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Abstract

Neural models and deep learning techniques
have predominantly been used in many tasks
of natural language processing (NLP), includ-
ing automatic readability assessment (ARA).
They apply deep transfer learning and enjoy
high accuracy. However, most of the models
still cannot leverage long dependence such as
inter-sentential topic-level or document-level
information because of their structure and com-
putational cost. Moreover, neural models usu-
ally have low interpretability. In this paper,
we propose a generalization of passage-level,
corpus-level, document-level and topic-level
features. In our experiments, we show the ef-
fectiveness of “Statistical Lexical Spread (SLS)”
features when combined with IDF (inverse
document frequency) and TF-IDF (term fre-
quency–inverse document frequency), which
adds a topological perspective (inter-document)
to readability to complement the typological ap-
proaches (intra-document) used in traditional
readability formulas. Interestingly, simply
adding these features in BERT models outper-
formed state-of-the-art systems trained on a
large number of hand-crafted features derived
from heavy linguistic processing. In analysis,
we show that SLS is also easy-to-interpret be-
cause SLS computes lexical features, which
appear explicitly in texts, compared to parame-
ters in neural models.

1 Introduction

A large number of readability formulas (also called
shallow readability indicators) have been devel-
oped since the 1940’s, but most of them use su-
perficial intra-sentential information (e.g., aver-
age sentence length and average character length)
without using inter-sentential information such as
document-level, corpus-level and topic-level statis-
tics.

To address this issue, we introduce Statistical
Lexical Spread (SLS), and combine it with features
derived from IDF and TF-IDF to train neural and

non-neural models on automatic readability assess-
ment (ARA). This set of data-driven features can be
extracted from any corpus, preferably where doc-
uments are categorized into topics. In this project
we utilize Wikipedia where articles, by design, are
grouped into categories.

We use these features to augment a BERT-Based
classifier on some benchmark data sets to deter-
mine if any significant improvement can be gained
from these features or they are already learned by
BERT embeddings. For this purpose we develop a
‘single-shot’ model where BERT is fine-tuned on
the text alone or text combined with the numerical
values of our features, and a ‘hybrid’ model, where
the BERT pipeline is augmented with the predic-
tions from a non-neural classifier. Interestingly, the
‘hybrid’ mode shows remarkable improvement on
the results of the ‘single-shot’ mode, and overall
our models outperform (or compete with) state-
of-the-art methods that rely on heavy linguistic
processing.

To test the generalizability and crosslinguality
of our methods, we evaluate our models on En-
glish, Spanish, and Catalan. The advantage of our
approach is that no sophisticated NLP processing
tools or resources are needed, apart from an op-
tional lemmatizer, which makes it suitable for low-
resourced languages. In case a lemmatizer does
not exist, SLS+TF-IDF can still be narrowed down
to statistics on the surface forms with even better
performance on some data sets, while on others
yielding only 1.43% absolute below the highest
scores.

2 Related Work

With the recent advancement of machine learning
(ML), researchers started to apply it to ARA usually
modeling it as a classification task. Early studies
introducing ML to ARA developed hand-crafted
features extracted mostly from the linguistic anal-
ysis of texts. For example, Schwarm and Osten-
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dorf (2005) introduced four syntactic features (av-
erage parse tree height, and average number of
noun phrases, verb phrases, and SBARs) to train
an SVM classifier. Pitler and Nenkova (2008) en-
riched that with features indicating lexical cohesion
(e.g. number of pronouns in a sentence, and word
overlap between sentences), and discourse connec-
tivity (e.g. whether connectives between sentences
are implicit or explicit). Over the years, the num-
ber of linguistic features kept growing reaching
155 (Vajjala and Lučić, 2018) and 255 (Lee et al.,
2021).

Although the focus on generating sophisticated
linguistic features might help advance the state of
the art for English, it does not generalize well, due
to the fact that many languages have limited NLP
tools and resources. For example, (Imperial, 2021)
used 155 linguistic features for English and only
54 for Filipino due to this limitation. This is why
we introduce frequency-based features with mini-
mal NLP tooling requirements (only a lemmatizer)
that scales well across languages. We also show
that even with the lack of a lemmatizer, the non-
morphology based features can still deliver a com-
parable performance.

