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Abstract 

The following article proposes a method 
employing the Tesseract OCR engine to aid 
palaeographic analysis and scribal 
identification. Repurposing the so-called 
confidence score provided by the OCR 
engine, different methods of visualization 
are used to surface differences between font 
families, script types and manuscript hands. 

1 Introduction 

This paper introduces a simple method for 
conducting technology-assisted analysis of script 
and handwriting styles in printed books and 
manuscripts. The approach described uses a side 
product of a tried and tested technology: Optical 
Character Recognition (OCR). OCR software is 
traditionally employed for the automatic 
transcription of text from a digital image to 
machine-readable output. The method used here 
largely ignores the transcription but focuses on the 
so-called confidence scores. Confidence scores are 
usually employed in the process of OCR 
recognition to assess the probability that the output 
is correct. Normally, low-scoring results are 
undesirable as they signal a lower probability of 
accuracy. In this case, however, low scores will be 
used to identify pages, words or characters that 
could be of interest for a palaeographic analysis. 

Digital methods, including Artificial 
Intelligence (AI), have been plied before to the 
field of palaeography, for example for the purpose 
of automatic transcription, the classification of 
writing styles or scribal identification (see e.g. 
Camps 2014; Castro Correa 2014; Christlein 2018; 
Cilia et al., 2019). A contest organized in 2017 by 
the Fifteenth International Conference on Frontiers 
in Handwriting Recognition in 2017, for example, 
solicited AI-based solutions for the classification of 
medieval script types, providing a set of labelled 

training material (“ICDAR2017 Competition on 
the Classification of Medieval Handwritings in 
Latin Script” 2017). A report submitted by 
Kestemont et al. discusses the efficacy of several 
submissions and remarks that the premise of the 
task itself builds on a simplified reality. Medieval 
script types do not always have firm boundaries, 
that is, definitive sets of features that reliably set 
one type apart from another; some hybrid forms are 
not easily described with one single label. The 
categorization of medieval script types often 
moves in grey zones and a technology trained on 
human-labelled script types is therefore not 
automatically free from human bias. Conversely, 
unsupervised learning, which does not rely on 
labelled data, does not necessarily sort material in 
ways that are meaningful to scholars and can also 
be hard to interpret (Kestemont, Christlein, and 
Stutzmann 2017, 104–7). Thus, whilst AI shows 
potential for palaeographic analysis, some caution 
is warranted: worst case scenario, human 
subjectivity is replaced by AI's accountability gap. 

The approach introduced here is not meaning to 
replace human expertise with an automated 
solution. Rather, it attempts to re-purpose a pre-
existing technology as a heuristic tool that can 
accelerate the palaeographer's, book historian's, 
bibliophile's quest for areas of interest in a book or 
on a page, with the help of OCR confidence scores. 
The paper mainly showcases different modes of 
visualizing confidence metrics to aid the discovery 
of palaeographic phenomena. The following 
argument will briefly introduce the metrics of word 
and character confidence and how they can be 
employed in script or scribal analysis. Proposed 
approach employs confidence scores to identify 
divergences in script style or abnormalities in letter 
shapes on book- or page level. The elements 
identified are then inspected with the help of 
statistics to establish whether they are of 
significance. Throughout, the open-source OCR 
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engine Tesseract (LSTM version) is used with 
different OCR models.1  

2 Visualizing confidence scores on 
printed and handwritten material 

2.1 Confidence in Theory 

In OCR (Optical Character Recognition, 
typically used for printed text) and HTR 
(Handwritten Text Recognition) technology, 
confidence scores are usually procured to aid 
decision-making calls on transcriptions during the 
recognition process. By definition, the confidence 
score marks the probability with which the OCR 
engine deems the transcription of a character or a 
word to be correct. Thus, lower confidence scores 
signal lower probability of accuracy. Confidence is 
not an absolute measure, and it is possible that low 
confidence scores can accompany accurate output, 
or high-confidence scores inaccurate 
transcriptions. For example, an OCR model trained 
on predominantly English texts will recognize the 
same font in a French-language document with fair 
accuracy but might produce low confidence scores 
on account of its English-language training. 
Conversely, a high confidence score does not 
always guarantee an accurate result – merely the 
engine's assessment that given the model's 
parameters the output is accurate.  

