goal is to develop an efficient and accurate
evaluation method that covers multiple dimensions
of conversation quality, such as content, grammar,
relevance, and appropriateness, without requiring
human references or multiple prompts. We build
upon recent advances in LLMs (Brown et al., 2020;
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Bai et al., 2022; OpenAI, 2023), and propose a uni-
fied multi-dimensional evaluation method called
LLM-EVAL.

Existing evaluation methods have demonstrated
promising results in various aspects of dialogue
evaluation. However, they often rely on human
annotations (Mehri and Eskenazi, 2020b; Phy et al.,
2020), ground-truth responses (Ghazarian et al.,
2020; Zhang et al., 2020a), or multiple LLM infer-
ences (Fu et al., 2023; Liu et al., 2023), limiting
their efficiency and adaptability in practical scenar-
ios. We aim to bridge this gap by proposing LLM-
EVAL, a single-prompt-based evaluation method
that leverages a unified evaluation schema to cover
multiple dimensions of conversation quality in a
single model call.

In LLM-EVAL, we design a natural language
instruction that defines the evaluation task and de-
sired criteria, as well as a format instruction that
specifies the structure and range of scores for each
dimension. The single prompt is created by con-
catenating the dialogue context, reference (if avail-
able), and generated response, and then fed to a
large language model, which outputs scores for
each dimension based on the defined schema.

We extensively evaluate the performance of
LLM-EVAL on a variety of benchmark datasets,
covering diverse dialogue systems and evaluation
dimensions. Our experiments demonstrate that
LLM-EVAL consistently outperforms most base-
lines and state-of-the-art evaluation methods in
terms of correlation with human judgments. The
proposed method is also robust and versatile, adapt-
ing to different scoring ranges and evaluation sce-
narios.

In summary, our main contributions are 3-fold:

• We propose LLM-EVAL, a unified multi-
dimensional automatic evaluation method for
open-domain conversations with large lan-
guage models, which streamlines the evalu-
ation process by using a single prompt and a
unified evaluation schema.

• We extensively evaluate the performance
of LLM-EVAL on a variety of benchmark
datasets, demonstrating its effectiveness and
efficiency in comparison with state-of-the-art
evaluation methods.

• We provide an in-depth analysis of the impact
of different LLMs and decoding methods on
the performance of LLM-EVAL, highlighting

the importance of choosing suitable LLMs
and decoding strategies for accurate evalua-
tion results.

2 Related Work

Multi-Dimensional Metrics Multi-dimensional
evaluation metrics have been proposed to assess
various aspects of dialogue quality, such as content,
grammar, relevance, and appropriateness. Exam-
ples include USR (Mehri and Eskenazi, 2020b),
which trains multiple models to measure qualities
like fluency, relevance, and knowledge condition-
ing, and GRADE (Huang et al., 2020), which mod-
els topic transition dynamics in dialogue history
using a graph representation. FlowScore (Li et al.,
2021) leverages dynamic information flow in di-
alog history to measure dialogue quality. Unlike
these approaches, LLM-EVAL employs a single
prompt-based evaluation method that leverages a
unified evaluation schema, streamlining the eval-
uation process and providing a more efficient and
adaptable solution.

Unsupervised Metrics Unsupervised evaluation
metrics aim to assess the quality of dialogue re-
sponses without requiring human annotations. No-
table unsupervised methods include DEB (Sai et al.,
2020), which fine-tunes BERT with an NSP ob-
jective on a dataset with relevant and adversarial
irrelevant responses, and FED (Mehri and Eske-
nazi, 2020a), an unsupervised method that mea-
sures dialogue quality using features derived from
response embeddings and language model prob-
abilities. In contrast, LLM-EVAL leverages the
power of large language models to provide a uni-
fied multi-dimensional evaluation, achieving better
performance and adaptability compared to existing
unsupervised methods.

Large Language Models for Evaluation Re-
cent works have explored using large language
models for dialogue evaluation. GPTScore (Fu
et al., 2023) employs models like GPT-3 to assign
higher probabilities to quality content, using mul-
tiple prompts for a multi-dimensional assessment.
Chen et al. (2023) explores using ChatGPT and
InstructGPT to evaluate text quality without refer-
ences, and compares different paradigms of using
LLMs, including generating explicit scores, using
model confidence to determine implicit scores, and
directly comparing pairs of texts. G-EVAL (Liu
et al., 2023), a framework that leverages LLMs
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with chain-of-thoughts (CoT)(Wei et al., 2022) and
a form-filling paradigm. G-EVAL with GPT-4
as the backbone model achieves a high correla-
tion with human judgments on a summarization
task. However, both GPTScore and G-EVAL re-
quire multiple prompts or complex scoring func-
tions that use probabilities of output tokens and
their weighted summation as the final score, which
can be inefficient or time-consuming. LLM-EVAL

addresses these issues by using a single prompt
and a unified evaluation schema, offering a more
efficient and adaptable evaluation method for open-
domain conversations. Additionally, LLM-EVAL

provides multi-dimensional evaluation scores in a
single model call, further streamlining the evalua-
tion process.

3 Methodology

LLM-EVAL is an efficient prompt-based evalua-
tor tailored for open-domain conversations with
large language models. It encompasses a single
prompt that addresses the evaluation task, desired
evaluation criteria, and a unified multi-dimensional
evaluation schema. This method eradicates the ne-
cessity for numerous LLMs inferences or intricate
scoring functions (Fu et al., 2023; Liu et al., 2023),
while still delivering a comprehensive assessment
of the generated text.

Unified Evaluation Schema The evaluation
schema is a natural language instruction that de-
fines the task and the desired evaluation criteria.
It is designed to cover multiple dimensions of the
evaluation, such as content, grammar, relevance,
and appropriateness. The schema is provided as
a format instruction, which specifies the structure
and the range of the scores for each dimension. For
example, the evaluation schema can be:

Human: The output should be format-
ted as a JSON instance that conforms
to the JSON schema below. ... Here is
the output schema: {"properties": {"con-
tent": {"title": "Content", "description":
"content score in the range of 0 to 100",
"type": "integer", "grammar": ...}

Single Prompt for Evaluation The single
prompt is designed to include the necessary dia-
logue context and the target response that needs
to be evaluated, along with the evaluation schema.
The prompt is concatenated with the dialogue con-
text, the reference (if available), and the generated

response, and then fed to the large language model
to output a score for each evaluation dimension,
based on the defined schema. For example, the
prompt for evaluating a dialogue response with
human reference can be:

Context: {context}
Reference: {reference}
Dialogue response: {response}

Efficient Evaluation By using a single prompt
with a unified evaluation schema, LLM-EVAL can
efficiently obtain multi-dimensional scores for the
responses without the need for multiple prompts.
The large language model is called only once, and it
directly provides the evaluation scores for each di-
mension based on the defined schema. For instance,
given a dialogue context, reference, and generated
response, the LLM-EVAL method would produce
an example output that looks like this:

Output: {"appropriateness": 3.0, "con-
tent": 2.5, "grammar": 4.0, "relevance":
2.0}

This output showcases the multi-dimensional
evaluation of the generated response, with each
dimension receiving a score based on the prede-
fined schema. The scores help in understanding
the quality of the response in terms of appropri-
ateness, content, grammar, and relevance, while
still maintaining the efficiency of the evaluation
process by requiring just a single call to the large
language model. For a detailed description of the
prompt templates used in our experiments with
LLM-EVAL, please refer to Appendix A.

4 Experiments

4.1 Datasets and Benchmarks
Our proposed LLM-EVAL method is assessed on
an array of datasets spanning diverse dialogue sys-
tems and evaluation dimensions. We provide a
concise overview of the datasets and their features
in this section. The datasets include human annota-
tions, where each entry comprises a dialogue con-
text, a generated response, and associated scores. A
ground-truth human reference may also be present.
For data lacking human reference, we only evaluate
reference-free metrics.

DSTC10 Hidden Set The DSTC10 hidden set
(Zhang et al., 2021b) is a multi-dimensional evalua-
tion dataset that includes JSALT (Kong-Vega et al.,
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2018), NCM, ESL (Vinyals and Le, 2015; Sedoc
et al., 2019; Lee et al., 2020), Topical-DSTC10
(Gopalakrishnan et al., 2019) and Persona-DSTC10
(Zhang et al., 2018). JSALT contains human-
generated dialogue segments from EmpatheticDi-
alogues (Rashkin et al., 2019) and TopicalChat
(Gopalakrishnan et al., 2019). NCM and ESL are
datasets with pairwise comparisons between sys-
tem responses, collected from an English learn-
ing website and hand-crafted prompts. Topical-
DSTC10 and Persona-DSTC10 are newly created
datasets that include responses from various dia-
logue systems, such as LSTM Seq2Seq, HRED,
VHRED, BlenderBot, DialoGPT, T5, and GPT-3.

Overall Scores with Human Reference
TopicalChat-USR evaluates response quality in
knowledge-grounded dialogues, emphasizing
topical understanding. PersonaChat-USR measures
response quality in personalized conversations,
highlighting the incorporation of speaker personas
(Mehri and Eskenazi, 2020b). ConvAI2-GRADE
examines the quality of chit-chat dialogue systems,
focusing on engaging and contextually relevant
responses. DailyDialog-GRADE investigates re-
sponse quality in everyday conversational contexts.
EmpatheticDialogue-GRADE assesses the quality
of empathetic responses in dialogue systems
(Huang et al., 2020). DSTC6 evaluates end-to-end
conversation modeling with human-generated
responses (Hori and Hori, 2017).

Overall Scores without Human Reference
DailyDialog-PredictiveEngagement evaluates en-
gagement in dialogue systems without relying on
human references (Ghazarian et al., 2020). FED is
an unsupervised method that measures the quality
of dialogue responses without using human ref-
erences (Mehri and Eskenazi, 2020a). DSTC9
focuses on the end-to-end evaluation of context-
aware dialogue systems without human references
(Mehri et al., 2022).

We compare the performance of LLM-EVAL

with existing evaluation methods on these datasets
to demonstrate its effectiveness and efficiency in
evaluating open-domain conversations. The evalu-
ation results are presented in terms of correlation
with human judgments, using Pearson’s correlation
coefficient (r) and Spearman’s correlation coeffi-
cient (ρ).

4.2 LLM-EVAL Configurations

We evaluate LLM-EVAL under different settings to
demonstrate its effectiveness and adaptability. The
configurations are as follows:

LLM-EVAL 0-5 The evaluation scores for each
dimension are in the range of 0 to 5 with one dec-
imal place, which is more close to common 1-5
Likert scale used in human evaluation.

LLM-EVAL 0-100 The evaluation scores for
each dimension are in the range of 0 to 100 as inte-
gers, providing a finer-grained scale for evaluation.

The evaluation schema prompt for both config-
urations remains the same, with only the range of
scores differing between them. We test the LLM-
EVAL method with and without human references
for each configuration if applicable.

Unless specified otherwise, throughout our ex-
periments and evaluations, we employ the An-
thropic Claude API with the claude-v1.3 model
and use greedy decoding, which selects the token
with the highest probability at each time step during
the generation process.

4.3 Baseline Evaluation Metrics

We compare LLM-EVAL with several state-of-the-
art evaluation metrics, including both traditional
and LLM-based approaches.

• Deep-AM-FM measures dialog quality with
Adequacy Metric (AM) and Fluency Met-
ric (FM), utilizing BERT embeddings and
language model probabilities (Zhang et al.,
2020a).

• DSTC10 Team 1 boosted DyanEval’s (Zhang
et al., 2021a) turn-level evaluation perfor-
mance by integrating auxiliary objectives and
combining USL-H(Phy et al., 2020), DEB
(Sai et al., 2020), and an improved DyanEval,
with weights based on input dialogue data
characteristics (Zhang et al., 2021b).

• MME-CRS introduces the Multi-Metric Eval-
uation, consisting of 5 parallel sub-metrics to
assess dialogue quality across fluency, rele-
vance, engagement, specificity, and topic co-
herence. The approach utilizes Correlation
Re-Scaling to model sub-metric relationships
(Zhang et al., 2022).

• BERTScore computes the F1 score by match-
ing token embeddings in human references
and system responses (Zhang et al., 2020b).
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Spearman ρ (%) JSALT ESL NCM TopicalChat-DSTC10 PersonaChat-DSTC10 AvgAPP APP APP APP CON GRA REL APP CON GRA REL

Deep-AM-FM 5.1 32.3 16.5 18.2 9.4 17.9 26.2 21.0 14.7 19.1 24.1 18.4
DSTC10 Team 1 27.7 42.0 29.9 29.7 7.0 11.6 37.0 38.6 19.3 18.6 44.5 30.2
MME-CRS 11.7 41.4 29.9 32.6 17.2 9.0 44.8 45.6 32.5 22.0 54.8 31.0

without human reference
LLM-EVAL 0-5 23.2 51.8 34.4 38.6 20.6 33.2 42.8 48.2 36.9 34.5 52.1 37.8
LLM-EVAL 0-100 27.3 50.5 34.2 38.6 21.3 32.7 41.1 47.6 37.8 30.2 51.9 37.6
with human reference
LLM-EVAL 0-5 25.4 51.8 32.5 38.0 21.5 31.2 42.2 47.9 36.0 30.6 49.1 36.9
LLM-EVAL 0-100 25.7 51.9 30.8 38.2 21.6 30.0 40.2 45.4 34.8 28.6 49.3 36.0

Table 1: Spearman correlation coefficients between human ratings and automatic metrics across multiple dimensions
(APP for Appropriateness, CON for Content, GRA for Grammar, and REL for Relevance) for DSTC10 hidden test
datasets with human reference. Each team is represented by the best submission on 5 test datasets. The best score
for each column is highlighted in bold. The second best is underlined. Note that the last column is averaged over 11
dimension-wise correlation scores of all five datasets.

r / ρ (%) TopicalChat PersonaChat ConvAI2 DD ED DSTC6 Average

BLEU-4 21.6 / 29.6 13.5 / 9.0 0.3 / 12.8 7.5 / 18.4 -5.1 / 0.2 13.1 / 29.8 8.5 / 16.6
ROUGE-L 27.5 / 28.7 6.6 / 3.8 13.6 / 14.0 15.4 / 14.7 2.9 / -1.3 33.2 / 32.6 16.5 / 15.4
BERTScore 29.8 / 32.5 15.2 / 12.2 22.5 / 22.4 12.9 / 10.0 4.6 / 3.3 36.9 / 33.7 20.3 / 19.0
DEB 18.0 / 11.6 29.1 / 37.3 42.6 / 50.4 33.7 / 36.3 35.6 / 39.5 21.1 / 21.4 30.0 / 32.8
GRADE 20.0 / 21.7 35.8 / 35.2 56.6 / 57.1 27.8 / 25.3 33.0 / 29.7 11.9 / 12.2 30.9 / 30.2
USR 41.2 / 42.3 44.0 / 41.8 50.1 / 50.0 5.7 / 5.7 26.4 / 25.5 18.4 / 16.6 31.0 / 30.3
USL-H 32.2 / 34.0 49.5 / 52.3 44.3 / 45.7 10.8 / 9.3 29.3 / 23.5 21.7 / 17.9 31.3 / 30.5

without human reference
LLM-EVAL 0-5 55.7 / 58.3 51.0 / 48.0 59.3 / 59.6 31.8 / 32.2 42.1 / 41.4 43.3 / 41.1 47.2 / 46.8
LLM-EVAL 0-100 49.0 / 49.9 53.3 / 51.5 61.3 / 61.8 34.6 / 34.9 43.2 / 42.3 44.0 / 41.8 47.6 / 47.0
with human reference
LLM-EVAL 0-5 56.5 / 59.4 55.4 / 53.1 43.1 / 43.8 32.0 / 32.2 40.0 / 40.1 47.0 / 45.5 45.7 / 45.7
LLM-EVAL 0-100 55.6 / 57.1 53.8 / 52.7 45.6 / 45.9 33.4 / 34.0 43.5 / 43.2 49.8 / 49.9 47.0 / 47.1

Table 2: Correlation coefficients (Pearson r and Spearman ρ) between human ratings and automatic metrics in
terms of overall scores for datasets with human reference. We use the following abbreviations: TopicalChat
(TopicalChat-USR), PersonaChat (PersonaChat-USR), ConvAI2 (ConvAI2-GRADE), DD (DailyDialog-GRADE),
ED (EmpatheticDialogue-GRADE). The best score for each column is highlighted in bold. The second best is
underlined.

• DEB constructs a dialog dataset with relevant
and adversarial irrelevant responses, then fine-
tunes BERT with an NSP objective (Sai et al.,
2020).

• GRADE models topic transition dynamics
in dialog using a graph representation of the
dialog history (Huang et al., 2020).

• USR trains several models to measure differ-
ent qualities of dialogs, including fluency, rel-
evance, and knowledge conditioning (Mehri
and Eskenazi, 2020b).

• USL-H combines three models trained with
different objectives (VUP, NSP, MLM) to eval-
uate response validity, sensibleness, and like-
lihood (Phy et al., 2020).

• DynaEval leverages a graph structure to
model dialog-level interactions between user
and system (Zhang et al., 2021a).

• FlowScore models dynamic information flow
in dialog history and measures dialog qual-
ity using DialoFlow representations (Li et al.,
2021).

• GPTScore evaluates text using models like
GPT-3, assigning higher probabilities to qual-
ity content through multiple prompts for a
multi-dimensional assessment. However, it
may not be as effective as LLM-EVAL, which
only requires a single prompt (Fu et al., 2023).

• Traditional Metrics: We also include classic
metrics such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), which have known
limitations in dialogue evaluation.

4.4 Results of DSTC10 Hidden Set

The results of our proposed LLM-EVAL method
on the DSTC10 hidden set are presented in Table
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r / ρ (%) DailyDialog-PE FED DSTC9 AverageTurn-Level Turn-Level Dialog-Level Dialog-Level

DynaEval 16.7 / 16.0 31.9 / 32.3 50.3 / 54.7 9.3 / 10.1 27.1 / 28.3
USL-H 68.8 / 69.9 20.1 / 18.9 7.3 / 15.2 10.5 / 10.5 26.7 / 28.6
FlowScore - -6.5 / -5.5 -7.3 / -0.3 14.7 / 14.0 0.3 / 2.7

GPTScore - - / 38.3 - / 54.3 - - / 46.3
LLM-EVAL 0-5 71.0 / 71.3 60.4 / 50.9 67.6 / 71.4 15.9 / 16.5 53.7 / 52.5
LLM-EVAL 0-100 71.4 / 71.0 59.7 / 49.9 64.4 / 70.4 16.1 / 18.6 52.9 / 52.5

Table 3: Correlation coefficients (Pearson r and Spearman ρ) between human ratings and automatic metrics in terms
of overall scores for datasets without human reference. The best score for each column is highlighted in bold. The
second best is underlined.

1. We compare the performance of LLM-EVAL

with other participating teams and baselines in the
DSTC10 challenge. The evaluation is performed in
terms of Spearman correlation coefficients between
human ratings and automatic metrics across multi-
ple dimensions, including Appropriateness (APP),
Content (CON), Grammar (GRA), and Relevance
(REL).

The results show that LLM-EVAL consistently
outperforms most of the baselines and even the
best performing team in DSTC10 across different
dimensions and datasets. In particular, LLM-EVAL

with a 0-5 score range achieves the highest average
Spearman correlation coefficient of 0.378 among
all the methods without human reference.

When comparing the two LLM-EVAL configura-
tions, both 0-5 and 0-100 settings demonstrate com-
petitive performance, with the 0-5 configuration
slightly outperforming the 0-100 configuration in
both cases with or without human reference. This
indicates that the LLM-EVAL method is robust
and versatile in evaluating open-domain conversa-
tions, as it can adapt to different scoring ranges
and consistently outperform all baselines and the
best performing team in DSTC10 across various
dimensions and datasets.

4.5 Overall Scores with Human Reference

The results of LLM-EVAL on datasets with over-
all scores and human references are presented in
Table 2. We compare the performance of LLM-
EVAL with other top-performing evaluation meth-
ods (Yeh et al., 2021), such as BLEU, ROUGE,
BERTScore, DEB, GRADE, USR, and USL-H.
The meta-evaluation is performed in terms of Pear-
son correlation coefficient (r) and Spearman cor-
relation coefficient (ρ) between human ratings and

automatic metrics.
For the DailyDialog-GRADE, ConvAI2-

GRADE, and EmpatheticDialogue-GRADE
datasets, we use the "Relevance" dimension for
evaluation, while for the DSTC6 dataset, we use
the “Overall” score. For TopicalChat-USR and
PersonaChat-USR, we predict all the "Engaging,
Maintains Context, Natural, Overall, Understand-
able, Uses Knowledge" dimensions in the original
annotations but only use the "Overall" score for
meta-evaluation.

LLM-EVAL consistently outperforms most of
the baselines across the datasets and correlation
coefficients, with LLM-Eval 0-100 configuration
achieving the highest average correlation coeffi-
cient across all datasets.

The consistent performance of both configura-
tions across different datasets and dimensions in-
dicates that LLM-EVAL is a reliable and effective
evaluation tool for open-domain conversations with
human references. Its ability to adapt to different
scoring ranges while maintaining competitive per-
formance against state-of-the-art evaluation meth-
ods showcases the versatility and robustness of the
LLM-EVAL approach.

4.6 Overall Scores without Human Reference

Table 3 presents the performance of LLM-EVAL

on datasets without human references, comparing
it with other high-performing evaluation methods
such as DynaEval, USL-H, and FlowScore.

For the evaluation of DailyDialog-
PredictiveEngagement and DSTC9 datasets,
we utilize the "Overall" score. In the FED
dataset, we predict "Correctness, Engagement,
Fluency, Interestingness, Overall, Relevance,
Semantically Appropriateness, Specificity, and
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Spearman ρ (%) Topical-DSTC10 Persona-DSTC10 AverageAPP CON GRA REL APP CON GRA REL

Deep-AM-FM 18.2 9.4 17.9 26.2 21.0 14.7 19.1 24.1 18.9
DSTC10 Team 1 29.7 7.0 11.6 37.0 38.6 19.3 18.6 44.5 25.8
MME-CRS 32.6 17.2 9.0 44.8 45.6 32.5 22.0 54.8 32.3

without human reference
LLM-EVAL 0-5

Anthropic Claude 38.6 20.6 33.2 42.8 48.2 36.9 34.5 52.1 38.4
Anthropic Claude top_p = 0.9 31.9 16.9 30.2 38.5 39.4 30.2 28.9 46.3 32.8
OpenAI ChatGPT 35.7 18.4 33.1 37.3 43.5 33.4 30.1 48.8 35.0
OpenAI GPT-3.5 29.3 16.9 20.9 37.1 36.5 30.2 21.7 45.2 29.7

LLM-EVAL 0-100

Anthropic Claude 38.6 21.3 32.7 41.1 47.6 37.8 30.2 51.9 37.7
Anthropic Claude top_p = 0.9 30.1 15.6 27.3 37.7 36.2 27.9 25.9 45.4 30.8
OpenAI ChatGPT 36.2 16.7 33.4 36.0 44.0 31.7 31.4 48.1 34.7
OpenAI GPT-3.5 28.2 13.9 23.5 34.0 34.8 24.7 21.7 42.9 28.0

with human reference
LLM-EVAL 0-5

Anthropic Claude 38.0 21.5 31.2 42.2 47.9 36.0 30.6 49.1 37.1
Anthropic Claude-instant 26.5 14.3 30.1 27.0 33.4 30.5 25.8 35.2 27.9
OpenAI ChatGPT 34.0 18.9 30.3 35.1 39.4 30.0 25.6 40.9 31.8
OpenAI GPT-3.5 30.0 17.3 21.2 38.8 37.9 28.8 20.8 45.1 30.0

LLM-EVAL 0-100

Anthropic Claude 38.2 21.6 30.0 40.2 45.4 34.8 28.6 49.3 36.0
Anthropic Claude-instant 28.0 14.3 32.1 34.0 37.5 31.1 32.0 40.8 31.2
OpenAI ChatGPT 34.6 20.6 31.1 35.4 39.7 31.3 23.8 44.1 32.6
OpenAI GPT-3.5 12.4 20.8 30.5 37.8 26.6 20.7 24.0 40.0 26.6

Table 4: Spearman correlation coefficients between human ratings and LLM-EVAL with different configurations
across multiple dimensions (APP for Appropriateness, CON for Content, GRA for Grammar, and REL for Relevance)
for Topical-DSTC10 and Persona-DSTC10. The best score for each column is highlighted in bold. The second best
is underlined.

Understandability" dimensions for turn-based
evaluation, and "Coherence, Consistency, Topic
Depth, Diversity, Error Recovery, Flexibility,
Informativeness, Inquisitiveness, Likability,
Overall, and Understandability" dimensions for
dialogue-based evaluation. Nonetheless, only the
"Overall" score is used for meta-evaluation in each
scenario.

Both LLM-EVAL configurations, 0-5 and 0-100,
consistently display strong performance across the
datasets, highlighting their resilience and flexibil-
ity. The method’s capacity to accommodate differ-
ent scoring ranges while maintaining competitive-
ness against state-of-the-art evaluation techniques
demonstrates LLM-EVAL’s adaptability and ro-
bustness. This establishes its value as an efficient
and versatile evaluation solution in reference-free
settings.

5 Analysis

5.1 Different LLMs

In this section, we analyze the performance of
LLM-EVAL when using different large language
models for evaluation. Table 4 presents the Spear-

man correlation coefficients between human rat-
ings and LLM-EVAL with various model con-
figurations and scoring ranges for the Topical-
DSTC10 and Persona-DSTC10 datasets. We com-
pare the performance of LLM-EVAL when us-
ing different LLMs, such as Anthropic Claude,
OpenAI ChatGPT, Anthropic Claude-instant,
and OpenAI GPT-3.5 1.

Among these models, Claude and ChatGPT are
optimized for chat applications, while GPT-3.5 is
not. We observe that both Claude and ChatGPT
generally achieve better performance across all di-
mensions when compared to GPT-3.5. This sug-
gests that using dialogue-optimized LLMs in the
LLM-EVAL method leads to more accurate evalua-
tion results in the context of open-domain conver-
sations.

Moreover, when comparing the Claude and
ChatGPT models, both models demonstrate com-
petitive performance across different evaluation
dimensions, with Claude slightly outperforming
ChatGPT in certain configurations.

1Anthropic Claude (claude-v1.3), OpenAI ChatGPT
(gpt-3.5-turbo-0301), Anthropic Claude-instant (claude-
instantv1.0), and OpenAI GPT-3.5 (text-davinci-003).
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We also analyze the performance of
Claude-instant, a smaller version of Claude.
Although it is not as competitive as its larger
counterpart, it still achieves reasonable perfor-
mance in some cases. This implies that smaller
models, while not optimal, can still be employed
for LLM-EVAL to a certain extent, possibly
providing a more resource-efficient option in
specific scenarios.

In conclusion, our analysis demonstrates that
dialogue-optimized LLMs, such as Claude and
ChatGPT, yield better performance in the LLM-
EVAL method for open-domain conversation eval-
uation. Although smaller models like Anthropic
Claude-instant may not achieve the best perfor-
mance, they can still be considered for resource-
limited scenarios. Overall, the choice of LLMs
in LLM-EVAL plays a crucial role in obtaining
accurate evaluation results.

5.2 Decoding Methods

In our experiments, we employ greedy decoding for
generating responses using the Anthropic API with
the claude-v1.3 model. Greedy decoding selects
the token with the highest probability at each time
step during the generation process. However, other
decoding methods, such as nucleus sampling could
be employed in the LLM-EVAL method to explore
their impact on the evaluation results.

Nucleus sampling, also known as top-p sam-
pling, samples tokens from the top-p most prob-
able tokens at each time step, where p is a pre-
defined probability threshold. This method intro-
duces some randomness into the generation pro-
cess and could lead to more diverse and creative
responses.

Comparing the performance of Claude and
Claude top_p = 0.9 in Table 4, we observe that
greedy decoding generally achieves better perfor-
mance across all evaluation dimensions. This find-
ing suggests that using greedy decoding with the
LLM-EVAL method provides more accurate and
consistent evaluation results compared to nucleus
sampling.

One possible reason for this difference in perfor-
mance is that greedy decoding tends to generate
more coherent and focused responses due to its de-
terministic nature. In contrast, nucleus sampling
introduces randomness into the generation process,
which may result in less focused or less relevant
responses, affecting the evaluation scores. Con-

sequently, greedy decoding appears to be a more
suitable choice for the LLM-EVAL method.

6 Conclusion

In this paper, we introduced LLM-EVAL, a unified
multi-dimensional automatic evaluation method for
open-domain conversations with large language
models. The proposed method employs a single
prompt along with a unified evaluation schema that
covers multiple dimensions of evaluation, such as
content, grammar, relevance, and appropriateness.
This approach streamlines the evaluation process
and eliminates the need for multiple prompts. Ex-
periments on various datasets demonstrated the ef-
fectiveness and efficiency of LLM-EVAL, consis-
tently outperforming most baselines and state-of-
the-art evaluation methods.

As future work, we plan to explore reinforce-
ment learning from LLMs feedback and investigate
LLM-in-the-loop evaluation strategies as an alter-
native to human-in-the-loop methods. This will
further enhance the applicability and performance
of the LLM-EVAL method in various dialogue sys-
tem evaluation scenarios.

Limitations

Although LLM-EVAL has shown promising results
in assessing open-domain conversations, it is cru-
cial to acknowledge its limitations.

Firstly, the performance of our method relies
heavily on the large language models underlying it,
which may exhibit biases or generate unexpected
outputs. If the language model misinterprets the
evaluation schema or prompt instructions, it could
lead to inaccurate evaluation scores.

Secondly, the choice of LLM significantly in-
fluences the evaluation results, as demonstrated in
our analysis. While dialogue-optimized LLMs pro-
duce better performance, this selection may limit
LLM-EVAL’s applicability for particular tasks or
dialogue systems.

Thirdly, our approach employs single-number
scoring for each evaluation dimension, which may
fail to capture the subtleties of human judgments,
particularly for subjective aspects like engagement,
creativity, or humor.

Lastly, the effectiveness of LLM-EVAL hinges
on the quality and clarity of the prompts and evalu-
ation schemas. Creating such prompts and schemas
may require domain expertise and knowledge of
LLM behavior, posing challenges for non-experts.
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To overcome these limitations, future research
can focus on exploring alternative prompt designs,
refining evaluation schemas, and expanding the
method to cover a wider range of evaluation dimen-
sions and dialogue system types.

Ethics Statement

We acknowledge that there are potential ethical
concerns associated with the use of large language
models in our evaluation method.

A primary concern is the biases present in large
language models. These biases are introduced dur-
ing training, as the models learn from textual data
that may contain biased information, stereotypes,
or misinformation. When using these biased mod-
els for evaluation, it is possible that the evaluation
scores produced by LLM-EVAL may reflect and
perpetuate these biases, potentially leading to bi-
ased evaluations of dialogue system outputs. This
could, in turn, affect the development of future
dialogue systems by encouraging biased behavior.

To mitigate this concern, researchers and devel-
opers should be cautious when interpreting the
evaluation results obtained through LLM-EVAL

and consider potential biases in the large language
models used. Moreover, future work could explore
techniques to debias language models or employ al-
ternative evaluation schemas that actively account
for biases in the evaluation process.
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A Prompt Templates

Below are the prompt templates used in our experi-
ments with LLM-EVAL. They provide examples
of the natural language instructions used to define
the evaluation task and desired criteria, as well as
the format instructions that specify the structure
and range of scores for each dimension.

A.1 Evaluation Schema

The evaluation schema used in LLM-EVAL is a nat-
ural language instruction that defines the task and
the desired evaluation criteria. It covers multiple di-
mensions of evaluation, such as content, grammar,
relevance, and appropriateness. An example of
the format instruction specifying the structure and
range of scores for each dimension is as follows:

Human: The output should be formatted as a
JSON instance that conforms to the JSON
schema below.

As an example, for the schema {"properties":
{"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items":
{"type": "string"}}}, "required": ["foo"]}}
the object {"foo": ["bar", "baz"]} is a
well-formatted instance of the schema.
The object {"properties": {"foo": ["bar",
"baz"]}} is not well-formatted.

Here is the output schema:
{"properties": {"content": {"title":
"Content", "description": "content score
in the range of 0 to 100", "type":
"integer"}, "grammar": {"title": "Grammar",
"description": "grammar score in the range
of 0 to 100", "type": "integer"}, "relevance":
{"title": "Relevance", "description":
"relevance score in the range of 0 to 100",
"type": "integer"}, "appropriateness":
{"title": "Appropriateness", "description":
"appropriateness score in the range of 0 to
100", "type": "integer"}}, "required":
["content", "grammar", "relevance",
"appropriateness"]}

A.2 Reference-based Turn-level Evaluation

For reference-based turn-level evaluation, the sin-
gle prompt is designed to include the necessary
dialogue context, the reference, and the target re-
sponse that needs to be evaluated, along with the
evaluation schema. An example prompt template
for evaluating a dialogue response with a human
reference is:
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{evaluation_schema}

Score the following dialogue response
generated on a continuous scale from
{score_min} to {score_max}.

Context: {context}
Reference: {reference}
Dialogue response: {response}

A.3 Reference-free Turn-level Evaluation
For reference-free turn-level evaluation, the single
prompt includes the dialogue context and the target
response that needs to be evaluated, without requir-
ing a human reference. The evaluation schema is
also included in the prompt. An example prompt
template for evaluating a dialogue response without
a human reference is:

{evaluation_schema}

Score the following dialogue response
generated on a continuous scale from
{score_min} to {score_max}.

Context: {context}
Dialogue response: {response}

A.4 Dialogue-level Evaluation
For dialogue-level evaluation, the single prompt
is designed to cover the entire dialogue instead of
individual turns. The evaluation schema is also in-
cluded in the prompt. An example prompt template
for evaluating a dialogue is:

{evaluation_schema}

Score the following dialogue generated
on a continuous scale from {score_min}
to {score_max}.

Dialogue: {dialog}
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Abstract

Optimizing accuracy and performance while
eliminating hallucinations of open-domain con-
versational large language models (LLMs)
is an open research challenge. A particu-
larly promising direction is to augment and
ground LLMs with information from struc-
tured sources. This paper introduces Conver-
sational Tables (cTBLS), a three-step archi-
tecture to retrieve and generate dialogue re-
sponses grounded on retrieved tabular infor-
mation. cTBLS uses Transformer encoder em-
beddings for Dense Table Retrieval and obtains
up to 125% relative improvement over the re-
triever in the previous state-of-the-art system
on the HYRBIDIALOGUE dataset. cTBLS then
uses a shared process between encoder and de-
coder models to perform a coarse+fine tabular
knowledge (e.g., cell) ranking combined with
a GPT-3.5 LLM response generator to yield
a 2x relative improvement in ROUGE scores.
Finally, human evaluators prefer cTBLs +80%
of the time (coherency, fluency) and judge in-
formativeness to be 4x better than the previous
state-of-the-art.

1 Introduction

Equipping conversational AI with multimodal ca-
pabilities broadens the range of dialogues that hu-
mans have with such systems. A persisting chal-
lenge in multimodal conversational AI is the devel-
opment of systems that produce conversationally
coherent responses grounded in textual and non-
textual modalities (Sundar and Heck, 2022).

It is well-established that large language mod-
els (LLMs) possess real-world knowledge stored
within their parameters, as demonstrated by re-
cent research (Roberts et al., 2020; Heinzerling
and Inui, 2021). Nevertheless, the incorporation
of conversation-specific extrinsic knowledge into
these models to yield precise responses remains an
active area of investigation. While humans can eas-
ily retrieve contextual information from tables by

examining rows and columns, LLMs often struggle
to identify relevant information amidst conversa-
tional distractions.

HYBRIDIALOGUE (Nakamura et al., 2022), a
dataset of conversations grounded on structured
and unstructured knowledge from tables and text,
introduces the task of responding to messages by
utilizing information from external knowledge and
prior dialogue turns. The authors also present an
approach and experimental results on HYBRIDIA-
LOGUE that represents the current state-of-the-art
(SoTA).

This paper proposes an extension to the SoTA
approach of HYBRIDIALOGUE in the form of
Conversational Tables (cTBLS) 1, a novel three-
step encoder-decoder architecture designed to aug-
ment LLMs with tabular data in conversational set-
tings. In the first step, cTBLS uses a dual-encoder
Transformer-based (Vaswani et al., 2017) Dense
Table Retriever (DTR) to retrieve the correct table
from the entire corpus based on the user’s query.
The second step employs a fine-tuned dual-encoder
Transformer to track system state and rank cells in
the retrieved table according to their relevance to
the conversation. Finally, cTBLS utilizes GPT-3.5
to generate a natural language response by prompt-
ing it with the ranked cells.

While previous research separated knowledge
retrieval and response generation between encoder
and decoder models, this paper demonstrates that
LLM decoders can perform these tasks jointly
when prompted with knowledge sources ranked
by language model encoders. Furthermore, by
pre-training the Dense Table Retriever to perform
retrieval over a corpus of tables, cTBLS can be
extended to new knowledge sources without re-
training, by appending additional knowledge to the
corpus.

Compared to the previous SoTA, experiments

1Our code will be available at https://github.com/
avalab-gt/cTBLS
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Figure 1: cTBLS for conversations on HYBRIDIALOGUE. Dense Table Retrieval identifies the table most relevant
to the initial query. The retrieved table is provided to the state tracker for follow-up queries. State Tracking ranks
cells in the table based on their ability to answer a follow-up query. Response Generation utilizes a LLM Decoder
provided with the ranked cell information and the follow-up query to convert tabular data into a natural language
response and continue the conversation. Details on individual components are provided in Section 3.

on cTBLS show up to 125% relative improvement
in table retrieval and a 2x relative improvement in
ROUGE scores. In addition, human evaluators pre-
fer cTBLs +80% of the time (coherency, fluency)
and judge informativeness to be 4x better than the
previous SoTA.

Our contributions are as follows:

1. The introduction of Conversational Tables
(cTBLS), a novel three-step encoder-decoder
architecture designed to augment LLMs with
tabular data in conversational settings.

2. Experimental results demonstrating that
Dense Table Retrieval, which utilizes neural
models fine-tuned with a summary of tabular
information, outperforms sparse techniques
based on keyword matching for table retrieval.

3. The presentation of evidence that augmenting
state-of-the-art LLM decoders using knowl-
edge sources ranked by encoder language
models leads to better results on automatic
(ROUGE-Precision) and human (Coherence,
Fluency, and Informativeness) evaluation
for knowledge-grounded response generation
while limiting the number of API calls to these
models.

This paper presents the cTBLS system and
demonstrates its application to the HYBRIDIA-
LOGUE dataset. In Section 2, we review the ex-
isting literature in the fields of Table Question

Answering and Knowledge Grounded Response
Generation. Section 3 describes the various com-
ponents of cTBLS as presented in Figure 1. In
Section 4, we evaluate the performance of cTBLS
against previous methods for conversations over
tables and report experimental results from auto-
matic and human evaluations. Finally, Section 5
concludes the paper and outlines potential direc-
tions for future research.