There have been a few attempts to depart from
linguistic features for ARA, particularly using the
help of language models. For example, Collins-
Thompson and Callan (2004) developed 12 lan-
guage models matching the 12 American grade
levels. Their language models are unigrams and as-
sume that the probability of a token given the grade
level is independent of the surrounding tokens. Cha
et al. (2017) used Brown clustering which aims to
maximize the mutual information of word bigrams.
Language models, however, focus on corpus-level
information, and they do not have a mechanism to
account for passage-level, document-level or topic-
level information, which TF-IDF and readability
formulas, for example, prove to be more suited for.

3 Data Collection and Sampling

As is the case with document indexing in Informa-
tion Retrieval and Text Mining, for the construc-
tion of data-driven features, we need to compute
weights for each word to quantify the degree of its
familiarity. Instead of using a set of web pages, we
use Wikipedia articles for our indexing purposes.
There are three primary advantages of Wikipedia
for our approach to ARA: first, it is available in
many languages, second, it covers a broad variety

Data point Count
total titles 6,334,131
total categories 1,347,602
total word count 2,363,334,969
titles with categories 4,049,500
singleton categories 310,997
categories ∈ 80% of titles 1,161
* titles ∈ 80% of word count 1,812,671
* categories ∈ 80% of ‘* titles’ 1,131

Table 1: Topography of titles and categories in the En-
glish Wikipedia. *: included in the final selection.

of topics, and third, most articles are associated
with categories, which allows us to cluster articles
into their related topics. However, the disadvantage
is that Wikipedia articles are edited and reviewed
to be of a high quality, and therefore lack the noise
and variance common in many other natural text
types.

Due to the large number of titles in the English
Wikipedia, and the fact that many articles are seed
articles, i.e. without any substantial content, we
sub-sample the data following Pareto’s Principle
which states that 80% of consequences come from
20% of the causes. For a total number of 6.3m
articles we found that 28.62% of them cover 80%
of the word count. By contrast, there are 1.3m cat-
egories, and we found that 0.09% of them cover
80% of the titles. The reason that category selec-
tion seems to go off the bounds for Pareto’s Prin-
ciple is that categories are very liberally used in
Wikipedia. For example, 23.08% of the categories
are singletons, i.e. representing only one article.
Statistics for the English Wikipedia data dump of
September 2nd, 2021 are shown in Table 1. The
same sub-sampling strategy is used for the other
two languages tested in this project, i.e. Spanish
and Catalan.

4 Feature Design and Selection

Understanding a document is dependent on the
reader’s level of familiarity with the underlying
knowledge base (or the topic), which accounts
for the connections in the mental map (Liu and
Yuizono, 2020) of the reader and controls the flow
of information for updating these connections. This
underlying knowledge base indicates the presence
or absence of the shared world knowledge between
the writer and the reader. Approximating this under-
lying knowledge map can be obtained by analyzing
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the connection between words within a document
and across a reasonably large collection of docu-
ments.

Topic modeling for ARA has been discussed
in a number of papers. For example, Qumsiyeh
and Ng (2011) developed a system called ReadAid
that used Latent Dirichlet Allocation (LDA), an
unsupervised learning algorithm, to determine the
ranked probability of topics covered in a document
based on the distribution of words in the document,
or more precisely the probability of a word given a
topic P (w|t), and the probability of a topic given
a document P (t|d). Their model was trained on
53 subject areas extracted from the English Cur-
riculum and College Board1 and a set of 100 docu-
ments randomly selected for each subject area from
DMOZ2. Lee et al. (2021) expanded this approach
by training LDA models on four variations of 50,
100, 150, and 200 topics, and analyzed the out-
put for semantic richness, clarity, and noise, with
the purpose of understanding how the topics are
distributed, not just what they are.