Tesseract can produce confidence scores at word 
level and character level. The calculation of the 
respective confidence scores is complex but 
understanding the context of their generation can 
help gauging the underlying parameters. 
Tesseract's documentation for the current, neural-
network-based version (4.0.0 and higher) does not 
contain any information on the calculation of the 
confidence score. The documentation for 
Tesseract's Legacy engine (version 3.0.0 and 
lower), however, specifies the circumstances and 
formula for calculating character and word 
confidence in the context of character 
classification. When processing new input with the 
Legacy Engine, Tesseract performs the 
segmentation of a text image into lines and words 
down to individual characters. Each segmented 
character is then classified by mapping it to the 
closest-matching prototype. The shape of the 

 
1 Tesseract models and test books used in this study are 
listed in the appendix. 
2 As noted in the commentary to Tesseract's code, see 
https://github.com/tesseract-

character is described by a visual feature vector 
combining a number of  3-dimensional features 
mapping the character's outline; the distance 
between the recognized character's visual feature 
vector and that of the closest matching prototype is 
then used to calculate the character's confidence 
(Perveen, n.d.; Smith 2007). On a word-level, the 
confidence of the lowest-scoring character doubles 
up as the confidence score for the entire word. 
(Tesseract Documentation FAQ). If the word 
formed from the recognized characters turns out 
highly improbable or linguistically implausible, the 
Legacy engine tries to re-segment the characters in 
different ways to see whether a more satisfactory 
solution can be found (Smith 2007). Output of the 
Legacy engine expresses character confidence as a 
percentage; the percentages for all character 
suggestions for one symbol stand independently 
and do not necessarily add up to 100%.2 

In 2016, Tesseract's system was upgraded to 
include recurrent neural networks with LSTM 
(Long-Short-Term-Memory). The advantage of 
such a network is its capacity for context-aware 
processing, particularly with LSTM, resulting in 
lower error rates (Ul-Hasan et al 2013). Tesseract's 
LSTM implementation was adapted from 
OCRopus, an OCR system based on convolutional 
neural networks (Smith 2016). The novelty of 
OCRopus' initial design vis a vis Tesseract's 
concurrent version was documented at its inception 
in 2008. In contrast to Tesseract's Legacy engine, 
OCRopus' recognition process does not segment a 
text image into separate, single characters, but 
takes words as base units: proceeding sequentially 
across an identified word in so-called timesteps, the 
string is oversegmented – meaning, the word is not 
chopped into a discrete set of characters, but each 
timestep presents a separate segmentation attempt 
for part of the word. Each of these segments 
presents a character hypothesis; each character 
hypothesis is assigned a probability that it presents 
a valid character, and assuming that it is, the 
"posterior probability" (or confidence) for each 
character class, based on image features. 
Recognition results and the relationships between 
each potential character are expressed in a graph 
structure, from which the best sequence 

ocr/tesseract/blob/7c178276d78fc4d2e5
5d531563275fd9631a72fb/src/ccmain/ltr
resultiterator.cpp#L458 
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representing the whole word is then identified, 
using statistical language modelling (Breuel 2008).  

OCRopus' LSTM system is integrated in 
Tesseract 4.0.0 and later. The last layer of 
Tesseract's network moreover contains a so-called 
softmax classifier which normalizes the confidence 
score for each character before the final output. 
(Smith 2016). Where Tesseract's Legacy engine 
yields the confidence as the original percentage in 
the final output, the LSTM-based Tesseract engine 
normalizes the confidence score for the chosen 
character so that the confidences for all 
classification attempts for one character 
approximately add up to 1.3 The final confidence 
score is amplified through this normalization 
process, with the result that for the LSTM engine, 
the character confidences usually move within a 
band between 1 and 0.90. The softmax 
normalization only applies to the character 
confidence, not the word confidence, which 
fluctuates between 0 and 100%. 