2 Related Work

2.1 Table Question Answering

Table Question Answering is a well-researched
precursor to conversations over tables. In WIK-
ITABLEQUESTIONS, Pasupat and Liang (2015)
transform HTML tables into a knowledge graph
and retrieve the correct answer by converting natu-
ral language questions into graph queries. FRETS
(Jauhar et al., 2016) uses a log-linear model con-
ditioned on alignment scores between cells in ta-
bles and individual QA pairs in the training set.
Cho et al. (2018) introduce NEOP, a multi-layer
sequential network with attention supervision to
answer queries conditioned on tables. Hannan
et al. (2020) propose MANYMODALQA, which
uses a modality selection network and pre-trained
text-based QA, Table-based QA, and Image-based
QA models to jointly answer questions over text,
tables, and images. Chen et al. (2020c) present
HYBRIDER, which performs multi-hop QA over
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tables using keyword-matching for cell linking fol-
lowed by BERT (Devlin et al., 2019) for reason-
ing. Chen et al. (2020a) propose OTT-QA, which
uses a fusion retriever to identify relevant tables
and text and a cross-block reader based on a long-
range Sparse Attention Transformer (Ainslie et al.,
2020) to choose the correct answer. Heck and Heck
(2020) perform multi-task fine-tuning of Trans-
former encoders by modeling slot filling as ques-
tion answering over tabular and visual information
in Visual Slot. Herzig et al. (2020) and Yin et al.
(2020) extend BERT for Table Question Answering
by pre-training a masked language model over text-
table pairs in TAPAS and TaBERT, respectively.
Recent work building off the Transformer architec-
ture for Table Question Answering includes (Eisen-
schlos et al., 2021; Li et al., 2021; Herzig et al.,
2021; Zayats et al., 2021; Zhao et al., 2022; Huang
et al., 2022; Yang et al., 2022; Chen, 2022). Jin
et al. (2022) provide a comprehensive survey of
advancements in Table Question Answering.

2.2 Knowledge Grounded Response
Generation

Early work related to grounding responses gener-
ated by language models in real-world knowledge
was motivated by the need to improve prior in-
formation for open-domain dialogue (Heck et al.,
2013; Hakkani-Tür et al., 2014; Hakkani-Tür et al.,
2014; Huang et al., 2015; Jia et al., 2017). More
recently, knowledge grounded response generation
has been applied to mitigate the hallucination prob-
lem (Maynez et al., 2020; Shuster et al., 2021) in
LLMs. RAG (Lewis et al., 2020) fine-tunes LLMs
using Dense Passage Retrieval (Karpukhin et al.,
2020) over a Wikipedia dump to ground responses
for Open Domain Question Answering. KGPT
(Chen et al., 2020b) and SKILL (Moiseev et al.,
2022) pre-train a Transformer encoder (Vaswani
et al., 2017) with English Wikidump for Natural
Language Generation. Fusion-in-Decoder (Izac-
ard and Grave, 2021) fine-tunes decoder models
using evidence acquired through Dense Passage
Retrieval.

Recent research also includes a dual-stage ap-
proach where LLMs generate knowledge sources
based on prompts (Yu et al., 2022; Bonifacio et al.,
2022; Jeronymo et al., 2023). Closest to our work,
Wizard of Wikipedia (Dinan et al., 2018) jointly op-
timizes an encoder-decoder Transformer to produce
dialogue responses conditioned on retrieved knowl-

edge and dialogue context but does not extend their
approach to the multiple modalities. REPLUG (Shi
et al., 2023) ensembles output responses generated
by prompting large language models with inputs
from a dense retriever in a zero-shot setting. How-
ever, this requires multiple API calls to state-of-the-
art LLMs. LLM-AUGMENTER (Peng et al., 2023)
incorporates external knowledge in LLM responses
by matching keywords in dialogue state to can-
didate knowledge sources obtained through web-
search. A survey of knowledge fusion in LLMs
is available in Colon-Hernandez et al. (2021) and
Richardson and Heck (2023).

In contrast to prior research that focuses on
either Table Question Answering or Knowledge
Grounded Response Generation, our work, cTBLS,
addresses the challenge of generating responses
grounded on tabular knowledge. Moreover, while
cTBLS is fine-tuned to retrieve tables and filter
out incorrect references, it leverages the power of
SoTA pre-trained LLMs for response generation.
Furthermore, by fine-tuning open-source table and
knowledge retrievers to remove inaccurate refer-
ences, cTBLS reduces the number of API calls to
the SoTA LLMs.

3 Method

The challenge of developing conversational sys-
tems grounded in tabular information consists of
three tasks, namely table retrieval, system state
tracking, and response generation. Table retrieval
requires identifying the most relevant table in the
dataset based on a given natural language query.
System state tracking is responsible for ranking the
cells in the table, enabling the system to provide
responses to follow-up queries about the table. Fi-
nally, response generation involves converting the
ranked cells into a natural language response.

3.1 Table Retrieval

Table retrieval is a prerequisite to answering queries
when the exact table to converse over is unspecified.
The objective is to identify the correct table from
a vast corpus. cTBLS proposes formulating table
retrieval as document retrieval by assigning a rele-
vance score to each table based on its relevance to
the natural language query. Inspired by Karpukhin
et al. (2020) and Huang et al. (2013), cTBLS uses
a dual-encoder-based Dense Table Retrieval (DTR)
model. The DTR model pre-computes a vector-
ized embedding of all tables in the corpus. Given a
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Figure 2: An example of table-associated text in the
context of Wikipedia, where the input to the DTR text-
encoder includes the page title, the introduction to the
article, the section title, and the introduction paragraph.

query at inference, the retrieved table is closest to
the query in the embedded space, indicated by the
upper-left portion of Figure 1.

The DTR model consists of a table encoder and
a question encoder, initialized from RoBERTa-base
(Liu et al., 2019). The input to the table encoder
comprises the table’s title and, if available, textual
information associated with the table. Figure 2
presents an example of table-associated text in the
context of Wikipedia, where introductions from the
page and section provide additional grounding. The
input to the question encoder is the current query to
be answered. Taking the average over the sequence
of the last hidden state at the table and question
encoder results in 768-dimensional embeddings of
the table information and the query.

The DTR model is optimized through a con-
trastive prediction task, which aims to maximize
the similarity between embeddings of a given
query q and the table to be retrieved τ while mini-
mizing the similarity to other incorrect tables τni

for i = 1, . . . , N . As per (Karpukhin et al., 2020),
normalized embedding vectors are utilized to opti-
mize the objective in Equation 1:

arg min
τ

(
− log

eq·τ

eq·τ +
∑N

i=1 e
q·τni

)
(1)

Given a batch B of d-dimensional query embed-
dings Q and table embeddings T, the DTR model
computes the similarity QTT (∈ RB×B) between
every query and table in the batch. This similar-
ity computation enables the sampling of negatives
from other query-table pairs, resulting in B2 train-
ing samples in each batch, consisting of B positive
pairs along the diagonal and B2 −B negatives.

3.2 Coarse System State Tracking

Given a table, system state tracking involves rank-
ing cells in the table by their relevance to conver-
sational queries. In contrast to quesiton-answering,
conversational queries require leveraging informa-
tion from external modalities in conjunction with
prior dialogue turns to generate coherent responses
(Sundar and Heck, 2022). cTBLS addresses sys-
tem state tracking through two sub-tasks - coarse
and fine system state tracking. Coarse system state
tracking ranks cells in the table, while fine system
state tracking identifies fine-grained information in
the most relevant cell to answer the query.

cTBLS uses a RoBERTa-base dual-encoder ar-
chitecture for coarse system state tracking. The
cell encoder embeds all cells and associated hyper-
linked information, and the question encoder gen-
erates embeddings for the dialogue history (Dh)
that includes the current turn’s query as well as
previous queries and responses.

To rank cells based on their relevance to the
follow-up query, as illustrated in the upper-right
section of Figure 1, the question and cell encoders
are optimized using a triplet loss configuration.
This optimization aims to minimize the distance be-
tween the anchor Dh and the positive cell c, while
pushing the negative cell c further away from Dh

by a margin m (Equation 2).

arg min
ci

(max{d(Dh, c)− d(Dh, c) +m, 0}) (2)

d(x, y) = ||x− y||2 (3)

For our approach, we utilize an anchor-positive-
negative triplet consisting of the complete dialogue
history (including queries and responses from pre-
vious turns) concatenated with the current query as
the anchor, the correct cell as the positive, and other
cells from the same table that are not relevant to
the query as negatives. We measure the distance be-
tween the anchor and the positive and between the
anchor and the negatives using the 2-norm distance
function d(·).

3.3 Fine System State Tracking and Response
Generation

In contrast to coarse system state tracking, fine sys-
tem state tracking involves identifying the exact
phrase that answers the query from a ranked subset.
The extracted phrase is converted into a natural lan-
guage response that is coherent within the context
of the conversation.
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cTBLS employs GPT-3.5 (Brown et al., 2020)
to perform fine system state tracking and response
generation jointly. GPT-3.5 is prompted to generate
a natural language response to a follow-up query
conditioned on cells of the table ranked by their
relevance to the query as obtained from the coarse
state tracker. The prompt includes the dialogue
history, ranked knowledge sources, and the query to
be answered. The bottom-right section of Figure 1
outlines this process.

4 Experiments

4.1 HYBRIDIALOGUE

The HYBRIDIALOGUE dataset (Nakamura et al.,
2022) comprises 4800 natural language conversa-
tions grounded in text and tabular information from
Wikipedia. Crowdsourced workers break down
multi-hop questions from the OTT-QA dataset
(Chen et al., 2020a) into natural questions and con-
versational responses related to tabular data. On
average, dialogues in the dataset consist of 4-5 con-
versation turns, with a total of 21,070 turns avail-
able in the dataset. Examples of conversations can
be found in Figures 3 and 4.

4.2 Table Retrieval

The first conversation turn of HYBRIDIALOGUE

requires selecting the correct table based on the
input query for which we use the Dense Table Re-
triever outlined in Section 3.1. The Dense Table
Retriever is fine-tuned for 20 epochs using Adam
(Kingma and Ba, 2014) with a learning rate of 1e-6
and a linear learning schedule with five warmup
steps. The loss function is a modification of the
contrastive loss implementation from ConVIRT
(Zhang et al., 2022), with image embeddings re-
placed by table embeddings. The table retriever
used in the HYBRIDIALOGUE paper (Nakamura
et al., 2022) was the BM25Okapi Retriever (Trot-
man et al., 2014) from rank-bm25. According to
the results presented in Table 1, cTBLS-DTR out-
performs BM25 in terms of Mean Reciprocal Rank
(MRR), Top-1 Accuracy, and Top-3 Accuracy on
HYBRIDIALOGUE.

4.3 Coarse State Tracking

Coarse state tracking ranks cells from a table based
on their relevance to a query. As before, the dual-
encoder coarse state tracker of cTBLS consists of
RoBERTa-base fine-tuned using Adam with a learn-
ing rate of 1e-6 and a linear learning schedule with

MRR
@10

Top 1
Acc

Top 3
Acc

BM25 0.491 0.345 0.460
cTBLS-DTR 0.846 0.777 0.901

Table 1: BM25 vs cTBLS-DTR for retrieval on first turn
of conversation, results on HYBRIDIALOGUE testing
dataset. cTBLS-DTR obtains up to 125% relative im-
provement over sparse table retrieval

MRR@10
SentenceBERT (Reimers and Gurevych, 2019) 0.603

TaPas (Herzig et al., 2020) 0.689
cTBLS - RoBERTa-base 0.683

Table 2: System state tracking results on HYBRIDIA-
LOGUE. cTBLS achieves nearly the same Mean Recip-
rocal Rank (MRR) @ 10 as TaPaS, without additional
table pre-training on SQA (Iyyer et al., 2017)

five warmup steps. In contrast to table retrieval,
the state tracker uses triplet margin loss with a
margin of 1.0 (Equation 2) instead of contrastive
loss (Equation 1). The results, as demonstrated
in Table 2, show that fine-tuning RoBERTa-base
solely on HYBRIDIALOGUE surpasses the perfor-
mance of SentenceBERT (Reimers and Gurevych,
2019). Furthermore, it nearly attains the same
MRR @10 as TaPas (Herzig et al., 2020), even
without additional table pre-training on the SQA
dataset (Iyyer et al., 2017).

4.4 Fine State Tracking and Response
Generation

cTBLS uses GPT-3.5 (text-davinci-003) with the
existing dialogue context, the current query, and
the retrieved references from coarse state track-
ing to obtain a natural language response. Since
fine-tuning the best available version of the model
is cost prohibitive, we opt to prompt GPT-3.5 to
generate responses instead.

Top-1 Top-3 Top-10
cTBLS - RoBERTa-base 0.559 0.778 0.925

Table 3: Top-k accuracy for cTBLS on coarse system
state tracking. cTBLS ranks the correct cell as the top
reference in 56% of follow-up queries on HYBRIDI-
ALOGUE. The correct cell is ranked in the Top-3 and
Top-10 retrievals in approximately 78% and 93% of
conversations, respectively.
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Model TR KR RG ROUGE-1 ROUGE-2 ROUGE-L
- BM25 Top-1 DialoGPT 0.207 0.042 0.181
- BM25 Top-3 DialoGPT 0.212 0.045 0.186
- BM25 Top-1 GPT3.5 0.428 0.207 0.369
- BM25 Top-3 GPT3.5 0.475 0.242 0.413

- DTR Top-1 DialoGPT 0.222 0.051 0.195
- DTR Top-3 DialoGPT 0.226 0.059 0.199
- DTR Top-1 GPT3.5 0.494 0.255 0.424
- DTR Top-3 GPT3.5 0.560 0.295 0.479

HYBRIDIALOGUE Gold Top-1 DialoGPT 0.438 0.212 0.375
cTBLS NoK Gold - GPT3.5 0.487 0.229 0.422
cTBLS Top-1 Gold Top-1 GPT3.5 0.603 0.304 0.517
cTBLS Top-3 Gold Top-3 GPT3.5 0.642 0.322 0.548

Table 4: Ablation study on automatic evaluation metrics ROUGE-1, ROUGE-2, and ROUGE-L Precision. Using
Dense Table Retrieval (DTR) improves results over BM25 across Top-1 and Top-3 knowledge for DialoGPT and
GPT3.5. Furthermore, using Top-3 knowledge sources results in better results than using only Top-1 knowledge
sources for DialoGPT and GPT3.5 using both table retrieval methods. cTBLS No Knowledge (NoK), Top-
1 Knowledge, Top-3 Knowledge, and HYBRIDIALOGUE use ground truth table retrieval. cTBLS exhibits a 2x
relative improvement in ROUGE Precision over HYBRIDIALOGUE. TR: Table Retrieval, KR: Knowledge Retrieval,
RG: Response Generation

The results presented in Table 3 demonstrate
that the coarse state tracker successfully retrieves
the correct cell in approximately 56% of conver-
sations during inference. Furthermore, it achieves
Top-3 and Top-10 retrievals in approximately 78%
and 93% of conversations, respectively. Moti-
vated by these results, the fine state tracker of
cTBLS is evaluated in two different configurations
by prompting GPT-3.5 augmented with the Top-1
and Top-3 knowledge references (cTBLS Top-1
and cTBLS Top-3). Due to limits on token length
associated with the OpenAI API, we remove stop-
words from the knowledge provided in the prompt
and do not experiment with Top-10 knowledge aug-
mentation.

Since LLMs store factual information in their
weights (Roberts et al., 2020; Heinzerling and
Inui, 2021), we compare to few-shot prompting
(using two examples) with no knowledge sources
(cTBLS-NoK). Furthermore, to enable a meaning-
ful comparison with existing research (Nakamura
et al., 2022), we measure cTBLS against the sys-
tem proposed by HYBRIDIALOGUE that utilizes a
fine-tuned DialoGPT-medium (Zhang et al., 2019)
model augmented with Top-1 knowledge.

Table 4 presents ROUGE-1, ROUGE-2, and
ROUGE-L precision (Lin, 2004) for all models
assessed. The results demonstrate that superior
downstream performance can be achieved through

improvements in table retrieval. Specifically, when
keeping the number of knowledge sources constant,
we observe an improvement in ROUGE precision
scores when transitioning from BM25 to DTR, and
from DTR to gold table retrieval. The inclusion of
additional knowledge sources leads to an improved
n-gram overlap with the ground truth reference,
as evidenced by the Top-3 knowledge augmented
models outperforming their Top-1 counterparts uti-
lizing the same table retriever, and cTBLS Top-1
outperforming the baseline model cTBLS NoK.
Moreover, cTBLS Top-3 achieves the best perfor-
mance across all automatic metrics, suggesting the
benefits of splitting knowledge retrieval into coarse
and fine state tracking, and utilizing additional
knowledge sources. Finally, all three configura-
tions of cTBLS demonstrate superior performance
to HYBRIDIALOGUE.

4.5 Human Evaluation

To gain a deeper understanding of cTBLS, we con-
ducted human evaluation using the metrics outlined
by Nakamura et al. (2022), namely Coherence,
Fluency, and Informativeness. For the evaluation
of these metrics, we enlisted crowd workers from
Amazon Mechanical Turk (AMT) to assess 50%
of the test data. The evaluation process involved
a comparison between the responses generated by
HYBRIDIALOGUE and cTBLS Top-3.
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cTBLS Top-3 vs HYBRIDIALOGUE

Coherence 0.842
Fluency 0.827

Table 5: Coherence and Fluency - cTBLS Top-3 is more
conversationally coherent than the best performing HY-
BRIDIALOGUE system 84.2% of the time and is more
fluent 82.7% of the time.

In accordance with the methodology delineated
in Nakamura et al. (2022), Coherence was defined
as the degree to which a response continued the con-
versation in a logically coherent manner based on
prior context. Fluency, conversely, was determined
by evaluating absence of grammatical and spelling
errors, and appropriate use of parts of speech.

To ensure the quality of the evaluated responses,
we engaged crowd workers possessing a Masters
qualification on AMT and originating from English-
speaking countries (USA, Canada, Australia, New
Zealand, or Great Britain). Each task required ap-
proximately 30 seconds to complete, and workers
were remunerated at a rate of $0.05 per task. More-
over, to minimize bias and guarantee the depend-
ability of the evaluations, we assigned two crowd
workers to assess each response, with a response
deemed more coherent or fluent only if both evalu-
ations concurred.

The results presented in Table 5 reveal that the re-
sponses generated by cTBLS Top-3 were more co-
herent than those produced by HYBRIDIALOGUE

in 84.2% of cases and exhibited greater fluency
82.7% of the time, suggesting that improvements
in table retrieval, knowledge retrieval, and response
generation lead to better downstream performance.

Informativeness represents the accuracy of
machine-generated responses when compared to
the ground-truth (Nakamura et al., 2022) and serves
as a measure of hallucination in LLMs. Halluci-
nated responses tend to be less informative, deviat-
ing significantly from the ground-truth.

To evaluate informativeness, crowd workers de-
termined whether generated responses were se-
mantically equivalent to the ground truth response.
Each response was assessed by two Turkers, and
a response was deemed more informative only if
there was inter-annotator agreement. The absence
of illustrative examples in the prompting process re-
sulted in responses generated by cTBLS Top-1 and
cTBLS Top-3 being longer than the ground truth re-
sponse. Consequently, the knowledge-augmented

Informativeness
HYBRIDIALOGUE 0.124

cTBLS - NoK 0.306
cTBLS Top-1 0.456
cTBLS Top-3 0.500

Table 6: Human Evaluation Metrics - Fraction of cases
where model response is semantically equivalent to
ground truth response. Using more knowledge sources
results in responses that are more informative, helping
reduce hallucination.

cTBLS responses were considered informative if
all the information provided in the ground truth
was encapsulated in the model response, even if
cTBLS included supplementary information.

The data in Table 6 indicate that cTBLS Top-3
encompasses the same information as the ground
truth response 50% of the time, a higher rate than
cTBLS Top-1 at 45.6%, exemplifying the benefits
of partitioning retrieval into coarse and fine state
tracking and augmenting with additional knowl-
edge. Based on these findings, we hypothesize that
the attention mechanism in decoder models facili-
tates additional knowledge retrieval. cTBLS NoK
generates the correct response 30.6% of the time,
suggesting that HYBRIDIALOGUE comprises ques-
tions and answers predicated on general world
knowledge embedded in the weights of LLMs. Re-
sponses produced by HYBRIDIALOGUE are infor-
mative in merely 12.4% of instances.

Figure 3 presents a comparison of responses gen-
erated by various configurations of cTBLS on the
HYBRIDIALOGUE dataset. The entire dialogue his-
tory constitutes the context and is depicted as an
exchange between the user (in blue) and the system
(in yellow). The final question box represents the
follow-up query to be addressed, while the last an-
swer chat box indicates the ground truth response.
Knowledge K1, K2, and K3 correspond to cells
of the table retrieved during state tracking, based
on which responses are produced. cTBLS NoK
generates a response solely relying on the context,
cTBLS Top-1 formulates a response conditioned
on K1, and cTBLS Top-3 devises a response based
on K1, K2, and K3.

cTBLS NoK creates a hallucinated response, an-
swering with the random Faroese club B68 Toftir.
Similarly, cTBLS Top-1 hallucinates a response,
opting for B36 Tórshavn, as K1 refers to the sta-
dium Viò Margáir rather than the correct club’s
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Figure 3: Generated responses vs Ground Truth on HYBRIDIALOGUE test set. Questions are in blue and responses
in yellow. K1, K2, and K3 represent the Top 3 knowledge sources ranked by relevance to the query "Which team
plays there?". cTBLS Top-3 is able to leverage K3 to generate the correct response while cTBLS NoK hallucinates
a response and cTBLS Top-1 generates an incorrect response based on K1. Table obtained from Wikipedia available
here

Figure 4: Generated responses vs Ground Truth on HYBRIDIALOGUE test set. Despite selecting the rows of the
table corresponding to Oil and gas industries, cTBLS NoK, Top-1, and Top-3 struggle with counting and hallucinate
a response. Table obtained from Wikipedia available here
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name. In contrast, cTBLS Top-3 produces the accu-
rate response, EB/Streymur, since K3 contains the
necessary information. This example demonstrates
the benefits of augmenting response generation
with additional pertinent knowledge, which aids
in mitigating the hallucination problem (Maynez
et al., 2020).

5 Conclusion

In this paper, we introduce Conversational Ta-
bles (cTBLS), a system designed to address multi-
turn dialogues that are grounded in tabular data.
cTBLS separates tabular dialogue into three dis-
tinct tasks, specifically table retrieval, system state
tracking, and response generation. The dense ta-
ble retrieval system of cTBLS yields an enhance-
ment of up to 125% relative to keyword-matching
based techniques on the HYBRIDIALOGUE dataset,
with regard to Top-1 Accuracy and Mean Recip-
rocal Rank @ 10. Furthermore, cTBLS conducts
system state tracking utilizing a two-step process
shared between encoder and decoder models. This
methodology results in natural language responses
exhibiting a 2x relative improvement in ROUGE
scores. Human evaluators favor cTBLS +80% of
the time (coherency and fluency) and judge infor-
mativeness to be 4x better than the previous state-
of-the-art.

6 Limitations

Although cTBLS enhances LLMs with tabular
knowledge to generate grounded responses, certain
limitations remain to be addressed.

Firstly, the efficacy of cTBLS is constrained by
the total number of knowledge sources employed
during the augmentation process. Token length re-
strictions in the OpenAI API limit the knowledge
augmentation to the top three cells of the table.
Another limitation is the incapacity of cTBLS to
handle queries pertaining to the entire table. Fig-
ure 4 demonstrates one such instance in which the
state tracker module accurately retrieves three rows
of the table corresponding to oil and gas industries,
yet the response generation module fails to utilize
this information when transforming the retrieved
state into a response. Generally, cTBLS encounters
difficulties with counting, comparing the values of
cells, and other mathematical operations, an issue
we aim to address in future research.
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Abstract
Intent discovery is the task of inferring latent
intents from a set of unlabeled utterances, and
is a useful step towards the efficient creation
of new conversational agents. We show that
recent competitive methods in intent discovery
can be outperformed by clustering utterances
based on abstractive summaries, i.e., “labels”,
that retain the core elements while removing
non-essential information. We contribute the
IDAS approach, which collects a set of descrip-
tive utterance labels by prompting a Large Lan-
guage Model, starting from a well-chosen seed
set of prototypical utterances, to bootstrap an
In-Context Learning procedure to generate la-
bels for non-prototypical utterances. The utter-
ances and their resulting noisy labels are then
encoded by a frozen pre-trained encoder, and
subsequently clustered to recover the latent in-
tents. For the unsupervised task (without any
intent labels) IDAS outperforms the state-of-the-
art by up to +7.42% in standard cluster metrics
for the Banking, StackOverflow, and Transport
datasets. For the semi-supervised task (with
labels for a subset of intents) IDAS surpasses
2 recent methods on the CLINC benchmark
without even using labeled data.

1 Introduction

Intent classification is ubiquitous in conversational
modelling. To that end, finetuning Large Language
Models (LLMs) on task-specific intent data has
been proven very effective (Casanueva et al., 2020;
Zhang et al., 2021d). However, such finetuning re-
quires manually annotated (utterance, intent) pairs
as training data, which are time-consuming and
thus expensive to acquire. Companies often have an
abundance of utterances relevant to the application
area of their interest, e.g., those exchanged between
customers and support agents, but manually anno-
tating them remains costly. Consequently, intent
discovery aims to recover latent intents without us-
ing any such manually annotated utterances, by par-
titioning a given set of (unlabeled) utterances into

Utterance Generated label

find out when my next upcoming payday will be when is next payday
my next paycheck is available when when is next payday
what is the date of my last paycheck when was last payday

i want to know how to change my oil how to change oil
what is the way to change motor oil how to change oil
how easy is it to change your own oil DIY oil change

can you tell me the apr on my visa card interest rate inquiry
what’s the annual rate on my discover card interest rate inquiry

Table 1: Illustration based on GPT-3 and CLINC (Lar-
son et al., 2019), demonstrating how abstractly sum-
marizing utterances retains the core elements while re-
moving non-intent related information. The example
in the bottom block, where apr is labeled as interest
rate inquiry, exemplifies the broad domain knowledge
captured by LLMs.

clusters, where utterances within a cluster should
share the same conversational goal or intent.

Prior works typically (i) train an unsupervised
sentence encoder to map utterances to vectors, after
which these are (ii) clustered to infer latent intents.
Such unsupervised encoder training is achieved
largely under the assumption that utterances with
similar encodings convey the same intent. For in-
stance, by iteratively clustering and updating the
encoder with supervision from the cluster assign-
ments (Xie et al., 2016a; Caron et al., 2018a; Hadi-
far et al., 2019; Zhang et al., 2021c), or by retriev-
ing utterances with similar encodings and using
them as positive pairs to train the encoder with
contrastive learning (Zhang et al., 2021a, 2022).

Yet, it remains unclear which particular features
cause utterance representations to be similar. Var-
ious noisy features unrelated to the underlying in-
tents, e.g., syntax, n-gram overlap, nouns, etc. may
contribute in making utterances similar, leading
to sentence encoders whose vector encodings may
inadequately represent the underlying intents.

Different from prior works that train unsuper-
vised encoders, we use a pre-trained encoder with-
out requiring any further finetuning, since we pro-
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pose making utterances more (dis)similar in the
textual space by abstractly summarizing them into
concise descriptions, i.e., “labels”, that preserve
their core elements while removing non-essential
information. We hypothesize that these core el-
ements better represent intents and prevent non-
intent related information from influencing the vec-
tor similarity. Table 1 illustrates how labels retain
the intent-related information by discarding irrele-
vant aspects such as syntax and nouns.

This paper introduces Intent Discovery with Ab-
stractive Summarization (IDAS in short), whereby
the label generation process builds upon recent ad-
vancements of In-Context Learning (ICL) (Brown
et al., 2020). In ICL, an LLM is prompted with
an instruction including a small number of (in-
put, output) demonstrations of the task at hand.
ICL has shown to be effective at few-shot learn-
ing without additional LLM finetuning (Min et al.,
2022a,b). However, intent discovery is unsuper-
vised and therefore lacks the annotated (utterance,
label) demonstrations required for ICL. To over-
come this limitation, our proposed IDAS proceeds
in four steps. First, a subset of diverse prototypical
utterances representative of distinct latent intents
are identified by performing an initial clustering
and selecting those utterances closest to each clus-
ter’s centroid, for which an LLM is then prompted
to generate a short descriptive label. Second, labels
for the remaining non-prototypical utterances are
obtained by retrieving the subset of the n utterances
most similar to the input utterance, from the contin-
ually expanding set of utterances with already gen-
erated labels (initialized with just the prototypes),
and using those n neighbors as ICL-demonstrations
to generate the input utterance’s label. Third, as
the generated labels may still turn out too general
or noisy, utterances with their labels are combined
into a single vector representation using a frozen
pre-trained encoder. Finally, K-means clusters the
combined encodings to infer latent intents.

We compare our IDAS approach with the state-of-
the-art in unsupervised intent discovery on Bank-
ing (Casanueva et al., 2020), StackOverflow (Xu
et al., 2015), and a private dataset from a transport
company, to assess IDAS’s effectiveness in prac-
tice. We show that IDAS substantially outperforms
the state-of-the-art, with average improvements in
cluster metrics of +3.94%, +2.86%, and +3.34%
in Adjusted Rand Index, Normalized Mutual Infor-
mation, and Cluster Accuracy, respectively. Fur-

ther, IDAS surpasses two semi-supervised intent
discovery methods on CLINC (Larson et al., 2019)
despite not using any ground truth annotations.

2 Related Work

Statistical approaches: Early, more general
short text clustering methods employ statistical
methods such as tf-idf (Sparck Jones, 1972), to map
text to vectors. Yet, the sparsity of these encodings
prevents similar texts, but phrased with different
synonyms, from being assigned to the same clus-
ter. To specifically mitigate this synonym effect,
external features have been used to enrich such
sparse vectors, e.g., with WordNet (Miller, 1995)
synonyms or lexical chains (Hotho et al., 2003;
Wei et al., 2015), or Wikipedia titles or categories
(Banerjee et al., 2007; Hu et al., 2009).

Neural sentence encoders: Rather than relying
on external knowledge sources, neural approaches
pre-train sentence encoders in a self-supervised
way (Kiros et al., 2015; Gao et al., 2021), or with
supervision (Conneau et al., 2017; Reimers and
Gurevych, 2019; Gao et al., 2021), to produce
dense general-purpose vectors that better capture
synonymy and semantic relatedness.

Unsupervised intent discovery: Since general-
purpose neural encoders may fail to capture
domain-specific intent information, intent discov-
ery solutions have shifted towards unsupervised
sentence encoders specifically trained on the do-
main data at hand. For instance, Xu et al. (2015)
train a self-supervised Convolutional Neural Net-
work, and use it to encode and cluster utterances
with K-means. Zhang et al. (2022) adopt the same
2-step approach, but instead pre-train the encoder
with contrastive learning, where utterances with
similar vector encodings are retrieved to serve as
positive pairs. A more common strategy is to clus-
ter and train the encoder end-to-end, either by (i) it-
eratively clustering utterances and updating the
encoder with supervision from the cluster assign-
ments (Xie et al., 2016a; Caron et al., 2018b; Had-
ifar et al., 2019), or (ii) simultaneously clustering
utterances and updating the encoder’s weights with
a joint loss criterion (Yang et al., 2017a; Zhang
et al., 2021a).

As an alternative strategy to make utterances
more (dis)similar based on the intents they con-
vey, we employ an LLM to summarize utterances
into labels that retain both the utterances’ core ele-
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Fig. 1: Overview of our IDAS approach.

ments and domain-specific information as encoded
in the LLM’s weights. Since our generated labels
should increase the (dis)similarity of (un)related
utterances in the input space, rather than directly
in the vector space, we use a frozen pre-trained en-
coder, thus deviating from the above methods that
train unsupervised encoders.

Semi-supervised intent discovery: Similar to
our current work, the aforementioned methods fo-
cus on unsupervised intent discovery. In the related
but different semi-supervised intent discovery task,
a fraction of the latent intents is assumed to be
known, i.e., the “Known Class Ratio”. Annotated
data from these known intents is exploited to im-
prove the detection of both known and unknown
intent utterances, e.g., by optimizing a cluster loss
with pairwise constraints derived from utterances
of the same known intent (Lin et al., 2020). Alterna-
tive 2-step approaches first pre-train encoders with
supervision from known intent utterances, then ei-
ther directly encode and cluster utterances with
K-means (Shen et al., 2021), or further refine the
encoder on the unlabeled utterances. The latter re-
finement can be achieved through contrastive learn-
ing (Zhang et al., 2022) or by iteratively clustering
and updating the encoder (Zhang et al., 2021b,c).

In-context learning: The core idea of ICL
(Brown et al., 2020) is to perform tasks through
inference, i.e., without updating parameters, by
prompting an LLM with the string concatenation
comprising (i) a task instruction, (ii) a small set
of (input, output) demonstrations, and (iii) the in-
put. We implement IDAS’s label generation process
with ICL, as it has shown to substantially outper-
form zero-shot approaches without demonstrations
(Min et al., 2022a,b; Chen et al., 2022). However,
since we focus on unsupervised intent discovery
and thus lack annotated (utterance, label) demon-

strations, we bootstrap the set of demonstrations
with automatically retrieved “prototypes”. Rather
than selecting demonstrations randomly, Liu et al.
(2022) found that it is more effective to pick demon-
strations similar to the input utterance, which we
thus do. Note that alternative methods are possible
(Rubin et al., 2022; Sorensen et al., 2022).

3 Methodology

Task formulation: Let {(xi, yi)|i = 1 . . . N} be
a dataset of N utterances x ∈ X from the set of
natural language expressions X , with correspond-
ing intents y chosen from a set of K possible in-
tents Y = {yi|i = 1 . . .K}. Given the utterances
without the intents, Dx = {xi|i = 1 . . . N}, in-
tent discovery aims to infer Y from Dx by map-
ping utterances xi to vectors E(xi) with encoder
E : X → Rd, based on which the utterances are
partitioned into clusters {Ci|i = 1 . . .K}, such that
clustered utterances (e.g., xi,j , xk,j ∈ Cj) share the
same intent (yi,j = yk,j), while utterances from
different clusters (e.g., xi,j ∈ Cj and xk,l ∈ Cl,
Cl ̸= Ck) have distinct intents (yi,j ̸= yk,l).

Overview: As summarized in Fig. 1, to infer la-
tent intents IDAS (1) identifies a subset of diverse
“prototypes”, P ⊂ Dx, representative of the latent
intents (§3.1); then (2) independently summarizes
them into labels, which are further used to also
generate labels for the remaining non-prototypi-
cal utterances x ∈ Dx \ P , by retrieving from the
subset M of utterances that already have labels
(initially P) the set Nn(x) of n utterances most
similar to x as ICL-demonstrations for generating
the label of x (§3.2); further (3) encodes utterances
and their labels into a single vector representation
with a frozen pre-trained encoder (§3.3); and finally
(4) infers the latent intents by performing K-means
on the combined representations (§3.4).
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3.1 Step 1: Initial Clustering
The objective of this step is to identify a diverse set
of prototypes, P ⊂ Dx, that in Step 2 will be auto-
matically labeled by an LLM and serve as initial
demonstrations for generating the labels of non-
prototypical utterances. It is therefore important
to choose prototypes p ∈ P that each represent a
distinct latent intent y ∈ Y , and collectively cover
as many as possible of all latent intents. We assume
a similarity function between two vector represen-
tations of utterances by s : Rd × Rd → R, and use
it to retrieve prototypes by performing an initial
clustering on the utterances in Dx, in the vector
representation space induced by encoder E. Then
we select a prototype from each identified cluster,
as the utterance in that cluster whose vector repre-
sentation is closest to the cluster’s centroid.

Formally, the utterances in Dx are first encoded
with E and then partitioned into K (=|Y|) clusters

C1, . . . , CK = K-means(Dx),

for which the respective centroids ci ∈ Rd and
prototypes pi ∈ Dx are calculated as

ci =
1

|Ci|
∑

x∈Ci
E(x), pi = argmax

x∈Ci
s(E(x), ci).

3.2 Step 2: Label Generation
Step 2.1: Prototype Labeling To generate label
ℓi for prototype pi, we employ an LLM and provide
it with an instruction (inst) such as “describe
the question in a maximum of 5 words”. The
LLM then generates a concise description of the
prototype pi, which we use as its label ℓi. Mathe-
matically, this is represented as

ℓi = argmax
ℓ∈X

P (ℓ| inst, pi),

where P denotes the probability distribution of
the LLM, and ℓi represents the token sequence
t1i , . . . , tli output by the LLM.

Step 2.2: Label Generation with ICL To gen-
erate label ℓ for the non-prototypical utterance
x ∈ Dx \ P , IDAS utilizes ICL by conditioning an
LLM on the prompt, i.e., the string concatenation
of (i) an instruction inst, e.g., “classify the
question into one of the labels”, (ii) the
set of n demonstrations of (utterance, label) pairs
{(xi, ℓi)|i = 1 . . . n}, and (iii) the utterance x it-
self. Formally, the label is the token sequence gen-
erated by the LLM that maximizes the probability

given the prompt:

ℓ = argmax
ℓ∈X

P (ℓ| inst, x1, ℓ1, . . . , xn, ℓn, x).

Since unsupervised intent discovery lacks manually
annotated demonstrations, IDAS uses a continually
expanding set of utterances with automatically gen-
erated labels, denoted by M. Initially, M = P ,
with P the set of prototypes from Step 2.1. An
utterance x with newly generated label ℓ is added
to M, such that it can serve as a demonstration for
remaining unlabeled utterances.

Typically, ICL uses a small set of n demonstra-
tions (i) due to the limit on the number of input
tokens of LLMs, and (ii) because performance does
not improve for larger number of demonstrations
(Min et al., 2022c). Moreover, Liu et al. (2022)
found that selecting demonstrations as samples sim-
ilar to the test input, rather than choosing them
randomly, substantially boosts ICL’s performance.
Therefore, IDAS adopts KATE (Liu et al., 2022) by
first mapping utterances in M to vectors with en-
coder E, and then using the similarity function s
to select the set of the n most similar utterances1

from M to E(x), denoted by Nn(x) ⊂ M, as
demonstrations for input utterance x.

Note that while we use “classify” in the in-
struction, we do not consider the prototypical labels
generated in Step 1 as a fixed label set (i.e., verbaliz-
ers). Rather, label ℓ for non-prototypical utterance
x is the token sequence as generated directly by
the LLM. As a result, labels for non-prototypical
utterances may still differ from those generated for
the prototypes. Particularly, the LLM can gener-
ate new labels for input utterances that represent
intents for which no prototypes have been identi-
fied yet, and thus have no ICL demonstrations of
the latent intent. Thus, we minimize error propa-
gation from Step 1. On the other hand, when the
LLM considers that a demonstration likely shares
the same latent intent with the input utterance, the
“classify” instruction should encourage the LLM
to generate a copy of that demonstration’s label,
which in turn minimizes variation among generated
labels of utterances with the same latent intent.

