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Abstract

Idioms are expressions with non-literal and
non-compositional meanings. For this reason,
they pose a unique challenge for various NLP
tasks including Machine Translation and Sen-
timent Analysis. In this paper, we propose an
approach to clustering idioms in different lan-
guages by their sense. We leverage pre-trained
cross-lingual transformer models and fine-tune
them to produce cross-lingual vector represen-
tations of idioms according to their sense.

1 Introduction

Idiom handling is an important aspect of any NLP
system due to the unique way idioms can affect
the meaning of a sentence. Due to their non-
compositional meanings, NLP systems need to
treat idioms as a single lexical unit. In Machine
Translation, in particular, current transformer mod-
els tend to struggle when translating an idiom be-
cause of this. Experiments (Dankers et al., 2022)
show that transformers (Vaswani et al., 2017) of-
ten fail to treat idioms in this manner and instead
translate them compositionally resulting in poor
translations.

This paper approaches the problem of clustering
idioms in different languages based on their sense.
Through this, we aim to improve semantic represen-
tations of idiomatic expressions to aid NLP tasks
that rely on accurate sense disambiguation. In this
paper, we make use of pre-trained cross-lingual
language models (Conneau et al., 2020) to do this.

Our approach involves fine-tuning these models
to generate cross-lingual vector representations of
idioms based on sense. These representations can
then be used to form sense clusters of idioms.

This idea can be further extended by leveraging
idiom databases e.g. (Villavicencio et al., 2004) to
identify the sense of an idiom not present in the
database. By finding an idiom within the same

cluster that is already in the database, we can infer
the sense of the unknown idiom.

Idioms that share the same sense share a com-
mon meaning beyond their literal interpretations.
Machine Translation systems often treat idioms
compositionally and produce translations that are
too literal and don’t make sense in the translated
text. The absence of parallel idiom datasets often
hinders the effective training of transformers to ad-
dress this challenge. We feel that our approach
could aid this. Instead of training models to trans-
late idioms in isolation which is often not prac-
tical, we propose a method capable of grouping
idioms by their shared meaning. This enables the
models to understand the meanings these idioms
convey and the relationships between them across
languages.

To evaluate our approach we conduct experi-
ments using multi-lingual idiom datasets and assess
the results.

2 Approach

In this paper, we employ BERT (Devlin et al., 2019)
models that are pre-trained specifically for cross-
lingual contexts to facilitate our approach. We fine-
tune the model by training it on a dataset consisting
of English idioms and corresponding German id-
ioms. We developed a dataset of roughly 14,000
English and German Idioms for this purpose.

In order to train the model, we load the dataset
and create translation clusters which consist of
idioms that are direct translations of one another
(taken from the website dict.cc). During training,
we try to ensure the sense vectors of idioms in the
same translation cluster are close to one another in
order to create effective sense clusters.

We make use of the XLM-RoBERTa (Conneau
et al., 2020) model which is trained on 2.5 terabytes
of data in 100 different languages. XLM-RoBERTa
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Idiom Gloss
es mit Fassung tragen (to bear it with composure)
take it on the chin
grin and bear it
gute Miene zum bösen Spiel machen (make a good face for the bad game)
in den sauren Apfel beißen (bite into the sour apple)

Table 1: An example of a translation cluster. The gloss is provided for reference and is not part of the dataset.

Type Count
English 6912
German 7763
Total 14675

Table 2: Dataset Statistics.

is trained with the multilingual MLM (Masked Lan-
guage Model) objective. This allows the model to
understand bi-directional context within text. This
bi-directional context understanding is particularly
crucial when dealing with idioms. XLM-RoBERTa
produces contextual representations of the tokens
that are passed to it. We then utilise pooling and an
additional linear layer, to generate vector represen-
tations of the idioms.

We then employ a variety of clustering tech-
niques to form sense-based clusters

2.1 Dataset
We hand-collected the dataset from the website
dict.cc. We made use of a 90-5-5 train-test-
validation split. Table 2 shows the composition of
the dataset.

2.2 Model Architecture
The model architecture (Figure 1) consists of the
XLM-RoBERTa model followed by a pooling layer
and a linear layer which generates the phrase level
embeddings. We made use of batch normaliza-
tion (Ioffe and Szegedy, 2015) and weight decay
(Loshchilov and Hutter, 2019) to make training
more stable and reduce overfitting.

We investigate the effects of different pooling
methods.

3 Training

3.1 Fine-Tuning
In order to train the model, we fine-tune the XLM-
RoBERTa model and learn the weights for the final
linear layer. We make use of the Adam optimizer
(Kingma and Ba, 2017) during this process.

3.2 Triplet Loss
The triplet loss (Schroff et al., 2015) is defined as:

L = max(0, dist(a, p)− dist(a, n) + α)

where:

• a is the anchor sample.

• p is a positive sample (same translation cluster
as anchor).