Tesseract's OCR models utilize neural networks 
trained on a pool of so-called ground truth, that is a 
quantity of labelled material. In the case of OCR, 
this material consists of image files of text lines, 
matched with transcriptions saved in simple text 
files. Throughout the training process, the neural 
network of the OCR engine iterates over this 
ground truth, producing transcriptions and 
evaluating their accuracy against the ground truth 
labels. Each iteration produces a model which is 
assessed on its word and character error rate with a 
separate pool of ground truth. At the end of the 
process, the model with the highest accuracy is 
chosen and can then be used with the OCR engine 
for the automatic transcription of related image 
material.  

The ground truth pool used for training is the key 
parameter determining the model's capacity to 
interpret real material – and strategizing on its size 
and composition is crucial for an effective OCR 
strategy. In most cases, the aim is to train a model 
that is specific enough to perform well within its 
context but capable of generalizing beyond the 
ground truth pool. Within certain boundaries – say, 
a language, an alphabet, or a font group – diversity 
within a ground truth pool can improve this the 
model's ability to generalize. Too little 
specialization means the OCR model does not 
work well within its context. Yet if the ground truth 

 
3 See the link to the code commentary in Footnote 2. 

pool is too small or not sufficiently diversified, so-
called overfitting occurs: the neural networks' 
recognition capacity is over-adjusted to its training 
material. (Kestemont et al. 2017, 97). Since the 
approach introduced here is less interested in 
transcription than analysis, some of the models 
used are deliberately overfitted in order to 
understand how they can signal affinity or 
difference between a very small and specific 
training pool and the test material.  

As said, the recognition process employs 
confidence scores to assess the probability that an 
output is correct. The confidence scores not only 
highlight potential good or bad transcriptions; they 
communicate the efficacy of the chosen OCR 
model with regard to the input material – and by 
extension, the affinity of the material it was trained 
on with the material it is used on. As a 
consequence, characters underrepresented in a 
LSTM training set tend to be misclassified in 
transcription (Ul-Hasan et al 2013). We would 
expect, therefore, that atypical glyphs or letter 
shapes not included in the training material are 
likely to be badly transcribed and consequently 
flagged up by low confidence scores when running 
the OCR model over a text image. This is the 
assumption that the following experiment is 
seeking to corroborate and utilize. 

The caveat to this approach is that the 
confidence score is an uncertain metric, which is 
not only affected by the character's shape, but also 
by factors such as image quality, skewing, or 
discolorations on the page. With an LSTM-based 
system, moreover, the impact of context on the 
confidence score remains difficult to gauge. 
Overall, therefore, confidence is too complex a 
metric to serve as an absolute indicator; what the 
following experiment means to show empirically, 
however, is that using tools to visualize confidence 
metrics can still help to identify areas of 
palaeographic interest on book or page level. 

 

2.2 Confidence in Practice 

When analysing the OCR output across a whole 
book, the word confidence score can help 
identifying problem areas across the full range 
using the the average word confidence score for 
each page in a whole book. Sections where the 
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scores move in a narrow, consistent band tend to be 
transcribed with fair accuracy. Strong fluctuations 
or exceptionally low confidence scores typically 
denote pages that differ in some way from the rest. 
In the word confidence graph for Giovanni 
Boccaccio's Decameron (see Figure 1), for 
example, the egregiously low score in the 
beginning section (circled in red) corresponds with 
a blank page with ink bleed-through misinterpreted 
by the OCR model as writing. The finishing section 
of the same graph, too, shows up with consistently 
lower scores. Looking at a sample page from this 
section, it turns out that it contains the book's 
appendix, which features uncommon symbols, 
more numbers than usual and truncated words 
scoring low in confidence, regardless of whether 
they are transcribed correctly or not (see Figure 1). 
These particular examples might or might not be of 
concern. Rather, the point is that outlier pages in 
OCR output can be identified from the top level 
with the help of a confidence graph. Beyond the 
identification of outlier pages, however, there is no 
further indication what the issue could be in each 
case – the page image itself needs to be considered 
to understand what the cause of the low confidence 
score might be.  