In this work we use SLS+TF-IDF to model top-
ics using top-frequency categories already curated
in the Wikipedia corpus, with the intuition that spe-
cialized words will occur in fewer categories than
common ones. The categories selected in our anal-
ysis are based on a ratio of titles and word counts as
explained in Section 3, and the number is 1,131 for
English, 1,536 for Spanish, and 1,516 for Catalan.

The features used in this project are divided into
four groups: Statistical Lexical Spread (SLS), TF-
IDF features, document-based counts, and tradi-
tional readability formulas (RF). Details are ex-
plained in the following sub-sections.

4.1 Statistical Lexical Spread (SLS)

The main intuition for SLS is that easy words occur
more often and in more contexts, spanning more
articles and more topics, than difficult words. Even
if a word is long and multi-syllabic, such as ‘televi-
sion’, if it occurs more often, it will be considered
more readable than less frequent words, even if they
are short and monosyllabic, such as ‘deuce’. An-
other intuition is that words which show a high mor-
phological variability, such as ‘play, plays, played,
playing’, are generally easier to read than rigid and
uninflected words, such as ‘timid’. The advantage
in SLS is that frequency statistics are gathered at

1www.collegeboard.org
2www.dmoz-odp.org

the corpus level, document level and topic level.
For the three features of ‘unknown_word’, ‘un-

inflected_word’ and ‘below_mean_count’ we just
take the ratio (count of positive tokens divided by
the total number of tokens in a document). For the
other seven features we take the log of the average
according to Equation 1, where t is a term which
can be a lemma or a form, f(t) is the function
that retrieves the frequency, spread or variability
value, and l(d) is the length of the document. Fea-
tures with the suffix ‘_freq’ are for corpus-level
statistics, ‘_article_spread’ for document-level
statistics, and ‘_category_spread’ for topic-level
statistics. For English lemmatization, we use NLTK
(Bird et al., 2009), and for Spanish and Catalan, we
use spaCy (Honnibal and Montani, 2017).

log

(∑l(d)
t=1 f(t)

l(d)

)
(1)

Non-Morphology Features:
1. form_freq: form frequency, or how many times
a form occurred in the entire corpus.
2. form_article_spread: in how many articles a
form appeared, regardless of total frequency.
3. form_category_spread: in how many categories
a form appeared.
4. unknown_word: words that do not occur in
the corpus or have a frequency below a certain
threshold, which is set in our experiment to 10.
5. below_mean_count: words that have a fre-
quency below the mean frequency of the word list
consumed (excluding unknown words above). This
happens to be 1441.79 in the English Wikipedia
sample.
Morphology-based Features:
6. lemma_freq: lemma frequency, or how many
times a lemma occurred in the entire corpus.
7. lemma_article_spread: in how many articles a
lemma appeared, regardless of the total frequency.
8. lemma_category_spread: in how many cate-
gories a lemma appeared.
9. morph_variability: for each lemma, how many
different forms are represented by the given lemma.
This is an indication of morphological richness.
10. uninflected_word: words that do not have any
morphological inflection in the corpus.

The use of the log in the calculations is meant as
a normalization step to dampen the effect of explod-
ing numbers when the numerator is much greater
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than the denominator and the variance between
different outputs cannot fit in a scale.

4.2 TF-IDF Features
TF-IDF has been used in the readability literature
in two different ways.

1. Using the TF-IDF for all tokens in a given
document as a vector (Chen et al., 2011).

2. Using the mean of TF-IDF of all tokens a
document (De Clercq et al., 2014).

TF-IDF is powerful in collecting statistics on
term distribution and weight across a collection of
documents. In our research, we use the mean of TF-
IDF and the mean of the IDF for forms and lemmas
in a document. This gives us 4 features. We further
apply it to articles, and categories as documents
(for topic modeling). This expands the number
of features to 8, and this allows us to utilize the
power of the TF-IDF orthogonally at the document
level and the topic level. Equations 2, 3, and 4,
show how the calculations are conducted, where
t is the term which can materialize as a form or
a lemma, d is a document, D is a collection of
documents (or categories), l is the length function,
c is the counting function, e.g. c(t, d) is the count
of term repetitions in a given document, and uc is
a unique counting function, i.e. if a term occurs in
a document one or more times, it will be reduced
to one, otherwise zero.

