@inproceedings{mervaala-lyytimaki-2023-efficient,
title = "Efficient and reliable utilization of automated data collection applied to news on climate change",
author = {Mervaala, Erkki and
Lyytim{\"a}ki, Jari},
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Pirinen, Flammie and
Alnajjar, Khalid and
Miyagawa, So and
Bizzoni, Yuri and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages",
month = dec,
year = "2023",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlp4dh-1.10",
pages = "82--91",
abstract = "Automated data collection provides tempting opportunities for social sciences and humanities studies. Abundant data accumulating in various digital archives allows more comprehensive, timely and cost-efficient ways of harvesting and processing information. While easing or even removing some of the key problems, such as laborious and time-consuming data collection and potential errors and biases related to subjective coding of materials and distortions caused by focus on small samples, automated methods also bring in new risks such as poor understanding of contexts of the data or non-recognition of underlying systematic errors or missing information. Results from testing different methods to collect data describing newspaper coverage of climate change in Finland emphasize that fully relying on automatable tools such as media scrapers has its limitations and can provide comprehensive but incomplete document acquisition for research. Many of these limitations can, however, be addressed and not all of them rely on manual control.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mervaala-lyytimaki-2023-efficient">
<titleInfo>
<title>Efficient and reliable utilization of automated data collection applied to news on climate change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erkki</namePart>
<namePart type="family">Mervaala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jari</namePart>
<namePart type="family">Lyytimäki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated data collection provides tempting opportunities for social sciences and humanities studies. Abundant data accumulating in various digital archives allows more comprehensive, timely and cost-efficient ways of harvesting and processing information. While easing or even removing some of the key problems, such as laborious and time-consuming data collection and potential errors and biases related to subjective coding of materials and distortions caused by focus on small samples, automated methods also bring in new risks such as poor understanding of contexts of the data or non-recognition of underlying systematic errors or missing information. Results from testing different methods to collect data describing newspaper coverage of climate change in Finland emphasize that fully relying on automatable tools such as media scrapers has its limitations and can provide comprehensive but incomplete document acquisition for research. Many of these limitations can, however, be addressed and not all of them rely on manual control.</abstract>
<identifier type="citekey">mervaala-lyytimaki-2023-efficient</identifier>
<location>
<url>https://aclanthology.org/2023.nlp4dh-1.10</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>82</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient and reliable utilization of automated data collection applied to news on climate change
%A Mervaala, Erkki
%A Lyytimäki, Jari
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Pirinen, Flammie
%Y Alnajjar, Khalid
%Y Miyagawa, So
%Y Bizzoni, Yuri
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages
%D 2023
%8 December
%I Association for Computational Linguistics
%C Tokyo, Japan
%F mervaala-lyytimaki-2023-efficient
%X Automated data collection provides tempting opportunities for social sciences and humanities studies. Abundant data accumulating in various digital archives allows more comprehensive, timely and cost-efficient ways of harvesting and processing information. While easing or even removing some of the key problems, such as laborious and time-consuming data collection and potential errors and biases related to subjective coding of materials and distortions caused by focus on small samples, automated methods also bring in new risks such as poor understanding of contexts of the data or non-recognition of underlying systematic errors or missing information. Results from testing different methods to collect data describing newspaper coverage of climate change in Finland emphasize that fully relying on automatable tools such as media scrapers has its limitations and can provide comprehensive but incomplete document acquisition for research. Many of these limitations can, however, be addressed and not all of them rely on manual control.
%U https://aclanthology.org/2023.nlp4dh-1.10
%P 82-91
Markdown (Informal)
[Efficient and reliable utilization of automated data collection applied to news on climate change](https://aclanthology.org/2023.nlp4dh-1.10) (Mervaala & Lyytimäki, NLP4DH-IWCLUL 2023)
ACL