Most of Tesseract's standard OCR models are 
ostensibly trained for specific languages, on 
modern alphabets (see available list on Tesseract 
Github). When using these standard models, we 
would expect low confidence scores 
(independently from actual accuracy) where an 
OCR model is plied outside its "comfort zone", so 
to speak, e.g. to a text containing unknown or 
underrepresented characters, written in a different 
language or in a radically unusual font. Granted 
there is rarely much information about the training 
material used to train the model (and granted it 
tends to be too copious for a close review), it is not 
immediately obvious where such a "comfort zone" 

starts or ends. Running the model over different 
kinds of materials and comparing the confidence 
score, however, can help to get a bearing of the 
model's capacities. Conversely, running several 
models over the same material provides some 
context within which to judge each model's 
"comfort" and "discomfort zone".  

Tesseract's standard models are very effective 
for modern printed text, and particularly the 
English language model shows a high performance 
for many different types of fonts, including 
typewritten texts. Viewed from the point of 
methodology, therefore, we should assume that a 
digitized text's language would be the main 
parameter to affect confidence scores when it 
comes to OCR processing. Manuscripts, modern or 
old, tend to fare badly with these standard models. 
This is not particularly surprising, granted 
handwriting tends to be much more irregular than 
print. Yet experiments with historic printed text, 
too, show that the OCR models trained for modern 
languages struggle with such material – as opposed 
to OCR models trained on a mix of languages, but 
on historic printed text.  

In the following experiment, a set of pages from 
a Latin publication printed in 1475 were processed 
with three Tesseract models: the first one trained on 
English language material printed in modern fonts; 
the second on Latin language material printed in 
modern fonts; and the last one trained on material 
printed between 1500-1800, in Latin, English and 
French. The accuracy of the transcription was not 
considered in this experiment; only the confidence 
scores were assessed in order to understand each 
model's "comfort" or "discomfort" with historic 
material printed in Latin. Comparing the graph 
mapping the average page confidence (see Figure 
2), we see that the models for modern English and 
modern Latin roughly play out in the same  

 

Figure 2: Word confidence graph for different Tesseract 
models, run over historic printed book 

 

Figure 1: Word confidence graph, book-level 
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confidence band – and neither one scores 
consistently higher than the other. Where we might 
have expected the Latin model to fare better than 
the English model, the confidence graphs do not 
hint at a significant nor even a consistent 
difference. Compared to the output of these two 
modern models, a Tesseract model trained on 
historic fonts from books printed in Latin, French 
and English, shows consistently higher confidence 
scores, no matter the lack of language focus.4 This 
suggests that in this case, the historic font as a 
parameter in the training material has more impact 
on the OCR model's word confidence scoring than 
the focus on language.  

In order to test this assumption in more detail, 
the word confidence scores for the modern Latin 
model and the historic font model were visualized 
next to the corresponding text lines using 
confidence heatmaps: in percentage blocks of 10, 
descending from 100%, word confidence scores 
were highlighted in colours shifting from green to 
red, the former signalling higher and the latter 
lower scoring (see Figure 3)  

Comparing the two heatmaps, the historic font 
OCR model fares a lot better than the modern Latin  

 
 

4 The last page where the modern Latin model scores 
highest seems to contradict this; however, the actual page 

 