TF(t,d) =
c(t, d)

l(d)
(2)

IDF(t,D) = log

(
l(D)

uc(t,D)

)
(3)

TF -IDF(t,d,D) = TF(t,d) × IDF(t,D) (4)

Here we list the features derived from TF-IDF
also divided into whether they are dependent/non-
dependent on morphological analysis (lemmatiza-
tion).
Non-Morphology Features:
1. form_article_idf: average IDF where t is a word
form and D is a collection of articles.
2. form_category_idf: average IDF where t is a
word form and D is a collection of categories.
3. form_article_tf-idf: average TF-IDF where t is
a word form and D is a collection of articles.
4. form_category_tf-idf: average TF-IDF where t

is a word form and D is a collection of categories.
Morphology-based Features:
5. lemma_article_idf: average IDF where t is a
word lemma and D is a collection of articles.
6. lemma_category_idf: average IDF where t is a
word lemma and D is a collection of categories.
7. lemma_article_tf-idf: average TF-IDF where t
is a word lemma and D is a collection of articles.
8. lemma_category_tf-idf: average TF-IDF where t
is a word lemma and D is a collection of categories.

4.3 Document-Based Features

We need to account for passage-level information,
such as a word repetition, word count and the type
of lexicon used. These features are computed
locally by counting words in a given document, or
matching them against predefined lists.
1. word_count: word count in the current
document, taken as a ratio against the maximum
word count found in a document set.
2. word_rep: in a given document, how many
times a word is repeated. This is then averaged
against total words in a document
3. basic_vocab: how many words are found in a
list of basic vocabulary. The source of the word list
is Simple Wikipedia list of 1000 basic words. This
is taken as a ratio against total words in a document.

4.4 Readability Formulas (RF):

Readability Formulas (RF) are known for their
efficiency at capturing passage-level information.
There are a few python implementations of
these formulas. In this project, we chose the
implementation in TextStat.3 Here is a list of the
formulas used:
1. Flesch Reading Ease, (Kincaid et al., 1975).
2. Flesch-Kincaid Grade, (Kincaid et al., 1975).
3. SMOG Index, (Mc Laughlin, 1969).
4. Coleman-Liau Index, (Coleman and Liau,
1975).
5. Automated Readability Index, (Smith and
Senter, 1967).
6. Dale-Chall Readability Score, (Dale and Chall,
1948)
7. Linsear Write Formula4.
8. Gunning-Fog Index, (Gunning et al., 1952).
9. Text Standard, based on consensus among a
number of tests.

3https://github.com/textstat/textstat
4https://en.wikipedia.org/wiki/Linsear_Write
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10. Fernandez-Huerta, (Fernández-Huerta, 1959).
11. Szigriszt-Pazos, (Szigriszt Pazos, 1992).
12. Gutierrez Polini, (Gutiérrez de Polini, 1972).
13. Crawford, (Crawford, 1985).
14. Gulpease Index5.
15. Osman, (El-Haj and Rayson, 2016).
16. Difficult Words, (Dale and Chall, 1948).

4.5 Feature Subsets

For some ML algorithms, the high dimensionality
of features can be problematic. Therefore, we use
XGBoost to determine the important features based
on training on the English Viki-Wiki data set. We
select the overlap between gain and coverage, and
here are the subsets selected.
Selected_8 = (4.1): 4, (4.1): 2, (4.4): 8, (4.4): 6,
(4.2): 4, (4.2): 1, (4.4): 7, (4.3): 1
Selected_6 = first 6 in selected_8.
SLS_8 = (4.1): 6, (4.1): 2, (4.1): 1, (4.1): 7, (4.1):
9, (4.1): 4, (4.1): 3, (4.1): 8
SLS_6 = first 6 in sls_8.
RF_8 = (4.4): 8, (4.4): 6, (4.4): 7, (4.4): 11, (4.4):
2, (4.4): 3, (4.4): 13, (4.4): 15
RF_6 = first 6 in rf_8.