3.3 Step 3: Encoding Utterances and Labels
After Step 2, each utterance x ∈ Dx has an associ-
ated generated label ℓ ∈ M. We use the pre-trained

1We set hyperparameter n to 8, based on the findings of
Min et al. (2022c); Lyu et al. (2022). Ablations for different n
values are presented in §5.2.
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encoder E to respectively encode the utterances
and their corresponding labels into separate vectors
E(x) and E(ℓ), after which these are averaged into
the combined representation:

ϕAVG(x, ℓ) ≜
E(x) + E(ℓ)

2
. (1)

(Note that utterances could also be represented just
by their label encoding E(ℓ), yet such generated
labels could be noisy or overly general.)

We further contribute a non-parametric smooth-
ing method that (i) aims to suppress features that
are specific to individual utterances and thus po-
tentially less representative of the underlying in-
tents, while (ii) enhancing those features that are
shared across utterances and thus more likely to
be representative of the latent intents. We there-
fore represent utterance x as the average of the
vector encodings of the n′ most similar utterances
Nn′(x, ℓ) to x, including x itself:

ϕSMOOTH(x, ℓ) ≜
1

n′
∑

(xi,ℓi)∈Nn′ (x,ℓ)

ϕAVG(xi, ℓi).

(2)
We automatically determine the value of n′ as the
value that maximizes the average silhouette score
(Rousseeuw, 1987) among all samples, which for
sample i is given by

silhouette-score(i) =
b(i)− a(i)

max(a(i), b(i))
,

where a(i) is the average distance of sample i to
all other samples in its cluster, and b(i) is the av-
erage distance of sample i to all samples in the
neighboring cluster nearest to i.

3.4 Step 4: Final intent discovery
To finally infer the latent intents, we represent each
utterance x ∈ Dx with its label ℓ as ϕSMOOTH(x, ℓ),
and apply K-means clustering, setting K to the
ground truth number of latent intents |Y|, following
Hadifar et al. (2019); Zhang et al. (2021a,c, 2022).

4 Experimental Setup

4.1 Datasets
We evaluate our IDAS approach on two widely
adopted intent classification datasets, CLINC (Lar-
son et al., 2019) and Banking (Casanueva et al.,
2020), as well as the StackOverflow topic classi-
fication dataset (Xu et al., 2015). We also use a
private dataset from a transportation company. Ta-
ble 2 summarizes dataset statistics.

Dataset # Train # Test # Intents

CLINC 18,000 2,250 150
Banking 9,016 3,080 77
Transport - 1,257 42
StackOverflow 18,000 1,000 20

Table 2: Dataset statistics.

4.2 Baselines

On Banking, StackOverflow, and our Transport
dataset, we compare IDAS against the state-of-the-
art in unsupervised intent discovery, i.e., the MTP-
CLNN model (Zhang et al., 2022) that outper-
forms prior unsupervised methods, such as DEC
(Xie et al., 2016b), DCN (Yang et al., 2017b),
and DeepCluster (Caron et al., 2018b). As the
MTP-CLNN model is pre-trained on the anno-
tated training data of CLINC, directly comparing
against it would be unfair. Instead, we compare
our approach on CLINC with two state-of-the-art
semi-supervised intent discovery methods, DAC
(Zhang et al., 2021c) and SCL+PLT (Shen et al.,
2021). Compared to the semi-supervised setting,
the unsupervised setting without annotations is thus
more challenging. We report results of DAC and
SCL+PLT with an increasing “Known Class Ratio”
(KCR) of 25%, 50%, and 75%, using the annotated
data for the known intents of Shen et al. (2021).

4.3 Evaluation

Following Zhang et al. (2021c); Shen et al. (2021);
Zhang et al. (2022), we assess cluster performance
by comparing the predicted clusters to the ground
truth intents using the (i) Adjusted Rand Index
(ARI) (Steinley, 2004), (ii) Normalized Mutual In-
formation (NMI), and (iii) Cluster Accuracy (ACC)
based on the Hungarian algorithm (Kuhn, 1955).
Since IDAS’s label generation process may depend
on the order in which utterances occur, we perform
Steps 1–2 leading to utterance labels 5 times, shuf-
fling the utterance order. We further conduct the
final clustering Step 4 with 10 different seeds for
each of those 5 label generation runs, to account for
variation incurred by K-means. For each dataset,
we then average the results in terms of means and
standard variations across each of these 5 sets.

4.4 Implementation

Encoder: We use the same pre-trained encoder
E in all steps of our approach, i.e., to (i) retrieve
prototypes (§3.1), (ii) mine the n demonstrations
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Nn(x) for utterance x (§3.2), and (iii) encode utter-
ances with their labels using Eqs. (1)–(2) (§3.3). To
rule out performance differences stemming purely
from the encoder, we employ the same pre-trained
encoder as the baseline we compare with: we
use the MTP encoder for Banking, StackOver-
flow, and Transport, where we compare to MTP-
CLNN (Zhang et al., 2022), and the SBERT en-
coder paraphrase-mpnet-base2 (i.e., SMPNET)
(Reimers and Gurevych, 2019) for CLINC, where
we compare to DAC (Zhang et al., 2021c) and
SCL+PLT (Shen et al., 2021).

Language models and prompts: IDAS uses the
text-davinci-003 GPT-3 model (Ouyang et al.,
2022) as its LLM for label generation. We adopt
the OpenAI playground default values, except for
the temperature, which we set to 0 to minimize
variation among generated labels of utterances with
the same latent intent. To generate prototypical la-
bels (§3.2), we use the instruction “Describe the
domain question in a maximum of 5 words”,
where the domain is banking, chatbot, or transport
for the corresponding dataset. Since StackOver-
flow is a topic rather than an intent classification
dataset, we adopt a slightly different prototypical
prompt. To generate labels for non-prototypical ut-
terances with ICL (§3.2), we use “Classify the
domain question into one of the provided
labels” for all 4 datasets. See Appendix A.2 for
full prompts and examples.

Nearest neighbor retrieval: The function s is
implemented with cosine similarity. We use n= 8
demonstrations Nn(x) to generate label ℓ for ut-
terance x (§3.2), based on Min et al. (2022c) and
Lyu et al. (2022), who report that further increas-
ing n does not improve ICL’s performance. The
number of smoothing samples n′ is determined by
running the final K-means (§3.4) multiple times
with n′ ranging from 5 to 45 and selecting the value
that maximizes the average silhouette score.

5 Results and Discussion

5.1 Main Results

In unsupervised clustering, no labels are available
and thus there is only a test set, used to evaluate the
model’s induced clusters against gold standard la-
bels (Xie et al., 2016a; Yang et al., 2017a; Hadifar
et al., 2019; Zhang et al., 2021a). In the semi-
supervised intent detection setting, intent labels
are available for a subset of intents: there is an

additional labeled training set — which can be ex-
ploited, e.g., for (pre-)training a sentence encoder.

Zhang et al. (2022) evaluated their MTP and
MTP-CLNN models by (pre-)training the encoder
based on an unlabeled training set different from
the test set where (new) intent clusters are induced,
i.e., they evaluate on a held-out test set unseen
during any (pre-)training phase. Since in our IDAS,
no encoder is trained, we perform Steps 1–4 on
the (unlabeled) test set following (Xie et al., 2016a;
Yang et al., 2017a; Hadifar et al., 2019; Zhang
et al., 2021a). To ensure a fair comparison we also
consider an MTP-CLNN that uses that same test set
in (pre-)training its encoder (i.e., for the Dunlabeled

as defined in Zhang et al. (2022); results marked by
♠ in Table 3). Note that the test sets for a particular
dataset are identical across all reported results.

First, we compare IDAS against the state-of-the-
art in the unsupervised setting, i.e., MTP-CLNN,
with results reported in Table 3. Both in the origi-
nal settings of Zhang et al. (2022) (keeping the test
data unseen during training, ♢) as well as when
using the unlabeled test data in training MTP(-
CLNN) (♠), our IDAS significantly surpasses it,
with gains averaged over three datasets of +3.19–
3.94%, +1.79–2.86% and +1.96–3.34% in respec-
tively ARI, NMI and ACC. We further find that
IDAS consistently outperforms MTP-CLNN on all
metrics and datasets, except for Banking, where
IDAS and MTP-CLNN perform similarly (when
comparing them in similar settings, i.e., both us-
ing unlabeled test data in training phase). Note
that both IDAS and MTP-CLNN perform worse
on StackOverflow and Banking in our settings (♠)
compared to the original results of Zhang et al.
(2022) (♢), likely because in case of ♠, the MPT(-
CLNN) encoder(s) were trained on a substantially
lower number of samples, i.e., only 5.5% for Stack-
Overflow (1,000 for ♠ vs. 18,000 for ♢) and 34%
for Banking (3,080 for ♠ vs. 9,016 for ♢).

Second, we assess our IDAS’s performance in the
semi-supervised task setting, where a subset of in-
tents has labeled data. Note however that our IDAS
does not use the labels for those utterances in any
way. The results for CLINC presented in Table 4
show that IDAS outperforms both semi-supervised
SCL+PLT and DAC methods for KCR’s of 25%
and 50%. Notably, IDAS surpasses SCL+PLT and
DAC for KCR of 50%, with improvements in the
range of 5.77–6.76%, 1.61–2.32%, and 4.78–4.89%
in ARI, NMI, and ACC, respectively. Even for
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Banking StackOverflow Transport Average

Model ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

MTP♢ 47.33 77.32 57.99 48.71 63.85 66.18 - - - 48.02 70.59 62.09
MTP-CLNN♢ 55.75 81.80 65.90 67.63 78.71 81.43 - - - 61.69 80.26 73.67
IDAS 57.56 82.84 67.43 72.20 81.26 83.82 - - - 64.88±1.07 82.05±0.68 75.63±0.82

MTP♠ 39.52 72.03 51.66 29.66 47.46 48.97 44.51 74.71 57.51 37.90±0.48 64.73±0.31 52.69±0.60

MTP-CLNN♠ 52.47 79.46 64.06 62.53 73.52 78.82 50.33 77.77 61.60 55.11±1.32 76.92±0.74 68.16±1.02

IDAS 53.31 80.43 63.77 66.08 77.25 82.11 57.75 81.66 68.51 59.05±1.92 79.78±0.91 71.46±1.57

∆MTP-CLNN♢ +1.81 +1.04 +1.53 +4.57 +2.55 +2.39 - - - +3.19 +1.79 +1.96
∆MTP-CLNN♠ +0.84 +0.97 −0.29 +3.55 +3.73 +3.39 +7.42 +3.89 +6.91 +3.94 +2.86 +3.34

Table 3: Comparison against unsupervised state-of-the-art. ♢: results from Zhang et al. (2022). ♠: results from
(pre-)training MTP(-CLNN) on the test set (rather than a distinct unlabeled training set). The best model is typeset
in bold and the runner-up is underlined. ∆MTP-CLNN values are the absolute gains of our IDAS.

CLINC

KCR Model ARI NMI ACC

0% SMPNET 63.82 89.01 71.30
IDAS 79.02±1.14 93.82±0.38 85.48±0.84

25% DAC♡ 65.36 89.12 75.20
SCL+PLT♡ 64.78 89.31 73.77

50% DAC♡ 72.26 91.50 80.70
SCL+PLT♡ 73.25 92.21 80.59

75% DAC♡ 79.56 93.92 86.40
SCL+PLT♡ 83.44 95.25 88.68

Table 4: Comparison against semi-supervised methods
DAC and SCL+PLT. ♡: results from Shen et al. (2021).
Bold indicates best model. KCR: known class ratio.

KCR = 75%, it performs just slightly worse than
DAC, further confirming IDAS’s effectiveness.

5.2 Ablations

Below, we investigate the impact of (i) the encoding
strategies from §3.3, and (ii) ICL from §3.2 on
IDAS’s performance. The results for each ablation
are averaged over 5 runs with the utterances’ order
corresponding to those used for presenting the main
results, i.e., with IDAS’s default parameters values.
Due to computation budget constraints, we only
provide ablations on StackOverflow for (ii), since
it requires GPT-3. For (i), we report results for
Banking, StackOverflow, Transport, and CLINC.

Effect of the encoding strategies: Table 5 com-
pares the cluster performance of these four en-
coding strategies: (1) E(x) encodes only utter-
ances; (2) E(ℓ) encodes only generated labels;
(3) ϕAVG(x, ℓ) (Eq. (1)) averages utterance and la-
bel encodings into a single vector representation;

(4) ϕSMOOTH(x, ℓ) (Eq. (2)) smooths the averaged
vector representations. All encoding methods lever-
aging the generated labels ℓ outperform the base-
line E(x) using only the utterance, leading to ARI,
NMI, and ACC gains between 5.12–19.23%, 3.82–
16.75%, and 4.32–13.87%, respectively. This con-
firms our main hypothesis that abstractly summa-
rizing utterances improves intent discovery. More-
over, combining utterance and label encodings
(ϕAVG(x, ℓ)) further improves upon using the la-
bel alone (performing on par only for CLINC).
Adding smoothing (ϕSMOOTH(x, ℓ)) boosts perfor-
mance even more.

Inferring the number of smoothing neighbors:
Smoothing requires selecting the number of neigh-
bors n′. Our proposed IDAS selects the value of
n′ ∈ {5, . . . , 45} that yields the highest silhouette
score. To assess the effect of that chosen n′ value,
we plot the ARI, NMI, and ACC scores for vary-
ing n′ in Fig. 2. We observe that the ARI, AMI,
and ACC scores obtained with the automatically
inferred n′ are nearly identical to the best achiev-
able performance, demonstrating that the silhouette
score is an effective heuristic for selecting a suit-
able number of smoothing neighbors.

Random vs. nearest neighbor demonstrations:
IDAS employs KATE (Liu et al., 2022) to select
the n ICL demonstrations most similar to x, i.e.,
Nn(x), for generating x’s label (§3.2). To evalu-
ate KATE’s effectiveness for intent discovery, we
present results for IDAS where n (= 8) demon-
strations are instead selected randomly. Table 6
shows a substantial improvement of KATE over the
random selection method, where the latter only
marginally outperforms IDAS without any demon-
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Banking StackOverflow Transport CLINC

Encoding ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

E(x) 47.33 77.32 57.99 48.71 63.85 66.18 44.51 74.71 57.51 63.82 89.01 71.30
E(ℓ) 52.45 81.14 62.31 67.94 80.60 80.05 54.37 80.68 64.66 75.01 93.04 81.27
ϕAVG(x, ℓ) 54.47 82.35 63.25 69.20 80.76 81.29 55.91 81.11 65.94 75.65 93.33 81.04
ϕSMOOTH(x, ℓ) 57.56 82.84 67.43 72.20 81.26 83.82 57.75 81.66 68.51 79.02 93.82 85.48

Table 5: Effect of the encoding strategies.
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Fig. 2: Inferring the number of smoothing neighbors n′. The vertical lines represent the automatically determined
number of smoothing neighbors corresponding to the highest silhouette score (sil).

strations (No ICL, n = 0). This follows the intu-
ition that the LLM can pick a label from one of
the n-NN instances, which likely shares an intent
with the utterance to be labeled, thus effectively
limiting label variation and improving clustering
performance.

Varying the number of ICL demonstrations:
We generate labels (1) without ICL, adopting the
static prompt for generating the prototypical labels,
without any demonstrations, and (2) with ICL for
varying numbers of demonstrations n ∈ {1, 2, . . . ,
16}. Table 6 shows that (i) using any number of
demonstrations leads to superior performance com-
pared to using no demonstrations (No ICL); (ii) by
varying small amounts of demonstrations (n = 1, 2,
or 4) no significant differences are found; (iii) the
best performance is achieved by using more demon-
strations, i.e., 8 or 16. Consistent with the results
of Min et al. (2022c); Lyu et al. (2022), increasing
n from 8 to 16 does not result in further improve-
ments, thus confirming that n= 8 demonstrations
is a good default value.

Overestimating the number of prototypes: Fol-
lowing Hadifar et al. (2019); Zhang et al. (2021a,c,
2022), IDAS assumes a known number K of intents,
both for the initial clustering (Step 1, retrieving pro-
totypes, §3.1) and for the final clustering (Step 4,
recovering latent intents, §3.4). While K can be
estimated from a subset of utterances, determining
it exactly is difficult. Unlike MTP-CLNN (Zhang

StackOverflow

Method ARI NMI ACC

No ICL (n = 0) 66.21±0.13 77.27±0.04 80.42±0.13

KATE, n = 1 68.91±1.25 79.11±0.53 83.09±0.86

KATE, n = 2 68.88±1.40 79.06±0.86 82.67±0.98

KATE, n = 4 69.97±1.32 79.76±0.79 82.94±0.97

KATE, n = 8 72.20±1.53 81.26±0.93 83.82±0.91

KATE, n = 16 72.49±1.75 82.07±1.18 83.50±0.88

random, n = 8 66.80±0.90 78.72±0.85 81.37±0.93

K×2 (n = 8) 71.43±0.66 80.76±0.28 83.51±0.56

Table 6: ICL ablations. IDAS default settings are n = 8.
The K× 2 result uses twice the number of gold standard
intents for the initial (Step 1, §3.1) clustering (i.e., 40
instead of 20 for StackOverflow).

et al., 2022), IDAS does not assume that the number
of samples of each latent intent is known. To probe
the robustness of IDAS’s label generation to an in-
correct number of prototypes, we conduct the initial
K-means clustering with twice the gold number of
intents. The K× 2 row in Table 6 shows that this re-
sults in only a minor performance drop, indicating
that IDAS’s label generation process is sufficiently
robust to such overestimation. In fact, we hypoth-
esize that having multiple prototypes representing
the same intent is less harmful than an insufficient
number or incorrectly selected prototypes that do
not accurately represent each intent.
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6 Conclusions

Unlike existing methods that train unsupervised
sentence encoders, our IDAS approach employs a
frozen pre-trained encoder since it increases the
(dis)similarity of (un)related utterances in the tex-
tual space by abstractly summarizing utterances
into “labels”. Our experiments demonstrate that
IDAS substantially outperforms the current state-of-
the-art in unsupervised intent discovery across mul-
tiple datasets (i.e., Banking, StackOverflow, and
our private Transport), and surpasses two recent
semi-supervised methods on CLINC, despite not
using any labeled intents at all. Our findings sug-
gest that our alternative strategy of abstractly sum-
marizing utterances (using a general purpose LLM)
is more effective than the dominant paradigm of
training unsupervised encoders (specifically on di-
alogue data), and thus may open up new perspec-
tives for novel intent discovery methods. Since our
generated labels provide a better measure of intent-
relatedness, we hypothesize that they could also
enhance the performance of existing methods that
train unsupervised encoders, e.g., by (i) reducing
the number of false positive contrastive pairs for
MTP-CLNN (Zhang et al., 2022), or (ii) improving
the purity of clusters induced by methods that iter-
atively cluster utterances and update the encoder
with (self-)supervision from cluster assignments
(Xie et al., 2016a; Caron et al., 2018b; Hadifar
et al., 2019). To facilitate such follow-up work,
we release our generated labels for the Banking,
StackOverflow, and CLINC datasets.2

Limitations

Our work is limited in the following senses. First,
all presented results relied on the ground truth num-
ber of intents to initialize the number of clusters for
conducting K-means to retrieve prototypes (§3.1)
and infer latent intents (§3.4). In practice, however,
the ground truth number of intents is unknown and
needs to be estimated by examining a subset of
utterances. However, our ablations in §5.2 inves-
tigated the impact of overestimating the number
of ground truth intents by a factor of two, and
found that IDAS’s performance did not degrade
much. While we did not explore this for the fi-
nal K-means to infer latent intents, future work
could investigate cluster algorithms that do not re-
quire the number of dialogue states as input, e.g.,

2https://github.com/maarten-deraedt/IDAS-inten
t-discovery-with-abstract-summarization.

DBSCAN (Ester et al., 1996), Mean shift (Comani-
ciu and Meer, 2002), or Affinity propagation (Frey
and Dueck, 2007).

Second, we generated labels with the GPT-
3 (175B) text-davinci-003 model, which may
be prohibitively expensive and slow to run
for very large corpora. In our initial experi-
ments, we tried using smaller-sized models such
as text-curie-001, text-babbage-001, and
text-ada-001, as well as Flan-T5-XL (Chung
et al., 2022), but found that the generated la-
bels were of lower quality compared to those of
text-davinci-003. In future work, it would thus
be interesting to further explore how to more ef-
fectively exploit such smaller-sized and/or open-
source language models.

Ethics Statement

Since IDAS automatically recovers intents from ut-
terances, e.g., those exchanged between users and
support agents, any prejudices that may be present
in these utterances may become apparent or even
amplified in intents inferred by our model, since
clearly IDAS does not eliminate such prejudices.
Hence, when designing conversational systems
based on such inferred intents, extra care should
be taken to prevent them from carrying over to
conversational systems deployed in the wild.

Moreover, since IDAS’s label generation process
relies on LLMs, biases that exist in the data used
to train these LLMs may be reinforced, leading to
generated labels that may discriminate against or
be harmful to certain demographics.
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Banking StackOverflow CLINC Average

Encoding ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

MTP or paraphrase-mpnet-base-v2
- E(x) 47.33 77.32 57.99 48.71 63.85 66.18 63.82 89.01 71.30 53.29 76.73 65.16
- E(ℓ) 52.45 81.14 62.31 67.94 80.60 80.05 75.01 93.04 81.27 65.13 84.93 74.54
- ϕAVG(x, ℓ) 54.47 82.35 63.25 69.20 80.76 81.29 75.65 93.33 81.04 66.44 85.48 75.19
- ϕSMOOTH(x, ℓ) 57.56 82.84 67.43 72.20 81.26 83.82 79.02 93.82 85.48 69.59 85.97 78.91

all-mpnet-base-v2
- E(x) 54.09 81.29 64.27 57.69 72.40 71.72 69.24 91.05 76.04 60.34 81.58 70.68
- E(ℓ) 52.33 81.51 63.29 66.96 82.37 81.13 77.48 93.91 83.08 65.59 85.93 75.83
- ϕAVG(x, ℓ) 57.90 83.87 67.55 70.92 83.81 82.56 78.86 94.40 83.58 69.23 87.36 77.90
- ϕSMOOTH(x, ℓ) 59.88 84.13 70.07 78.27 85.09 87.02 82.26 94.93 87.80 73.47 88.05 81.84

Table 7: Effect of using a more powerful sentence encoder. The first four rows show the main results presented in
§5.1, i.e., with the MTP encoder for Banking and StackOverflow, and with paraphrase-mpnet-base-v2 for CLINC.
The last four rows show the results of performing the final clustering (Step 4) with encoder all-mpnet-base-v2.

A Appendix

In §A.1, we analyze how using a more powerful
pre-trained sentence encoder affects the cluster per-
formance of IDAS. Additionally, we present and
discuss the prompts in §A.2, and conduct a qual-
itative analysis of the generated labels produced
by our IDAS approach in §A.3. Finally, in §A.4,
we provide a brief overview of the implementation
details of our experiments.

A.1 Effect of using a more powerful encoder

Here, we assess the impact of using a more pow-
erful frozen pre-trained encoder on the cluster-
ing performance of IDAS. Specifically, we provide
results of the four encoding strategies using the
SBERT encoder all-mpnet-base-v2 (Reimers
and Gurevych, 2019) in Table 7. The overall re-
sults, presented in the three rightmost columns
as the average of the scores across the three
datasets, show that each encoding strategy for
all-mpnet-base-v2 (bottom half of the table)
consistently improves upon the corresponding re-
sults for the encoder used in our previous main
results (as repeated here in the top rows). However,
the label-only encoding strategy (E(ℓ)) achieves
similar results for different encoders, likely because
the labels already are a short disambiguated ver-
sion of their associated utterances. Conversely, the
other three strategies that exploit the original ut-
terances x deliver substantially better results for
all-mpnet-base-v2, as the advanced encoder can
more effectively disambiguate utterances based
on their latent intents, thus improving cluster per-
formance. Notably, using all-mpnet-base-v2
for the smoothing strategy (ϕSMOOTH(x, ℓ)) com-

pared to using MTP (Banking, Stackoverflow) or
paraphrase-mpnet-base-v2 (CLINC), results in
gains of +3.88%, +2.08%, and +2.93% in ARI,
NMI, and ACC, respectively.

These results validate that employing more pow-
erful pre-trained sentence encoders can further im-
prove cluster performance out-of-the-box. It should
be noted that, due to limitations in computation
budget, we only replaced the encoder for Step 4
to induce intent clusters. However, we anticipate
that using all-mpnet-base-v2 also for Steps 1–2
could result in additional improvements.

A.2 Prompts

Figures 3–4 present the static prompts used to gen-
erate prototypical labels in Step 2.1 (§3.2) without
demonstrations, as well as the ICL prompts for
generating labels of non-prototypical utterances
in Step 2.2 (§3.2). One advantage of instructing
LLMs is the ability to specify additional informa-
tion in the prompts. When clustering topic datasets,
there typically is a general understanding of the
broad topic according to which utterances should
be partitioned, and this topic can be specified in
the prompts used to instruct LLMs. Since Stack-
Overflow pertains to topics rather than intents, we
adopted a more specific prototypical label genera-
tion prompt to instruct the LLMs to directly sum-
marize the utterances based on the “technology”
they refer to. While this approach may not be ef-
fective for intent discovery (i.e., a single conver-
sational dataset can contain intents from multiple
topics as well as non-topic intents), we speculate
that it could be applied to other topic classification
datasets, e.g., News or Biomedical, where a proto-
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typical prompt could instruct the LLM to identify
the “news category” or “medical drug”, “disease”,
etc. We defer exploring IDAS for topic clustering
beyond StackOverflow to future work.

A.3 Qualitative Analysis
We conduct a qualitative analysis of IDAS’s gener-
ated labels. Tables 8–10 show the generated labels
for a subset of clusters induced in Step 4 for the cor-
responding StackOverflow, Banking, and CLINC
datasets. For each presented cluster, we report
(i) the generated labels with their associated counts
in that cluster, and (ii) the majority gold intent, i.e.,
the most prevalent gold intent among utterances in
that cluster, and the number of utterances within
that cluster belonging to the majority gold intent.

Main findings: Overall, Tables 8–10 reveal that
there is little variation among generated labels
within a specific cluster. Specifically, for the ma-
jority of clusters, the most frequently occurring
generated label has a notably higher count than
the other generated labels, e.g., the first row in Ta-
ble 8 shows that the label “Magento” is generated
for 47 out of 49 utterances in that cluster. These
findings further support our main hypothesis that
abstract summarization increases the similarity in
the input space of utterances with the same latent
intent. Given the low variation across generated
labels within clusters, we hypothesize that our gen-
erated labels could also make clusters more easy
to interpret compared to utterance-only clustering,
thereby potentially reducing the time required for
manually inspecting clusters in real-world settings.

Slightly specific labels: While most clusters
clearly contain a single label that appears much
more frequently than other labels, there are
some clusters, e.g., pto_request, plug_type,
reminder_update, and calories for CLINC (Ta-
ble 10), where this is not the case. However, a
closer examination of these clusters reveals that the
labels still exhibit low variation since they share
the same syntactic and lexical structure. For in-
stance, the plug_type cluster’s generated labels
mostly follow the “Plug Converter ⟨noun adjunct⟩”
pattern, with only the noun adjunct being specific
to the utterance from which the label is generated.
Note that for our intent discovery purpose, these
slightly more specific labels do not negatively im-
pact cluster performance, as long as there is a high
overlap in syntactical and lexical structure among
generated labels.

Overly general labels: Although some utter-
ances are summarized into slightly more specific
labels, others may be summarized into overly
general labels. For instance, in the banking
cluster exchange_via_app (Table 9) the label
“Foreign currency exchange” appears 25 times.
However, 6 of those 25 utterances do not have
exchange_via_app as their gold intent, despite
having obtained the same generated label as those
other 19 utterances that do. This is due to the
fact that generated labels corresponding to more
high-level intents may be assigned to utterances
that belong to different intents but share that com-
mon more high-level intent. For instance, the utter-
ances “Can this app help me exchange currencies?”
and “I want to make a currency exchange to EU”
have respective gold intents exchange_via_app
and fiat_currency_support, yet both are sum-
marized into a more high-level “Foreign currency
exchange” label. In contrast to generated labels
that are slightly too specific, overly general labels
can adversely affect cluster performance, as they
may incorrectly group together utterances that be-
long to different intents despite sharing a common
high-level intent.

A.4 Implementation Details
For all presented experiments, the utterances are
encoded (Steps 1, 3–4) on a 2.6 GHz 6-Core In-
tel Core i7 CPU, using a frozen pre-trained sen-
tence encoder. Similarly, both the initial and final
K-means clustering to respectively retrieve pro-
totypes (Step 1) and infer latent intents (Step 4),
are conducted on CPU. We adopt the K-means im-
plementation of scikit-learn (Pedregosa et al.,
2011), with default parameter values, i.e., using the
algorithm of Lloyd (1982) and n_init= 10.
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Describe the banking question in a maximum of
5 words.
question: {prototype} label:

Banking

Describe the transport question in a maximum
of 5 words.
question: {prototype} label:

Transport

Describe the chatbot question in a maximum of
5 words.
question: {prototype} label:

CLINC
Identify the technology in question.
question: {prototype} technology:

StackOverflow

Fig. 3: Static prototypical label generation prompts. Note that since StackOverflow is a topic rather than an intent
classification dataset, we adopt a slightly different prompt.

Classify the transport question into one of the
provided labels.
(1) question: {demonstration 1}
(1) label: {label 1}
(2) question: {demonstration 2}
(2) label: {label 2}
. . .
(8) question: {demonstration 8}
(8) label: {label 8}

question: {input question}
label:

Transport

Classify the banking question into one of the
provided labels.
(1) question: My card is about to expire.
How do I get a new one?
(1) label: Get new card expiring
(2) question: Can I get a spare card for
someone else to use?
(2) label: Additional card
. . .
(8) question: What do I do when my card is
about to expire?
(8) label: Get new card expiring

question: Since my card is about to
expire, I need a new one.
label:

Banking

Classify the chatbot question into one of the
provided labels.
(1) question: Please tell me what kind of gas
this car needs
(1) label: Car gas type query
(2) question: Is there a type of gas i need to
use for this car
(2) label: Car gas type query
. . .
(8) question: how many miles per gallon do i
get
(8) label: Car gas mileage

question: What kind of gas will i
need to put in this car
label:

CLINC
Classify the question into one of the provided
technologies.
(1) question: When doing a tortoise svn
merge, it includes a bunch of directories . . .
(1) technology: Subversion (SVN)
(2) question: SVN how to resolve new tree
conflicts when file is added on two branches
(2) technology: Subversion (SVN)
. . .
(8) question: how to put linq to sql in a
separate project?
(8) technology: LINQ to SQL

question: Using svn for general pur-
pose backup.
technology:

StackOverflow

Fig. 4: Prompts for non-prototypical label generation with ICL.
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Majority gold topic (# yGOLD/|C|) Generated labels (# ℓ)

topic_20 (49/49) Magento (47) Magento CodeIgniter (1) Shipping Method (1)

topic_17 (44/45) Drupal (35) Drupal 6 (5) Drupal 5 (1)
Drupal and Ruby on Rails (1) Drupal Ubercart (1) Web View (1)
Drupal and Microsoft SQL
Server and Microsoft IIS 7 (1)

topic_10 (43/49) BASH scripting (30) Shell Scripting (5) Bash (Unix Shell) (2)
BASH scripting (2) Scripting (1) Scripting (1)
Shell scripting (1) Pipe-separated files (1) Readline (1)
Scriptaculous (1) Shell Scripting (1) Bash scripting (1)
SSH scripting (1)

topic_6 (46/46) Matlab (35) Matlab Octave (3) Matrix (1)
MATLAB (1) MatLab Mathematica (1) MatLab (1)
Matlab and C# (1) N/A (1) Image Processing (1)
Ezplot (Matlab plotting tool) (1)

topic_19 (45/46) Haskell (40) Haskell Cabal (1) General Programming (1)
Haskell HDBC (1) General Programming (1)
GHCi (Glasgow Haskell Com-
piler Interactive) (1)

GHCI (Glasgow Haskell
Compiler Interactive) (1)

topic_16 (42/45) Qt (32) Qt C++ (2) Qt (C++ library) (2)
Qt4 (1) QT (1) QtScript (1)
Qt (C++) (1) QuickTime (1) IP Camera (1)
Real Time Video Capture (1) QT (1) Quicksilver (1)

topic_1 (45/48) WordPress (38) jQuery and cycle (1) Drupal and WordPress (1)
Open Atrium (1) Disqus (1) WordPress, PHP (1)
HTTP POST (1) Blogging (1) WordPress and Django (1)
WordPress, RESTful, SOAP, In-
terWoven TeamSite (1)

Commenting (1)

topic_5 (45/45) Microsoft Excel (40) Excel VBA (1) Perl (1)
Microsoft Excel, Internet Infor-
mation Services (IIS) (1)

Microsoft Excel, Visual Ba-
sic (1)

Google Earth (1)

topic_3 (47/53) Subversion (SVN) (42) File System (3) Subversion (SVN) (1)
Apache web server and Subver-
sion (SVN) (1)

Subversion (SVN) and
SharpSvn (1)

Version Control (1)

Subversion (SVN) and Web-
DAV (1)

Subversion (SVN) and Win-
dows (1)

Subversion (SVN) and Apache
web server (1)

Concurrent Versions Sys-
tem (CVS) (1)

Table 8: Generated labels that occur in selected IDAS clusters for StackOverflow, as well as the number of times # ℓ
each label ℓ occurs in corresponding cluster C. The majority gold topic yGOLD of cluster C is the most prevalent gold
topic among all utterances in yGOLD, and # yGOLD denotes the number of utterances in C with y = yGOLD. Generated
labels of utterances that have gold intents different than yGOLD are highlighted in red. Since no descriptive topic
names are provided for StackOverflow, we refer to them simply as numbered topics (topic_x)

.
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Majority gold intent (# yGOLD/|C|) Generated labels (# ℓ)

lost_or_stolen_phone (38/38) Lost phone banking app (37) Switching phones banking app (1)

atm_support (35/35) ATM card acceptance (25) Find nearest ATM (10)

card_acceptance (24/27) Card usage limits (24) Card usage (3)

virtual_card_not_working (31/33) Virtual card not working (31) Virtual card not received (2)

contactless_not_working (37/39) Contactless banking issue (37) Banking login issues (2)

compromised_card (24/42) Unauthorized card usage (24) Unauthorized card usage (18)

age_limit (39/39) Age requirement for banking (30) Opening an account for family members (9)

terminate_account (40/41) Close bank account (39) Account closure advice (1)
Change bank name (1)

card_about_to_expire (17/20) Get new card expiring (17) Get new card swallowed (3)
Renew card banking (1)

card_delivery_estimate (13/13) Delivery time in US (9) Delivery time request (2)
Delivery date selection (2)

country_support (17/17) Banking countries operated in (14) Banking locations (2)
Supported countries (1)

automatic_topic (27/27) Automated top-up option (14) Auto top-up location query (7)
Low balance top-up feature (5) Auto top-up activation issue (1)

receiving_money (14/18) Banking - Salary Deposit (14) Banking, Payment, Check (2)
Banking - Types of Deposits (1) Banking, Deposit, Cheque (1)

receiving_money (10/19) Configure salary in GBP (8) Convert currency to GBP (2)
Convert currency to GBP (1) Deposit Money in GBP (1)
Convert currency to AUD (6) Convert currency to AUD GBP (1)

apple_pay_or_google_pay (40/40) Top up with Google Pay (10) Top up with Apple Pay (10)
Apple Pay issue (10) Top up with Apple Watch (8)
Cost of Apple Pay (1) Set up Apple Pay (1)

getting_spare_card (22/25) Get second card banking (11) Add card for family member (6)
Link existing bank card (4) Link card to website (2)
Get spare card banking (1) Choose bank card (1)

visa_or_mastercard (36/40) Credit card offerings (19) Credit card decision making (12)
Credit card application process (4) Card payment acceptance (3)
Credit card acceptance (1) Credit card eligibility (1)

balance_not_updated_after_ Cash deposit not posted (25) Cash deposit pending query (6)
cheque_or_cash_deposit (36/38) Cheque deposit processing time

(1)
Cash deposit not accepted (1)

Cash deposit flagged (1) Cash deposit to account (1)
Direct Deposit not posted (1)

exchange_via_app (27/51) Foreign currency exchange (19) Currency exchange process (7)
Currency conversion (1) Cryptocurrency exchange (7)
Foreign currency exchange (6) Cross-border payments (1)
Receive payment in foreign cur-
rency (5)

Discounts for frequent currency exchange
(5)

Table 9: Generated labels that occur in selected IDAS clusters for Banking, as well as the number of times # ℓ each
label ℓ occurs in corresponding cluster C. The majority gold intent yGOLD of cluster C is the most prevalent gold
intent among all utterances in yGOLD, and # yGOLD denotes the number of utterances in C with y=yGOLD. Generated
labels of utterances that have gold intents different than yGOLD are highlighted in red.
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Majority gold intent (# yGOLD/|C|) Generated labels (# ℓ)

find_phone (15/15) Locate Phone Request (15)

vaccines (15/15) Travel Vaccination Needed (15)

exchange_rate (15/15) Currency Exchange Rate (15)

share_location (15/15) Share Location Request (15)

international_fees (15/15) International Transaction Fees (15)

report_fraud (13/13) Fraudulent Transaction Inquiry (11) Report Fraudulent Activity (2)

change_speed (15/15) Speak slower please (8) Speak faster please (7)

tire_pressure (15/15) Tire Air Pressure Query (14) Tire air pressure query (1)

international_visa (15/16) Need International Visa (15) Intercontinental Meaning (1)

pto_request_status (13/17) Vacation Request Status (12) Vacation request status (1)
Vacation Request Process (3) Vacation Request (1)

weather (15/17) Weather forecast query (14) Meteorological Data for Tallahassee (1)
AC Temperature Query (1) Set AC Temperature (1)

balance (14/15) Bank Account Balance (11) Check Account Balance (2)
bank account balance (1) Bank Account Balance (1)

cancel_reservation (15/16) Cancel restaurant reservation (8) Cancel dinner reservation (4)
Cancel Reservations (1) Call restaurant to cancel reservation (1)
Cancel reservation for Network (1) Cancel Appointment (1)

pto_request (11/11) PTO request for March (3) PTO request for May (2)
PTO request for June (2) PTO request for January (1)
PTO request for First to Ninth (1) PTO request for January to February (1)
PTO request for July (1)

plug_type (15/15) Plug Type Query (3) Plug Converter Barcelona (2)
Plug Converter El Salvador (1) Plug in electronics? (1)
Plug Converter Mexico (2) Plug Converter Thailand (1)
Plug Converter Denmark (1) Plug Converter Israel (1)
Plug Converter Z (1) Plug Converter Cairo (1)
Plug Converter Guam (1)

reminder_update (14/28) Ask Reminder List (9) Remind of Forgotten Task (3)
Set Reminder (3) Set Reminder Later (2)
Confirm Reminder Laundry (1) Set Reminder Later (1)
Set Reminder Trash Out (1) Set Reminder Dog Medicine (1)
Set Reminder Movie (1) Set Reminder Pick Up Stan (1)
Set Reminder Bring Jacket (1) Set Reminder Take Out Oven (1)
Set Reminder Conference (1) Set Reminder Pay Bills (1)
Set Reminder Booking (1)

calories (15/21) Calorie content of apple (2) Caloric value of cookie (1)
Calorie content of peanut butter (1) Calorie content of fries (1)
Calorie content of Coke (1) Calorie content of whole cashews (1)
Calorie content of bacon (1) Calorie content of cookie (1)
Calorie content of KitKat (1) Calorie content of bagels (1)
Calorie content of Cheetos (1) Calorie content of chocolate ice cream (2)
Nutrition Info for Brownies (1) Nutrition Facts for Cheerios (1)
Health benefits of avocados (1) Health benefits of apples (1)
Health benefits of chocolate (1) Nutrition Info for Lay’s Potato Chips (1)
Calorie content of Peanut Butter and
Jelly Sandwich (1)

Table 10: Generated labels that occur in selected IDAS clusters for CLINC, as well as the number of times # ℓ each
label ℓ occurs in corresponding cluster C. The majority gold intent yGOLD of cluster C is the most prevalent gold
intent among all utterances in yGOLD, and # yGOLD denotes the number of utterances in C with y=yGOLD. Generated
labels of utterances that have gold intents different than yGOLD are highlighted in red.
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Abstract

Conversational recommendation systems
(CRS) have gained popularity in e-commerce
as they can recommend items during user in-
teractions. However, current open-ended CRS
have limited recommendation performance due
to their short-sighted training process, which
only predicts one utterance at a time without
considering its future impact. To address
this, we propose a User Simulator (US) that
communicates with the CRS using natural
language based on given user preferences,
enabling long-term reinforcement learning.
We also introduce a framework that uses
reinforcement learning (RL) with two novel
rewards, i.e., recommendation and conversa-
tion rewards, to train the CRS. This approach
considers the long-term goals and improves
both the conversation and recommendation
performance of the CRS. Our experiments
show that our proposed framework improves
the recall of recommendations by almost 100%.
Moreover, human evaluation demonstrates the
superiority of our framework in enhancing the
informativeness of generated utterances. 1

1 Introduction

Conversational Recommendation Systems
(CRS) (Li et al., 2018; Chen et al., 2019; Zhou
et al., 2020; Liang et al., 2021; Lei et al., 2020b;
Deng et al., 2021; Yang et al., 2022) are of growing
interest. Unlike traditional recommendation
systems, CRS extract user preferences directly
and recommend items during their interaction
with users. Traditional CRS (Deng et al., 2021;
Lei et al., 2020b,a) recommend an item or ask
about the user preference of a specific attribute at a
turn and use predefined question templates with
item/attribute slots in practical applications, which
are denoted as attribute-centric CRS. In addition,
they often use reinforcement learning to learn a

1Our code is released at https://github.com/ZQS1943/
CRS_US.