 
OCR model. Yet the isolated problem areas in 

the historic OCR model map also put the low 
scores of the modern Latin model into context. 
Both models seem to struggle with unusual spacing 
typical for historic printed material, although in 
different ways. The modern Latin OCR model, 
moreover, assigns a low confidence score to a lot 
more words – most, though not all, are incorrectly 
transcribed or truncated. 
In the next step, heatmaps were created to visualize 
character confidences (see Figure 4). As explained 
above, the character confidence output from 
Tesseract's LSTM model is normalized and moves 
within a smaller band than word confidence. The 
colour gradation changed per percentage point, 
from 99 downwards. When looking at the output 
from the two models on character confidence 
heatmaps, we can see more clearly where whole 
words are scoring low on account of single 
characters, and where whole groupings of letters 
are affected – and conversely, where unusual 
spacing rather than low-confidence characters lead 
to a low word confidence score. The character 
confidence heatmap for the Historic font model, for 
example, shows that all letters in "Carthago" are 
transcribed at relatively high confidence; the low  

image does not contain any text and can be ignored in this 
case. 

 

 
Figure 3: Word confidence heatmap for Modern 
Latin model (top) and Historic font model (bottom) 

 

 

 

Figure 4: Character confidence heatmaps for 
Modern Latin model (top) and Historic font 
model (bottom) 
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score of the split word presumably stems from the 
irregular spacing, which divides one legitimate 
word into two non-words. The character heatmap 
for the Modern Latin model shows different 
patterns: in some words, single characters are to 
blame for a whole word's score, elsewhere whole 
sequences of letters are affected, such as in the last 
two lines. In these latter cases, presumably, not 
only the single letters but also their surrounding 
characters affect the single character confidence 
scoring.  

The comparison of historic and modern printed 
font may not yield many surprises but serves as an 
example for what kind of issues the confidence 
visualizations can help to surface. Since the 
introduction of neural networks and LSTM to OCR 
and HTR technology also opened the door to 
processing more challenging materials, such as 
medieval manuscripts, it is conceivable that the 
same technique can be used for examining 
differences between different medieval script 
types. A bespoke model trained on one script type 
might reliably fail to transcribe unfamiliar ligatures 
or characters in a test manuscript, flagging up such 
phenomena with low confidence values (see Figure 
5 – the model here struggles with the unfamiliar 
letter shapes for "a" and "t", untypical for 
Carolingian minuscule).  

What these heatmaps also communicate, 
however, is that confidence scoring must be taken 
with a grain of salt: a low confidence score does not 
always mean that its cause is meaningful for the 
discussion, nor can we expect to securely identify 
the cause behind each scoring. Most poignantly, to 
understand whether an irregularity spotted is a 
systemic or an anecdotal occurrence, it is necessary 
to corroborate these findings with more data and 
evaluate them in the context of the entire document 
or sample. The next section is presenting a concrete 
example to showcase how to systematize such an 
approach with the help of statistical evidence. 

 

2.3 Confidence heatmaps for scribal hands 

Palaeographic analysis of medieval and 
Renaissance manuscripts deals with utterly human 
material – and to date relies on utterly human 
expertise. Often, a judgment call is made on 
account of intuition more than objective grounds. 
This is not only due to the blurry boundaries 
between script types and hands but perhaps also 
owed to the fact that differences between scripts are 
often difficult to describe or classify objectively. In 
the analysis of script types or manuscripts hands, 
visible differences between specific letter forms 
taken from different exponents can provide means 
for an objective comparison – except it is not 
always obvious where to start the search or how to 
weigh such discoveries. 

The above experiment aimed to show how 
variegation in confidence levels can highlight 
pages, words, or letters outside the comfort zone of 
an OCR model. The same mechanism is applied in 
the following scenario by running a model trained 
on one manuscript over other exponents. A word-
confidence graph maps the general affinity 
between the chosen manuscripts. Character 
confidence heatmaps were then used to identify 
low-scoring letters. Two metrics are used to then 
evaluate the relevance of these findings: the 
average confidence measured for all transcriptions 
of this letter (including scores for correct and 
incorrect transcriptions); and the overall error rate. 
These metrics are compared across all manuscripts 
under review. The average confidence and error 
rates from the manuscript the model is trained for 
serve as a baseline against which the results from 
the other exponents are compared. Said baseline 
helps to understand whether the reactions of the 
model cohere with its "comfort zone" or whether 
they signal a divergence from the baseline. 

