@inproceedings{kousa-2023-introducing,
title = "Introducing {C}hat{GPT} to a researcher{'}s toolkit: An empirical comparison between rule-based and large language model approach in the context of qualitative content analysis of political texts in {F}innish",
author = "Kousa, Ilona",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Pirinen, Flammie and
Alnajjar, Khalid and
Miyagawa, So and
Bizzoni, Yuri and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages",
month = dec,
year = "2023",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.nlp4dh-1.12",
pages = "102--113",
abstract = "Large Language Models, such as ChatGPT, offer numerous possibilities and prospects for academic research. However, there has been a gap in empirical research regarding their utilisation as keyword extraction and classification tools in qualitative research; perspectives from the social sciences and humanities have been notably limited. Moreover, Finnish-language data have not been used in previous studies. In this article, I aim to address these gaps by providing insights into the utilisation of ChatGPT and drawing comparisons with a rule-based Natural Language Processing method called Etuma. I will focus on assessing the effectiveness of classification and the methods{'} adherence to scientific principles. The findings of the study indicate that the classic recall and precision trade-off applies to the methods: ChatGPT{'}s precision is high, but its recall is comparatively low, while the results are the opposite for Etuma. I also discuss the implications of the results and outline ideas for leveraging the strengths of both methods in future studies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kousa-2023-introducing">
<titleInfo>
<title>Introducing ChatGPT to a researcher’s toolkit: An empirical comparison between rule-based and large language model approach in the context of qualitative content analysis of political texts in Finnish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ilona</namePart>
<namePart type="family">Kousa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Models, such as ChatGPT, offer numerous possibilities and prospects for academic research. However, there has been a gap in empirical research regarding their utilisation as keyword extraction and classification tools in qualitative research; perspectives from the social sciences and humanities have been notably limited. Moreover, Finnish-language data have not been used in previous studies. In this article, I aim to address these gaps by providing insights into the utilisation of ChatGPT and drawing comparisons with a rule-based Natural Language Processing method called Etuma. I will focus on assessing the effectiveness of classification and the methods’ adherence to scientific principles. The findings of the study indicate that the classic recall and precision trade-off applies to the methods: ChatGPT’s precision is high, but its recall is comparatively low, while the results are the opposite for Etuma. I also discuss the implications of the results and outline ideas for leveraging the strengths of both methods in future studies.</abstract>
<identifier type="citekey">kousa-2023-introducing</identifier>
<location>
<url>https://aclanthology.org/2023.nlp4dh-1.12</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>102</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Introducing ChatGPT to a researcher’s toolkit: An empirical comparison between rule-based and large language model approach in the context of qualitative content analysis of political texts in Finnish
%A Kousa, Ilona
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Pirinen, Flammie
%Y Alnajjar, Khalid
%Y Miyagawa, So
%Y Bizzoni, Yuri
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the Joint 3rd International Conference on Natural Language Processing for Digital Humanities and 8th International Workshop on Computational Linguistics for Uralic Languages
%D 2023
%8 December
%I Association for Computational Linguistics
%C Tokyo, Japan
%F kousa-2023-introducing
%X Large Language Models, such as ChatGPT, offer numerous possibilities and prospects for academic research. However, there has been a gap in empirical research regarding their utilisation as keyword extraction and classification tools in qualitative research; perspectives from the social sciences and humanities have been notably limited. Moreover, Finnish-language data have not been used in previous studies. In this article, I aim to address these gaps by providing insights into the utilisation of ChatGPT and drawing comparisons with a rule-based Natural Language Processing method called Etuma. I will focus on assessing the effectiveness of classification and the methods’ adherence to scientific principles. The findings of the study indicate that the classic recall and precision trade-off applies to the methods: ChatGPT’s precision is high, but its recall is comparatively low, while the results are the opposite for Etuma. I also discuss the implications of the results and outline ideas for leveraging the strengths of both methods in future studies.
%U https://aclanthology.org/2023.nlp4dh-1.12
%P 102-113
Markdown (Informal)
[Introducing ChatGPT to a researcher’s toolkit: An empirical comparison between rule-based and large language model approach in the context of qualitative content analysis of political texts in Finnish](https://aclanthology.org/2023.nlp4dh-1.12) (Kousa, NLP4DH-IWCLUL 2023)
ACL