CRS

US

User Preferences: 
Interstellar : seen, like 

Tenet : seen, like 
Dune: unseen 

...

Hi! What type of movies do you like?

I like science fiction and fantasy movies.

A good fantasy movie is Interstellar.

I saw that one. It was fairly good.

...

Figure 1: Overview of our proposed framework. The
User Simulator (US) can interact with the Conversa-
tional Recommendation System (CRS) based on certain
user preferences.

policy of recommending items and asking about
attributes. Although such attribute-centric CRS are
popular in industry due to its easy implementation,
the user experience is unsatisfactory due to its
lack of flexibility and interactivity. In addition,
limited user information is collected by the CRS
due to the constrained interaction format. To this
end, open-ended CRS(Li et al., 2018; Chen et al.,
2019; Zhou et al., 2020; Liang et al., 2021; Yang
et al., 2022) are proposed to provide more flexible
interactions with users. Such CRS can interact
with the user like a real human-being, which focus
on understanding user preferences according to
their utterances and generating fluent responses to
recommend items.

Although open-ended CRS can engage in natural
and fluent conversations with users, their recom-
mendation quality are often suboptimal. This is
partly because these systems are typically trained
using maximum likelihood estimation (MLE) to
predict one utterance at a time, which hinders their
ability to learn a long-term recommendation pol-
icy (Li et al., 2016b). Moreover, such MLE training
fails to directly address the primary goal of CRS,
which is to gradually explore user preferences and
provide accurate, informative recommendations.

89

https://github.com/ZQS1943/CRS_US
https://github.com/ZQS1943/CRS_US


For instance, systems trained with MLE may gen-
erate generic and unhelpful responses, such as
“You’re welcome. Bye."

Traditional attribute-centric CRS can learn effec-
tive recommendation policies by using reinforce-
ment learning to enable a global view of the con-
versation. However, adapting this strategy to open-
ended CRS is challenging due to the lack of a suit-
able User Simulator (US) for them. Developing a
US for open-ended CRS is much harder than for
attribute-centric CRS because it needs to gener-
ate natural-sounding utterances that are consistent
with specific user preferences, rather than simply
providing signal-level feedback as in the US for
attribute-centric CRS. The US can serve not only
as an environment for reinforcement learning but
also provide more diverse and realistic human-like
conversation scenarios and patterns than fixed train-
ing datasets. A suitable US for open-ended CRS
would be a significant step toward improving their
recommendation quality and making them more
effective in real-world applications.

This paper proposes a framework that includes a
CRS and a US to facilitate RL of the CRS. Specifi-
cally, we first develop a US for open-ended CRS,
comprising three preference-aware modules that
generate user utterances based on any given user
preferences. Building on recent work in applying
RL for dialogue generation (Tseng et al., 2021;
Papangelis et al., 2019; Das et al., 2017; Li et al.,
2016b), we propose optimizing the long-term per-
formance of pre-trained CRS using RL during inter-
action with the US. We also introduce two rewards:
the recommendation reward and the conversation
reward, to better reflect the true objective of CRS.
To the best of our knowledge, this is the first frame-
work for training open-ended CRS in reinforcement
learning strategies.

The contributions of this work are summarized
as follows:

• We present the first US that can interact with
the CRS using natural language based on spe-
cific user preferences. With three preference-
aware modules, the proposed US not only
gives the correct feedback to the CRS rec-
ommended items, but also expresses its prefer-
ence actively to let the CRS know more about
the user in a short dialog.

• We present the first framework for fine-tuning
a pre-trained open-ended CRS with RL and

introduce two rewards to improve both con-
versation and recommendation performance.

• Comprehensive experiments are conducted,
which demonstrate that the proposed frame-
work is powerful in improving both the accu-
racy of the recommendation and the informa-
tiveness of the generated utterances.

2 Methods

2.1 Overall Architecture
Formally, in the CRS scenario, we use u to de-
note a user from the user set U and i to de-
note an item from the item set I. A dialog con-
text can be denoted as a sequence of alternat-
ing utterances between the CRS and the user:
{xcrs1 , xus1 , xcrs2 , xus2 , · · · , xcrst , xust }. In the t-th
turn, the CRS generates an utterance xcrst that rec-
ommends the item it ∈ I. Note that it can be
None if xcrst is a chit-chat response or is a query
to clarify the user preference and does not need
to recommend. The user then provides a response
xust .

Our goal is to train the CRS with reinforcement
learning to improve its long-term performance.
Since online human interactive learning costs too
much effort in training, a US is utilized to assist the
RL process of the CRS, by simulating natural and
personalized dialogue contexts. To train the overall
framework, we first train a US that can simulate
user utterances based on specific user preferences
in each dialog, using supervised learning. We then
fine-tune a pre-trained CRS by encouraging two
novel rewards during the interaction with the US
through reinforcement learning.

2.2 User Simulator
In this section, we present our US, which aims to
interact with CRS using natural language based on
any given user preferences. However, developing
such a US comes with two main challenges: (1)
the US must be able to express its preferences both
actively and passively. It should provide accurate
feedback on recommended items and actively ex-
press its preferences to quickly provide the CRS
with more information in a short dialogue. (2) pre-
serving the long-term preferences of the user cre-
ates a large search space for item selection, which
can burden the US. Additionally, users are only in-
terested in a small set of items in each dialogue, re-
quiring the US to model dynamic user preferences
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Context Encoder

 
 
 

User  

dynamic condensed 
candidate items set 

...

current preferred item
embedding matrix 

user preference vector 

seen
like1

1

I love [ITEM] . It was directed by the same director as my favorite movie [ITEM] .

self-attention

user preference attention

softmaxDecoder

Template

Tenet Interstellar

Tenet is a good movie.

Dialog History

...
...

Preference-aware Modules 

Item Selector

user preference emb token emb position emb

...

...

N 
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Figure 2: Our proposed User Simulator. Given the dialog history, a transformer-based Encoder-Decoder module
enhanced with user preference embedding and user preference attention is used to generate a personalized response
template with item slots. An Item Selector is used to select the appropriate items from the dynamic condensed
candidate items set Ican based on the context and the user preference.

in the current dialogue. To address the first chal-
lenge, we propose two components: User Prefer-
ence Embedding to capture the user’s personalized
characteristics for a recommended item, enabling
the US to generate appropriate feedback, and User
Preference Attention to prompt the US to express
its preferred items. To tackle the second challenge,
we employ the use of Dynamic Condensed Candi-
date Item Set, which captures the user’s short-term
preferences, thereby reducing the search space for
item selection.

Figure 2 shows an overview of our proposed
US, which is based on a dialog generation model
NRTD (Liang et al., 2021). Given the dialogue con-
text, we first utilize a knowledge-enhanced encoder-
decoder-based template generator, depicted as the
“context encoder" and “decoder" in Figure 2, to
generate an utterance template with item slots. In
the decoder module of the template generator, we
incorporate user preference embedding to enhance
token embedding with information about the last
recommended item and add a user preference at-
tention layer to incorporate user preferred items
into the generated templates. Next, we use a
template-aware item selector to select the appro-
priate items from a preference-based dynamic con-
densed candidate items set. We introduce these
three preference-aware modules (User Preference
Embedding, User Preference Attention, and Dy-
namic Condensed Candidate Items Set) in the fol-
lowing sections. We refer the reader to (Zhou et al.,
2020) and (Liang et al., 2021) for more details of
the whole model.

User Preference Embedding
When the CRS recommends an item, US is ex-
pected to provide the correct feedback for it. To
achieve this, for each user u, we represent their
user preference vector for item i as viu ∈ Rnf ,
where nf is the number of features to consider,
such as a score indicating the user’s liking for the
item or a binary value indicating whether the user
has purchased the item or not. We then map viu to
a continuous space using the following equation:

hiu = Wviu (1)

where hiu ∈ Rd represents the user preference em-
bedding, and W ∈ Rd×nf is a learnable matrix.

When generating user utterances, we incorpo-
rate the user u’s preference embedding of the last
recommended item it, i.e.,hitu , into each word em-
bedding to assist the US in generating accurate
feedback for the recommended item it.

User Preference Attention
In addition to providing accurate feedback for rec-
ommended items, a good US should also actively
express its preferences to provide the CRS with
more information about the user. A user may have
a large set of preferred items in the long-term, but
in a short-term, during a current dialogue, they may
be looking for specific types of items such as come-
dies, scary movies, etc. To this end, we define
the user’s current preferred item set Icur as the
set of user’s short-term preferred items mentioned
in a single dialogue in the dataset. We then use
Vcur ∈ Rd×|Icur| to denote current preferred item
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embedding matrix, where each column is a learn-
able representation of a preferred item enhanced by
an external knowledge graph.

Then we add a multi-head attention layer, i.e.,
MHA(Q,K, V ), to each layer of the decoder to
incorporate this user preference information:

R′ = MHA(R, Vcur, Vcur) (2)

where R ∈ Rd×l and R′ ∈ Rd×l are the embedding
matrix before and after user preference attention in
each layer of the decoder.

Dynamic Condensed Candidate Items Set

Searching through a large space of candidate items
can impose a significant burden on the US in gen-
erating accurate and controllable utterances, espe-
cially when dealing with a large number of can-
didate items as seen in real-world scenarios. Fur-
thermore, users’ short-term preferences can change
dynamically throughout a dialogue, which can af-
fect the distribution of preferred items in the search
space. To address this, we propose the use of a
dynamic condensed candidate item set Ican which
limits the number and quality of items, and the
item selector can only select items from Ican for
recommendation.

There are two key considerations in constructing
the dynamic condensed candidate item set. First,
as previously discussed, the US is expected to pro-
vide accurate feedback on the last recommended
item it, therefore the last recommended item must
be included in the set. Second, to accommodate
the dynamic short-term preference of the users,
the current preferred item set is also included, as
Ican = Icur ∪ {it}.

Optimization of US

The entire User Simulator (US) is trained end-to-
end, using human-written dialogues as supervision.
For template generation, we use a standard cross-
entropy loss Lgen. For item selection, we calcu-
late the loss as the negative log-likelihood of the
ground-truth item for an item slot, denoted as Lsle.
We then combine the two losses with a weighting
hyperparameter as follows:

L = λLgen + Lsle (3)

We refer the reader to (Liang et al., 2021) for more
details.

2.3 Reinforcement Learning of CRS
With the proposed US, we can fine-tune any pre-
trained CRS using RL, based on its interactions
with the US. Our US is able to create diverse train-
ing scenarios for the CRS by altering user prefer-
ences, which it uses as a basis for generating user
utterances. In each dialog session, the CRS is fine-
tuned based on a fixed user’s current preferred item
set Icur from a dialog in the training set, with the
aim of recommending items in Icur. This approach
enables the CRS to model the long-term effects of
a generated utterance and more closely imitate the
true goal of a CRS, which is to recommend items
that users will like, by utilizing designed rewards
(Li et al., 2016b).

RL Components
An action a refers to a dialogue utterance generated
by the CRS; the state is represented by the previous
dialogue history c; the policy of the CRS model is
represented by p(a|c), defined by its parameters; r
represents the reward obtained for each action.

Reward Design
Compared to RL in the task-oriented dialog (Tseng
et al., 2021; Papangelis et al., 2019), the main chal-
lenge of RL in CRS is that there are no predefined
dialog acts to use, and the model must take into
account both the recommendation and the conver-
sation performance, rather than simply selecting
the best dialog act. To address this, we design two
novel rewards for reinforcement learning in CRS
training.

For the recommendation reward, inspired by the
studies of attribute-centric CRS (Lei et al., 2020a,b;
Deng et al., 2021), which use RL to enhance the
efficiency of recommendations, our environment
contains two types of rewards: (1) rrec_suc, a posi-
tive reward when the user likes the recommended
item, i.e., the recommended item is in the user’s
current preferred item set Icur, and (2) rrec_fail, a
negative reward when the user dislikes the recom-
mended item.

For the conversation reward, we first provide
a slightly positive reward rcon_rec when the gen-
erated utterance recommends an item, to encour-
age the CRS to make recommendations. Addi-
tionally, when recommending an item, the CRS
should also explain why it chose the item, mak-
ing it more persuasive. For instance, in the movie
domain, the CRS may recommend a movie that
shares the same actor as the user’s favorite movie
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mentioned earlier. To encourage this, we construct
a list of non-informative words, based on word
frequency, excluding informative words about at-
tributes of movies, such as movie genres and actor
names. If the generated utterance contains a word
that is not on this list of non-informative words,
we consider it to be an informative utterance and
provide a positive reward rcon_info. During our ex-
periments, we also found that the CRS tends to use
repeated templates to recommend different items
in a single dialogue, which can make the conversa-
tion monotonous. To address this, we give slightly
negative rewards rcon_rep to repeated templates.

Finally, the total reward is calculated as follows:

r =α(rrec_suc + rrec_fail)+

β(rcon_rec + rcon_info + rcon_rep)
(4)

where α, β are weight hyperparameters.

Optimization of CRS
The model parameters are initialized using the pre-
trained CRS model. We then use Policy Gradient
Theorem (Sutton et al., 1999) to find parameters
that maximize the expected reward, which can be
written as

J(θ) = E[
T∑

i=1

R(ai, ci)] (5)

where R(ai, ci) denotes the reward resulting from
action ai given context ci. We use the likelihood
ratio trick (Williams, 1992; Li et al., 2016b) for
gradient updates:

∇J(θ) ≈
∑

i

∇ log p(ai|ci)
i=T∑

i=1

R(ai, ci) (6)

.

3 Experimental

3.1 Dataset
We conduct all the experiments on the REcom-
mendations through DIALog (REDIAL) dataset(Li
et al., 2018). It is collected on Amazon Mechanical
Turk (AMT) platform where paired workers, rec-
ommender and seeker, make conversations about
movie seeking and recommendation. It consists of
10006 dialogues with an average of 18.2 turns. 738
workers play the seeker roles at least in one dialog.
There are 51699 movie mentions, of which 16278
are mentioned by the seeker and 35421 are recom-
mended by the recommender. After the two work-
ers complete the conversation, the system would

ask the seeker to complete a table about whether
he/she likes each mentioned movie or not and has
seen it or not, which are the two features we use
to model the user preferences. The seekers like
most movies with more than 95% of all movie
mentions are liked by the seekers. We first use
the dialogues in the dataset to train the US in a
supervision style. For the reinforcement learning
of the CRS, at each round, we start the conversa-
tion based on the above-mentioned dataset, and
continue the training of CRS during its interaction
with the US, which is based on the user preference
from the training data.

3.2 Evaluation Metrics

Following the previous open-ended work, we
evaluate the CRS in terms of recommendation
and conversation performance. However, existing
works only evaluate the conversation quality
locally, namely, one-round conversation, and
the input dialogue history of the CRS is always
the human-written utterances without any self-
generated context. Thus, to evaluate the CRS in
terms of its global performance in one dialog, we
propose two novel global metrics in addition to the
local evaluation. The details of the local metrics
and the global metrics are provided as follows.

Local Metrics For recommendation evaluation,
previous work often use recall in response (ReR),
which shows whether the ground-truth item
suggested by human is included in the final
generated response. However, this deviates from
the true goal of the CRS, which is to recommend
user-liked items. Thus, we suggest expending
the target item set to the user current preferred
item set Icur, and using recall of preferred items
(ReP) to measure whether the recommended
item is included in Icur. For the evaluation of
conversation, following previous work, we use
perplexity (PPL) and distinct n-gram (Dist-n)
(Li et al., 2016a) to measure the fluency and
distinctiveness of generated utterances. We also
use human evaluation to measure fluency and
information quality.

Global Evaluation We propose two global metrics
to evaluate the recommendation performance of
the CRS during its interaction with the US. Global
recall (GlobalRe) is calculated as the percentage of
items recommended in the entire dialog that are in
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the user current preferred item set Icur. We also
use success rate (Succ) where success means that
the CRS has recommended at least one item that is
in Icur within a certain number of maximum turns.
During the evaluation, the US employs user pref-
erences, i.e., the current preferred item set Icur
from the test set. This means that each user in a
dialogue is treated as a distinct entity, and their
Icur represents the set of items mentioned in the
dialogue that are liked by that particular user.

3.3 Implementation Details

Our framework can theoretically be paired with any
CRS models.2 In this experiment, we implement
our model based on the CRS model NTRD (Liang
et al., 2021), which consists of a recommendation
component and a conversation component. We
freeze the parameters of one component and train
another one at a time using the corresponding re-
ward to make the training process more stable.
Both components are optimized with Adam op-
timizer with a batch size of 16. The maximum
number of turns is set to 5. We train the recommen-
dation component with a learning rate of 1e-4 for
20 epochs and the conversation component with a
learning rate of 1e-7 for 40 epochs. On average,
it takes approximately one hour to train an epoch
with a Tesla P100GPU with 16GB of DRAM. For
more implementation details, including the train-
ing of the US and the exact number of each reward,
please refer to the Appendix.

3.4 Baselines

• REDIAL (Li et al., 2018): original model
proposed with the dataset.

• KBRD (Chen et al., 2019): based on trans-
former, utilizing an external knowledge graph
to enhance the item representations.

• KGSF (Zhou et al., 2020): utilized two exter-
nal knowledge graphs to further enhance the
user preference modelling.

• NTRD (Liang et al., 2021): proposes the
two-step framework with a template gener-
ator and an item selector to better incorporate
the recommended items into the generated re-
sponses.

2We do not incorporate the proposed framework into
CRSs (Yang et al., 2022; Wang et al., 2021) with pre-trained
language models since it costs too much memory to perform
reinforcement learning.

• RID (Wang et al., 2021): utilizes the pre-
trained language model to improve the CRS.

• MESE (Yang et al., 2022): also utilizes the
pre-trained language model but use items meta
information instead of the KG as the external
knowledge.

3.5 Experimental Results

Machine-based Evaluation Table 1 shows the
machine-based evaluation results of the models.
Compared to the NTRD base model, our frame-
work consistently improves the performance of the
model in all metrics. In particular, our framework
improves all recommendation metrics by almost
100%. This indicates that the CRS learns a good
policy of recommending through the interaction
with the US with the designed rewards. Note that
after fine-tuning with our framework, the NTRD
even outperforms the RID, which leverages a pre-
trained language model (PLM) in terms of the rec-
ommendation.

The ablation study shows that both the recom-
mendation reward and the conversation reward
contribute to the final results. The conversation
reward also improves the recommendation
performance, which may be because a more
informative response helps the model choose the
correct items. The conversation reward improves
the distinctiveness of generated utterances, since it
encourages the model to generate more informative
utterances.

Human-based Evaluation We asked three workers
to read 100 randomly selected contexts and the gen-
erated response of each model and to give a score
between 0 and 2 to evaluate both the fluency and the
informativeness of the responses. Table 2 shows
the average score of the human evaluation results.
The intraclass correlation coefficient(ICC) between
workers is 0.49 for fluency scores and 0.71 for in-
formativeness scores. Our framework improves the
performance of the base model NTRD, especially
in terms of informativeness, which shows the effec-
tiveness of the proposed design of the conversation
reward.

Case Study of the US
In this section, we present an example to demon-
strate the quality of our proposed US. Please refer
to the Appendix for more cases. In Table 3, we
compare the output of our proposed US with the
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Model
Recommendation metrics Conversation metrics

Local metrics Global metrics
ReR ↑ ReP ↑ GlobalRe ↑ Succ ↑ PPL ↓ Dist2 ↑ Dist3 ↑ Dist4 ↑

ReDial 0.7 - - - 28.1 0.225 0.236 0.228
KBRD 0.8 - - - 17.9 0.263 0.368 0.423
KGSF 1.1 - - - 8.3 0.302 0.431 0.508
NTRD 1.7 11.7 5.7 26.7 6.41 0.569 0.804 0.940
Ours (NTRD) 3.2 22.3 12.2 50.5 6.23 0.528 0.807 1.010
- w/o con-R 2.8 18.3 11.5 49.8 6.41 0.449 0.670 0.807
- w/o rec-R 1.9 14.2 6.7 29.9 6.23 0.671 0.965 1.169
RID* 3.1 - - - 54.1 0.518 0.624 0.598
MESE* 6.4 - - - 12.9 0.822 1.152 1.313

Table 1: Machine-based Evaluation. * indicates leveraging of pre-trained transformer-based models. We bold the
best result on the same base model NTRD; underline the best result on all models.

Model Fluency Informativeness
NTRD 1.44 0.46

Ours (NTRD) 1.65 0.79

Table 2: Human-based Evaluation.

Case Study of the User Simulator
User Iron Man 2: seen, liked
Preferences The Avengers: seen, liked

It: unseen, liked
Ant Man: seen, liked

Human: I would like to watch any movie.
Tell me any movie Like Ant Man.

CRS: Have you seen The Avengers?
US: I have seen that one. I also liked Iron Man 2.
- w/o PAM: I haven’t see that one. Is it good?
Human: I really enjoyed that one. Yes and I liked it.

Which another one would you recommend
me?

CRS: Do you like scary movies?
Have you seen It?

US: I have not seen that one. I will check it out.
- w/o PAM: I have not seen that one.
Human: I watched Iron Man 2 and I liked it.

...

Table 3: A case study comparing the user utterances
generated by our model, the baseline, and the ground
truth. We mark the item mentions in blue color.

baseline which has no preference-aware modules
(PAM) and with the human written response. The
US without PAM generates utterances simply with
higher probability; that is, the user has not seen the
movie recommended by the CRS. This may be
contradictory to user preferences: When the CRS
recommends the movie The Avengers, the baseline
says that it has not seen the movie, which is not
true, since the user has seen and liked it. Instead,
our US with preference-aware modules provides

the correct feedback for two recommendations,
The Avengers and It. Furthermore, our US can
actively express its preference to help the CRS
know more about it: it actively says that it likes the
movie Iron Man 2.

Case Study of the CRS Table 4 shows some ex-
amples of the responses generated by NTRD and
our model given the same context. In the first case,
the NTRD generates a general response that is not
fluent with the context, while our model, which
is the RL fine-tuned NTRD, recommends a movie
with a description of the movie. In the second case,
our model recommends the movie It which is a
scary movie consistent with the user’s short-term
preference. These indicate that our framework can
improve the informativeness of the responses by
providing more details of the recommended movie.
In the third case, our model recommends a movie
and introduces its actress. However, the actress
does not play any role in the movie, which shows
the limitation of current CRSs, that is, it cannot
guarantee the correctness of the generated informa-
tion in a fine-grained way.

Remaining Challenges

Though effective, improvements in the CRS are
highly dependent on the good quality of the US.
Currently, we only use reinforcement learning to
optimize the CRS. However, previous work (Tseng
et al., 2021) shows that joint-learning of the dialog
system and the US can further enhance the perfor-
mance of the dialog system. We leave the joint
learning of the CRS and the US for future work.
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Case Study of the Conversational Recommendation System
Context CRS responses
... NTRD: I think you will like it.
CRS: If you like action movies that are also sci-fi, there’s Star Wars. Ours: Jumanji is a good action packed
User: Yes, I did like all of the Star Wars movies. I also like Paycheck. comedy.
... NTRD: I like Freddy vs. Jason.
CRS: I think Scream was a fail as far as being scary, Ours: It is a good one if you like scary

but it was a good movie overall. movie.
User: I have seen all of the Halloween and Jason X.
CRS: Hello. How is your night going? NTRD: Fargo is a good one.
User: Hi. I’m looking for a movie. Ours: The Naked Gun is a funny movie

One that is funny but not too stupid. with Jennifer Lawrence.

Table 4: Case studies comparing the CRS responses generated by the original NTRD and our improved model given
the same contexts. We only give the last turn of the dialog history to save space here. We mark the item mentions in
blue color, and the user preferences in red color.

4 Related Work

Conversational Recommendation System Cur-
rent CRS studies can be roughly categorized into
two directions (Liang et al., 2021): (1)Attribute-
centric CRS (Deng et al., 2021; Lei et al., 2020b,a;
Zhang et al., 2022). These systems ask questions
about the user preferences of certain attributes or
make recommendations at each turn and gradu-
ally narrow down the hypothesis space of items
to make optimal recommendations. These studies
focus on the recommendation part and use ques-
tion/answer templates with attribute or item slots.
They often use reinforcement learning to achieve
better recommending and asking policies. (2)Open-
ended CRS (Li et al., 2018; Chen et al., 2019; Zhou
et al., 2020; Liang et al., 2021; Yang et al., 2022).
These studies focus on understanding user prefer-
ences according to user utterances and generating
fluent responses to recommend items. Compared
to attribute-centric CRSs, open-ended CRSs have
more free-style recommendations and more flexible
interactions, which provides a better user experi-
ence. In this paper, we focus on open-ended CRSs
and borrow the idea of improving the recommen-
dation by reinforcement learning from the studies
of attribute-centric CRSs.
User Simulator Traditional USs are rule-
based such as the agenda-based user simulator
(ABUS) (Schatzmann and Young, 2009; Li et al.,
2016c). For different tasks, ABUS needs to design
different hand-crafted structures, which poses chal-
lenges in scenario shifting. Data-driven US(Asri
et al., 2016; Gur et al., 2018) is another line of work.
A seq2seq model is used to generate semantic-level
dialog acts (Asri et al., 2016; Gur et al., 2018;
Tseng et al., 2021) or natural languages (Kreyssig
et al., 2018). However, most of the USs are de-

signed for task-oriented dialog systems and cannot
be directly used for CRS. To the best of our knowl-
edge, our work is the first to explore US for open-
ended CRS that can generate consistent responses
based on certain user preferences.

5 Conclusion

In this paper, we propose a framework to be packed
with any CRS to improve its recommendation accu-
racy and language informativeness. We first build
a User Simulator for open-ended CRS with three
preference-aware modules to give the appropriate
feedback to the CRS based on certain user prefer-
ences. We then fine-tune a pre-trained CRS with
reinforcement learning based on its interaction with
the US with two types of designed rewards. Exper-
iments demonstrate that our framework can signifi-
cantly improve the recall of the recommendation,
and human evaluation shows that the generated
language is more informative with more descrip-
tions of the recommended items. For future work,
the first is to use joint optimization of CRS and
US to further improve the interactive qualities, and
the second is to explore the generalizability of the
framework to other domains of recommendation.

6 Limitations

The proposed framework has a limitation in terms
of the large GPU resources required, as it neces-
sitates double the memory compared to training
a CRS alone. Due to this limitation, we have to
forego the use of pre-trained language models such
as BERT, which could have been beneficial in en-
hancing language quality, but their extreme mem-
ory requirements make it infeasible.
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A Appendix

A.1 User Preferences Extension
For each user u, we know its preference vectors
of a constrained set of movies Iu

known from the
dataset. We need to extend the user preference
to each movie i ∈ I, since during the interaction
between the US and the CRS, the CRS may recom-
mend a movie that is not in Iu

known. Therefore, for
each movie iunk that is not in Iu

known, we consider
that the user u has not seen it. We then calculate the
cosine similarities between iunk and each movie
in Iu

known and set the like/dislike label of iunk the
same as the closest movie to it, i.e.,

i∗ =i∈Iknown
cos ((i), (iunk)) (7)

, where (i) returns the embedding of the movie i,
and the user u has the same like/dislike label to
iunk and i∗.

A.2 Hyper-parameters for Reproducing
The Hyper-parameters of RL
In this section, we introduce the detailed setting
of reinforcement learning of the Conversational
Recommendation System (CRS). To train the rec-
ommendation component, we only use recommen-
dation rewards i.e., α = 1, β = 0, and for the
conversation component, we only use conversation
rewards i.e., α = 0, β = 1. Detailed reward values
are listed in Table 5.

Reward Type Value
rrec_suc 5
rrec_fial 0
rcon_rec 1
rcon_info 5
rcon_rep -5

Table 5: The reward values of the RL of CRS.

The Hyper-parameters of the User Simulator
In this section, we introduce the hyper-parameters
of the architecture of the User Simulator (US). The
US consists of a template generator and an item
selector, where the backbone of each component
is a transformer with multi-head attentions. We
use λ = 5 as the weight for generation loss Lgen

and item selection loss Lsle. We train the US using
Adam optimizer with a learning rate of 1e-3 and
a batch size of 32 for 90 epochs. Detailed hyper-
parameters for architecture are listed in Table 6.

Hyper-parameters Value
num_attention_heads 2
num_hidden_layers 2

embedding_size 300
hidden_size 128

intermediate_size 300
gradient_clipping 0.1

dropout_prob 0.1
attention_dropout_prob 0

hidden_act “relu"
relu_dropout_prob 0.1

max_context_length 256
max_response_length 30

vocab_size 17641

Table 6: The detailed hyper-parameters of the US.

(a)

(b)

Figure 3: Averaged recommendation rewards (a) and
conversation rewards (b) curve of the policies.

A.3 Reward Curves of RL

Figure 3 shows the average reward the policies re-
ceive at each 2000 steps during the training process.
For the recommendation component, the rewards
quickly converge, as the action space is limited
by the number of the entire set of items I. How-
ever, the reinforcement learning of the conversation
component is much more unstable, since it needs
to generate fluent utterances, and the action space
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NTRD with the US Ours (NTRD) with the US

User
Preferences:

Taken: unseen, like Black Panther: seen, like
Avengers: Infinity War (2018): seen, like The Sixth Battalion: unseen, like
Die Hard: unseen, like Thor: Ragnarok: unseen, like
Spider-Man: seen, like The Avengers: unseen, like

(given) CRS: What kind of movies do you like? Have you seen Avengers: Infinity War?
or Spider-Man?

(given) US: Yes and i liked them. Those are awesome. I like that kind of movies.
CRS: Thor: Ragnarok is a good one. Black Panther is a great comedy movie.
US: I haven’t seen that one yet. Yes, I have seen that one. I liked it.
CRS: The Avengers is a good one. The Avengers is a great movie!
US: I haven’t seen that one yet. I have not seen that one yet.
CRS: I haven’t seen that one. I’ll check it out. Spider-Man is a great movie.
US: I will have to check it out. Yes, I have seen that one. It was great.
CRS: I hope you enjoy them! Die Hard is a great movie.
US: I will have to check it out. I have not seen that one yet.
CRS: I hope you enjoy them! Taken is a classic.
US: Thank you for your help. I have not seen that one yet.

User
Preferences:

Porky’s: unseen, like Pineapple Express: seen, like
The Avengers: unseen, like The Hangover: unseen, like
Fist Fight: unseen, like Animal House: unseen, like
Homecoming: seen, like House: seen, like
Taken: unseen, like

(given) CRS: Hi there. Do you like movies?
(given) US: Hi. I like fun movies. I like Homecoming.
CRS: I have not seen that one. Is it a good one. Have you seen Porky’s?
US: I have not seen that one. I haven’t seen either of those.
CRS: Pineapple Express is a good one. Animal House is a great comedy with

Kevin Hart.
US: I have not seen that one. I haven’t seen that one yet.
CRS: The Avengers is a good one. Fist Fight is a good comedy also.
US: I have not seen that one. I ’m not sure if I have seen that one.
CRS: I have not seen that one. Is it a good one. The Hangover is a good comedy with

Bradley Cooper.
US: I have not seen that one. I haven’t seen that one either.
CRS: I have not seen that one. Is it a good one. Taken is a classic.
US: I have not seen that one. I have not seen that one yet.

Table 7: Interactive Cases. Comparison of CRSs before (NTRD) and after (Ours) fine-tuning with reinforcement
learning.

is infinite. Thus, we use a small learning rate and
more steps to train the component. During training,
the total reward (red curve) increases and converges.
However, the convergence status consists of a high
informative reward and a low repetition reward,
which is caused by the model keeping generate sim-
ple but informative utterances like “xxx is a good
comedy". This shows a limitation of our design of
informative rewards: Though simple and effective,
it is only a binary reward with informative or nonin-

formative, which lacks the ability to judge the level
informativeness. Therefore, the utterance “xxx is
a good sci-fi" and “xxx is a sci-fi about a human
trying to find another habitable planet." would get
the same informative score, but obviously the latter
one contains more information about the movie and
deserves a higher score. In future work, we will
design a better informative reward to encourage the
model to generate more informative utterances and
make the recommendations more persuasive.
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A.4 Interactive Cases
Table 7 shows two cases of interactive conversa-
tions between the US and CRSs before and after
fine-tuning with reinforcement learning. Given the
first turn of the conversation, the US and CRS con-
tinue to interact for 5 turns. In each dialog, the US
is based on different user preferences. Generally
speaking, our CRS has a more fluent conversation
with the US. The NTRD tends to generate generic
utterances, and the conversation becomes stuck in
an infinite loop of repetitive responses. Another
improvement of our CRS is that it generates more
informative utterances when recommending items,
which are highlighted with red. However, as we
discussed in the paper, there may be some mis-
takes when talking about actors / actresses: while
Bradley Cooper plays an important role in The
Hangover, Kevin Hart does not play any role in
Animal House.
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Abstract
Despite significant progress in Natural Lan-
guage Generation for Indian languages (Indic-
NLP), there is a lack of datasets around com-
plex structured tasks such as semantic parsing.
One reason for this imminent gap is the com-
plexity of the logical form, which makes En-
glish to multilingual translation difficult. The
process involves alignment of logical forms,
intents and slots with translated unstructured
utterance. To address this, we propose an Inter-
bilingual Seq2seq Semantic parsing dataset IE-
SEMPARSE for 11 distinct Indian languages.
We highlight the proposed task’s practicality,
and evaluate existing multilingual seq2seq mod-
els across several train-test strategies. Our
experiment reveals a high correlation across
performance of original multilingual semantic
parsing datasets (such as mTOP, multilingual
TOP and multiATIS++) and our proposed IE-
SEMPARSE suite.

1 Introduction

Task-Oriented Parsing (TOP) is a Sequence to Se-
quence (seq2seq) Natural Language Understanding
(NLU) task in which the input utterance is parsed
into its logical sequential form. Refer to Figure
1 where logical form can be represented in form
of a tree with intent and slots as the leaf nodes
(Gupta et al., 2018; Pasupat et al., 2019). With the
development of seq2seq models with self-attention
(Vaswani et al., 2017), there has been an upsurge
in research towards developing generation mod-
els for complex TOP tasks. Such models explore
numerous training and testing strategies to further
enhance performance (Sherborne and Lapata, 2022;
Gupta et al., 2022). Most of the prior work focus
on the English TOP settings.

However, the world is largely multilingual,
hence new conversational AI systems are also
expected to cater to the non-English speakers.
In that regard works such as mTOP (Li et al.,
∗Equal Contribution

Inter-Bilingual TOPEnglish Monolingual TOP

 [IN:CREATE_TIMER 
    [SL:METHOD_TIMER timer]
    [SL:DATE_TIME for 20 minutes]]

Set a timer for twenty minutes

Seq2Seq Parsing Seq2Seq Parsing

 [IN:CREATE_TIMER 
    [SL:METHOD_TIMER timer]
    [SL:DATE_TIME for 20 minutes]]

बीस िमनट के िलए टाइमर सेट कर�

Seq2Seq Parsing

 [IN:CREATE_TIMER 
    [SL:METHOD_TIMER टाइमर]
    [SL:DATE_TIME बीस िमनट के िलए]]

Hindi Multilingual TOP

Seq2Seq Parserबीस िमनट के िलए टाइमर सेट कर�

Figure 1: TOP vs Bilingual TOP.

2021), multilingual-TOP (Xia and Monti, 2021),
multi-ATIS++ (Xu et al., 2020; Schuster et al.,
2019), MASSIVE dataset (FitzGerald et al., 2022)
have attempted to extend the semantic parsing
datasets to other multilingual languages. How-
ever, the construction of such datasets is consid-
erably harder since mere translation does not pro-
vide high-quality datasets. The logical forms must
be aligned with the syntax and the way sentences
are expressed in different languages, which is an
intricate process.