5 Correlation with Readability Formulas

We conducted a comparison between our statistical
measures and the traditional readability formulas
to see to what degree they are aligned on their pre-
dictions. The data set used in this experiment is the
Simple Wikipedia, with a total number of instances
of 142,759. We used a split of 66% for training and
34% for testing. We applied the decision tree Ran-
dom Forest algorithm, and the results are shown in
Figure 1.

Generally, there seems to be a strong correlation
between our SLS and dale_chall_readability_score,
while document-based and TF-IDF have the high-
est correlation with ‘difficult_words’. We notice
that some non-English specific indicators, such as
‘osman’, ‘gulpease_index’ and ‘gutierrez_polini’
have higher correlation with our criteria than some
English-specific ones, such as ‘gunning_fog’ and
‘smog_index’. This is why we decided to use all 15
formulas in subsequent experiments.

It’s also interesting to consider the correlation
coefficient among the different traditional readabil-
ity formulas. Many pairs of formulas have high
correlation, whether negative or positive, which

5https://it.wikipedia.org/wiki/Indice_Gulpease

Figure 1: Correlation between new and traditional read-
ability formulas

means that they are looking at the same or similar
pieces of information, while many other pairs have
a correlation between -0.5 and 0.5 which indicates
low correlation, meaning they are looking at differ-
ent pieces of information, or interpreting the same
pieces of information differently.

6 Testing on Benchmark Test Sets

We use our features, along with the readability
scores from the traditional readability formulas and
build ML models and apply them to two benchmark
data sets: a monolingual one, OneStopEnglish, and
a multilingual one, VikiWiki.

6.1 OneStopEnglish (OSE)

OneStopEnglish (Vajjala and Lučić, 2018) is a col-
lection of articles obtained from the Guardian news-
paper and adapted by teachers for three levels of
learners (elementary, intermediate, and advanced).
The data set contains 564 instances (189 elemen-
tary, 189 intermediate, and 186 advanced.

6.1.1 Classification with Non-neural
Classifiers

Table 2 shows the results of the experiments with
10-fold cross validation using a number of non-
neural ML classifiers. Our best models give an ac-
curacy of 80.15% using the ‘selected_8_no_morph’
features in an SVM classifier. This outperforms
the results in (Vajjala and Lučić, 2018) which was
78.13% using 155 linguistic features, and the re-
sults in (Lee et al., 2021) which was 77.8% using
255 handcrafted features.

In our initial experiments, we noticed that the
results for train-test splits can vary dramatically by
the split size, while n-fold cross validation gives
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Feature sets LR SVM XGB RF
SLS 43.24 38.97 35.42 31.54
Doc-based 65.58 69.51 67.72 66.67
TF-IDF 66.11 68.45 64.71 63.84
RF 69.85 74.82 75.19 74.12
selected_8 72.16 79.26 77.31 78.38
selected_8

72.15 80.15 77.14 77.66
_no_morph
selected_6 69.14 78.02 78.37 77.48
SLS_8 42.52 39.69 34.88 33.85
SLS_6 39.70 37.38 35.61 32.92
RF_8 59.58 60.65 57.27 58.88
RF_6 59.22 60.47 55.85 57.79
All features 73.93 77.48 75.52 77.66

Table 2: ML Classification results on OSE. LR = Logis-
tic Regression, XGB = XGBoost, RF = RandomForest

more reliable results, particularly for smaller data
sets.

6.1.2 Classification with BERT Fine-Tuning

Since its inception, BERT (Devlin et al., 2018) has
shown strong performance on many NLP bench-
mark data sets. There were a number of attempts
to apply it to ARA, including that of Martinc et al.
(2021), who reported an accuracy of 67.38% train-
ing on text alone without additional features. Their
best result on the OSE data set was 78.72% using
HAN (Hierarchical attention networks).