The process previously described showcased of 
models trained on a large number of text lines 
belonging to the same language or script group; the 
experiment here starts with training a bespoke 
model for just a single manuscript to then run it 
over test pages from the same and other 
manuscripts. Usually, Tesseract models are trained 
on hundreds of thousands of lines. Granted the 
small scope (and specific aim) of this experiment, 
the training of a bespoke model for a manuscript 
hand was performed with comparatively little 
material – hundreds, not thousands of lines. 

 

 

Figure 5: Confidence heatmap for Tesseract 
model trained on Carolingian minuscule run over 
Insular Minuscule manuscript  
(correct transcription: "se respicere pro certo 
sciat; Cogita) 
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For this experiment, the hand of Poggio 
Bracciolini (1380-1459), eminent Humanist and 
famous scribe, was compared to that of a follower 
– as also his own. Bracciolini, a trained notary and 
successful scribe, was the instrumental driver 
behind the development of what came to be called 
Humanist Minuscule (de la Mare 1977). 
Bracciolini is not only a rare example for the 
deliberate development of an idiosyncratic hand; it 
is equally uncommon that the evolution of a single 
hand can be traced with a number of surviving 
exponents (De Robertis 2017).  

Whilst developing his style, Bracciolini also 
trained (and inspired) imitators. A limited number 
of manuscripts signed or authenticated by 
documentary evidence can be securely ascribed to 
Bracciolini. Based on visual comparison with these 
manuscripts, numerous others have been identified 
– and disputed in return (de la Mare 1973, Caldelli 
2006). When trying to authenticate manuscripts 
putatively ascribed to Bracciolini, the 
palaeographic challenge is a war on two fronts: the 
first challenge is to identify differences or affinities 
between two manuscripts; in the second instance, 
the palaeographer must decide whether these 
findings signal the same hand or the penmanship of 
another. The OCR-based methodology cannot 

provide a secure answer – but as is to be shown, it 
can be used to identify samples for discussion. 

 The experiment used a model trained on lines 
taken from a manuscript identified as an autograph 
by Bracciolini, Vat.lat.3245 (785 lines for training, 
87 lines for evaluation). The resulting OCR model 
was run over 5 pages each from Vat.lat.3245, Ms. 
Vat.lat.1811, a manuscript written by his close 
follower, Gherardo del Ciriago (1412-1472), and 
another manuscript ascribed to Bracciolini (Berlin 
Ms Hamilton 166).   

The word confidence graph – unsurprisingly, 
perhaps – suggest that the model generally 
processed the other Bracciolini autograph at greater 
confidence levels than the hand of Gherardo del 
Ciriago (see Figure 6). The gap between the 
confidence scores for Vat.lat.3245 and Ms Ham 
166, however, suggest that the hands, even though 
belonging to the same person, do differ somehow –
perhaps a consequence of them being copied at 
different stages in Bracciolini's life: Ms Ham 166 
was authored in 1408; Ms Vat.lat.3245 is dated to 
1410-1415 (de la Mare 1973).  

As with the example running OCR on historic 
printed text, heatmaps were used to understand the 
confidence scores in more detail. Concretely, in this 

 

 

Figure 6: Word confidence graph for Vat.lat.3245, Berlin Ham 166 and Vat.lat.1811 processed with 
Tesseract model trained on Vat.lat.3235 
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case, the heatmap provided a first point of contact 
to help identify letters of interest. In the second 
step, a closer analysis of the confidence scores for 
a particular letter was analysed across the whole 
sample. 

A single character transcribed at low confidence 
would not yield credible data to support an analysis 
but looking at all transcriptions of the same letter 
across the test set, i.e. from a variety of contexts, 
can give a more balanced perspective on whether 
one or several low confidence ratings signal 
anecdotal or systematic failure. In a next step, 
therefore, the confidence values were analysed for 
all instances of "suspicious" letters across all 
manuscripts to understand whether we are looking 
at a meaningful difference or not.  