Three possible scenarios for parsing multilin-
gual utterances exists, as described in Figure 1. For
English monolingual TOP, we parse the English ut-
terance to it’s English logical form, where the slot
values are in the English language. Seq2Seq mod-
els (Raffel et al., 2019; Lewis et al., 2020) tuned
on English TOP could be utilized for English spe-
cific semantic parsing. Whereas, for multi lingual
setting, a Indic multilingual TOP (e.g. Hindi Mul-
tilingual TOP in Figure 1) is used to parse Indic
utterance to it’s respective Indic logical form. Here,
the slot values are also Indic (c.f. Figure 1).1

The English-only models, with their limited in-
put vocabulary, produce erroneous translations as
it requires utterance translation. The multilingual
models on the other side require larger multilingual
vocabulary dictionaries (Liang et al., 2023; Wang
et al., 2019). Although models with large vocabu-
lary sizes can be effective, they may not perform
equally well in parsing all languages, resulting in
1 In both English and Indic Multilingual TOP, the utterance
and it’s corresponding logic form are in same language, En-
glish or Indic respectively.
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overall low-quality output. Moreover, managing
multilingual inputs can be challenging and often re-
quires multiple dialogue managers, further adding
complexity. Hence, we asked ourselves: "Can we
combine the strengths of both approaches?"

Therefore, we explore a third distinct setting:
Inter-bilingual TOP. This setting involves parsing
Indic utterances and generating corresponding log-
ical forms with English slot values (in compari-
son, multilingual top has non-english multilingual
slot values). For a model to excel at this task, it
must accurately parse and translate simultaneously.
The aim of inter-bilingual semantic parsing is to
anticipate the translation of non-translated logical
forms into translated expressions, which presents a
challenging reasoning objective. Moreover, many
scenarios, such as e-commerce searches, music rec-
ommendations, and finance apps, require the use of
English parsing due to the availability of search vo-
cabulary such as product names, song titles, bond
names, and company names, which are predom-
inantly available in English. Additionally, APIs
for tasks like alarm or reminder setting often re-
quire specific information in English for further
processing. Therefore, it is essential to explore
inter-bilingual task-oriented parsing with English
slot values.

In this spirit, we establish a novel task of Inter-
Bilingual task-Oriented Parsing (Bi-lingual TOP)
and develop a semantic parsing dataset suite a.k.a
IE-SEMPARSE for Indic languages. The utterances
are translated into eleven Indic languages while
maintaining the logical structures of their English
counterparts.2 We created inter-bilingual semantic
parsing dataset IE-SEMPARSE Suite (IE represents
Indic to English). IE-SEMPARSE suite consists of
three Interbilingual semantic datasets namely IE-
mTOP, IE-multilingualTOP, IE-multiATIS++ by
machine translating English utterances of mTOP,
multilingualTOP and multiATIS++ (Li et al., 2021;
Xia and Monti, 2021; Xu et al., 2020) to eleven
Indian languages described in §3. In addition, §3
includes the meticulously chosen automatic and
human evaluation metrics to validate the quality of
the machine-translated dataset.

We conduct a comprehensive analysis of the per-
formance of numerous multilingual seq2seq mod-
els on the proposed task in §4 with various input
combinations and data enhancements. In our exper-
2 Like previous scenarios, the slot tags and intent operators
such as METHOD_TIMER and CREATE_TIMER are respec-
tively preserved in the corresponding English languages.

iments, we demonstrate that interbilingual parsing
is more complex than English and multilingual
parsing, however, modern transformer models with
translation fine-tuning are capable of achieving re-
sults comparable to the former two. We also show
that these results are consistent with those obtained
from semantic parsing datasets containing slot val-
ues in the same languages as the utterance. Our
contributions to this work are the following:

1. We proposed a novel task of Inter-Bilingual
TOP with multilingual utterance (input) and
English logical form (output). We intro-
duced IE-SEMPARSE, an Inter-Bilingual TOP
dataset for 11 Indo-Dravidian languages rep-
resenting about 22% of speakers of the world
population.

2. We explore various seq2seq models with sev-
eral train-test strategies for this task. We dis-
cuss the implications of an end-to-end model
compared to translation followed by pars-
ing. We also compare how pertaining, pre-
finetuning and structure of a logical form af-
fect the model performance.

The IE-SEMPARSE suite along with the
scripts will be available at https://iesemparse.
github.io/.

2 Why Inter Bilingual Parsing?

In this section, we delve deeper into the advantages
of our inter-bilingual parsing approach and how
it affects the dialogue management and response
generation. We will address the question: “Why
preserve English slot values in the logical form?”.

Limited Decoder Vocabulary: Using only En-
glish logical forms simplifies the seq2seq model
decoder by reducing its vocabulary to a smaller set.
This will make the training process more stable and
reduce the chances of hallucination which often oc-
curs in decoders while decoding long sequences
with larger vocabulary size (Raunak et al., 2021).

Multi-lingual Models Evaluation: In this work,
we explore the unique task of translating and pars-
ing spoken utterances into logical forms. We gain
valuable insights into the strengths and weaknesses
of current multilingual models on this task. Specifi-
cally, we investigate how multilingual models com-
pare to monolingual ones, how translation finetun-
ing affects performance, and how the performance
of Indic-specific and general multilingual models
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Figure 2: Conversational AI Agents comparisons with (w/o) inter-bilingual parsing. LF refers to logical form.

differ. We also analyze the predictions of the two
best models across languages in §4.2, which is a
novel aspect of our task. These insights enhance
our understanding of existing multilingual models
on IE-SEMPARSE.

Improved Parsing Latency: In figure 2, we illus-
trate three multilingual semantic parsing scenarios:

1. In scenario A, the Indic utterance is translated
to English, parsed by an NLU module, and
then a dialogue manager delivers an English
response, which is translated back to Indic
language.

2. In scenario B, language-specific conversa-
tional agents generate a logical form with In-
dic slot values, which is passed to a language-
specific dialogue manager that delivers an In-
dic response.

3. In scenario C, a multilingual conversation
agent generates a logical form with English
slot values, which is passed to an English Di-
alogue Manager that delivers an English re-
sponse, which is translated back into Indic
language.

We observe that our approach scenario C is 2x
faster than A. We further discuss the latency gains
and the performances differences in appendix §A.
Scenario B, on the other hand, has a significant
developmental overhead owing to multilingual lan-
guage, as detailed below.

Handling System Redundancy: We argue that
IE-SEMPARSE is a useful dataset for develop-
ing dialogue managers that can handle multi-
ple languages without redundancy. Unlike ex-
isting datasets such as mTOP (Li et al., 2021),
multilingual-TOP (Schuster et al., 2019), and multi-
ATIS++ (Xu et al., 2020), which generate logical
forms with English intent functions and slot tags
but multilingual slot values, our dataset generates
logical forms with English slot values as well. This

avoids the need to translate the slot values or to cre-
ate separate dialogue managers for each language,
which would introduce inefficiencies and complex-
ities in the system design. Therefore, our approach
offers a practical trade-off between optimizing the
development process and minimizing the inference
latency for multilingual conversational AI agents.
Finally, the utilization of a multilingual dialogue
manager fails to adequately adhere to the intricate
cultural nuances present in various languages (Jon-
son, 2002).

3 IE-SEMPARSE Creation and Validation
In this section, we describe the IE-SEMPARSE cre-
ation and validation process in details.

IE-SEMPARSE Description: We create three
inter-bilingual TOP datasets for eleven major Indic
languages that include Assamese (‘as’), Gujarat
(‘gu’), Kannada (‘kn’), Malayalam (‘ml’), Marathi
(‘mr’), Odia (‘or’), Punjabi (‘pa’), Tamil (‘ta’), Tel-
ugu (‘te’), Hindi (‘hi’), and Bengali (‘bn’). Refer to
the appendix §A, for additional information regard-
ing the selection of languages, language coverage
of models, and the selection of translation model.
The three datasets mentioned are described below:

1. IE-mTOP: This dataset is a translated version
of the multi-domain TOP-v2 dataset. English
utterances were translated to Indic languages
using IndicTrans (Ramesh et al., 2021), while
preserving the logical forms.

2. IE-multilingualTOP: This dataset is from the
multilingual TOP dataset, where utterances
were translated and logical forms were decou-
pled using the pytext library.3

3. IE-multiATIS++: This dataset comes from
the multi-ATIS++, where utterances were
translated and the logical forms were gener-
ated from labelled dictionaries and decoupled,
as described in appendix §3.

3 https://github.com/facebookresearch/pytext
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English Utterance: how much does the american airlines flight 71 from dallas to
san francisco cost
Slot Tags: O O O O B-airline_name I-airline_name O B-flight_number O B-
fromloc.city_name O B-toloc.city_name I-toloc.city_name O
Intent:  Flight

[IN:AIRFARE  
[SL:AIRLINE_NAME american airlines ] 
[SL:FLIGHT_NUMBER 71 ] 
[SL:CITY_NAME dallas ] 
[SL:CITY_NAME san francisco ] ] ]

Figure 3: IE-multiATIS++ Logical Form Generation

Score Dataset as bn gu hi kn ml mr or pa ta te
Samanantar 0.83 0.83 0.85 0.87 0.86 0.85 0.85 0.84 0.87 0.87 0.87

BertScore IE-mTOP 0.83 0.85 0.85 0.87 0.86 0.85 0.86 0.85 0.87 0.87 0.87
IE-multilingualTOP 0.98 0.98 0.98 0.96 0.98 0.98 0.99 0.98 0.97 0.98 0.98
IE-multiATIS++ 0.83 0.85 0.86 0.87 0.86 0.85 0.85 0.85 0.86 0.87 0.87
Samanantar 0.12 0.12 0.11 0.12 0.12 0.12 0.13 0.13 0.12 0.12 0.12

CometScore IE-mTOP 0.12 0.13 0.12 0.12 0.12 0.13 0.13 0.13 0.14 0.12 0.12
IE-multilingualTOP 0.13 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14
IE-multiATIS++ 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Samanantar 0.95 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.96 0.96

BT_BertScore IE-mTOP 0.92 0.94 0.93 0.94 0.94 0.93 0.94 0.93 0.93 0.93 0.93
IE-multilingualTOP 0.93 0.93 0.89 0.93 0.92 0.96 0.93 0.9 0.92 0.91 0.91
IE-multiATIS++ 0.91 0.92 0.92 0.93 0.93 0.92 0.92 0.91 0.92 0.92 0.92

Table 1: Automatic scores on IE-SEMPARSE and Benchmark Dataset Samanantar.

IE-multiATIS++ Logical Form Creation The
logical forms are generated from the label dictio-
naries, where the Intent was labeled with ‘IN:’ tag
and Slots were labelled with ‘SL:’ Tags and decou-
pled like IE-multilingualTOP dataset. The process
of generating logical forms out of intent and slot
tags from the ATIS dataset is illustrated in figure 3.

IE-SEMPARSE Processing: To construct IE-
SEMPARSE we perform extensive pre and post pro-
cessing, as described below:

Pre-processing We extensively preprocess IE-
SEMPARSE. We use Spacy NER Tagger4 to tag
date-time and transform them into their correspond-
ing lexical form. E.g. tag date time “7:30 pm on
14/2/2023." is transformed to “seven thirty pm on
fourteen february of 2023."

Post-processing For many languages some
words are commonly spoken and frequently. There-
fore, we replace frequently spoken words in IE-
SEMPARSE with their transliterated form, which
often sounds more fluent, authentic, and informal
than their translated counterparts.

To accomplish this, we replace commonly spo-
ken words with their transliterated form to improve
understanding. We created corpus-based transliter-
ation token dictionaries by comparing Hindi mTOP,
translated mTOP, and transliterated mTOP datasets.
We utilize the human-translated Hindi set of mTOP
dataset to filter frequently transliterated phrases
and repurpose the same Hindi dictionary to post-
process the text for all other Indic languages.

4 https://spacy.io/api/entityrecognizer

3.1 IE-SEMPARSE Validation

As observed in past literature, machine translation
can be an effective method to generate high qual-
ity datasets (K et al., 2021; Aggarwal et al., 2022;
Agarwal et al., 2022b). However, due to inherent
fallibility of the machine translation system, trans-
lations may produce incorrect utterance instances
for the specified logical form. Consequently, mak-
ing the task more complicated and generalizing
the model more complex. Thus, it is crucial to ex-
amine the evaluation dataset quality and alleviate
severe limitations accurately. Early works, includ-
ing Bapna et al. (2022); Huang (1990); Moon et al.
(2020a,b), has established that quality estimation is
an efficacious method for assessing machine trans-
lation systems in the absence of reference data a.k.a
the low-resource settings.

Using Quality Estimation: In our context,
where there is a dearth of reference data for the
IE-SEMPARSE translated language, we also deter-
mined the translation quality of IE-SEMPARSE us-
ing a (semi) automatic quality estimation technique.
Most of recent works on quality estimation com-
pare the results with some reference data and then
prove the correlation between reference scores and
referenceless quality estimation scores (Fomicheva
et al., 2020; Yuan and Sharoff, 2020; Cuong and
Xu, 2018). Justifying and interpreting quality esti-
mation metrics, however, remains a stiff challenge
for real-world referenceless settings.

IE-SEMPARSE Automatic Benchmarking:
When a parallel corpus in both languages is

105

https://spacy.io/api/entityrecognizer


Dataset Statistics as bn gu hi kn ml mr or pa ta te
Human Eval 3.15 3.07 3.65 4.1 3.7 4.12 4 4.4 4.45 4.03 3.83

IE-multiATIS++ Pearson 0.66 0.85 0.69 0.61 0.76 0.62 0.56 0.72 0.61 0.71 0.68
Spearman 0.71 0.86 0.42 0.57 0.49 0.51 0.59 0.59 0.59 0.65 0.6
Human Eval 3.06 3.21 3.92 4.46 4.33 4.13 4.24 4.74 4.47 4.22 3.84

IE-multilingualTOP Pearson 0.55 0.79 0.56 0.53 0.45 0.5 0.65 0.42 0.67 0.58 0.59
Spearman 0.57 0.74 0.54 0.53 0.45 0.46 0.62 0.63 0.51 0.5 0.49
Human Eval 3.1 3.39 4 4.42 4.28 3.99 4 4.61 4.42 4.16 4.13

IE-mTOP Pearson 0.66 0.74 0.64 0.55 0.61 0.63 0.73 0.45 0.51 0.5 0.62
Spearman 0.67 0.7 0.6 0.45 0.4 0.64 0.67 0.41 0.5 0.45 0.5

Table 2: Human Evaluation Results: Human Eval represents the average score of 3 annotators for each language for each
dataset. Pearson is the average pearson correlation of 1st and 2nd, 1st and 3rd and 2nd and 3rd annotators and similarly for
Spearman which is spearman correlation.

not available, it is still beneficial to benchmark
the data and translation model. In our context,
we conducted an evaluation of the Samanantar
corpus, which stands as the most comprehensive
publicly accessible parallel corpus for Indic
languages (Ramesh et al., 2021). The purpose
of this assessment was to emulate a scenario
wherein the Samanantar corpus serves as the
benchmark reference parallel dataset, allowing us
to provide a rough estimate of the scores produced
by quality estimation models when evaluated in a
referenceless setting on a gold standard parallel
translation corpus.

We use two approaches to compare English and
translated text directly. For direct quality estima-
tion of English sentences and translated sentences
in a reference-less setting, we utilize Comet Score
(Rei et al., 2020) and BertScore (Zhang* et al.,
2020) with XLM-RoBERTa-Large (Conneau et al.,
2020) backbone for direct comparison of trans-
lated and english utterances. We also calculate
BT BertScore (Agrawal et al., 2022; Moon et al.,
2020a; Huang, 1990), which has shown to improve
high correlation with human judgement (Agrawal
et al., 2022) for our three datasets and Samanantar
for reference. In this case, we translate the Indic
sentence back to English and compare it with the
original English sentence using BertScore (Zhang*
et al., 2020). The scores for the Samanantar subset
on a random subset of filtered 100k phrases and our
datasets IE-SEMPARSE are provided in the table 1.

Original vs Machine Translated Hindi: As
the human (translated) reference was available in
mTOP and multi-ATIS for Hindi language, we
leveraged that data to calculate Bert and Comet
score to evaluate the translation quality of our ma-
chine translation model. We notice a high cor-
relation between both datasets’ referenceless and
reference scores. Thus suggesting good translation
quality for Hindi and other languages.

Dataset Referenceless Score Score
Comet Score 0.83

IE-mTOP Bert Score 0.96
BT Bert Score 0.88
Comet Score 0.81

IE-multiATIS++ Bert Score 0.85
BT Bert Score 0.87

Table 3: Comet Score, BertScore and BT BertScore of Hindi
dataset and translated Hindi dataset for IE-mTOP and IE-
multiATIS++

In table 3 comet scores and Bert scores are
scores keeping original English sentence as source,
original Hindi sentence as reference and trans-
lated Hindi sentence as hypothesis. For the BT
BertScore, the translated Hindi sentence and the
original (human-translated) Hindi sentence are
back-translated (BT) back onto English and their
correlation is assessed using the Bert Score.

IE-SEMPARSE Human Evaluation: In our hu-
man evaluation procedure, we employ three anno-
tators for each language 5. We used determinantal
point processes6 (Kulesza, 2012) to select a highly
diversified subset of English sentences from the test
set of each dataset. We select 20 sentences from IE-
multiATIS++, 120 from IE-multilingualTOP and
60 from IE-mTOP. For each dataset, this amounts
to more than 1% of the total test population. We
then got them scored between 1-5 from 3 fluent
speakers of each Indic English and Indic language
by providing them with a sheet with parallel data
of English sentences and subsequent translation.

Analysis. We notice that the scores vary with
resource variability where languages like “as” and
“kn” have the lowest scores. However, most scores
are within the range of 3.5-5 suggesting the high
quality of translation for our dataset. Detailed
scores are reported in Appendix §B table 7.

5 every annotator was paid 5 INR for each sentence annotation
each 6 https://github.com/guilgautier/DPPy
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4 Experimental Evaluation

For our experiments, we investigated into the fol-
lowing five train-test strategies: 1. Indic Train:
Models are both finetuned and evaluated on In-
dic Language. 2. English+Indic Train: Models
are finetuned on English language and then Indic
Language and evaluated on Indic language data.
3. Translate Test: Models are finetuned on English
data and evaluated on back-translated English data.
4. Train All: Models are finetuned on the com-
pound dataset of English + all other 11 Indic lan-
guages and evaluated on Indic test dataset. 5. Uni-
fied Finetuning: IndicBART-M2O and mBART-
large-50-M2O models are finetuned on all three
datasets for all eleven languages creating unified
multi-genre (multi-domain) semantic parsing mod-
els for all 3 datasets for all languages. This can be
considered as data-unified extension of 4th Setting.

Models: The models utilized can be catego-
rized into four categories as follows: (a.) MUL-
TILINGUAL such as mBART-large-50, mT5-
base such as (b.) INDIC SPECIFIC such as In-
dicBART (c.) TRANSLATION PREFINETUNED

such as IndicBART-M2O, mBART-large-50-
M2O, which are pre finetuned on XX-EN trans-
lation task (d.) MONOLINGUAL (ENGLISH) such
as T5-base, T5-large, BART-large, BART-base
used only in Translate Test Setting. The models
are specified in the table’s §8 "Hyper Parameter"
column, with details in the appendix §C. Details of
the fine-tuning process with hyperparameters de-
tails and the model’s vocabulary augmentation are
discussed in the appendix §D and §E respectively.

Evaluation Metric: For Evaluation, we use tree
labelled F1-Score for assessing the performance of
our models from the original TOP paper (Gupta
et al., 2018). This is preferred over an exact match
because the latter can penalize the model’s perfor-
mance when the slot positions are out of order. This
is a common issue we observe in our outputs, given
that the logical form and utterance are not in the
same language. However, exact match scores are
also discussed in appendix §F.5.

4.1 Analysis across Languages, Models and
Datasets

We report the results of Train All and Unified
Finetuning settings for all datasets in table 4 and 5
in the main paper as these were the best technique
out of all. The scores for other train-test strategies
such as translate test, Indic Train, English+Indic

Train for all 3 datasets are reported in appendix
§F.1 table 9, 10 and 11 respectively. However, we
have discussed the comparison between train-test
settings in the subsequent paragraphs.

Across Languages: Models perform better on
high-resource than medium and low-resourced lan-
guages for Train All setting. This shows that the
proposed inter-bilingual seq2seq task is challeng-
ing. In addition to linguistic similarities, the model
performance also relies on factors like grammar
and morphology (Pires et al., 2019). For other set-
tings such as Translate Test, Indic Train, and En-
glish+Indic, similar observations were observed.

Across Train-Test Strategies: Translate Test
method works well, however end-to-end En-
glish+Indic and Train All models perform best; due
to the data augmentation setting, which increases
the training size.7 However, the benefits of train
data enrichment are much greater in Train All sce-
nario because of the larger volume and increased
linguistic variation of the training dataset. We also
discuss the comparisons in inference latency for a
2-step vs end-to-end model in §2.

Across Datasets: We observe that IE-
multilingualTOP is the simplest dataset for models,
followed by IE-mTOP and IE-multiATIS++. This
may be because of the training dataset size, since
IE-multilingualTOP is the largest of the three, fol-
lowed by IE-mTOP and IE-multiATIS++. In addi-
tion, IE-multilingualTOP is derived from TOP(v1)
dataset which have utterances with more simpler
logical form structure (tree depth=1). IE-mTOP,
on the other hand, is based on mTOP, which is a
translation of TOP(v2), with more complex logical
form having (tree depth>=2). We discuss the perfor-
mance of models across logical form complexity in
§4.2. For Unified Finetuning we observe an aver-
age performance gain of 0.2 in the tree labelled F1
score for all languages for all datasets as reported
in table 5 in appendix.

Across Models: We analyse the performance
across various models based on three criteria, lan-
guage coverage, model size and translation finetun-
ing, as discussed in detail below:

(a.) Language Coverage: Due to its larger
size, mBART-large-50-M2O performs exception-
ally well on high-resource languages, whereas
IndicBART-M2O performs uniformly across all the
languages due to its indic specificity. In addition,
translation-optimized models perform better than

7 By 2x (English + Indic) and 12x (1 English + 11 Indic).
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Dataset Model Train All ModAvg
as bn gu hi kn ml mr or pa ta te hiIE hiO

IndicBART 50 56 49 56 45 54 67 44 56 56 58 52 60 50
mBART-large-50 51 53 51 62 51 55 51 32 53 48 52 58 66 51

IE-mTOP mT5-base 46 53 56 58 53 55 50 45 53 58 58 54 62 53
IndicBART-M2O 54 57 57 61 59 58 58 57 59 57 61 59 63 58
mBART-large-50-M2O 56 59 61 65 60 63 59 59 59 64 65 63 67 61
Language Average 51 56 55 60 54 57 57 47 56 57 59 57 64 55
IndicBART 44 50 57 80 43 42 50 37 67 70 77 – – 56
mBART-large-50 44 57 66 77 29 28 46 17 47 48 48 – – 46

IE-multilingualTOP mT5-base 49 54 57 60 56 55 52 50 53 53 58 – – 54
IndicBART-M2O 74 75 79 78 70 70 75 75 75 76 77 – – 75
mBART-large-50-M2O 54 57 60 63 58 58 53 56 57 57 61 – – 58
Language Average 51 56 55 60 54 57 57 47 56 57 59 – – 55
IndicBART 51 58 52 70 50 41 63 25 50 39 56 66 76 54
mBART-large-50 54 86 54 58 54 53 53 45 57 51 55 54 63 57

IE-multiATIS++ mT5-base 67 87 73 73 72 78 64 59 70 68 74 70 77 72
IndicBART-M2O 70 90 80 80 79 79 73 69 78 73 82 78 82 78
mBART-large-50-M2O 73 91 83 81 77 79 75 65 78 73 79 79 83 78
Language Average 63 82 68 72 66 66 66 53 67 61 69 69 76 68

Table 4: Tree_Labelled_F1 ∗ 100 scores for the Train All setting. The bold numbers in the table indicate the row-wise
maximum, i.e. the model’s best language performance in the given context. The numbers in bold in the ModAvg (Model Average)
column indicate the model with the best performance for the train-test strategy specified in the table’s heading. Similarly, the
numbers in bold in the Language Average row indicate the language with the best performance. Subsequently, hiO refers to the
original Hindi dataset from the dataset and hiIE refers to the inter-bilingual dataset constructed by picking Hindi utterances and
English logical form and joining them.

Dataset Model Unified Finetuning ModAvg
as bn gu hi kn ml mr or pa ta te hiIE hiO

IE-mTOP IndicBART-M2O 74 77 77 81 79 78 78 77 79 77 81 79 83 78
mBART-large-50-M2O 76 79 81 85 80 83 79 79 79 84 85 83 87 82
Language Average 75 78 79 83 80 81 79 78 79 81 83 81 85 80

IE-multilingualTOP IndicBART-M2O 75 76 80 79 71 71 76 76 76 77 78 – – 76
mBART-large-50-M2O 55 58 61 64 59 59 54 57 58 58 62 – – 59
Language Average 65 67 71 72 65 65 65 67 67 68 70 – – 67

IE-multiATIS++ IndicBART-M2O 80 80 90 90 89 89 83 79 88 83 92 88 92 84
mBART-large-50-M2O 83 82 93 91 87 89 85 75 88 83 89 89 93 84
Language Average 82 82 92 91 88 89 84 77 88 83 91 89 93 84

Table 5: Tree_Labelled_F1 ∗ 100 scores of IndicBART-M2O and mBART-large-50 model trained on all languages and all
datasets. Other notations similar to that of Table 4.

those that are not. mBART-large-50 outperforms
mT5-base despite its higher language coverage,
while mBART-large-50’s superior performance can
be ascribed to its denoising pre-training objective,
which enhances the model’s ability to generalize
for the "intent" and "slot" detection task. In section
§4.2 we discuss more about the complexity of the
logical forms.

(b.) Model Size: While model size has a signifi-
cant impact on the Translate Test setting for mono-
lingual models, we find that pre-training language
coverage and Translation fine-tuning are still the
most critical factors. For example, despite being a
smaller model, IndicBART outperforms mT5-base
on average for similar reasons. Another reason for
better performance for IndicBART and mBART-
large-50 denoising based seq2seq pre-training vs
multilingual multitask objective of mT5-base.

(c.) Translation Finetuning: The proposed task
is a mixture of semantic parsing and translation.
We also observe this empirically, when models
finetuned for translation tasks perform better. This
result can be attributed to fact that machine trans-
lation is the most effective strategy for aligning
phrase embeddings by multilingual seq2seq mod-
els (Voita et al., 2019), as emphasized by Li et al.
(2021). In addition, we observe that the models
perform best in the Train All setting, indicating
that data augmentation followed by fine-tuning en-
hances performance throughout all languages on
translation fine-tuned models.

Original vs Translated Hindi: We also evalu-
ated the performance of Hindi language models on
original datasets (hiO ) and (hiIE ) which combine
Hindi utterances with logical forms of English of
mTOP and multi-ATIS++ datasets, as shown in ta-
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ble 4. Inter-bilingual tasks pose a challenge and re-
sult in lower performance, but translation-finetuned
models significantly reduce this gap. Model perfor-
mance is similar for both ‘hi’ and ‘hiIE ’, indicating
the quality of translations. Additional details can
be refered in Appendix §G.

Domain Wise Comparison: IE-mTOP dataset
contains domain classes derived from mTOP. We
compare the average F1 scores for different do-
mains in IE-mTOP dataset for IndicBART-M2O
and mBART-large-50-M2O in the Train All setting,
as shown in Figure 4. We observe that mBART-
large-50-M2O outperforms IndicBART-M2O for
most domains except for people and recipes, where
both perform similarly well due to cultural varia-
tions in utterances.

Figure 4: Domain Wise all language average F1 score in
IE-mTOP dataset for IndicBART-M2O and mBART-large-50-
M2O.

4.2 Analysis on Logical Forms
In this paper, we maintain the slot values in the
English language and ensure consistency in the
logical form across languages for each example in
every dataset. This can be useful in assessing the
model performance across language and datasets
on the basis of logical form structure which we
have analysed in this section. Previous works have
shown a correlation between model performance
and logical form structures (Gupta et al., 2022).

Logical Form Complexity: We evaluate the per-
formance of the mBART-large-50-M2O model on
utterances with simple and complex logical form
structures in the Train All setting for IE-mTOP
and IE-multilingualTOP datasets. Simple utter-
ances have a flat representation with a single in-
tent, while complex utterances have multiple levels
8 of branching in the parse tree with more than
one intent. In IE-multiATIS++, instances are only
attributed to simple utterances since they have a
single unique intent. Figure 5 shows, that mBART-
8 depth >= 2

large-50-M2O performs better for complex utter-
ances in IE-mTOP, while there is better perfor-
mance for simple utterances in IE-multilingualTOP
due to its larger training data size and a higher pro-
portion of simple logical forms in training data.

Figure 5: Complexity Wise all language average F1 score in
IE-mTOP dataset for IE-mTOP and IE-multilingualTOP for
mBART-large-50-M2O.

Effect of Frame Rareness: We compared
mBART-large-50-M2O and IE-multilingualTOP
on the Train All setting by removing slot values
from logical forms and dividing frames into five
frequency buckets9. A shown in figure 6, F1 scores
increase with frame frequency, and IE-mTOP per-
forms better for smaller frequencies while IE-
multilingualTOP performs better for very large fre-
quencies. This suggests that IE-mTOP has more
complex utterances, aiding model learning with
limited data, while IE-multilingualTOP’s larger
training size leads to better performance in very
high frequency buckets.

Figure 6: Frame Rareness Wise all language average F1 score
in IE-mTOP dataset for IE-mTOP and IE-multilingualTOP for
mBART-large-50-M2O.

Post Translation of Slot Values: We translate
slot values from Hindi to English using IndicTrans
for the logical forms of ‘hi’ mTOP and ‘hi’ multi-
ATIS++ datasets in the Train All setting. Table 6
compares the F1 scores of models for IE-mTOP
and IE-multiATIS++ datasets, which only had the
original Hindi dataset available. Despite minor de-
creases in scores and visible translation errors, our
9 namely very high, high, medium, low and very low.
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approach yields accurate translations due to the
short length of slot values and the high-resource
nature of Hindi. However, we argue that our pro-
posed task or multilingual TOP task is superior in
terms of latency and performance, as discussed in
§2 and §4.1.

Dataset Model F1
IndicBART 49
mBART-large-50 55

IE-mTOP mT5-base 50
IndicBART-M2O 56
mBART-large-50-M2O 58
IndicBART 55
mBART-large-50 67

IE-multiATIS++ mT5-base 41
IndicBART-M2O 68
mBART-large-50-M2O 70

Table 6: Tree Labelled F1 scores of hindi dataset with post
translation of slot values to english for IE-mTOP and IE-
multiATIS++

Language Wise Correlation: We compared the
logical form results of each language by calculat-
ing the average tree labelled F1 score between the
datasets of one language to the other. We then
plotted correlation matrices10 and analysed perfor-
mance on all datasets using IndicBART-M2O and
mBART-large-50-M2O in Train All setting, as de-
scribed in Figure 7, 8, and 9 in Appendix §F.4.

Our analysis shows that IndicBART-M2O has
more consistent predictions than mBART-large-50-
M2O. We also observed that models perform most
consistently for the IE-multiATIS++ dataset. Ad-
ditionally, related languages, such as ‘bn’ and ‘as’,
‘mr’ and ‘hi’, and ‘kn’ and ‘te’, have high correla-
tion due to script similarity.

5 Related Work

Multi-Lingual Semantic Parsing: Recently,
TOP has attracted a lot of attention due to the de-
velopment of state-of-the-art seq2seq models such
as BART (Lewis et al., 2020) and T5 (Raffel et al.,
2019). Moreover, several works have extended
TOP to the multilingual setting, such as mTOP,
multilingual-TOP, and multi-ATIS++. The recent
MASSIVE dataset (FitzGerald et al., 2022) covers
six Indic languages vs eleven in our work, and only
contains a flat hierarchical structure of semantic
parse. Furthermore, the logical form annotations in
MASSIVE are not of a similar format to those in
the standard TOP dataset.

10 for 11 x 11 pairs

IndicNLP: Some works have experimented with
code-mixed Hindi-English utterances for semantic
parsing tasks, such as CST5 (Agarwal et al., 2022a).
In addition to these advances, there have been sig-
nificant contributions to the development of indic-
specific resources for natural language generation
and understanding, such as IndicNLG Suite Kumar
et al. (2022), IndicBART Dabre et al. (2022), and
IndicGLUE Kakwani et al. (2020). Also, some
studies have investigated the intra-bilingual setting
for multilingual NLP tasks, such as IndicXNLI
(Aggarwal et al., 2022) and EI-InfoTabs (Agarwal
et al., 2022b). In contrast to prior works, we focus
on the complex structured semantic parsing task.

LLMs and Zero Shot: Our work is also related
to zero-shot cross-lingual (Sherborne and Lapata,
2022) and cross-domain (Liu et al., 2021) semantic
parsing, which aims to parse utterances in unseen
languages or domains. Moreover, recent methods
use scalable techniques such as automatic transla-
tion and filling (Nicosia et al., 2021) and bootstrap-
ping with LLMs (Awasthi et al., 2023; Rosenbaum
et al., 2022; Scao, 2022) to create semantic pars-
ing datasets without human annotation. Unlike
previous methods such as Translate-Align-Project
(TAP) (Brown et al., 1993) and Translate and Fill
(TAF) (Nicosia et al., 2021), which generate seman-
tic parses of translated sentences, they propose a
novel approach that leverages LLMs to generate
semantic parses of multilingual utterances.

6 Conclusion and Future Work
We present a unique inter-bilingual semantic pars-
ing task, and publish the IE-SEMPARSE suite,
which consists of 3 inter-bilingual semantic parsing
datasets for 11 Indic languages. Additionally, we
discuss the advantages of our proposed approach
to semantic parsing over prior methods. We also
analyze the impact of various models and train-test
procedures on IE-SEMPARSE performance. Lastly,
we examine the effects of variation in logical forms
and languages on model performance and the cor-
relation between languages.

For future work, we plan to release a SOTA
model, explore zero-shot parsing (Sherborne and
Lapata, 2022), enhance IE-SEMPARSE with human
translation (NLLB Team et al., 2022), explore zero-
shot dataset generation (Nicosia et al., 2021), lever-
age LLM for scalable and diverse dataset genera-
tion(Rosenbaum et al., 2022; Awasthi et al., 2023),
and evaluate instruction fine-tuning models.
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7 Limitations

One of the main limitations of our approach is
the use of machine translation to create the IE-
SEMPARSE suite. However, we showed that the
overall quality of our dataset is comparable to
Samanantar, a human-verified translation dataset.
Furthermore, previous studies Bapna et al. (2022);
Huang (1990); Moon et al. (2020a,b) have shown
the effectiveness of quality estimation in reference-
less settings. Lastly, we have also extensively eval-
uated our dataset with the help of 3 human eval-
uators for each language as described in §3. We
can further take help of GPT4 in future to evaluate
the translations in a scaled manner (Gilardi et al.,
2023).

The second point of discussion focuses on the
motivation for preserving logical form slot values
in English. We explore the use cases where query-
ing data in English is crucial, and how this ap-
proach can enhance models by reducing latency,
limiting vocabulary size, and handling system re-
dundancy. While open-source tools currently can-
not achieve this, it would be valuable to evaluate
the effectiveness of this task by comparing it with
the other two discussed approaches. To accomplish
this, we suggest using a dialogue manager and scor-
ing the performance of its responses on the three
TOP approaches outlined in the paper.

Another potential limitation of our dataset is
that it may contain biases and flaws inherited from
the original TOP datasets. However, we contend
that spoken utterances are generally simpler and
more universal than written ones, which mitigates
the risk of cultural mismatches in IE-SEMPARSE

dataset. Furthermore, our work is confined only
to the Indo-Dravidian Language family of Indic
languages due to our familiarity with them and the
availability of high-quality resources from previ-
ous research. Nonetheless, our approach is easily
extendable to other languages with effective trans-
lation models, enabling broader applications in var-
ious languages worldwide. In the future, we plan
to improve our datasets by publicly releasing them
through initiatives like NLLB or IndicTransV2, and
by collaborating with larger organizations to have
the test sets human-translated.
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A Further Discussions

Why Indic Languages?: Indic languages are a
set of Indo-Aryan languages spoken mainly in the
Indian subcontinent. These languages combined
are spoken by almost 22% of the total world pop-
ulation in monolingual, bilingual, or multilingual
ways. these speakers also are the 2nd largest pop-
ulation of smartphone users, and almost everyone
interacts with AI through chatbots. Hence it poses
an excellent opportunity for NLP researchers to
push state-of-the-art further for standard NLU tasks
in these languages to benefit the digital business
perspective and make technology more accessi-
ble to people through AI. However, most NLU
benchmarks lack datasets in those languages de-
spite some being high resource (such as ‘hi,’ ‘bn,’
and ‘pa’). Moreover, with the introduction of
various NLU models like IndicBERT (Kakwani
et al., 2020), indicCorp, indicBART (Kumar et al.,
2022), and state-of-the-art NMT module Indic-
Trans (Ramesh et al., 2021) that has opened new
opportunities for researchers to innovate and con-
tribute benchmark datasets which support building
NLU models for Indic languages.

Lastly, discourse in languages other than En-
glish helps society understand more diverse per-
spectives and leads to a more inclusive society. As
the world is mainly multilingual, various studies
have proven that multilingual people can contribute
more diverse societal perspectives through digital
discourse.

Why IndicTrans translation? Furthermore we
use IndicTrans because of the following three rea-
sons, (a.) Lightweight: IndicTrans is an extremely
lightweight yet state of the art machine translation
model for Indic languages. (b.) Indic Coverage:
IndicTrans covers the widest variety of Indic lan-
guages as compared to other models like mBART,
mT5 and google translate and azure translate are
not free for research. (c.) Open Source: IndicTrans
is open source and free for research purposes, more
on this is elaborated in Aggarwal et al. (2022).
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Why Inter-Bilingual TOP task? Task-Oriented
Parsing has seen significant advances in recent
years with the rise of attention models in deep learn-
ing. There have been significant extensions of this
dataset in the form of mTOP (Li et al., 2021) and
multilingual-TOP (Xia and Monti, 2021). However,
they remain limited in terms of language coverage,
only covering a few major global languages and
only Hindi in the Indic category.

These datasets are especially difficult to expand
to other languages due to the fact that each lan-
guage has a unique word order and the logical form
of each sentence should be modified accordingly.
They cannot be altered using a simple dictionary
lookup or alignment technique to generate a high-
quality dataset. In keeping with this, we propose an
inter bilingual TOP task in which only input utter-
ances are translated. As current computers continue
to employ English to make decisions and interact
with the outside world, modern dialogue managers
can work with the logical forms of the English
counterparts, construct a response, and translate it
back to the input utterance’s language.

This resolves the latency issue where the model
must first convert the statement to English before
parsing it with another seq2seq model. This was
mentioned in section §4.1 which demonstrates that
end to end models perform better than translate +
parsing models in certain instances. Despite the
difficulties of learning translation and parsing in a
single set of hyper parameters, our research demon-
strates that this is feasible with existing seq2seq
models, especially models that have being pre-
trained with translation task.