Combining BERT embeddings with additional
features has been explored in a number of papers
and most of them used the fused features in a non-
neural classifier (Deutsch et al., 2020). For exam-
ple, (Imperial, 2021) extracted BERT embeddings,
concatenated them with 155 linguistic features,
making a total of 923 dimensions, and fed that
into a number of ML classifiers. Imperial (2021)’s
best result was an F1 score of 73.2% using logistic
regression.

In a more recent paper, (Lee et al., 2021) re-
ported 80.1% mean accuracy on five-folds on OSE
using BERT without handcrafted features. They
further managed to increase the accuracy to 98.2%
using a hybrid model, where they took the predic-
tions of BERT fine-tuning, along with 255 hand-
crafted features, and fed them to a non-neural clas-
sifier.

In this paper, we experiment with BERT in two
modes: ’Single-Shot Mode’ and ’Hybrid Mode’, as
explained below. For English we use the model

Parameters values
Epochs 16
Learning rate 1e-5
max token length 200
batch size 32
optimizer AdamW
number of folds 10

Table 3: BERT classification setup.

’bert-base-uncased’ for English and ’bert-base-
multilingual-uncased’ for the other languages.

Single-Shot Mode: Here we combine our
features with the text embeddings following
Chris McCormick article on “Combining Cat-
egorical and Numerical Features with Text
in BERT”.6 We use the model ‘transform-
ers.BertForSequenceClassification’ with the param-
eters listed in Table 3.

We tried two ways of appending the numeri-
cal values of features to the text. The first was to
include the numerical values separators, and the
second was to concatenate the feature name along
with the numerical value. We found that the second
method worked best, and this is what is reported in
this paper.

1. f'{value} [SEP]. '

2. f'{feature}: {value} [SEP]. '

Hybrid Mode: Similar to Lee et al. (2021), we
also build a hybrid model, but instead of using
BERT predictions in a non-neural model, we use
the predictions of a non-neural model and feed
them to the BERT fine-tuning along with the fea-
ture sets and the text embeddings. We first train
SVM on ‘selected_8_no_morph’, take the predic-
tions for each fold (so that there is no chance for
over-fitting), and combine them together as an ad-
ditional feature in BERT fine-tuning.

Results for both the single-shot and the hybrid
model are shown in Table 4. All experiments
are conducted with 10-fold cross-validation. Our
baseline is BERT fine-tuned on text embeddings
only without any features, which is 86.16% for
the single-shot model. This is significantly greater
than the 80.1% reported by Lee et al. (2021). The
best result for the single-shot mode was 96.64%
when BERT embedding is concatenated with the

6https://mccormickml.com/2021/06/29/
combining-categorical-numerical-features-with-bert/
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Features combined Single-Shot Hybrid
No features used 86.16 93.42
All features used 39.54 77.84
SLS 29.09 77.84
Doc-based 75.55 91.84
TF-IDF 96.64 98.23
TF-IDF_no_morph 88.51 96.80
RF 70.94 82.63
Selected_8 77.83 97.52
Selected_6 86.31 95.56
SLS_8 87.42 98.05
SLS_6 87.01 95.38
RF_8 81.72 91.12
RF_6 79.61 84.56

Table 4: BERT fine-tuning results on OSE.

eight features of TF-IDF. For the hybrid mode, our
best result is 98.23%. We notice that the hybrid
mode gives a significant boost to the performance
on most of the features used.

It must be noted that (Lee et al., 2021) managed
to obtain 96.5%, and 96.8% accuracy in single-shot
mode using RoBERTa and BART respectively, and
99.0%, and 97.1% in a hybrid mode.