The analytical framework builds on the 
assumption that the confidence values from 
Vat.lat.3245 provide the baseline to compare the 
ratings from the other manuscripts to. In addition 
to the overall confidence ratings (which included 
scores for correct and incorrect transcriptions) the 
error rate is calculated.  

Using the heatmaps, following letters were 
singled out for analysis: "ct", for low scores in 
Vat.lat.1811; "h", for low scorings in Vat.lat.1811; 
and "ae" for low scorings in Ham 166. The 
confidence values and error rates were then 
collected from all pages in the test set. 

In the case of "ct", for Vat.lat.3245 and Ham 166, 
average confidence and error rate were almost on 
par. The numbers for Vat.lat.1811, however, 
differed drastically, particularly the error rate. 5 
When comparing samples from the ct ligature 
across all manuscripts, in fact, the difference is not 
only consistent but easily visible: the "c" is 
touching the middle stroke of the "t" (See Table 1). 

The case of the letter "h" is less straightforward 
(see Table 2). Whilst the average confidence level 
for Ham 166 is not too far from Vat.lat.3245, the 
error rate is significantly higher; it is also puzzling 
that two thirds of the errors were transcribed to "b". 
Overall, the statistics are not definitive enough to 
support a divergence between Ham 166 and Vat.lat. 
3245, nor did the samples surface a regular, visible 
difference. For Vat.lat.1811, however, the error rate 
was over 55%. Looking at the manuscript itself, the 
letter shape regularly differs from the samples 
found in the other two manuscripts: the belly tends  

 
5 The ct ligature is usually transcribed by two letters, 
so the average confidence rating for both was used in 
the calculation. 

 

to be wider, and the initiating stroke more 
horizontal than for the other manuscripts; the final  
stroke regularly reaches below the baseline. 

The "ae" ligature, meanwhile, presented a quite 
different situation (see Table 3). Initially chosen for 
low confidence and bad transcription in Ham 166, 
it turns out that the ligature appears not at all in 
Vat.lat.1811, and only once in Vat.lat.3245 – and is 
badly transcribed here, too. Granted "ae" is 

ct ligature Avg 
conf  

error 
rate 

sample 

Vat.lat.3245 
(10 total) 

98 
 

20% 

 
Ham 166 
(22 total) 

97.7 
 

22% 

 
Vat.lat.1811 
(27 total) 

95.0 
 

85% 

 
 

 Table 1: Statistics for "ct" ligature 

h  Avg 
conf 

error 
rate 

sample 

Vat.lat.3245 97.8 7.8% 
(b: 
3.9%)  

Ham 166 97.3 29.2% 
(b: 
18.9%) 

 

Vat.lat.1811 96.2 55.2% 
(b: 
11.9%) 

 

 

 Table 2: Statistics for "h" 

ae Avg 
conf 

error 
rate 

sample 

Vat.lat.3245 
(1 total) 

97.3 100% 

 
Ham 166 
(24 total) 

94.4 100% 
 

Vat.lat.1811 -- -- -- 

 

 Table 3: Statistics for "ae" ligature 
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included in the registered set of characters 
permitted in the Tesseract training, it would not be 
categorically excluded from recognition. The 
consistent failure to correctly recognize the glyph 
thus suggests it is scarce if not absent in the training 
material to start with – hence the low scores in its 
recognition. As it is, the use of "ae" or e caudata 
was not obligatory in either manuscript – these 
were orthographic novelties introduced by 
Humanist circles in Florence in the 14th and 15th 
century that aimed to replace the simple "e" 
common from Medieval times. The relative 
frequency of this glyph in Ms Ham 166 suggests 
that Bracciolini chose to deliberately employ it in 
Ms Ham 166, but mostly reverts to simple "e" in 
Vat.lat.3245. 