Task Oriented Parsing in the era of ChatGPT:
With the rising popularity of chatGPT 11 in open-
domain conversational AI. It is still a challenge to
actually use these large language models in a task-
oriented manner. Moreover, these open domain
models may not understand the intent of the user
correctly or they may take incorrect actions pro-
vided a user utterance. These LLMs also have the
risk of being biased and toxic. Recent works like
HuggingGPT (Shen et al., 2023) have also shown
that while these models may have outstanding lan-
guage understanding capabilities, it is still better
to use task specific models to execute tasks in a
narrow scope.

11 https://openai.com/blog/chatgpt

Model Coverages: Listed below is the language
coverage for all employed multilingual models.

1. mBART-large-50: ‘bn’, ‘gu’, ‘hi’, ‘ml’, ‘mr’,
‘ta’, ‘te’

2. mT5-base: ‘bn’, ‘gu’, ‘hi’, ‘kn’, ‘ml’, ‘mr’,
‘pa’, ‘ta’, ‘te’

3. IndicBART: ‘’as‘, bn’, ‘gu’, ‘hi’, ‘kn’, ‘ml’,
‘mr’, ‘or’, ‘pa’, ‘ta’, ‘te’

4. IndicBART-M2O: ‘’as‘, bn’, ‘gu’, ‘hi’, ‘kn’,
‘ml’, ‘mr’, ‘or’, ‘pa’, ‘ta’, ‘te’

5. mBART-large-50-M2O: ‘bn’, ‘gu’, ‘hi’, ‘ml’,
‘mr’, ‘ta’, ‘te’

Two-step vs End2End parsing: We measure
the translation time of IndicTrans (Ramesh et al.,
2021) on an NVIDIA T4 GPU and find that it takes
0.015 seconds on average to translate a single ut-
terance from one language to another. In scenario
A, this adds 0.03 seconds of latency per utterance,
while our approach only adds 0.015 seconds (≈ 1

2 ).
In scenario B, where the logical form has slot val-
ues in Indic, there is no latency overhead for either
approach, but there are significant development
challenges due to multilingualism as discussed be-
low.

B Details: Human Evaluation

In table 7 we show the detailed scores of human
evaluation process discussed in the main paper §3.

C Details: Multilingual Models

1. Generic Multilingual (Multilingual): these
models are generic Seq2Seq multilingual mod-
els, we used mBART-large-50, mT5-base (Liu
et al., 2020; Xue et al., 2021) for experiments
for this category.

2. Indic Specific (Indic): These seq2seq models
are specifically pretrained on Indic data, we
uexplore IndicBART for experiments (Dabre
et al., 2022) in this category.

3. Translation Finetuned (Translation): These
pretrained seq2seq models are finetuned on
the translation task with a single target lan-
guage i.e. English. The models we explored
form this category areIndicBART-M2O and
mBART-large-50-M2O (Dabre et al., 2022;
Tang et al., 2021).

115

https://openai.com/blog/chatgpt


Dataset Score as bn gu hi kn ml mr or pa ta te
Score1 3.1 3 3.8 4.3 3.9 4.2 4.1 4.9 4.6 3.8 4.4
Score2 3 3 3.1 3.7 3.8 3.7 3.5 4 4.5 4.5 3.5
Score3 3.4 3.3 4.1 4.4 3.4 4.5 4.5 4.4 4.3 3.9 3.6
Pearson1,2 0.8 0.8 0.9 0.8 0.8 0.7 0.6 0.8 0.6 0.7 0.1

IE-multiATIS++ Pearson1,3 0.6 0.9 0.2 0.5 0.8 0.7 0.4 0.6 0.7 0.7 0
Pearson2,3 0.6 0.8 0.1 0.5 0.6 0.5 0.6 0.7 0.6 0.8 0.7
Spearman1,2 0.8 0.8 0.8 0.7 0.4 0.5 0.6 0.6 0.3 0.7 0.1
Spearman1,3 0.7 0.9 0.2 0.5 0.8 0.8 0.5 0.6 0.5 0.7 0.1
Spearman2,3 0.6 0.9 0.2 0.6 0.3 0.3 0.7 0.6 0.1 0.6 0.7
Score1 2.9 3 4 4.6 4.4 4.4 4.3 4.9 4.7 4.1 4.4
Score2 3.1 3.2 3.7 4.2 4.3 4.2 4.2 4.7 4.5 4.1 3.6
Score3 3.2 3.5 4 4.6 4.3 3.8 4.3 4.7 4.3 4.5 3.5
Pearson1,2 0.7 0.8 0.5 0.7 0.5 0.7 0.6 0.6 0.7 0.6 0.4

IE-multilingualTOP Pearson1,3 0.6 0.7 0.4 0.5 0.3 0.4 0.7 0.4 0.7 0.4 0.5
Pearson2,3 0.4 0.8 0.7 0.4 0.6 0.4 0.6 0.2 0.6 0.8 0.9
Spearman1,2 0.7 0.8 0.4 0.5 0.4 0.5 0.6 0.5 0.5 0.6 0.4
Spearman1,3 0.6 0.7 0.4 0.3 0.3 0.4 0.7 0.3 0.5 0.3 0.4
Spearman2,3 0.4 0.8 0.8 0.3 0.6 0.4 0.6 0.1 0.5 0.6 0.7
Score1 2.9 3.2 4.2 4.3 4.5 4.3 4.1 4.8 4.7 4.2 4.5
Score2 2.8 3.5 3.8 4.2 4 3.9 3.9 4.4 4.2 4 4.3
Score3 3.2 3.6 4 4.7 4.3 3.8 4 4.6 4.4 4.3 3.6
Pearson1,2 0.8 0.7 0.6 0.7 0.5 0.6 0.8 0.4 0.4 0.4 0.3

IE-mTOP Pearson1,3 0.6 0.8 0.5 0.4 0.8 0.6 0.7 0.3 0.2 0.4 0.3
Pearson2,3 0.5 0.7 0.7 0.5 0.5 0.7 0.7 0.6 0.1 0.7 0.6
Spearman1,2 0.9 0.7 0.6 0.6 0.4 0.6 0.8 0.4 0.3 0.3 0.3
Spearman1,3 0.6 0.7 0.5 0.3 0.5 0.7 0.6 0.4 0.2 0.3 0.5
Spearman2,3 0.5 0.7 0.7 0.5 0.3 0.6 0.6 0.7 0.3 0.5 0.4

Table 7: Detailed Human Evaluation Scores. Scorex refers to the average score of the column language given by x annotator.
Pearsonx,y refers to the person correlation between the scores of annotators x and y for the column language and similarly for
Spearmanx,y

4. Monolingual (Monolingual): These seq2seq
models are pretrained on English data only.
They were utilize only in the Translate Test
setting. The models we explored form this
category are T5-large, T5-base (Raffel et al.,
2019) and BART-base, BART-large (Lewis
et al., 2020).

D Hyperparameters Details

In Table 8 the hyperparamaters are abbreviated as
mentioned below:

1. PO: Pre-training Objective.

2. PD: Pretraining Dataset,

3. LR: Learning Rate,

4. BS: Batch Size,

5. NE: Maximum Number of Epochs,

6. WD: Weight Decay,

7. MSL: Maximum Sequence Length,

8. MS: Model Size described as a number of
parameters in millions,

9. WS: Warm-up Step.

All the experiments were run on RTX A5000
GPUs in Jarvis labs 12. The code was written in
PyTorch and Huggingface accelerate library 13. We
used early stopping callback in training process
with patience of 2 epochs for each setting.

The Average runtime for each for T5-base,
BART-base, IndicBART, IndicBART-M2O
was 3 minutes for IE-mTOP, 1 minute
for IE-multiATIS++ and 5 minutes for IE-
multilingualTOP. The Average runtime for each
for T5-large, BART-large, mT5-base,mBART-
large-50, mBART-large-50-M2O was 5 minutes
for IE-mTOP, 3 minute for IE-multiATIS++ and
10 minutes for IE-multilingualTOP.

E Vocabulary Augmentation

Unique Intents and slots from each dataset
(IE-mTOP, IE-multilingualTOP, IE-multiATIS++)
were extracted and added to the tokenizer and
model vocabulary so that the models could pre-
dict them more accurately. In a typical slot and
intent tagging task, these tags would have been
treated as classes in the classification model. How-
ever, since our models are trained to not predict the
entire word but only subwords (Raffel et al., 2019;
Lewis et al., 2020) as usually done in modern self-
attention architecture (Vaswani et al., 2017), we
12 https://jarvislabs.ai/
13 https://huggingface.co/docs/accelerate/index
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Hyper Parameter MS LR WD MSL BS NE PO PD
BART-base 139 3.00e-3 0.001 64 128 50 Deniosing Autoencoder Wikepedia Data (Lewis et al., 2020)
BART-large 406 3.00e-5 0.001 64 16 50 Deniosing Autoencoder Wikepedia Data
T5-base 222 3.00e-3 0.001 64 256 50 Multi task Pretraining C4 (Raffel et al., 2019)
T5-large 737 3.00e-5 0.001 64 16 50 Multi task Pretraining C4
IndicBART 244 3.00e-3 0.001 64 128 50 Deniosing Autoencoder Indic Corp (Kakwani et al., 2020)
mBART-large-50 610 1.00e-4 0.001 64 16 50 Deniosing Autoencoder CC25(Liu et al., 2020)
mT5-base 582 3.00e-4 0.001 64 16 50 Multi task Pretraining mC4 (Xue et al., 2021)
IndicBART-M2O 244 3.00e-3 0.001 64 128 50 Deniosing Autoencoder PM India (Haddow and Kirefu, 2020)
mBART-large-50-M2O 610 1.00e-4 0.001 64 16 50 Deniosing Autoencoder WMT16 (Barrault et al., 2020)

Table 8: Hyper Parameters and Pretraining Details

decided to include them in the vocabulary so that
they can be generated easily during prediction run-
time. This also contributed to the reduction of the
maximum sequence length to 64 tokens, which im-
proved generalisation as seq2seq models generalise
better on shorter sequences (Voita et al., 2021). The
Excel spreadsheet containing unique slots and in-
tents will be made accessible alongside the code
and supplemental materials.

F Additional Results

F.1 Other Train Test Settings
We include the results of all other settings except
Train All (Already discussed in main paper) in table
9 till 15. We have discussed the comparisons of
these settings in main paper §4.1.

F.2 Translate Test vs End2End models
While the performance of Monolingual models in
the Translate Test setting is adequate, the perfor-
mance of models in the end-to-end Train All setting
outperform. Translation is prone to error, and the
acquired logical form in English cannot be guaran-
teed to be precise. Moreover, a two-step approach
to translation followed by parsing will incur greater
execution time than a unified model.

F.3 Unified Models Results
In unified models, we observe a gain of atleast 0.15
in all languages for all datasets for both IndicBART-
M2O and mBART-large-50-M2O.

F.4 Language verses Language
From figure 7, 8, 9 we observe that IndicBART-
M2O is a more consistent than mBART-large-50-
M2O.

F.5 Exact Match Results
We calculated modified exact match scores as in-
spired by Awasthi et al. (2023) which are agnostic
of the positions of the slot tokens in the logical
form. These scores are presented in tables 12, 13,

14, 15. We observed that exact match is a stricter
metric as compared to tree labelled F1 (Gupta et al.,
2018). We also observe that exact match scores are
consistent with tree labelled F1 scores across lan-
guages, datasets and models.

G Original verses Interbilingual Hindi

As demonstrated by figure 1, we have data acces-
sible in Hindi for all three settings. To produce
Hindi bilingual TOP data, we utilize mTOP and
multi-ATIS++ to internally combine Hindi and En-
glish data tables by unique id (uid). To construct
our dataset, we filter the Hindi utterances column
and the English logical form columns; we refer
to these datasets as hiIE in table 4. Furthermore,
we conduct tests using original Hindi datasets (slot
values in Hindi in logical form) and compare their
performance to that of other languages. In the table
4, we refer to these datasets as hiO for the mTOP
dataset and multi-ATIS++ dataset both.

Analysis. We see a decline in F1 score for
all models for hiIE in both IE-mTOP and IE-
multiATIS++. This might be due to data loss when
hindi and english data are combined, as not all utter-
ances of english data are included in both datasets.
Furthermore, the hindi utterances in the original
dataset may be more complex. The results for hiO
and hiO enhances because the tokens were copied
from the utterance and the model does not have to
transform the tokens to English.
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Dataset Model Translate Test ModAvg
as bn gu hi kn ml mr or pa ta te

BART-base 28 37 35 42 35 38 39 35 36 41 33 36
BART-large 30 41 38 44 38 41 41 39 38 46 36 39
T5-base 31 44 41 49 41 43 43 41 42 47 41 42
T5-large 29 43 39 47 39 42 42 40 40 44 38 40

IE-mTOP IndicBART 30 40 36 42 36 40 39 38 37 42 33 38
mT5-base 34 43 40 48 40 43 43 38 40 45 38 41
mBART-large-50 18 20 20 23 20 19 23 16 21 23 21 20
IndicBART-M2O 35 44 43 51 44 46 44 41 42 49 41 44
mBART-large-50-M2O 36 45 45 50 45 47 46 41 46 53 43 45
Language Average 30 40 37 44 38 40 40 37 38 43 36 38
BART-base 11 15 16 16 13 14 13 14 14 14 16 14
BART-large 12 18 19 20 16 16 15 16 16 16 19 17
T5-base 8 11 12 13 11 11 11 11 11 11 13 11
T5-large 7 9 10 11 8 8 8 9 9 8 10 9

IE-multilingualTOP IndicBART 20 29 31 32 27 29 25 26 27 25 31 27
mT5-base 20 26 26 28 25 25 24 23 25 24 27 25
mBART-large-50 26 34 35 38 34 35 33 30 34 32 36 33
IndicBART-M2O 20 27 29 30 27 28 25 25 26 25 29 26
mBART-large-50-M2O 30 42 45 46 41 44 41 38 41 39 45 41
Language Average 17 23 25 26 22 23 22 21 23 22 25 23
BART-base 15 20 14 18 17 18 14 18 17 16 18 17
BART-large 15 20 14 15 19 19 14 21 16 17 20 17
T5-base 46 70 52 62 61 65 47 51 58 51 66 57
T5-large 49 74 58 66 62 70 48 52 63 53 70 60

IE-multiATIS++ IndicBART 44 66 46 56 54 63 47 46 58 49 63 54
mT5-base 25 25 18 26 24 26 19 27 25 20 24 24
mBART-large-50 55 70 58 70 66 71 60 56 68 59 68 64
IndicBART-M2O 44 61 48 55 52 68 48 53 56 47 59 54
mBART-large-50-M2O 53 70 68 76 67 73 63 62 69 56 71 66
Language Average 38 53 42 49 47 53 40 43 48 41 51 46

Table 9: Tree_Labelled_F1 ∗ 100 scores for the all the dataset for Translate Test settings. ModAvg is shorthand for Model
Average. The bold numbers in the table indicate the row-wise maximum, i.e. the model’s best language performance in the given
context. The numbers in bold in the ModAvg column indicate the model with the best performance for the train-test strategy
specified in the table’s heading. Similarly, the numbers in bold in the Language Average row indicate the language with the best
performance for that train-test strategy.

Dataset Model Indic Train Model Average
as bn gu hi kn ml mr or pa ta te

IndicBART 19 55 35 53 33 30 50 15 31 45 44 37
mBART-large-50 41 51 14 60 22 25 25 4 44 0 57 31

IE-mTOP mT5-base 30 22 28 52 50 54 36 8 36 53 15 35
IndicBART-M2O 50 55 45 61 55 58 58 53 13 56 59 51
mBART-large-50-M2O 55 59 61 66 56 63 57 52 53 59 63 59
Language Average 39 48 37 58 43 46 45 26 35 43 48 43
IndicBART 36 29 24 65 48 9 56 30 37 42 40 38
mBART-large-50 51 55 35 55 55 54 54 50 34 55 57 50

IE-multilingualTOP mT5-base 45 56 56 20 23 49 47 47 10 37 56 41
IndicBART-M2O 50 56 60 63 60 20 55 15 57 57 62 50
mBART-large-50-M2O 52 60 62 65 60 59 57 57 51 58 64 59
Language Average 47 51 47 54 49 38 54 40 38 50 56 48
IndicBART 12 16 8 25 15 19 22 22 23 22 18 19
mBART-large-50 16 18 10 30 10 10 18 13 33 20 15 18

IE-multiATIS++ mT5-base 15 39 16 18 24 18 25 6 11 35 28 22
IndicBART-M2O 34 86 63 68 73 74 57 63 64 63 71 68
mBART-large-50-M2O 71 92 82 81 69 80 72 4 66 74 82 70
Language Average 30 50 36 44 38 40 39 22 39 43 43 39

Table 10: Tree_Labelled_F1 ∗ 100 scores for the all the dataset for Indic Train setting. The numbers in bold in the Model
Average column indicate the model with the best performance for the train-test strategy specified in the table’s heading. Similarly,
the numbers in bold in the Language Average row indicate the language with the best performance for that train-test strategy.
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Dataset Model English+Indic Train Model Average
as bn gu hi kn ml mr or pa ta te

IndicBART 34 37 42 58 41 35 54 10 42 44 43 40
mBART-large-50 50 52 58 56 54 51 55 0 42 59 57 49

IE-mTOP mT5-base 31 25 45 60 48 36 44 21 6 46 48 37
IndicBART-M2O 51 54 57 60 57 58 54 57 57 55 62 57
mBART-large-50-M2O 57 60 60 65 62 66 58 55 58 65 64 61
Language Average 45 46 52 60 52 49 53 29 41 54 55 49
IndicBART 43 45 52 53 47 40 57 30 47 38 49 46
mBART-large-50 0 35 35 39 0 56 48 22 58 0 60 32

IE-multilingualTOP mT5-base 14 53 56 50 53 50 50 48 52 51 56 48
mBART-large-50-M2O 56 60 63 66 61 60 57 57 60 60 64 60
IndicBART-M2O 54 56 60 63 60 58 54 57 24 57 63 55
Language Average 33 50 53 54 44 53 53 43 48 41 58 48
IndicBART 34 12 12 58 25 21 65 12 30 16 37 29
mBART-large-50 43 22 69 78 14 54 58 12 36 10 66 42

IE-multiATIS++ mT5-base 25 36 28 38 33 44 23 23 35 30 35 32
mBART-large-50-M2O 21 86 78 74 73 76 56 64 72 65 75 67
IndicBART-M2O 71 87 77 77 71 82 74 54 45 71 82 72
Language Average 39 49 53 65 43 55 55 33 44 38 59 48

Table 11: Tree_Labelled_F1 ∗ 100 scores for the all the dataset for English+Indic Train setting. The numbers in bold in the
Model Average column indicate the model with the best performance for the train-test strategy specified in the table’s heading.
Similarly, the numbers in bold in the Language Average row indicate the language with the best performance for that train-test
strategy.

(a) IndicBART-M2O (b) mBART-large-50-M2O

Figure 7: Language wise f1 score of predictions of 2 languages for IE-mTOP dataset for Train All setting
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(a) IndicBART-M2O (b) mBART-large-50-M2O

Figure 8: Language wise f1 score of predictions of 2 languages for IE-multilingualTOP Dataset for Train All settings

(a) IndicBART-M2O (b) mBART-large-50-M2O

Figure 9: Language wise f1 score of predictions of 2 languages for IE-multiATIS++ Dataset for Train All settings
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Dataset Model Train All ModAvg
as bn gu hi kn ml mr or pa ta te hiO hiIE

IE-mTOP

IndicBART 31 32 29 42 29 32 42 20 28 30 31 64 49 35
IndicBART-M2O 42 40 46 48 46 52 47 47 48 48 50 68 53 49
mBART-large-50 37 33 40 48 39 42 38 43 36 42 35 62 51 42
mBART-large-50-M2O 48 45 50 50 50 53 49 50 47 53 51 67 54 51
mT5-base 43 47 51 52 50 51 50 50 47 51 52 59 55 51
Language Average 40 39 43 46 43 46 45 42 41 45 44 61 50 45

IE-multilingualTOP

IndicBART 35 38 42 56 39 37 47 22 38 36 43 – – 39
IndicBART-M2O 45 47 47 55 46 46 52 45 53 50 57 – – 49
mBART-large-50 37 41 43 48 41 41 36 40 40 41 47 – – 41
mBART-large-50-M2O 49 53 55 60 53 53 48 52 52 53 59 – – 53
mT5-base 43 49 52 56 52 50 47 45 49 48 54 – – 50
Language Average 28 31 33 37 32 31 31 27 30 30 34 – – 31

IE-multiATIS++

IndicBART 37 20 23 41 32 23 37 13 39 38 19 34 16 29
IndicBART-M2O 43 45 40 59 53 44 58 34 45 46 40 55 37 46
mBART-large-50 60 85 73 76 75 76 60 59 67 66 72 36 18 63
mBART-large-50-M2O 67 80 71 73 71 71 66 58 72 66 68 49 31 65
mT5-base 45 70 58 61 60 61 45 44 52 51 57 34 16 50
Language Average 50 60 53 62 58 55 53 42 55 53 51 42 24 51

Table 12: Exact_Match∗100 scores for the all the dataset for Train All settings. ModAvg is shorthand for Model Average.
The bold numbers in the table indicate the row-wise maximum, i.e. the model’s best language performance in the given context.
The numbers in bold in the ModAvg column indicate the model with the best performance for the train-test strategy specified in
the table’s heading. Similarly, the numbers in bold in the Language Average row indicate the language with the best performance
for that train-test strategy.

Dataset Model Translate Test Model Average
as bn gu hi kn ml mr or pa ta te

IE-mTOP

IndicBART 29 40 38 47 38 40 41 39 37 43 34 39
IndicBART-M2O 28 37 36 46 37 39 39 39 35 43 35 38
BART-base 18 28 28 35 27 29 29 29 28 33 24 28
BART-large 23 35 33 40 33 36 36 36 33 41 30 34
mBART-large-50 13 14 15 17 15 13 18 15 16 16 14 15
mBART-large-50-M2O 29 38 39 44 38 39 39 36 38 46 36 38
mT5-base 26 36 33 42 33 36 36 33 32 38 31 34
T5-base 21 33 31 40 30 31 33 35 31 37 32 32
T5-large 20 33 29 38 29 31 32 35 30 35 29 31
Language Average 23 33 31 39 31 33 34 33 31 37 29 32

IE-multilingualTOP

IndicBART 16 24 26 28 21 24 20 21 22 20 26 23
IndicBART-M2O 13 20 23 24 20 21 18 19 19 19 22 20
BART-base 12 13 13 14 11 12 11 11 12 11 13 12
BART-large 10 15 16 17 13 14 12 14 13 14 16 14
mBART-large-50 22 30 31 35 30 31 29 26 29 28 32 29
mBART-large-50-M2O 26 38 40 43 36 38 36 33 35 34 40 36
mT5-base 15 20 21 23 19 20 18 18 20 19 21 19
T5-base 12 13 12 15 10 12 13 9 11 14 14 12
T5-large 22 23 22 25 26 26 25 26 26 26 27 25
Language Average 16 22 23 25 21 22 20 20 21 21 23 21

IE-multiATIS++

IndicBART 30 49 34 41 41 51 34 33 43 33 44 39
IndicBART-M2O 32 51 39 44 40 59 37 42 43 35 46 43
BART-base 31 32 32 30 31 30 30 30 30 30 30 31
BART-large 31 32 32 30 31 30 30 30 31 31 31 31
mBART-large-50 41 56 54 62 61 66 54 50 60 47 56 55
mBART-large-50-M2O 40 60 66 69 62 66 57 58 60 47 59 59
mT5-base 24 29 28 35 28 24 26 27 22 25 24 27
T5-base 34 53 44 48 55 61 34 42 42 43 56 47
T5-large 38 60 51 57 56 68 34 42 50 44 57 51
Language Average 33 47 42 46 45 51 37 39 42 37 45 42

Table 13: Exact_Match∗100 scores for the all the dataset for Translate Test settings. The bold numbers in the table indicate
the row-wise maximum, i.e. the model’s best language performance in the given context. The numbers in bold in the Model
Average column indicate the model with the best performance for the train-test strategy specified in the table’s heading. Similarly,
the numbers in bold in the Language Average row indicate the language with the best performance for that train-test strategy.
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Dataset Model Indic Train Model Average
as bn gu hi kn ml mr or pa ta te

IE-mTOP

IndicBART 24 26 29 33 28 24 44 12 25 23 23 26
IndicBART-M2O 43 48 49 56 48 53 52 47 6 49 50 46
mBART-large-50 34 44 43 55 40 44 45 27 36 0 50 38
mBART-large-50-M2O 48 53 55 62 50 58 53 48 46 54 57 53
mT5-base 22 29 21 45 42 46 29 24 28 25 24 30
Language Average 34 40 39 50 42 45 45 32 28 30 41 39

IE-multilingualTOP

IndicBART 30 24 20 61 43 37 51 25 31 37 32 36
IndicBART-M2O 45 54 56 60 56 15 51 20 54 53 59 48
mBART-large-50 46 51 50 57 51 50 49 46 31 50 54 49
mBART-large-50-M2O 49 56 59 62 56 55 53 53 46 54 60 55
mT5-base 40 40 51 61 51 43 43 43 40 47 53 47
Language Average 42 45 47 60 51 40 49 37 40 48 52 47

IE-multiATIS++

IndicBART 46 45 43 54 32 34 46 23 20 30 32 37
IndicBART-M2O 56 56 54 74 44 55 68 47 40 50 52 54
mBART-large-50 56 67 76 66 54 47 59 62 51 53 46 58
mBART-large-50-M2O 66 91 81 81 60 65 72 78 69 65 60 72
mT5-base 46 53 47 56 45 47 48 42 43 44 45 47
Language Average 54 62 60 66 47 50 59 50 45 48 47 53

Table 14: Exact_Match∗100 scores for the all the dataset for Indic Train settings. The bold numbers in the table indicate the
row-wise maximum, i.e. the model’s best language performance in the given context. The numbers in bold in the Model Average
column indicate the model with the best performance for the train-test strategy specified in the table’s heading. Similarly, the
numbers in bold in the Language Average row indicate the language with the best performance for that train-test strategy.

Dataset Model English+Indic Train Model Average
as bn gu hi kn ml mr or pa ta te

IE-mTOP

IndicBART 27 29 36 53 34 28 49 17 34 37 36 35
IndicBART-M2O 45 46 50 54 51 53 50 53 53 51 54 51
mBART-large-50 43 46 50 50 47 45 50 0 37 54 50 43
mBART-large-50-M2O 51 55 53 61 56 62 54 51 53 60 61 56
mT5-base 23 30 37 56 41 27 38 16 27 38 39 34
Langauge Average 38 41 45 55 46 43 48 27 41 48 48 44

IE-multilingualTOP

IndicBART 37 30 47 52 42 35 53 25 42 33 44 40
IndicBART-M2O 48 52 56 59 56 54 50 53 16 53 60 51
mBART-large-50 45 49 42 54 47 52 44 25 54 56 56 48
mBART-large-50-M2O 51 56 59 63 57 56 53 53 56 57 61 57
mT5-base 39 48 51 46 49 45 42 43 47 47 52 46
Language Average 44 47 51 55 50 48 48 40 43 49 55 48

IE-multiATIS++

IndicBART 28 32 32 63 31 25 57 10 29 33 28 33
IndicBART-M2O 74 78 76 78 72 80 40 54 64 53 68 67
mBART-large-50 31 40 71 83 71 69 57 21 23 40 58 51
mBART-large-50-M2O 64 84 73 78 70 88 71 46 66 70 76 71
mT5-base 18 25 22 35 26 29 26 28 28 25 27 26
Language Average 43 52 55 67 54 58 50 32 42 44 51 50

Table 15: Exact_Match∗100 scores for the all the dataset for English+Indic Train settings. The bold numbers in the table
indicate the row-wise maximum, i.e. the model’s best language performance in the given context. The numbers in bold in the
Model Average column indicate the model with the best performance for the train-test strategy specified in the table’s heading.
Similarly, the numbers in bold in the Language Average row indicate the language with the best performance for that train-test
strategy.
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Abstract
Developing dialogue relation extraction (DRE)
systems often requires a large amount of la-
beled data, which can be costly and time-
consuming to annotate. In order to improve
scalability and support diverse, unseen relation
extraction, this paper proposes a method for
leveraging the ability to capture triggers and re-
late them to previously unseen relation names.
Specifically, we introduce a model that enables
zero-shot dialogue relation extraction by uti-
lizing trigger-capturing capabilities. Our ex-
periments on a benchmark DialogRE dataset
demonstrate that the proposed model achieves
significant improvements for both seen and un-
seen relations. Notably, this is the first attempt
at zero-shot dialogue relation extraction using
trigger-capturing capabilities, and our results
suggest that this approach is effective for in-
ferring previously unseen relation types. Over-
all, our findings highlight the potential for this
method to enhance the scalability and practical-
ity of DRE systems.1

1 Introduction

Relation extraction (RE) is a key natural language
processing (NLP) task that identifies the seman-
tic relationships between arguments in various
types of text data. It involves extracting relevant
information and representing it in a structured
form for downstream applications (Zhang et al.,
2017; Cohen et al., 2020; Zhou and Chen, 2021;
Huguet Cabot and Navigli, 2021). Dialogue rela-
tion extraction (DRE) is a specialized area of RE
that focuses on identifying semantic relationships
between arguments in conversations. Recent DRE
research has used diverse methods to improve re-
lation extraction performance, including construct-
ing dialogue graphs (Lee and Choi, 2021), iden-
tifying explicit triggers (Albalak et al., 2022; Lin
et al., 2022), and using prompt-based fine-tuning
approaches (Son et al., 2022).

1Code: https://github.com/MiuLab/UnseenDRE.

Supervised training for RE tasks can be time-
consuming and expensive due to the requirement
for a large amount of labeled data. Models trained
on limited data can only predict the relations they
have been trained on, making it challenging to iden-
tify similar but unseen relations. Hence, recent
research has explored methods that require only a
few labeled examples or no labeled examples at
all, such as prompt-based fine-tuning (Schick and
Schütze, 2020; Puri and Catanzaro, 2019). Ad-
ditionally, Sainz et al. (2021) improved zero-shot
performance by transforming the RE task into an
entailment task. However, this approach has not
yet been applied to DRE due to the challenge of
converting long conversations into NLI format.

In this work, we observe that different relations
may be dependent on each other, such as the parent-
child relationship listed in Table 1. Prior work has
treated all relations independently and modeled dif-
ferent labels in a multi-class scenario, making it
impossible for models to handle unseen relations
even if they are relevant to previously seen relations.
Therefore, this paper focuses on enabling zero-shot
relation prediction. Specifically, if we encounter
an unseen relation during testing but have previ-
ously seen a similar relation, we can relate them
through explicitly mentioned trigger words, such
as per:children (seen relation) → “mom” (trigger)
→ per:parents (unseen relation).

To achieve this, we need to identify the key in-
formation of the relation as a tool for relation rea-
soning during inference. We adopt the approach
proposed in Lin et al. (2022), which achieves re-
markable results in DRE by capturing explainable
keywords in a dialogue for guiding relation extrac-
tion. By leveraging such trigger-capturing capabili-
ties, our proposed model can better deduce unseen
relations from known relations and associated trig-
gers. Therefore, the proposed DRE model is more
practical, as it can generalize to unseen relations.
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DialogRE Relation Similar DialogRE Relation
per:positive_impression per:negative_impression
per:boss per:subordinate
per:children per:parents
gpe:residents_of_place per:place_of_residence
per:place_of_birth gpe:births_in_place
org:students per:schools_attended
per:visited_place gpe:visitors_of_place
per:employee_or_member_of org:employees_or_members

Table 1: Similar relation examples in DialogRE.
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Figure 1: The illustration of our proposed zero-shot
relation extraction model.

2 Proposed Approach

Prior work on classical DRE has treated it as a
multi-class classification problem, which makes it
challenging to scale to unseen relation scenarios.
To enable a zero-shot setting, we reformulate the
multi-class classification task into multiple binary
classification tasks by adding each relation name as
input, as illustrated in Figure 1. The binary classifi-
cation task predicts whether the subject and object
in the dialogue belong to the given relation. This
approach is equivalent to predicting whether a set
of subject-object relations is established, which can
estimate any relations based only on their names
(or natural language descriptions).

2.1 Model Architecture
Our model is illustrated in Figure 2, where there
are three components in our architecture.

Trigger Prediction Inspired by Lin et al. (2022),
we incorporate a trigger predictor into our model,
allowing us to employ explicit cues for identify-

ing subject-object relationships within a dialogue.
Specifically, we adapt techniques from question-
answering models to predict the start and end po-
sitions of the trigger span. By detecting these trig-
gers, our model not only reasons the potential un-
seen relations but also enhances the interpretabil-
ity of the task, making it more practical for real-
world applications. To identify the keywords asso-
ciated with (Subject, Object, RelationType)
in a dialogue, we formulate the task as an extrac-
tive question-answering problem (Rajpurkar et al.,
2016). In this setting, the dialogue can be viewed
as a document, where the subject-object pair rep-
resents the question, and the answer corresponds
to the span of keywords that explain the associated
relation, i.e., the triggers.

Relation Name Injection In contrast to most
prior work (Lee and Choi, 2021; Lin et al., 2022;
Albalak et al., 2022), our input format includes the
relation name after [CLS], and we use the [CLS]-
associated embeddings as relation name embed-
dings shown in Figure 2. By doing so, the model
has access to natural language descriptions of the
given relation, which facilitates more accurate cap-
ture of trigger words and further enables the zero-
shot capability of the proposed model.

Binary Relation Prediction In our model, the
relation predictor takes as input the learned relation
name embedding and a predicted trigger span, as
illustrated in the upper part of Figure 2. To estab-
lish the relationship between the relation name and
its associated trigger words, we employ a general
attention mechanism, where the relation name em-
bedding serves as the query, while the trigger words
are encoded by BERT and used as keys and val-
ues. The resulting features are then concatenated
and fed through a fully connected layer, which gen-
erates the final prediction indicating whether the
input subject and object have the given relation as
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Figure 2: The illustration of our proposed model architecture.

expressed in the dialogue.

2.2 Training
As depicted in Figure 2, the input (Dialogue,
Subject, Oubject, RelationType) will be ini-
tially expanded into a sequence resembling BERT’s
input format. The model is trained to perform two
tasks. Firstly, it learns the ability to find the trig-
ger span, and secondly, it learns to incorporate the
triggers into the relation prediction.

Negative Sampling In accordance with Mikolov
et al. (2013), we have adopted the negative sam-
pling method in our training process. Specifically,
we randomly select some relations from the set
of previously observed relations that do not cor-
respond to the given subject-object pair to create
negative samples. Notably, the trigger spans of
these negative samples remain unchanged.

Multi-Task Learning The trigger prediction task
involves identifying the most likely trigger posi-
tions, and is treated as a single-label classification
problem using cross-entropy loss LTrigger. On the
other hand, the relation prediction task employs
binary cross-entropy loss LBinary to compute the
prediction loss. To train the model simultaneously
on both tasks, we employ multi-task learning. We
use a linear combination of the two losses as the ob-
jective function. This enables us to train the entire
model in an end-to-end fashion.

2.3 Inference
During inference, our model follows a similar set-
ting to the one used during training. However, we

have observed that the model tends to predict the
seen relation when the captured trigger words are
present in the training data. To prevent the model
from overfitting to the seen relations, we replace
the trigger span with a general embedding (the em-
bedding of [CLS]), which is assumed to carry the
information of the entire sentence. This embed-
ding is used as the input for our relation prediction.
By doing so, our model can better generalize to
unseen scenarios and can avoid the tendency to pre-
dict the seen relation when capturing seen trigger
words. This approach enhances the model’s ability
to handle diverse unseen relations during inference.

3 Experiments

We conducted experiments using the DialogRE
dataset, which is widely used as a benchmark in the
field. To assess our model’s zero-shot capability,
we divided the total of 36 relations into 20 seen
and 16 unseen types detailed in the Appendix. We
only train our model on data related to seen rela-
tion types. During training, we set the learning rate
to 3e-5 and used a GeForce RTX 2080 Ti. The
training process involves 10 epochs without early
stopping2, and the number of negative samples was
3. To ensure a fair comparison with prior work
(Lin et al., 2022; Yu et al., 2020), we use the same
testing set for evaluation.

3.1 Evaluation Metric
After performing multiple binary classification
tasks, our model can rank the relation candidates

2The models with early stopping achieve similar perfor-
mance.
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Model Unseen Seen Overall2
Top 1 Top 2 Top 1 Top 2 Top 1 Top 2

Multi-class BERT 0.0 0.0 60.6 - 48.5 -
TUCORE-GCN (Lee and Choi, 2021) 0.0 0.0 65.51 - 48.41 -
TREND (Lin et al., 2022) 0.0 0.0 66.81 - 53.41 -
Binary-Reformulated BERT 24.5 28.9 57.0 45.5 50.5 42.2
Proposed (with predicted triggers) 23.5 34.8 66.7 51.5 58.0 48.2
Proposed (with relation name embeddings) 32.5 34.8 65.6 51.0 60.0 47.8
Proposed with gold triggers 35.6 40.4 70.4 53.2 63.4 50.6

Table 2: The micro-F1 performance of DialogRE in terms of unseen, seen, and overall settings (%).

based on their predicted scores. Typically, the
model outputs the relation with the highest score,
as done in prior work, and micro-F score is cal-
culated for evaluation. However, since our task
is focused on zero-shot performance, we are also
interested in whether our model can correctly rank
the unseen relations, even if the top-ranked relation
is incorrect. To better understand how our model
estimates all relation candidates, we evaluate our
model not only on the top-ranked relation but also
on the top-2 ranked relations in our experiments.
This allows us to gain insight into how well our
model can rank the correct relations, even if they
are not the top-ranked ones.

3.2 Model Setting

We perform different model settings on BERT-Base
for fair comparison.

• Multi-class BERT is a baseline, where BERT-
Base (Devlin et al., 2019) is adopted and
treated DRE as multi-class classification.

• TUCORE-GCN construct a dialogue graph
to utilize the graph strucutre for prediction
(Lee and Choi, 2021).

• TREND proposed to capture explicit triggers
for better performance (Lin et al., 2022).3

• Binary-reformulated BERT performs binary
classification shown in Figure 1, which is a
proper baseline for zero-shot settings.

• Proposed has three settings in binary relation
prediction during inference: 1) based on pre-
dicted triggers, 2) based on relation name em-
bddings, 3) based on gold triggers. The third
is listed as an upper bound for reference.4

3The scores are reported from the prior work for reference,
which cannot be directly compared with our scores.

4Overall performance is estimated based on data size.

3.3 Results

Table 2 presents our results. Prior work achieves
micro-F scores above 60% for seen relations but
cannot predict unseen relations (0%) due to their
multi-class formulation. The reformulated BERT
serves as the baseline for zero-shot settings, achiev-
ing 24.9% and 28.9% for top 1 and top 2 ranked
relations, respectively.

Our proposed method of inputting predicted trig-
gers for relation prediction did not rank correct
unseen relations as top 1 (23.5% vs. 24.5%). How-
ever, the performance of top 2 ranked relations
significantly improved (from 28.9% to 34.8%), sug-
gesting that trigger prediction is indeed useful. The
lower top 1 relations score can be attributed to simi-
lar triggers for relevant relations, which easily favor
seen relations. An example of incorrect prediction
is provided in Table 3.