6.2 Viki-Wiki

VikiWiki is a multilingual readability data set of
Vikidia articles and their Wikipedia counterparts
(Madrazo Azpiazu and Pera, 2020). Vikidia7, like
Wikipedia, is an encyclopedic website providing
information on various topics in English and a num-
ber of other languages, but the main goal is to make
the content simple and easy to read. The number
of instances in the dataset is 864 for English, 831
for Spanish, and 855 for Catalan. The best results
reported by Madrazo Azpiazu and Pera (2020) (in
terms of accuracy for 10-fold cross-validation) was
96% for English, 87% for Spanish and 96% for
Catalan. In their work, Madrazo Azpiazu and Pera
(2020) used different sets of features including shal-
low, morphological, syntactic, and semantic fea-
tures.

6.2.1 Classification with non-neural
Classifiers

Table 5 shows the results of our system trained on
a combination of features. Our results are compara-
ble to those of (Madrazo Azpiazu and Pera, 2020)
for English, Spanish and Catalan. We found that

7https://en.vikidia.org

Features sets en es ca
SLS 90.62 82.68 94.38
Doc-based 93.98 84.72 95.56
TF-IDF 92.48 82.32 94.15
RF 95.60 84.61 94.62
Selected_8 95.37 86.65 95.21
Selected_6 95.95 86.05 95.09
Selected_6

95.26 84.49 94.63
_no_morph
SLS_8 89.12 81.72 93.57
SLS_6 89.93 81.95 92.05
RF_8 90.74 83.88 93.80
RF_6 90.16 84.37 94.04
All_features 95.37 86.77 95.79
All_features

95.49 87.49 95.79
_no_morph

Table 5: XGBoost Classification results on Viki-Wiki.

XGBoost gives the best performance compared to
other ML algorithms (and this is why we report
XGBoost results only here). Again all experiments
are conducted with 10-fold cross-validation.

6.2.2 Classification with BERT Fine-tuning
Following the same approach above with OSE in
concatenating numerical values to text in BERT
embedding in a single-shot mode (Section 6.1.2),
we conducted 10-fold cross-validation experiments
for English, Spanish and Catalan. The results are
shown in Table 6. In most cases the performance
converges to 100%. We are not entirely sure about
the reason, but it can be due to the fact that BERT
is already trained on Wikipedia data, or the task
is too easy as the language in the two data sets is
clearly distinct. The best published results in the
literature is 96% for English and Catalan, which is
already high.

Conclusion

For ARA, hand-crafted features derived from heavy
linguistic processing do not transfer well across
languages, as it becomes harder to find reliable
processing tools for low-resourced languages. Our
system, by contrast, achieves better or comparable
results using only 38 features that capture passage-
level, corpus-level, document-level, and topic-level
information, and can be computed statistically from
any corpus in any language with a light-weight mor-
phological processing tool. We show that even with
the absence of a lemmatizer, non-morphological
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Features sets en es ca
SLS 83.10 80.10 92.84
Doc-based 99.13 100.00 99.88
TF-IDF 100.00 99.88 99.87
RF 99.89 99.71 99.87
Selected_8 100.00 100.00 100.00
Selected_6 100.00 100.00 99.88
SLS_8 100.00 100.00 99.87
SLS_6 100.00 100.00 100.00
RF_8 100.00 100.00 100.00
RF_6 100.00 100.00 100.00
No features 99.89 100.00 99.86
All features 94.42 79.61 90.69

Table 6: BERT Classification results on Viki-Wiki.

features can still yield comparable results. We also
show how topic modeling for ARA can be achieved
through treating categories as documents in com-
puting features such as IDF and TF-IDF.

Limitations

SLS+TF-IDF provides information on word dif-
ficulty and topical specificity drawn from actual
language use. One presumed shortcoming of the
proposed approach is that it focuses on the lexical
statistical behavior and ignores semantic, syntactic
and discourse features. Due to the utilization of
a lemmatizer, the system can distinguish between
‘flag’ as a noun and a verb, but it will not be able
to distinguish between ‘lead’ as a metal and or a
leash.

Another limitation of the results is that the use
of BERT and neural net, by nature, gives different
results each run. Although we use 10-fold cross-
validation and a relatively higher number of epochs
to narrow down the effect of this variability, it is
still possible to get slightly different results for each
run.
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