Above examples are not exhaustive but give an 
idea of the kind of material one might identify with 
the help of OCR confidence scores. Neither graphs 
nor heatmaps deliver very clean nor 
comprehensive evidence; they require human 
scrutiny and interpretation to yield up useful 
information. In that sense, the examples above do 
not intend to provide a clear-cut interpretation of 
the relationship between the three manuscripts. 
Rather, the intent is to showcase how different 
modes of visualizing confidence scores from OCR 
processing can aid the quest for material to feed 
into palaeographic analysis. How this evidence is 
ultimately to be weighed is left to the expert; 
however, the hope is that OCR confidence scores 
can serve as a heuristic tool to speed up the task in 
the first place. 

 

3 Conclusion  

In summary, this article presented an approach to 
re-purposing OCR technology for identifying 
peculiarities in historic scripts or differences in 
scribal hands. The argument aims to show that even 
though many standard OCR models, in this case 
Tesseract, are overtly trained to focus on the 
recognition of specific languages in print, the 
sensitivity of OCR models to differences in fonts 
can be exploited to highlight differences in script or 
scribal hand. This is done with the help of the so-
called confidence score, which signals the certainty 
with which the OCR engine assumes the output to 
be correct. The argument above is outlining several 
methods of visualizing the confidence score and 
how this can aid palaeographic analysis. The 
method is emphatically not intended to classify 

scripts or to authenticate hands. The experiments 
merely test confidence scores for their heuristic 
potential in identifying differences between script 
types and hands. 

There are some downsides to this approach; 
firstly, the confidence score is a blurry metric that 
can be influenced by many factors, not all of which 
are relevant to a palaeographic discussion (for 
example ink bleed-through, speckles or skewed 
pages). Which factor is chiefly to blame for a low 
confidence score is not necessarily clear. Gathering 
scores from every single exponent, by default from 
a variety of contexts, however, can help to gain a 
balanced perspective in that regard. Expectations 
should also be tempered with a view to 
comprehensiveness – OCR confidence scores 
cannot be expected to highlight all differences in a 
font or hand. In that sense, the method as sketched 
presents a means to break the ice. 

From a practical perspective, creating ground 
truth to train bespoke models is time-intensive and 
low-volume models such as the one used here are 
not necessarily reliable. Within the small scope of 
this investigation, such a model might have been 
sufficient for proving a concept, but a better model 
trained on more ground truth or endorsed by more 
advanced technology might be needed for a more 
thorough analysis. With the steady advance of 
OCR technology and more and more sophisticated 
attempts to create models for low-volume scripts, 
it stands to hope that there will be new solutions to 
the latter issue before too long. 

Lastly, one might argue that these experiments 
merely help to surface phenomena that are visible 
to the naked eye anyway. Without providing 
analytical value in itself, the method leaves the 
ultimate interpretation of these discoveries to the 
palaeographer's expertise. It should not be 
forgotten, however, that palaeographic analysis is a 
painstaking process, and the identification of such 
differences is extremely time-consuming when 
done by hand and from scratch. The real value of 
this method, therefore, is to direct said naked eye 
to the phenomena in the first place, that is, to speed 
up the discovery process – and at the best of times 
help palaeographers discover elements they did not 
know they were looking for.  
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ings.html [accessed 16 November 2023] 

B Appendix B: Test Books and 
manuscripts 

Boccaccio, Giovanni. 1585. Il Decameron. Giunti: 
Venice. 

Festus, Rufius. 1472. Breviarum rerum gestarum 
populi Romani: Venice. https://digitale-
sammlungen.de/en/view/bsb00006378?
page=,1 [accessed 30 September 2023] 

Rome, Vatican Library, Ms Vat.lat.3245 

Rome, Vatican Library, Ms Vat.lat.1811 

Berlin, Ms Hamilton 166 

Einsiedeln, Stiftsbibliothek, Codex 281(886): 
Ascetica; Glossa psalmorum; Poenitentiale 
(https://www.e-
codices.unifr.ch/en/list/one/sbe/0281) 

171