Replacing predicted triggers with relation name
embeddings, our proposed model achieves the best
performance for unseen relations (32.5% for top 1
and 34.8% for top 2). This indicates that this set-
ting avoids overfitting to seen relations and allows
prediction to better generalize to unseen scenarios.

Moreover, feeding gold triggers into relation ex-
traction during inference yields the best results,
indicating the potential for improvement with the
proposed trigger mechanism. In sum, the exper-
iments demonstrate that our proposed model can
connect trigger words with relation names and en-
ables zero-shot relation extraction.

In terms of performance on seen data, our pro-
posed models outperform the reformulated BERT
baseline by a significant margin. Moreover, our
models achieve comparable scores to previous
work (66.7% vs. 66.8% in top 1 scores), even
though we consider more candidates. These results
further validate the effectiveness of our model and
its superior generalization capability.
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S1: What about Ben? We can’t bring a baby to a hospital.
S2: We’ll watch him.
S1: I don’t think so.
S3: What? I have seven Catholic sisters. I’ve taken care of
hundreds of kids. Come on, we wanna do it, don’t we?
S2: I was looking forward to playing basketball, but I
guess that’s out the window.
S1: Ok, well, if you do take him out for his walk, you
might wanna bring his hat, and there’s extra milk in the
fridge, and there’s extra diapers in the bag.
S3: Hat, milk, got it.
S1: ??? Thro up a thro thro–a thro thro!
S3: Consider it done.
S2: You understood that?
S3: Yeah, my uncle Sal has a really big tongue.
S2: Is he the one with the beautiful wife?
(Subject, Object) : (Sal, S3)
Predicted trigger: uncle
Gold trigger: uncle
Predicted relation: per:children
Gold relation: per:other_family

Table 3: An incorrectly-predicted example.

After comprehensive analysis, we found that our
proposed method incorporating a general context
embedding not only leverages the trigger capturing
capability but also assists the DRE task indirectly,
leading to the best overall performance among all
proposed models. The ability to relate trigger key-
words to relation names enables the model to gen-
eralize better to unseen relations and overcome the
limitations of relying on specific trigger words. The
results of our experiments demonstrate the effec-
tiveness of our proposed method and its potential
for real-world applications.

3.4 Qualitative Study
Table 3 showcases an example about the predicted
triggers and relations for the DialogRE dataset. As
an instance, Sal is the uncle of Speaker 3, so the
relation between them should be “other_family”.
Although the trigger word mechanism accurately
captures the crucial keyword “uncle”, the model
still outputs the “children” relation from the seen
relation category rather than the “other_family”
relation from the unseen relation category. This
suggests that while capturing significant subject
and object information through trigger words, the
model tends to prioritize predicting relations from
the seen relation category.

4 Conclusion

This paper introduces a novel approach for
zero-shot dialogue relation extraction by relat-
ing explainable trigger words and relation names.
Our proposed method effectively utilizes trigger-

capturing capability and demonstrates a significant
improvement in inferring unseen relations. The ex-
perimental results on benchmark data show that our
approach achieves better generalization and practi-
cality, making it a promising solution for real-world
applications.
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A Criteria for Relation Dividing

We categorized the relations into two sets, namely,
seen and unseen, as presented in Table 4. Our cate-
gorization was based on the similarity of relations,
where dependent ones are assigned to different cat-
egories. For those not related, we assigned them
randomly to either category. This categorization
aims to train the model on seen relations to enhance
its ability to predict unseen relations during testing.

B Prediction Distribution Comparison

We analyze the distribution of correctly predicted
top 1 unseen relations for two models, one with
predicted triggers and the other with relation name
embeddings, and present the results in Table 5. We

Seen Relations Unseen Relations
per:positive_impression per:subordinate
per:client gpe:visitors_of_place
per:origin per:place_of_residence
per:works per:schools_attended
per:place_of_work per:parents
per:title gpe:births_in_place
per:alternate_names org:employees/members
per:acquaintance per:dates
per:alumni per:other_family
per:friends per:siblings
per:girl/boyfriend per:spouse
per:neighbor per:negative_impression
per:roommate per:age
per:boss per:date_of_birth
per:children per:major
gpe:residents_of_place per:pet
per:place_of_birth
per:visited_place
per:employee/member_of
org:students

Table 4: Seen and unseen relations in our experiments.

Unseen Relation Unseen
Predict CLS

per:siblings 26 42
per:spouse 21 30
per:negative_impression 4 11
per:parents 5 9
per:dates 0 4
per:major 2 2
per:age 1 1
gpe:births_in_place 0 0
org:employees/members 0 0
per:other_family 0 0
per:date_of_birth 0 0
per:pet 0 0
per:subordinate 0 0
gpe:visitors_of_place 0 0
per:place_of_residence 0 0
per:schools_attended 0 0

Table 5: The distribution of correct predictions in the
predict trigger method and cls trigger method.

observe that the two methods exhibit a similar pat-
tern of correctly predicted relations, with a con-
centration on particular unseen relations such as
siblings and spouses, among others. However, the
proposed method with the relation name embed-
dings significantly outperforms the one with the
predicted triggers method in this aspect.
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Abstract

While modern language models can generate
a scripted scene in the format of a play, movie,
or video game cutscene the quality of machine
generated text remains behind that of human
authors. In this work, we focus on one aspect of
this quality gap; generating text in the style of
an arbitrary and unseen character. We propose
the Style Adaptive Semiparametric Scriptwriter
(SASS) which leverages an adaptive weighted
style memory to generate dialog lines in ac-
cordance with a character’s speaking patterns.
Using the LIGHT dataset as well as a new cor-
pus of scripts from twenty-three AAA video
games, we show that SASS not only outper-
forms similar models but in some cases can
also be used in conjunction with them to yield
further improvement.

1 Introduction

As the affordances of large language models
(LLMs) continue to reveal themselves, this tech-
nology hints at the possibility of transformative
changes to narrative media such as scriptwriting,
songwriting and journalism. In this work, we focus
on scriptwriting for AAA1 video game dialog, a
domain similar to the scripts used in movies, tele-
vision and theater but with its own unique flavor
that often features larger-than-life characters and
action-packed dialogs.

Our particular goal is to advance the ability to
incorporate a character style or voice in responses
generated by LLMs. The importance of this as-
pect is motivated by the observation that in a AAA
game a character’s lines will often be written by
several scriptwriters asynchronously, meaning that
any assistance in maintaining a consistent style is a
boon.

*These authors contributed equally to this work.
1The term “AAA” refers to multi-million dollar budget

productions often with hundreds of highly specialized contrib-
utors.

Figure 1: An illustration of our approach. SASS reuses
words present in the character’s previous conversations
to generate character specific stylized responses.

Central to the problem is the representation of a
character’s style, with recent work using attributes
such as target styles (Zhou et al., 2018), character
description (Rashkin et al., 2018), previous char-
acter utterances (Madotto et al., 2021; Han et al.,
2022a) and conversation history (Boyd et al., 2020).
The approaches presented can be partitioned into
two categories; the first, which we call explicit
style, consists of a short text sample that explicitly
describes the character, their profession, age, inter-
ests, and other traits. The second, which we will
call implicit style, uses a list of previously authored
utterances from a character instead.

Considering the ultimate application of these
techniques in AAA game development, we propose
the use of implicit style provided at inference time
as most suitable for several reasons. First, it can be
too limiting to summarize the style of a character
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narrator: Marcus has hacked the final computer:
speakerA: Ladies. Gentlemen. Wrench. You are now talking to the DedSec master.
speakerB: Nice! So how did it end?
speakerA: Well... I signed up with the NSA in exchange for turning over personal data on every
DedSec member.
speakerC: Marcus, I am going to hit you.
speakerA: It was a recruitment tool, like I thought. But I did a little extra and erased all traces I was
ever there... along with the other two people who had filled the forms. Maybe when the NSA never
calls them back, they’ll turn to DedSec.
speakerC: Fingers crossed.

Table 1: Example Scene from an AAA game in the UBISCENES dataset.

with a few labels or utterances (Han et al., 2022a).
Second, due to production constraints of the al-
ready complex narrative pipeline in the video game
industry, models should be locked and not involve
re-training if possible or else they risk becoming
a pipeline blocker. Finally as the writing process
naturally develops a character through the course
of scriptwriting, using inference time implicit style
allows the model to adapt as the character’s lines
manifest in other scenes of the game. It is worth
noting that methods which employ small samples
of implicit style (Han et al., 2022a; Suzgun et al.,
2022; Reif et al., 2021; Boyd et al., 2020) achieve
strong performance but do not fully leverage this
continuous increase of character’s lines.

To harness the signal of implicit style we build
on the k-nearest neighbour language model (KNN-
LM) (Khandelwal et al., 2019), adapting and im-
proving it for the task of style-controlled gener-
ation. Our model, the Style Adaptive Semipara-
metric Scriptwriter (SASS), provides a drop-in
replacement for a traditional language model ar-
chitecture that scales well with the number of refer-
ence character lines supplied as implicit style, does
not require added work from the script writers to
keep up to date, and can be used orthogonally to
other methods of style-controlled dialog generation.
An illustration of our method is shown in Figure 1.
Our automatic evaluations show that SASS gener-
ates responses that are more aligned with a target
character style without sacrificing fluency when
compared to both KNN-LM and a finetuned LLM
baseline.

2 Related Work

We continue a long thread of study in style con-
trolled dialog generation and the closely related
topic of style transfer where the term style is heav-

ily overloaded, often treating style as a categorical
variable such as emotion, formality, or sentiment
(Kong et al., 2021; Dathathri et al., 2019; Prabhu-
moye et al., 2018). We differentiate this notion
of ephemeral style from the character style which
is always present to some degree in a character’s
speech regardless of situation, of which the latter
is our focus.

Recent research into methods incorporating
explicit style has been fueled primarily by the
PERSONA-CHAT (Zhang et al., 2018) and
LIGHT datasets (Urbanek et al., 2019). Examples
include Kim et al. (2022) which augments personas
during inference and Madotto et al. (2021) which
utilizes the persona in LLM prompting. Previous
approaches to the use of implicit style vary from
concatenation of the references to the conversation
history (Boyd et al., 2020), to the construction of
artificial prepended dialog (Han et al., 2022b), to
approaches more similar to our own which seek to
directly capture the frequent words used by a char-
acter as a proxy for their style (Fikri et al., 2021;
Liu et al., 2020). Another approach to implicit style
generation and transfer is learn a mapping to a vec-
tor style encoding (Li et al., 2020a; Riley et al.,
2020a) which allows for inference time adaptation
to arbitrary styles.

Our work also serves as a direct improvement to
the k-nearest neighbour language model (Khandel-
wal et al., 2019) for which some previous attention
has been paid to the intersection with style condi-
tioning (Trotta et al., 2022).

3 Dataset

As no public dataset of video game dialog exists,
we leverage our privileged access to the back cat-
alog of all UBISOFT games to build one. From
a pool of 23 games that are sufficiently narrative
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Train V alid Test

Games 16 3 4
Characters 3,514 477 291
Scenes 16,458 1,727 1,403
Utterances 107,222 14,058 12,170

Vocabulary Size 29,200 13,723 13,555
Utterance Length 15.82 15.11 16.20

Character/Scene 2.99 3.42 3.34
Utterance/Scene 6.51 8.14 8.67

Table 2: UBISCENES dataset statistics after filtering.

heavy, we collect 19,588 well filtered scenes fea-
turing 4,282 characters and 133,450 lines of dia-
log, and refer to this dataset as UBISCENES. For
filtering, we use a combination of thresholds on
automatic metrics (the rate at which the same char-
acter speaks twice in a row as well as the entropy
of the identity of the speaker across the scene) and
game specific rules to accommodate the quirks of
each production. Table 1 and Appendix A2 show
examples of scenes that we collected. We split the
dataset by game into training, validation, and test
sets to avoid data leakage. Overall statistics of the
collected dataset are given in table 2.

We also evaluate on the LIGHT dataset (Ur-
banek et al., 2019) which is, in our opinion, the
most similar academic dataset to video game dialog
despite its many differences. Specifically, we note
the disparity in terms of writing quality between
these two datasets: UBISCENES is composed of
professionally authored text while LIGHT is cre-
ated by crowdworkers. They also differ structurally
as many dialogues in UBISCENES have a narrator
involved which is not the case in LIGHT or other
dialog datasets such as PERSONACHAT (Zhang
et al., 2018), WIZ. OF WIKIPEDIA (Dinan et al.,
2018), DAILY DIALOG (Li et al., 2017) or HLA-
CHAT (Li et al., 2020b).

For both datasets, we replace all script cue names
with an added special token <speaker> for a sim-
ple speaker or <narrator> for a narrator, although
names are preserved in the dialog text. We evaluate
only on dialogues where the target character has
spoken strictly less than three times to avoid rely-
ing on the previous conversation history as a style
indicator. 60% of the scenes are used to supply the
indices of implicit style and we study the twenty
characters with the highest number of lines in the
remaining 40%.

4 Method

Our choice of model arises from our guiding hy-
pothesis that a principal component of character
style is simply their preferential choice of words
that are either optional or semantically exchange-
able with other words in context. SASS consists
of two components:

• An autoregressive transformer (Vaswani et al.,
2017) language model that encodes the dialog
context.

• A non-parametric token retrieval module with
access to each character’s style index: a collec-
tion of all of their previously authored lines.

Both components provide a categorical distri-
bution over the token vocabulary of the language
model, and a style adapter combines these two
components. Our model architecture draws on
KNN-LM(Khandelwal et al., 2019) and Adaptive
Semiparametric Language Models (Yogatama et al.,
2021), improving on the gating mechanism of the
latter to better choose when to leverage implicit
style and when to rely on LLM generation.

4.1 Base Model

The transformer architecture (Vaswani et al., 2017)
is our base model, using the GPT-J (Wang and Ko-
matsuzaki, 2021) model from Huggingface Trans-
formers (Wolf et al., 2019) as our initial pretrained
language model. This model contains 6 billion pa-
rameters with a vocabulary size of 50,400 tokens.

This model is finetuned on the training split of
our dataset and provides pLM , the categorical lan-
guage model probability of the next token of the
dialog being generated. Note that at inference time
the only representation of the character’s style that
is available to this model are the previous lines in
the dialog.

4.2 Character Style Index

As in Trotta et al. (2022) each character has its
own character style index with an average of 425
entries in the UBISCENES dataset and 1,404 in
LIGHT. Given a character’s implicit style as a list
of strings C, we formally define its style index S as
the following set of key-value pairs:

S =
⋃

s∈C
{(f(wi−), wi)∀wi ∈ s}
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where f(wi−) is a vector encoding of the prefix of
s at index i, but before the decision to produce wi

has been made.

Previous work has relied on the last layer hid-
den state of the LLM at index i as a definition
of f (Khandelwal et al., 2019). Given the arbi-
trary relative scale and redundancy of the hidden
state’s parameters before its transformation into a
predictive distribution over tokens, we propose the
alternative use of the actual categorical probabil-
ity distribution given by the language model at the
ith position to provide f . As the vocabulary size
of GPT-J (Wang and Komatsuzaki, 2021) is high,
we reduce the dimension of this probability distri-
bution to a 768 long vector using PCA (Abdi and
Williams, 2010).

At inference time we are given the input dia-
log context c and the style index of the currently
speaking character, and we retrieve the k-nearest
neighbors of f(c) among the keys of S using L2
distance. Early qualitative analysis suggested that
k = 10 gave reasonable results, and we leave the
investigation of the impact of k on our method to
future work.

As in the k-nearest neighbor language model
(Khandelwal et al., 2019) we softmax a vector with
a large negative number in all locations except for
the retrieved tokens indices which are set to the
negative L2 distance obtained during retrieval. This
distribution over the LLM vocabulary is returned
by the k-nearest neighbor component, which we
will refer to as pkNN .

Figure 2: An illustration of SASS. Given a dialog con-
text and a character style index, a query vector is con-
structed, a set of k nearest neighbors are retrieved and
part of h⃗ is created. We extract from pLM the probabil-
ity of those k tokens and concatenate it to h⃗. h⃗ is then
passed to a style adapter and returns the interpolation
parameter λ.

4.3 Style Adapter

Once equipped with both pLM and pkNN , all that
remains is to interpolate these distributions to pre-
dict the next token. We predict a linear interpo-
lation parameter λ from the concatenation of the
transformer’s last hidden state, the raw distances
(L2 distance between the query vector and the re-
trieval key) and the probability of the tokens re-
trieved under pLM which we denote as h⃗i with
dimension d

h⃗i
= 2 ∗ k+ dembd where dembd is the

dimension of the hidden states of the LLM. This
gives the full token prediction probability distribu-
tion returned by SASS as

λ = σ(Wh⃗i)
p(wi+1|w≤i) = λpkNN(wi+1|w≤i)

+(1− λ)pLM(wi+1|w≤i)

where σ is the sigmoid function, and W is a param-
eter vector of size d

h⃗i
.

Intuitively, each component of h⃗i provides com-
plementary information to the style adapter: the
last hidden state gives a representation of the cur-
rent dialog context, the raw distances show how
confident the model is in the retrieved tokens, and
the probability of the tokens retrieved under pLM
reveals the appropriateness of each retrieved token
in the context. For nearest neighbor retrieval we
use the FAISS library (Johnson et al., 2019) and
use L2 as a distance metric as in Khandelwal et al.
(2019). We train SASS with a learning rate of 2e-4
for the style adapter and 2e-5 for the LLM on the
training set for one epoch. An illustration of SASS
architecture is depicted in Figure 2.

5 Experiments

5.1 Evaluation

Following previous works on text style transfer
(Li et al., 2018; Smith et al., 2020; Riley et al.,
2020b) and style-controlled dialog agents (Han
et al., 2022a), we train two multi-class classifiers on
the utterances of the characters present in the test
set (twenty characters per dataset) of UBISCENES

and LIGHT(Urbanek et al., 2019) respectively. We
denote StyleAcc the classifier accuracy of predict-
ing the target character, where a higher value indi-
cates that generated text is more closely aligned to
characters’ styles.

To calculate StyleAcc we use all dialog histo-
ries where the test characters have 0-2 previous
lines. We also report StyleAcc0 and StyleAcc1,
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Dataset Context 5 10 25 50 100

UbiScenes
knnpLM 44.03 48.98 54.79 58.95 62.61
knn∗ 31.31 36.06 42.05 46.66 51.41

LIGHT
knnpLM 38.85 45.63 53.60 59.33 64.52
knn∗ 33.79 41.11 49.30 54.07 57.95

Table 3: Retrieval Recall for different k number of retrieved tokens. Using the language model probability pLM

improves recall for all k compared to the same method using the final hidden state state as a retrieval key (knn*).

the accuracy of the classifier when the character
has exactly 0 or 1 previous lines in the dialogue
history.

To measure how similar the vocabulary used
in the generated responses is to its corresponding
style index, we compute the n-gram overlap (where
n=2) as done in (Han et al., 2022a) who define the
n-gram overlap as the percent of n-grams in the
generated line that appear anywhere in the style
indices.

To check for a degenerate solution that repre-
sents style at the cost of fluency, we follow previ-
ous work on language models with external mem-
ory (Khandelwal et al., 2019; Trotta et al., 2022;
Yogatama et al., 2021; Bhardwaj et al., 2022) and
report perplexity. To validate the choice of our alter-
native encoding f of the retrieval key, we measure
the quality of the retrieved tokens with recall over
the retrieved tokens as in Bhardwaj et al. (2022).

5.2 Baseline Methods

Full-dataset Fine-tuning (SCRIPTWRITER): This
straightforward baseline simply finetunes the
vanilla GPT-J model on the training set, and is
equivalent to fixing the style adapter’s interpolation
parameter λ to zero and ignoring pkNN .
PDP Random Match: (PDPr): PDP (Han et al.,
2022a) constructs and prepends an artificial dialog
before the input dialog context, effectively provid-
ing a Scriptwriter style model with a small selection
of the style index. In their work, the authors use
one of several pseudo-contexts, and present mod-
els that select the pseudo-context to be used based
on the dialog history. We implement a variation
of their Random Match method which selects the
pseudo-context at random, with the difference that
in our case we use a character’s previous scenes
directly. While this diverges from their exact ap-
proach, our goal of comparison in this case is not
to show that one model is better than the other but
instead to demonstrate that they can complement
each other.

Adapted kNN-LM (kNN -LMr): Our work is di-
rectly inspired by language models with external
memory. Our approach is closely related to Khan-
delwal et al. (2019) with key modifications on the
retrieval representation and the dynamic runtime
calculation of the interpolation parameter. We use
the SCRIPTWRITER as the base LLM required to
compute the retrieval keys and tune lambda using
the validation set. Comparing to this strong base-
line allows us to determine if our style adapter has
learned how to interpolate between the style of the
character and the LLM more efficiently than using
a constant interpolation term.

5.3 Additional Studies

In addition to the evaluation metrics presented
above, we perform some extra experiments to val-
idate our model. First, we shuffle the indices of
each character to ensure that we observe a decrease
in performance; if the model is simply leveraging
game specific proper nouns as a proxy for charac-
ter style then it would not be effected by using the
wrong character index.

Second, we also perform data ablation on the
size of the style indices to investigate at which
point in the writing process our method can achieve
improvements over simple finetuning.

6 Results & Discussion

Our results demonstrate that both our use of the
PCA probability distribution as a retrieval key as
well as a dynamic style adapter lead to improve-
ments over the strong baseline of kNN -LMr. We
also show that SASS can be used in combination
with other methods such as PDP (Han et al., 2022a)
and explore the effects of size of the style index on
performance.

Considering first the use of the PCA probability
distribution as an alternative to the LLM hidden
state used in k-nearest neighbor language models
as a retrieval key, Table 3 demonstrates improved
recall on both datasets.
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PPL StyleAcc StyleAcc0 StyleAcc1 N − gram

REAL X .6868 .701 .683 X

SCRIPTWRITER 35.873 .316 .232 .352 .186
kNN -LMr 27.016 .409 .359 .427 .212
SASS 23.055 .458 .413 .483 .233
SASS SHUFFLED 38.700 .233 .160 .255 .177

PDPr 32.786 .424 .364 .455 .255
PDPr + kNN -LMr 29.889 .473 .433 .493 .230
PDPr + SASS 27.394 .510 .467 .539 .248

Table 4: Results for our automatic evaluation on UBISCENES. Best results are highlighted in bold for each metric.
SASS generally outperforms its baseline method on all studied metrics.

UBISCENES: The results on our new dataset
of AAA video game dialogs is shown in Table 4
and demonstrate that SASS outperforms all other
baselines on all metrics except for N-Gram over-
lap where it is second best to PDPr. Additionally,
adding SASS or kNN -LMr to PDPr(Han et al.,
2022a) leads to better perplexity and generally su-
perior style specific metrics compared to PDPr

alone.
The central result that deserves highlighting is

that SASS outperforms the closely related kNN -
LMr on all metrics, showing that our dynamic
style adapter can effectively learn when to give im-
portance to the style index of the character over
the language model or vice versa. It is also worth
noting the gap on the style metrics between all
the models under experiment and the real scripts,
hinting at the large amount of improvement still
required to approach human authored quality. Ex-
ample outputs of SASS can be found in Appendix
A1.

LIGHT: Results for the LIGHT dataset are
shown in Table 5. We first note that the per-
formance of the classifier on the gold dialogs is
considerably lower on this dataset compared to
UBISCENES with an accuracy of 30.86% compared
to 68.68%. We take this as evidence of our own
qualitative assessment that characters in LIGHT
do not have a strong style and as such it is dif-
ficult for the classifier to guess which utterance
was written by whom. The smaller relative per-
formance improvement of SASS and kNN -LMr

over SCRIPTWRITER validate this hypothesis as
does the fact that shuffling the character style index
also has a low impact on style aware metrics. Over-
all, this demonstrates that LIGHT is not ideal for
research in style based dialog and highlights the

potential of professionally authored datasets such
as UBISCENES.

6.1 Additional study results

Our data ablation study is especially important
given our stated domain of AAA video game
scriptwriting as our non-parametric design instantly
integrates any lines spoken by a character as they
are written, and data ablation viewed in reverse
simulates this writing process. Figure 4 shows the
results of this study. We also investigate the effect
of randomly shuffling the characters’ indices, ex-
pecting to see a drop in performance as long as
our gains in style are not due to game level word
frequencies like proper nouns but instead to ac-
tual character speaking patterns. Results of SASS
SHUFFLED in table 4 reveals the outcome of this
study.

Decreasing the number of entries in style index
reduces performance, but, even at 10% of the origi-
nal 60% of game data that was held out to create the
style index SASS yields better perplexity and style
specific scores compared to the SCRIPTWRITER

baseline. This suggests that SASS has value even
at the beginning of the writing process, which is
perhaps when it can be most helpful to writers.

As hoped, replacing the character style index
of our characters by the one of another charac-
ter (SASS SHUFFLED) significantly decreases the
performance in terms of both perplexity and style
aware metrics. This demonstrates that not only
do the characters in UBISCENES have their own
style but also that SASS can leverage these styles
effectively.
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PPL StyleAcc StyleAcc0 StyleAcc1 N − gram

REAL X .309 .330 .310 X

SCRIPTWRITER 29.567 .141 .113 .150 .370
kNN -LMr 30.730 .172 .150 .183 .376
SASS 26.759 .157 .132 .166 .390
SASS SHUFFLED 27.474 .135 .105 .149 .379

Table 5: Results for our automatic evaluation on LIGHT. Best results are highlighted in bold for each metric. SASS
and kNN -LMr generally outperforms the baseline method on style specific metrics.

6.2 Style adapter Analysis

We conduct some exploratory visualizations of the
style adapter whose purpose is to adjust the im-
portance of the non-parametric retrieved style at
each generation step. Figure 3 shows histograms
over the validation set of the distribution of values
returned by our style adapter for λ when decoded
with teacher forcing on the gold outputs.

We observe that in both LIGHT and
UBISCENES lambda settles into a bimodal
distribution with one peak near zero, which
corresponds to ignoring the style index and relying
on the language model instead. This Figure also
reinforces the difference in performance gain of
SASS on the two datasets; it is clear that with
UBISCENES the values of λ are more varied which
is evidence that the style adapter has found a signal
with which to give a more nuanced prediction.

Finally we note that in both datasets λ is rarely
much greater than .5, indicating that the style
adapter is reluctant to fully disengage the language
model. While this may indeed be optimal behavior,
we suspect that this is a side effect of our architec-
ture and potential avenue of improvement for this
model class. To see the dilemma, consider that the
gradient of lambda on a single prediction will only
be positive if the gold token is actually retrieved re-
gardless of the quality of the actual retrieved tokens
which may be perfectly appropriate.

6.3 Discussion and Future Work

Our quantitative results demonstrate that SASS not
only outperforms the strong baseline kNN -LMr

but also can be used complementary to prompt
editing based style control such as PDPr. We
performed qualitative pairwise comparison exper-
iments with earlier versions of the model but did
not achieve acceptable inter-annotator agreement.
We attribute this to the subjectivity of choosing
the better of two possible dialog lines once both

lines are grammatically correct and coherent with
the scene as are most outputs from all our models
including the baseline. Furthermore, to provide
raters with a rubric on which to base a choice of the
more stylish output we must necessarily boil the
character’s style down into a short description or a
few sample lines, which is a lossy and imprecise
operation.

Figure 3: Distributions of values of λ on UBISCENES
(left) and LIGHT (right) on the validation sets.

Our opinion is that the output of all of these
models is “good enough" to be used as a writing
aid, either to provide starter text for editing or sim-
ply to spur forward the creative process through
inspiration. None of our models can be used as a
substitute for actual professional scriptwriters, as
is evidenced by the remaining gap in our automatic
style metrics between SASS and the human au-
thored lines. Nevertheless, we see clear qualitative
evidence that SASS is making use of characters’
speaking patterns without too much impact on flu-
ency and coherence.

Our reliance on perplexity as a proxy for fluency
is an area for improvement in our methodology, and
there exist methods for formal quantization of co-
herence, topic and fluency in the literature (Aksitov
et al., 2023). Although SASS leads to perplexity
improvement, qualitative evaluations have shown
that it could sometimes lead to a small decrease
in fluency. We also note opportunities for further
experimentation in the optimal choice of the num-
ber of retrieved neighbors k, as this could easily be
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Figure 4: Effect of SASS character style index size on our studied metrics.

increased without sacrificing significant additional
latency.

7 Conclusion

We present the Style Adaptive Semiparametric
Scriptwriter (SASS), drawing inspiration from the
closely related k nearest neighbor and adaptive
semiparametric language models. In particular we
propose new formulations of the encoder for re-
trieval as well as the determination of the style
interpolation parameter and demonstrate that they
lead to improved performance. Ablation studies
reveal that the benefits of our approach manifest
even with small amounts of reference style index
material, and it is our intention to integrate this
in our internal writing assistance tools in the near
future.

We perform experiments on two datasets, the
LIGHT dataset as well as a first of its kind dataset
of video game script dialogs, UBISCENES, and
demonstrate that the difference in style between
professionally authored and crowdsourced text is
a crucial consideration for style controlled gener-
ation research. We regret that we cannot release
UBISCENES publicly due to concerns of its use in
products that do not respect the intellectual prop-
erty of their data sources. However, we are open
to speak with academic collaborators that are inter-
ested in working with this data for targeted projects
and invite them to reach out to the authors.

Limitations

The main limitation of our proposed method relies
on the additional cost of retrieval. Even if the size
of our character style indexes is small it still adds
latency to our overall pipeline as retrieval must
occur once per token. We expect that incorporating
the recent work of He et al. (2021) on improving
the efficiency of nearest neighbor language models
should decrease this latency significantly.

As in most NLG work, another important lim-
itation is in quality evaluation. We found qualita-
tive evaluations to be too imprecise for appropri-
ate inter-annotator agreement, and the quantitative
evaluations that we present in this paper are all
proxies that cannot be said to capture character
style or fluency in full.

Another limitation of our work is the exclusion
of models that are only accessible by calling or
finetuning powerful external language model APIs
due to the excessive monetary cost involved. It
is almost certain that these larger models would
outperform the 6B parameter model we use, and
this may also change the relative performance of
the techniques that we present. While we feel that
this constraint is appropriate at this moment in his-
tory and that our position as major AAA developer
gives us the authority to make such a claim, shifts
in third party model availability and pricing could
change the landscape.

Our work deals with data of a singular domain,
video game scripts in English, but represents a wide
variety of nationalities and ethnicities over the span
of a large catalog of games.
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Appendix

Human Input: Join us, the show is about to start.

Eh character: Eh, it’s a little soon for all that, we need to
set up!

Huh character: I’m sorry I’m not in the mood to talk huh.

Speaker from an AAA game: Just don’t get us killed,
OK? This is not the place to play.

Speaker from an AAA game: Oh, thank God!

Narrator from an AAA game: Edward enters and walks
in.

Narrator from an AAA game: ext. UNDERWORLD of
THEATERS.

Table A1: Example outputs from SASS for different
well known video game characters and two example
characters (one usually starting its sentences by "Eh"
and the other finishing with "huh").
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narrator: This is the first line that plays during the dialog for big battles occurring at sea. It is followed
by an accept/decline hub.
narrator: This greeting plays when Athens is on the offensive, and when the player is at a medium to
high level in game.
speakerA: The mighty Eagle Bearer. Rumor has it you command one of the fiercest ships at sea.
Maybe you’d be interested in making some drachmae off it?
speakerB: Depends how.
speakerA: Join Athens as we set sail to destroy the Spartan navy... that’s all.

Table A2: Example Scene from an AAA game in the UBISCENES dataset.
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Abstract

Advances in conversational AI systems, pow-
ered in particular by large language models,
have facilitated rapid progress in understanding
and generating dialog. Typically, task-oriented
or open-domain dialog systems have been de-
signed to work with two-party dialog, i.e., the
exchange of utterances between a single user
and a dialog system. However, modern dialog
systems may be deployed in scenarios such as
classrooms or meetings where conversational
analysis of multiple speakers is required. This
survey will present research around computa-
tional modeling of “multi-party dialog”, out-
lining differences from two-party dialog, chal-
lenges and issues in working with multi-party
dialog, and methods for representing multi-
party dialog. We also provide an overview of
dialog datasets created for the study of multi-
party dialog, as well as tasks that are of interest
in this domain.

1 Introduction

Dialog systems are increasingly a part of our per-
sonal and professional lives, and have made their
way into domains such as healthcare (Valizadeh and
Parde, 2022), business (Sang and Bao, 2022), and
education (Litman and Silliman, 2004). Predomi-
nantly, research on dialog systems investigates how
to develop task-oriented or open-domain systems
that individual users can interact with, to accom-
plish routine tasks or engage in chit-chat. Con-
versations in such settings tend to be two-party
or dyadic conversations, that is, involve only two
participants, the system and the user, who may typ-
ically alternate turns while speaking. However, for
applications such as classroom tutoring assistants
or meeting summarization, dialog systems need to
be able to understand and participate in multi-party
dialog – interactions between multiple humans.

However, multi-party dialog is structurally dif-
ferent from dyadic dialog, requiring systems to be
designed with their characteristics in mind. For

Figure 1: An example of a multi-party interaction, with
speakers and threads marked. Figure from Shen et al.
(2023)

instance, looking at the chat conversation in Fig-
ure 1, we see that the conversations are non-linear
and interleaved, and utterances can be implicitly
addressed to a specific participant(s). Conversa-
tional analysis of this interaction would require
understanding each sub-dialog, and require resolv-
ing the speaker and addressees of each utterance.
Responses by the dialog agent would also require
determining which participant the response should
be directed to. If multiple dialog agents are present,
response management also requires determining
which agent takes the turn. For the purposes of this
study, we only consider scenarios with multiple
human participants, and one dialog agent.

In this paper, we survey research that investi-
gates the computational modeling of multi-party
dialog 1. We first introduce the characteristics of
multi-party dialog based on early work in conver-
sational analysis, focusing on ways in which they
differ from two-party dialog. Based on these dif-
ferences, we outline some of the challenges that
face systems operating in this setting, and their so-
lutions that have been investigated by the field. In
Section 5, we present a comprehensive overview

1Unless stated otherwise, the systems and datasets we
describe are focused on English dialog.
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of representation learning methods for multi-party
dialog, focusing on the merits of modeling infor-
mation flow through graph structures, and discuss
deep learning methods for obtaining and encoding
these structures. Finally, we conclude with a discus-
sion of opportunities for future work in multi-party
dialog modeling.

2 Characteristics of Multi-Party Dialog

Participant Roles: The defining characteristic of
multi-party dialog is the presence of multiple par-
ticipants or interlocutors in a conversation. While
in a two-party interaction, one participant takes on
the role of the speaker in a turn and the other partic-
ipant takes on the role of listener or “addressee”, an
utterance in a multi-party conversation not only has
multiple candidate addressees, but could also be di-
rected at multiple listeners at the same time. Traum
(2004) further defines participant roles based on
their degree of participation at various stages in
the conversation: in-context listeners have heard
all the previous utterances and may interpret the
current utterance differently from a listener with
no prior context; active participants are engaged in
the conversation and play the roles of speakers and
addressees, whereas overhearers may receive utter-
ances but do not participate in the conversation.

Initiative and turn-taking: Traum (2004) ob-
serve that while many two-party dialog systems
are mixed-initiative or user-initiative driven, multi-
party dialog tends to be asymmetric in display-
ing initiative, with some participants dominating.
Multi-party dialog may also include simultaneous
conversations about multiple distinct topics (Elsner
and Charniak, 2008). Aoki et al. (2006) analyze
spontaneous social conversations in small groups,
focusing on the nature of turn-taking in simultane-
ous conversations. Of particular interest are con-
versational floors (Sacks et al., 1974), which are
structures that can be composed of one turn at a
time such as in a therapy session, or can contain
multiple alternating turns – for example, when a
speaker has the floor and another speaker takes a
turn to ask a question, but does not take the floor
(Edelsky, 1981). They find that multi-party conver-
sations tend to have multiple simultaneously active
floors, with a single session (of up to an hour) hav-
ing an average of 1.79 active floors, and a maxi-
mum of 4 active floors. They further find that floors
are dynamic, particularly when the participants are
young (ages 14-24) – in sessions with youth there

are upto 70 distinct floors over the course of the
conversation, each lasting about 44 seconds.

Dialog structure: Research has also studied how
structures such as dialog acts or discourse rela-
tions can shed light on the nature of multi-party
dialog. Ishizaki and Kato (1998) examine how di-
alog act structures differ between two-party and
multi-party dialog (specifically, three-party dialog
in their study). They first find that dialog act se-
quences most frequently involve only two speak-
ers, particularly in sequences of length three to
five. Looking at distances between utterances and
their antecedents, Ginzburg and Fernández (2005)
find that long range dependencies are more preva-
lent in multi-party dialog than in two-party dialog.
Discourse relations prevalent in multi-party dialog
also tend to be distinctive: Volha et al. (2011) find
feedback elicitation to be more prevalent than
in two-party dialog, whereas Asher et al. (2016)
find that the most frequent relations are question-
answer pairs or follow-up questions.

3 Challenges and Sub-Tasks

The unique characteristics of multi-party dialog
imply the existence of challenges that cannot be
handled by traditional two-party dialog systems.
These challenges are occasionally treated as part
of the larger system design (Ouchi and Tsuboi,
2016), but for the most part have been isolated as
separate sub-tasks. We list a few major problems,
and discuss solutions proposed in the literature.

3.1 Speaker and addressee recognition
In multi-party dialog, particularly in spoken or tran-
scribed dialog, determining the speaker of the cur-
rent utterance is a non-trivial task (Traum, 2004).
Closed-set speaker identification is formulated as
a classification task, where given an utterance, the
goal is to determine the speaker from a list of
known participants (Reynolds and Rose, 1995).
Early work on text-independent speaker recogni-
tion makes use of acoustic features extracted from
speech (Brunelli and Falavigna, 1995; Campbell
et al., 2006) for classification, as well as multi-
modal signals such as gestures (Bohus and Horvitz,
2010b) or the movement of lips in videos (Haider
and Al Moubayed, 2012). Utterance-aware (Gu
et al., 2022b) or text-dependent speaker identifi-
cation uses the content of the utterance, typically
from transcribed text, in order to determine the
speaker. Work along these lines include Ma et al.
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(2017), who classify speakers based on utterances
from multiple transcripts and find success using a
convolutional neural network, Meng et al. (2018)
who use a hierarchical RNN (Serban et al., 2016)
to encode content as well as temporal information
indicated by speaker order.

Addressee identification is an important sub-task
in which work follows two directions: 1) identi-
fying the participant at whom each utterance is
directed enables the construction of a graphical
structure to represent information flow and 2) se-
lecting the addressee to whom a response gener-
ated by a dialog agent should be addressed. For
1), Traum (2004) propose an algorithm looking at
“vocative expressions” in the utterance, as well as
speakers and content of current and previous ut-
terances. Other features investigated for this task
include gaze and acoustic features (Jovanovic et al.,
2006; Jovanovic and op den Akker, 2004), and
dialog acts (Gupta et al., 2007; Galley et al., 2004).

For 2), Ouchi and Tsuboi (2016) propose the
task of addressee and response selection, where
given a context of utterances with their speakers,
the system predicts an addressee and a response.
They propose two modeling frameworks, which
both learn a vector representation for each partic-
ipant (or agent), which is then encoded with the
utterance context using an RNN: the static setting
uses a fixed agent vector computed based on the
speaking order of all agents, while the dynamic
model updates the agent vector corresponding to
the speaker of the current utterance at each timestep
during training. However, since this doesn’t cap-
ture the interaction between different agents, Zhang
et al. (2018) propose an improvement that updates
the embeddings of all active participants at each
timestep. Wang et al. (2020) integrate addressee
identification into a multi-task learning model that
also performs topic prediction and response selec-
tion.

3.2 Turn taking

Turn-taking in natural conversations refers to the
process by which humans coordinate participation,
through verbal as well as non-verbal cues (Traum,
2004; Bohus and Horvitz, 2010b). Dialog sys-
tems, even in a two-party setting, need to perform
turn management to identify when they can speak.
Computational modeling of turn-taking in dialog
is therefore a task that has received much attention
(Hawes et al., 2009; Raux and Eskenazi, 2009; Bo-

hus and Horvitz, 2010a; de Bayser et al., 2019).
Bohus and Horvitz (2010a) define four kinds of
“floor management” actions – Hold, Release, Take
and Null to describe how turns move from one
participant to another, and use heuristics based on
response intervals to design a turn management
system that chooses the appropriate action (Bohus
and Horvitz, 2010b). Raux and Eskenazi (2009)
use a similar formulation, and present a finite state
machine that is optimized to minimize gaps and
overlaps in a conversation.

Turn-taking is also modeled in some work as
the task of predicting the next speaker, given a
context consisting of speakers and utterances from
previous turns. Hawes et al. (2009) treat this as a
sequence labeling problem, and propose a second-
order CRF in combination with features such as
discourse markers (Marcu, 1997) and pronoun ref-
erences. In more recent work, Skantze (2017) use
lexical and acoustic features with an LSTM model;
de Bayser et al. (2019) comparatively investigate
SVM, CNN and LSTM models, achieving best
results with the CNN models; Ishii et al. (2016)
additionally use multi-modal features such as gaze
to predict the next speaker as well as the time at
which the next utterance will be made.

3.3 Conversation disentanglement

The presence of multiple simultaneous conversa-
tion floors (Section 2) results in distinct threads of
conversation being entangled in a single session
of multi-party dialogue. To enable understanding
and responding to such conversations, the task of
“conversation disentanglement” is important, which
creates separate threads that are each about a spe-
cific topic. Elsner and Charniak (2008) introduce
a corpus for this problem based on Internet Relay
Chat (IRC) conversations, where annotations mark
utterances that belong to the same conversational
thread. They present a two-stage framework for dis-
entanglement that first classifies pairs of utterances
as to whether they are part of the same thread or
not based on discourse and content features. Then,
they perform correlation clustering to partition all
utterances into clusters greedily. In follow-up work,
Elsner and Charniak (2011) experiment with incor-
porating discourse coherence models (Lapata et al.,
2005; Soricut and Marcu, 2006) for disentangle-
ment, and find mixed results on the IRC corpus:
models of local coherence help with assigning in-
dividual utterances into the right threads, but not in
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disentangling entire conversations.
The two-stage setup described here has been it-

eratively improved in future work, particularly by
improving the classification component using deep
learning models. Mehri and Carenini (2017) make
use of discourse structure by annotating reply-to
relations, and include two additional RNN-based
classifiers to the Elsner and Charniak (2008) model,
one for classifying pair-wise reply relations, and
one for determining if an utterance follows a con-
text. Jiang et al. (2018) achieve improvements to
the same-thread classifier using Siamese CNNs.
Kummerfeld et al. (2019) increase the scale of the
IRC corpus by 30 times, creating a new benchmark
for conversation disentanglement, and additionally
propose an ensemble feedforward model that out-
performs previous models. In contrast, more recent
works investigate end-to-end models for this task,
such as Liu et al. (2020) who develop a transition-
based model that keeps track of states in discovered
threads while assigning incoming utterances to ex-
isting or new threads in an online fashion. Liu et al.
(2021) perform disentanglement on an unlabeled
corpus by first creating pseudo data for the pairwise
classifiers.

4 Datasets

Corpora for studying multi-party conversations
span a variety of modalities – spoken (Renals et al.,
2007), written (Lowe et al., 2015), or accompanied
by video (Poria et al., 2019); they also span multi-
ple genres, including chat forums for software dis-
cussions, movies and TV dialog, formal discourse
in meetings and interviews, and informal discourse
during gameplay. In this survey, we do not focus on
comprehensively describing all available datasets,
but provide an overview of three datasets which
serve as benchmarks for modeling multi-party dia-
log, and have been extensively used in the models
described below. For a detailed survey of datasets
specifically, we refer the reader to Mahajan and
Shaikh (2021).

Ubuntu IRC Corpora Internet Relay Chat
(IRC), a text-based chat interface, contains chan-
nels for discussion about specialized topics. Typ-
ically, discussions consist of users posting ques-
tions, and other users replying with solutions, and
all messages (or utterances), contain the identity of
the sender (speaker). Corpora built from this inter-
face have been used for the tasks of conversation
disentanglement, speaker and addressee recogni-

Figure 2: An interaction from Lowe et al. (2015), heuris-
tically disentangled and tagged with addressees.

tion, and response generation. Elsner and Charniak
(2008) were the first to use conversations from the
##LINUX channel, which they manually annotate
for threads, for the task of disentanglement. This
yields 80 conversations, with a total of about 1500
utterances. Uthus and Aha (2013) scrape six years
of chats from the ##ubuntu channel (which con-
tains messages in English), as well as seven non-
English channels including the languages Chinese,
Russian, Spanish, Portuguese, Italian, Polish and
Swedish. This corpus contains over 26 million
messages, but without any annotations. Lowe et al.
(2015) present the Ubuntu Dialog corpus, which
contains 1 million English conversations totalling 7
million utterances. Each utterance contains speaker
ID, and they also heuristically extract addressee
IDs and disentangle conversations, as shown in
Figure 2. Kummerfeld et al. (2019) present the
largest manually annotated corpus from this do-
main, for the task of conversation disentanglement,
with 70k utterances. Finally, Li et al. (2020) in-
troduce the Molweni challenge corpus by annotat-
ing the Ubuntu corpus with reading comprehen-
sion style questions and answers, resulting in 33k
question-answer pairs.
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Meeting Corpora The AMI project (Kraaij et al.,
2005; Renals et al., 2007) provides a corpus for
multimodal conversational analysis of formal dis-
course – specifically, in multi-party meetings. The
AMI corpus consists of 100 hours (175 sessions)
of scenario-oriented meetings between four partici-
pants, where video and audio are recorded, along
with artifacts such as digital pen movements and
whiteboard content. They providing access to
videos, manually transcribed speech, abstractive
and extractive summaries of the conversations, and
annotations for dialog acts, topic segments, gaze
and positional information, and gestures. Other
corpora under the umbrella of the AMI project in-
cludes the ICSI corpus (Janin et al., 2003), which
contains 72 hours of naturally-occuring meetings
(not elicited by a scenario).

MELD Corpus Another multi-modal multi-
party dataset that is widely used in the models
below is the MELD corpus (Poria et al., 2019),
designed for emotion recognition from conversa-
tions. It consists of 1433 conversations from the
TV show Friends, providing access to video, audio,
and transcripts. They include annotations at the
utterance level indicating one out of seven emo-
tions (such as anger, surprise, etc.) expressed by
the utterance.

5 Representation Learning for MPD

In this section, we will describe how machine learn-
ing models represent and encode multi-party dialog
in order to leverage its inherent structural proper-
ties for tasks such as response generation. Early
work such as Lowe et al. (2015) represent the entire
conversational context sequentially, where all prior
utterances to the current one that fall in a window
are concatenated. Improvements such as Zhou et al.
(2016) model relationships between the current ut-
terance and the context through a hierarchical RNN.
However, given that multi-party dialog can have
multiple addressees, multiple replies, as well as
simultaneous conversations, such sequential struc-
tures cannot represent all relationships between
utterances in the dialog.

As a solution, recent successful models experi-
ment with graph structures to represent the flow of
information in multi-party dialog. Typically, this
approach treats the utterances as nodes, and the rela-
tions between them (such as reply-to) as edges. The
graphs thus obtained are encoded through a suit-
able neural network architecture (Kipf and Welling,

2017; Schlichtkrull et al., 2018), and the resulting
embeddings are used for the downstream task, in
combination with decoders or classification layers.
Below, we look at specific sub-components and
strategies for this workflow.

5.1 Dialog structure induction
Corpora such as the Ubuntu Dialog Corpus (Lowe
et al., 2015), which serve as benchmarks for model-
ing multi-party dialog, contain explicit annotations
for speakers and addressees. When annotations for
dialog structure such as addressee information are
not available, dialog structure needs to be learned
from the conversation without explicit supervision,
so that it can be used to perform downstream tasks
While unsupervised methods for structure induc-
tion on task-oriented dialog have received some
attention (Shi et al., 2019; Sun et al., 2021a; Xu
et al., 2021), comparatively less work exists for
multi-party dialog, the most prominent being Qiu
et al. (2020), who propose a model to induce struc-
ture on both two-party and multi-party dialog. They
propose a model for response generation, which
consists of a Variational Recurrent Neural Network
(VRNN) (Chung et al., 2015) into which structured
attention layers are integrated, such that the latent
state of the VRNN captures the underlying dialog
structure. The model first encodes sentences with
an LSTM, then the VRNN encodes a dialog his-
tory into a latent state, which is then decoded to
produce a response. While training, they maximize
the conditional likelihood of a response given the
history, while also learning a latent dependency
tree – here, nodes represents the utterances, and
directed edges exist between nodes when one ut-
terance is the parent of another. Evaluating on the
Ubuntu Chat Corpus (Uthus and Aha, 2013), they
find that the VRNN model performs comparably
to a graph-based model that makes use of explicit
speaker/addressee annotations (Hu et al., 2019). On
comparing the learned utterance dependency tree
with gold annotations for speaker and addressee
relations, they find that the model achieves an ac-
curacy of 68.5% in identifying the parents of each
utterance.

5.2 Graph-based representations
Unlike Qiu et al. (2020), the predominant line of
research on modeling multi-party dialog makes use
of annotated speaker/addressee information in or-
der to obtain the graph structures. Hu et al. (2019)
propose a model for response generation that they
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call Graph Structured Networks (GSN), which was
to our knowledge the first to successfully apply
graphs to multi-party dialog. Similar to the frame-
work discussed above, they formulate their graph
as an utterance dependency graph, assuming ac-
cess to annotated speaker/addressee information
within the conversational data. The GSN consists
of a word-level encoder to represent utterances, an
utterance-level graph structured encoder to repre-
sent information flow, and a decoder to generate
responses. Embeddings for an utterance are ob-
tained from the graph using forward and backward
information flow, and the speaker information. In
experiments on the Ubuntu Dialog Corpus (Lowe
et al., 2015), they find that their proposed model
achieves a significant improvement over baselines
that are based on sequential or hierarchical utter-
ance encodings (Serban et al., 2016). They further
find, through ablations, that the inclusion of speaker
information flow is crucial to model performance.

For two-party and task-oriented dialog, Graph
Convolutional Networks (Kipf and Welling, 2017;
Schlichtkrull et al., 2018) have been success-
fully used for representing structure (Banerjee and
Khapra, 2019), and have consequently been ex-
plored for multi-party dialog as well. Ghosal et al.
(2019) propose a model called DialogueGCN for
the task of emotion recognition from conversa-
tions, which is an utterance-level classification task.
They represent each utterance as a node in the
graph, and construct edges to represent the con-
text – all utterances within a window prior and af-
ter the current utterance are marked. They also
assign relational edges, to capture temporal de-
pendency as well as speaker dependency between
pairs of utterances. The graph is then encoded
through Relational Graph Convolutional Networks
(Schlichtkrull et al., 2018), which provides a repre-
sentation for each node that aggregates information
from its context nodes. The proposed model outper-
forms multiple strong baselines when evaluating on
MELD (Poria et al., 2019), including DialogRNNs
(Majumder et al., 2019). A similar framework is
proposed by Ju et al. (2022), who include personas
corresponding to each speaker in the vertex set,
for the task of generating personalized responses.
Edges are then constructed between personas and
their corresponding utterances, as well as between
consecutive utterances, before encoding through
a GCN. As a baseline, they adapt DialogueGCNs
for response generation by adding a decoder, and

show the superiority of their persona-aware model
according to automated and human evaluation met-
rics.

Similar to Ju et al. (2022), the idea of including
nodes that are not just utterances has been explored
by other work, resulting in graphs that are het-
erogenous. Gu et al. (2022a) propose HeterMPC,
a graph-based model for response generation in
multi-party dialog. Their graph treats utterances
as well as participants as nodes, drawing edges be-
tween nodes to indicate six types of relations: reply,
reply-to, speak, spoken-by, address, addressed-by.
Utterance nodes are represented by embeddings
from BERT, whereas interlocutors are represented
by a speaker embedding initialized based on their
position in the conversation. When updating the
representations for nodes, they compute heteroge-
neous attention weights over source and target, con-
ditioned on the edge type. Their proposed model
outperforms GSNs with automated and human eval-
uations. Further, their ablations indicate the impor-
tance of interlocutor nodes as well as edge relations.
Sang and Bao (2022) also make use of heteroge-
neous graphs that contain participant and utterance
nodes, towards the task of financial risk prediction
upon earnings call conferences. The edges in their
graph connect speakers to their utterances, and the
resulting graph is encoded with a Graph Attention
Network (Veličković et al., 2018). From the graph
encoder’s output, they aggregate speaker embed-
dings separately from utterance embeddings us-
ing two separate contextual attention layers, which
then represent the whole conversation, which is
then classified for stock volatility. Lee and Choi
(2021) include four types of nodes in their graph:
dialog (utterance), turn, subject, and object; edges
relate turns nodes to their respective utterances,
connect utterances by the same speaker, and con-
nect turns to arguments that are mentioned. They
also encode their graph with a GCN, and evaluate
on the tasks of relation extraction in dialogues, as
well as emotion recognition. Liang et al. (2021)
take heterogeneous graphs one step further with
multimodal nodes – their nodes include utterances,
facial expression features, emotion categories, and
speakers, with seven kinds of edges capturing the
relations between the different features. They en-
code this graph with a heterogeneous graph neural
network (Zhang et al., 2019), and evaluate on the
downstream task of response generation expressing
a suitable emotion.
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5.3 Utilizing discourse relations

Some research has investigated how the graph
structures described above can include other task-
specific or linguistic information, such as annota-
tions for discourse.

Feng et al. (2021) present a dialog discourse
aware graph-based model for the task of meeting
summarization. Of interest are 16 discourse rela-
tions from Asher et al. (2016) including comment,
QA, elaboration, etc. They obtain discourse re-
lations from a dialog discourse parser (Shi and
Huang, 2019), and transform it such that nodes
are created for utterances as well as discourse re-
lations, with directed edges marking the relations
between utterances. They encode their graph with
an R-GCN (Schlichtkrull et al., 2018). Experiments
on the AMI and IMSI meeting corpora show im-
provements over sequential models (Serban et al.,
2016). They find that performance is correlated
with the quality of the discourse parser, as well as
the number of discourse relations available. Dis-
course structures from an off-the-shelf parser are
also used by Sun et al. (2021b) in their graph-based
model for emotion recognition. Similar to Ghosal
et al. (2019), they construct directed edges between
utterance nodes, marking discourse relations in
addition to speaker and temporal relations. The
inclusion of discourse results in a significant im-
provement over DialogGCNs on the MELD corpus.
Contemporaneously, Li et al. (2021) investigate
discourse-aware graphs for machine reading com-
prehension on multi-party dialog as found in the
Molweni challenge corpus (Li et al., 2020). They
also model utterances as nodes, with dependencies
as edges and discourse types denoted by edge re-
lations, using DialogGCN for encoding. Addition-
ally, an MRC module integrates a representation
for the question, outputting an answer span.

5.4 Pretraining

Following the advancements in the representational
capabilities of pretrained language models (Devlin
et al., 2019; Radford and Narasimhan, 2018), mod-
els such as ToD-BERT (Wu et al., 2020) and Dialo-
GPT (Zhang et al., 2020) have been developed with
the goal of enhancing dialog representations in task-
oriented or open-domain dialog. Pre-training has
also been explored for multi-party dialog: Gu et al.
(2021) propose MPC-BERT, in which they pre-
train BERT on data from the Ubuntu Chat Corpus
(Lowe et al., 2015), with five self-supervision tasks.

These tasks are designed to model underlying in-
terlocutor structure in multi-party dialog, as well
as utterance semantics. Tasks for the first category
include 1) reply-to utterance recognition, which
involves predicting the preceding utterance that an
utterance is replying to; 2) identical speaker search-
ing, or identifying utterances that share a speaker;
3) pointer-consistency distinction, which involves
maintaining a similar representation for pairs of ut-
terances between the same speaker–addressee pair
in order to model interlocutors. Tasks for the sec-
ond category include 1) masked shared utterance
restoration, where utterances that receive multiple
replies are masked and reconstructed during train-
ing 2) shared node detection, where sub-threads
of the same parent utterance are required to be
correctly identified. The pretrained model thus
obtained can be finetuned for downstream tasks –
the authors finetune and evaluate on the tasks of
addressee recognition, speaker identification, and
response selection, outperforming previous meth-
ods significantly. Notably, all of the finetuning
tasks are from the same domain (Ubuntu IRC) as
the pre-training data, although the authors declare
that they only use the train split for pre-training.

Other work that focuses on pre-training for multi-
party conversation understanding includes Zhong
et al. (2022), who focus on learning long-range
dependencies across dialog, in order to solve prob-
lems like summarization and question answering.
In contrast to MPC-BERT, and similar to BART
(Lewis et al., 2019), their self-supervision objec-
tive involves denoising dialog based on windows
– given a long dialog, they sample random win-
dows to which noise is added, which is later recon-
structed. The added noise takes the form of mask-
ing speaker identities, utterances, merging turns
and shuffling utterances within a turn. With this
objective, they train a Transformer-based model
called UniLM (Dong et al., 2019) on the Movie
Subtitles corpus (Lison and Tiedemann, 2016) and
MediaSum interview corpus (Zhu et al., 2021).
Finetuning on the tasks of summarization, dialog
segmentation and question answering, they show
improvements across automated and human evalu-
ations. Wang et al. (2020) pretrain a BERT model
on the task of topic prediction – determining if two
utterances are about the same topic, in addition to
masked language modeling. Their encoder, called
TopicBERT, is then finetuned in a multi-task learn-
ing setup, on the tasks of response selection, topic
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prediction, and topic disentanglement.

6 Tasks of Interest

Response generation and selection: As seen
above, a large body of work exists on response
generation (Qiu et al., 2020; Hu et al., 2019; Gu
et al., 2022a), given a multi-party dialog as con-
text. To generate responses at the right time and to-
wards the right speaker, this can be combined with
the tasks of speaker prediction (Yang et al., 2019)
and addressee selection (Liu et al., 2019). The
generated responses are typically evaluated with a
combination of automated metrics such as BLEU
(Papineni et al., 2002) and METEOR (Banerjee
and Lavie, 2005) given a reference from the con-
versation. Human evaluations, such as in Liu et al.
(2019); Gu et al. (2022a); Ju et al. (2022) assess
whether responses are fluent, consistent with the
context, informative, and coherent. The task of
response selection, formulated as retrieving the
most appropriate next utterance from a set of candi-
dates, is also of interest (Ouchi and Tsuboi, 2016;
Zhang et al., 2018; Wang et al., 2020; Gu et al.,
2021). Response selection is typically evaluated
with classification-based metrics such as precision
and recall, including Recalln@k to match n avail-
able candidates with top k retrieved candidates.

Modeling socio-cultural phenomena: Multi-
party conversations are of interest from a compu-
tational social science perspective, to study inter-
actional dynamics between participants. This in-
cludes determining when decision-making occurs
(Frampton et al., 2009; Bui et al., 2009), analyzing
bargaining and negotiation strategies (Petukhova
et al., 2016; Joshi et al., 2021; Asher et al., 2016),
and analyzing collaborative behavior such as en-
trainment (Litman et al., 2016; Rahimi et al., 2017),
cohesion (Bangalore Kantharaju et al., 2020) and
agreement (Hillard et al., 2003; Strzalkowski et al.,
2010; Rosenthal and McKeown, 2015). Work on
recognizing emotions from utterances, typically
with multi-modal information, is also loosely re-
lated to this direction (Ghosal et al., 2019; Poria
et al., 2019).

Other NLP tasks: Datasets and models have
been developed for the task of summarization
of multi-party conversations (Renals et al., 2007;
Purver et al., 2007; Chen and Metze, 2012; Zhu
et al., 2021). While Zhu et al. (2021) provide a
dataset that disentangles the primary topic from

secondary topics before summarization, an under-
explored issue is performing summarization jointly
with disentanglement so that multiple summaries
are produced for the multiple sub-threads in the
conversation. Other high-level NLP tasks that have
been explored include answering reading compre-
hension questions over multi-party dialog (Li et al.,
2020, 2021), and relation extraction (Albalak et al.,
2022; Yu et al., 2020).

7 Discussion

One of the salient findings from our survey is that
most recent work on multi-party dialog modeling,
particularly using the graph-based methods, are
centered around corpora from a limited set of do-
mains; in fact, almost all of the models in Section 5
are evaluated on the Ubuntu chat corpus or on TV
show transcript corpora. A possible reason for this
is the availability of annotated structure in these
datasets, including speaker and addressee informa-
tion, as well as threads. However, we argue that
the time is ripe for researchers to investigate how
to extend modeling innovations to other available
corpora and domains.

This is an important next step for two reasons,
namely real-world applicability, and robustness.
Natural dialog, such as spontaneous interactions
between humans, is typically not well-represented
in datasets such as typed chat, or scripted TV di-
alog. With the growing influence of dialog sys-
tems in daily lives, if our goal is to build better
technology for the real world, like classrooms or
businesses, we need to demonstrate that these state-
of-the-art models perform equally well on proba-
ble, real-world conversations. Moreover, as seen
in Mahajan and Shaikh (2021), numerous datasets
satisfying these properties are actually available,
although they do not necessarily contain explicit
annotations for structure. However, as this survey
shows, we have a large body of work that tells us
how to go from natural conversations to more struc-
tured representations through tasks such as speaker
and addressee recognition, turn prediction, and con-
versation disentanglement. Using these tasks as
scaffolds for downstream tasks like response gener-
ation would enable us to leverage the expressivity
of graph-based modeling on new and realistic do-
mains.

In terms of other important next steps for this
field of research, one interesting direction is explor-
ing strategies for obtaining silver-standard graph
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structures through unsupervised methods – we so
far only find one paper constructing a reply-to
relation graph unsupervisedly. Additionally, to
answer the robustness question, a systematic as-
sessment of the advantages and shortcomings of
graph-structured methods on rarer domains such as
meetings (Petukhova et al., 2016) could be highly
valuable, particularly for practitioners interested
in studying the phenomena exhibited in such con-
versations. More broadly in this direction, given
how the methods we have seen are predominantly
focused on English multi-party dialog, the appli-
cability of these methods to languages other than
English (Liu et al., 2012), as well as conversations
with code-switching (Hartmann et al., 2018), also
needs to be evaluated. Finally, with the growing
adoption and effectiveness of large language mod-
els (LLMs) in NLP research, a natural next question
is to determine how these models can be used in
understanding multi-party dialog, and what their
limitations are. Current directions with promis-
ing results include using LLMs for conversation
synthesis (Wei et al., 2023; Chen et al., 2023),
where high-quality multi-party conversations are
synthesized through prompting, and the conver-
sations can be grounded in specific characters or
personas. Such synthesized conversations may also
help adapt methods for conversation analysis and
response generation to rarer domains that may not
be well-represented in natural corpora.

8 Conclusion

Our survey provides an overview of research in
computationally modeling multi-party dialog. We
identify major challenges based on differences
from two-party dialog, and discuss how sub-tasks
have been designed for solving them. We compre-
hensively describe recent advances in representa-
tion learning for multi-party dialog, focusing in
particular on graph-based structures. Finally, we
discuss some key directions that future work in this
area can explore.
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Abstract

Conversational recommendation systems
(CRS) aim to recommend suitable items to
users through natural language conversation.
However, most CRS approaches do not
effectively utilize the signal provided by these
conversations. They rely heavily on explicit
external knowledge e.g., knowledge graphs
to augment the models’ understanding of
the items and attributes, which is quite hard
to scale. To alleviate this, we propose an
alternative information retrieval (IR)-styled
approach to the CRS item recommendation
task, where we represent conversations as
queries and items as documents to be retrieved.
We expand the document representation used
for retrieval with conversations from the
training set. With a simple BM25-based
retriever, we show that our task formulation
compares favorably with much more complex
baselines using complex external knowledge
on a popular CRS benchmark. We demon-
strate further improvements using user-centric
modeling and data augmentation to counter
the cold start problem for CRSs.

1 Introduction

Recommendation systems have become ubiquitous
in recent years given the explosion in massive item
catalogues across applications. In general, a rec-
ommendation system learns user preference from
historical user-item interactions, and then recom-
mends items of user’s preference. In contrast, CRSs
directly extract user preferences from live dialog
history to precisely address the users’ needs. An
example dialogue from the popular ReDial bench-
mark (Li et al., 2018) for CRSs is shown in Table 1:
the CRS’ task is to recommend items (in this case,
movies) based on the user’s indicated preference.

Generally, a CRS integrates two modules: a dia-
logue module which generates natural language re-
sponses to interact with users, and a recommenda-
tion module which recommends desirable items to

Role Message
User Hello! I am looking for some movies.
Agent What kinds of movie do you like? I like animated

movies such as Frozen (2013).
Rec. item Frozen (2013)
User I do not like animated films. I would love to see

a movie like Pretty Woman (1990) starring Julia
Roberts. Know any that are similar?

Agent Pretty Woman (1990) was a good one. If you are in it
for Julia Roberts you can try Runaway Bride (1999).

Rec. item Runaway Bride (1999)

Table 1: An example dialogue from ReDial. The items
to recommend are in blue, with their inferred attributes
in red. The ground truth recommended items for agent
utterances are also shown.

users using the dialog context and external knowl-
edge. We focus on the latter module in this work:
we posit that once the correct item to recommend
is identified, newer pretrained language models
(PLMs) can easily generate fluent agent responses.

It is notable that the conversational context pro-
vides sufficient signal to make good recommenda-
tions (Yang et al., 2021). E.g., in Table 1, attributes
about the items to recommend (e.g., genre and cast,
in red) provide potentially sufficient information to
the model to recommend relevant items.

Most approaches to CRS rely heavily on exter-
nal knowledge sources, such as knowledge graphs
(KGs) and reviews (Lu et al., 2021). Such ap-
proaches require specific sub-modules to encode in-
formation from these sources like graph neural net-
works (Kipf and Welling, 2016), which are hard to
scale with catalog additions. Existing approaches
require either re-training the entire system when
the KG structure changes (Dettmers et al., 2018)
or adding complex architectures on top to adapt
(Wu et al., 2022). Newer approaches utilize PLMs
(Radford et al.; Lewis et al., 2020), but they often
encode item information in model parameters, mak-
ing it hard to scale to new items without retraining.

Looking for a fast, more scalable approach, we
re-formulate the item recommendation task for
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CRSs as an information retrieval (IR) task, with
recommendation-seeking conversations as queries
and items to recommend as documents. The docu-
ment content for retrieval is constructed using plain
text metadata for the item paired with conversa-
tions where the said item is recommended, in order
to enhance semantic overlap between the queries
which are themselves conversations.

We apply a standard non-parametric retrieval
baseline - BM25 - to this task and show that the re-
sulting model is fast and extensible without requir-
ing complex external knowledge or architectures,
while presenting improvements over more complex
item recommendation baselines. Our contributions
are summarized as follows:

• We present an alternate formulation of the CRS
recommendation task as a retrieval task.

• We apply BM25 to this task, resulting in a simple,
strong model with little training time and reduced
reliance on external knowledge.

• We further improve the model using user-centric
modeling, show that the model is extensible to
new items without retraining, and demonstrate a
simple data augmentation method that alleviates
the cold start problem for CRSs.

2 Related Work

Conversational recommendation systems consti-
tute an emerging research area, helped by datasets
like REDIAL (Li et al., 2018), TG-REDIAL (Zhou
et al., 2020b), INSPIRED (Hayati et al., 2020),
DuRecDial (Liu et al., 2020, 2021), and CPCD
(Chaganty et al., 2023). We next describe the rec-
ommender module architectures of CRS baselines.

ReDial (Li et al., 2018) uses an autoencoder to
generate recommendations. CRSs commonly use
knowledge graphs (KGs) for better understanding
of the item catalog: DBpedia (Auer et al., 2007)
is a popular choice of KG. KBRD (Chen et al.,
2019) uses item-oriented KGs, while KGSF (Zhou
et al., 2020a) further incorporates a word-based
KG (Speer et al., 2017). CR-Walker (Ma et al.,
2021) performs tree-structured reasoning on the
KG, CRFR (Zhou et al., 2021) does reinforcement
learning and multi-hop reasoning on the KG. Uni-
CRS (Wang et al., 2022) uses knowledge-added
prompt tuning with and KG & a fixed PLM. Some
methods also incorporate user information: COLA
(Lin et al., 2022) uses collaborative filtering to build
a user-item graph, and (Li et al., 2022) aims to find
lookalike users for user-aware predictions.

Eschewing KGs, MESE (Yang et al., 2022) trains
an item encoder to convert flat item metadata to
embeddings then used by a PLM, and TSCR (Zou
et al., 2022) trains a transformer with a Cloze task
modified for recommendations. Most above ap-
proaches, however, either rely on complex models
with KGs and/or need to be retrained for new items,
which is very frequent in present-day item catalogs.

3 Model

We formally define the item recommendation task,
followed by our retrieval framework, details of the
BM25 retrieval model used, and finally our user-
aware recommendation method on top of BM25.

3.1 Conversational Item Recommendation

A CRS allows the user to retrieve relevant items
from an item catalog V = {v1, v2 · · · vN} through
dialog. In a conversation, let a be an agent response
containing an item(s) from V recommended to the
user. Let dt = {u1, u2, · · · ut} be the t turns of the
conversation context preceding a, where each turn
can be spoken by the user or the agent.

We model the recommendation task as masked
item prediction, similar to Zou et al. (2022). For
each agent response a where an item vi ∈ V is
recommended, we mask the mention of vi in a i.e.
replace it with the special token [REC], yielding the
masked agent response a′. We now create training
examples with input q = dt ⊕ a′ and ground truth
vi (⊕ denotes string concatenation).

We define Qtrain and Qtest as the set of all con-
versational contexts q = dt ⊕ a′ with an item to
predict, from the training and test sets respectively.
For each item vi, we also define Qtrain

vi
⊂ Qtrain

as the set of all conversational contexts in Qtrain

where vi is the ground truth item to recommend.

3.2 Item Recommendation as Retrieval

Information retrieval (IR) systems are aimed at
recommending documents to users based on the
relevance of the document’s content to the user
query. We reformulate masked item prediction as
a retrieval task with Qtrain or Qtest as the set of
queries to calculate relevance to, and V as the set
of items/documents to recommend from.

To match a query q ∈ Qtest to a document/item
vi ∈ V , we define the document’s content using
two sources: metadata in plaintext about item vi,
and Qtrain

vi
i.e. all conversational contexts from

the training set where vi is the recommended item,
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concatenated together, similar to document expan-
sion (Nogueira et al., 2019). Our motivation for
adding Qtrain

vi to the document representation is
that it is easier to match queries (which are conver-
sations) to conversations instead of plain metadata
since conversations can be sparse in meaningful
keywords. For an item vi we create a document as:

Doc(vi) = Metadata(vi)⊕Qvi (1)

For test set prediction, we can now apply re-
trieval to recommend the most relevant document
Doc(vi), vi ∈ V , for each test set query q ∈ Qtest.

3.3 Retrieval Model: BM25
BM25 (Robertson et al., 2009) is a commonly used
sparse, bag-of-words ranking function. It produces
a similarity score for a given document, doc and a
query, q, by matching keywords efficiently with an
inverted index of the set of documents. Briefly, for
each keyword in each document, we compute and
store their term frequencies (TF) and inverse docu-
ment frequencies (IDF) in an index. For an input
query, we compute a match score for each query
keyword with each document using a function of
TF and IDF, and sum this score over all keywords
in the query. This yields a similarity score for the
query with each document, which is used to rank
the documents for relevance to the query.

3.4 User Selection
Our IR formulation also gives us a simple way to
incorporate user information for item recommen-
dation. Let U = {u1, u2 . . . uJ} be the set of all
users in the dataset. Each conversation context in
Qtrain be associated with a user uj ∈ U . We use a
simple algorithm for user-aware recommendations:

• For each user u ∈ U , we obtain the set of items
they like based on conversations in Qtrain, and
also construct a unique BM25 index for each user
uj using only conversations associated with uj .

• For a test set query q ∈ Qtest, we identify movies
liked by the seeker in the current q, and use it to
find the M most similar users in the training set.

• We now compute and add up similarity scores for
the query with all documents based on the per-
user BM25 indices for these M selected users.

• Finally, we linearly combine these user-specific
similarity scores per document with the similarity
scores from the BM25 index in Section 3.3, and
use these combined scores to rank all documents.

Model R@1 R@10 R@50
ReDial (Li et al., 2018) 2.3 12.9 28.7
KBRD* (Chen et al., 2019) 3.0 16.4 33.8
KGSF* (Zhou et al., 2020a) 3.9 18.3 37.8
CR-Walker* (Ma et al., 2021) 4.0 18.7 37.6
CRFR* (Zhou et al., 2021) 4.0 20.2 39.9
COLA* (Lin et al., 2022) 4.8 22.1 42.6
UniCRS* (Wang et al., 2022) 5.1 22.4 42.8
MESE† (Yang et al., 2021) 5.6 25.6 45.5
TSCR* (Zou et al., 2022) 7.2 25.7 44.7
BM25 w/o Metadata 4.8 19.5 37.4
BM25† 5.2 20.5 38.5
BM25 + User Selection† 5.3 21.1 38.7

Table 2: Item recommendation results on the Re-
Dial benchmark. Our BM25-based models outperform
many baselines despite being much, lighter and not us-
ing complex KGs. * denotes models using DBPedia
KG, † denotes models using plaintext IMDb metadata.

4 Experiments

4.1 Dataset and Evaluation

ReDial (Li et al., 2018) is a popular benchmark of
annotated dialogues where a seeker requests movie
suggestions from an agent. Figure 1 shows an ex-
ample. It contains 956 users, 51,699 movie men-
tions, 10,006 dialogues, and 182,150 utterances.

For evaluation, we reuse Recall@k (or R@k)
as our evaluation metric for ReDial from prior
work. It evaluates whether the target human-
recommended item appears in the top-k items pro-
duced by the recommendation system. We compare
against baselines introduced in Section 2.

4.2 Training

For movie recommendations, we extract metadata
from IMDb.com to populate Metadata(vi) for
movies vi ∈ V , which includes the movie’s brief
plot and names of the director and actors.

Parameters k1 and b for BM25 are set to 1.6 and
0.7 respectively. For user selection, we select the
K = 5 most similar users, and linearly combine the
user-specific BM25 scores with the overall BM25
scores with a coefficient of 0.05 on the former. Con-
structing the BM25 index on the ReDial training
set and inference on the test set took ~5 minutes on
a CPU (+10 minutes for the user selection method).
Alongside BM25 with and without user selection,
we also experiment with a BM25 variant without
metadata i.e. using only past conversation contexts
as the document content for a movie/item.
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5 Results

Table 2 shows R@{1, 10, 50} on ReDial for the
baselines and our models. Our BM25-based mod-
els perform strongly, outperforming many base-
lines which use complex KGs and/or complex
model architectures e.g., tree-structured reasoning
and reinforcement learning. Improvement is most
visible on R@1 and less so on R@50. Our fairest
comparison is with MESE, which uses the exact
same data (text metadata + dialogues): our best
model achieves 95% of its R@1 and 85% of its
R@50 with a faster and simpler model. Note that
all baselines except TSCR are jointly optimized for
the item recommendation and response generation
tasks, therefore their recommendation-only perfor-
mance can potentially be better than reported.

A surprising result is BM25 w/o Metadata do-
ing better than many baselines, without using any
external knowledge whatsoever, in contrast to all
other baselines except ReDial. This indicates that
prior conversations indeed contain sufficient signal
for good conversational item recommendation.

Our simple user selection raises recall by 1-3%
across thresholds, with more potential gains from
better user-centric modeling (Li et al., 2022).

6 Cold Start and Data Augmentation

Conversational recommenders often suffer from the
cold start problem: it is difficult for a new item
i.e. not seen during training, to be recommended,
since not much is known about it beyond metadata.

Our model is not immune to this problem. The
red lines in Figure 1 show R@10 values for the
BM25 model for different sets of movies in Re-
Dial based on how many times they are seen in the
training set: the model never or rarely recommends
movies with 10 or fewer occurrences in training.

To counteract this, we perform data augmenta-
tion using few-shot prompting (Liu et al., 2023).
In particular, we randomly select 6 conversations
from ReDial’s training set, use them to prompt a
PaLM 2-L model (Anil et al., 2023), and generate
up to 20 dialogues per movie. We do this only
for movies seen 10 or fewer times during training,
since the model does the worst on these.

Figure 1’s blue curve shows notably improved
R@10 for the movies for which data was aug-
mented, without hurting R@10 for more frequent
movies. Overall R@10 also improves by ~8% us-
ing just≤ 20 artificial dialogues per movie. Further

Figure 1: Impact of data augmentation on R@10. The
shaded area represents the set of movies for which data
augmentation was performed.

Figure 2: Recall for the BM25 model with varying
amounts of augmented conversations.

combining augmentation with user selection lifts
R@1 to 5.9, R@10 to 22.3, and R@50 to 40.7.

Figure 2 plots recall for BM25 model with
the number of artificial dialogues added for low-
frequency movies. Based on this plot, we opted to
generate at most 20 conversations per movie.

7 Conclusion

We present a retrieval-based formulation of the
item recommendation task, used to build CRSs,
by modeling conversations as queries and items as
documents. We augment the item representation
with conversations recommending that item; the re-
trieval task then reduces to matching conversations
to conversations. Using BM25-based retrieval with
this task results in a model that is very fast and
inexpensive to train (~5 min on CPU) while being
flexible to add-ons like user selection. We also
show that new items can be easily added without
retraining the model, and that simple data augmen-
tation with as few as 20 conversations counters the
cold start problem for new items: fewer than most
neural network finetuning methods would need.
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