• n is a negative sample (different translation
cluster from anchor).

• dist is the distance metric between samples.

• α is the margin that controls the minimum
desired separation.

Triplet loss solely considers the distance be-
tween the anchor, positive and negative vectors.
Some loss functions for the task of learning embed-
dings also consider the angle between the vectors
(Wang et al., 2017). However, we felt that triplet
loss worked well enough for our task.

4 Training Experiments

4.1 Embedding Dimensions
We investigated the effect of the number of nodes in
the final linear layer (the number of dimensions of
the sense embeddings that are produced) on train-
ing. As seen in Figure 2, the training is fairly sim-
ilar for all of the embedding dimensions that we
tested with the 64 and 128 dimensions performing
the best. However, upon examining the validation
losses, we found that the models with smaller em-
bedding dimensions performed poorly. In our final
model, we used an embedding size of 64.

4.2 Activation Functions
We also investigated the effects of different activa-
tion functions on the final linear layer. As seen in
Figure 3, ELU, ReLU, Leaky ReLU and sigmoid
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Figure 1: Model Architecture

Figure 2: Loss (triplet) during training with different
embedding dimensions.

Figure 3: Loss (triplet) during training with different
activation functions in the last layer.

all perform reasonably well with tanh performing
poorly.

The reason for the poor performance could be
due to the tendency of tanh to saturate hindering
training.

We decided to use the Leaky ReLU activation
function for our final model as it produced the most
consistent results during the training process.

4.3 Learning Rate

After investigating the effect of the learning rate
(Figure 4) on the training process, we found that
a lower learning rate led to improved performance
and convergence. For our final model, we used a
learning rate of 0.00001.

Figure 4: Loss (triplet) during training with different
learning rates.
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Figure 5: Loss (triplet) during training with different
pooling methods.

Figure 6: Loss during the training of the final model.

4.4 Pooling Method

Our investigations into the effects of different pool-
ing methods on training (Figure 5) show that mini-
mum pooling leads to the smallest loss. However,
the validation losses for minimum pooling were
inconsistent and mean pooling performed much
better. For our final model, we used mean pooling.

4.5 Final Model Hyperparameters and Design
Choices

Table 3 shows the design choices and hyperpa-
rameters of our final model. Figure 6 shows loss
during the training of our final model.

Hyperparameter Value
Batch Size 64
Weight Decay Rate 0.1
Learning Rate 0.00001
Embedding Dimensions 64
Linear Layer Activation Leaky ReLU
Pooling Method Mean
Training Epochs 1000

Table 3: Design choices and hyperparameters of our
final model.

Figure 7: An extract from our clustering tests showing
performance on clustering direct translations.

Figure 8: An extract from our clustering tests showing
performance on clustering idioms of similar sense.

5 Clustering

We made use of the test data and applied various
clustering algorithms to the encodings produced by
the model. We made use of the K-means cluster-
ing, DBSCAN (Ester et al., 1996) and Bisecting
K-Means (Steinbach et al., 2000) algorithms.

5.1 Direct Translations

We found that the model performed very well when
attempting to cluster idioms that are direct transla-
tions of one another.

As seen in Figure 7, the model is able to effec-
tively cluster idioms that are direct translations of
one another.

5.2 Sense Clustering

Although the model is generally able to detect id-
ioms with similar senses, it does struggle in some
cases.

As seen in Figure 8, the model sometimes fails
to properly cluster idioms of similar sense. ‘kreuz-
fidel’ (meaning to be as happy as a king) and ‘feel
like a kid in the candy store’ both suggest a positive
feeling and ‘put one’s nose in other people’s busi-
ness’ and ‘auf die Nüsse gehen’ (meaning to get
on someone’s nerves) both have a negative sense.
However, in this case, they were placed in different
clusters.

We felt the failure was due to the choice of loss
function. By using positive and negative samples,
there is only a binary relationship between idioms.
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This means the model fails to capture the nuanced
similarities and differences between the idioms.

We also believe that the model weights relation-
ships between idioms in the same language too
heavily, which may hinder its ability to effectively
cluster the idioms by their sense. This bias can
result in clusters heavily dominated by a single
language.

6 Model Evaluation

6.1 UMAP Projections

We utilised UMAP (McInnes et al., 2020) to project
a subset of the sense vectors into 2 dimensions.
This dimensionality reduction enables us to see
more clearly the relationships the model is (and
isn’t) capturing.

Figure 9 shows the UMAP projection of the
embeddings produced by the fine-tuned model and
Figure 10 shows the UMAP projection of XLM-
RoBERTa before the fine-tuning process. The id-
ioms with the same colour in the graph are trans-
lations of one another so should be close together
(if the model was trained effectively). The figures
show that idioms that are translations of one an-
other appear significantly closer to one another in
the fine-tuned model. This indicates the model is
capable of learning the semantic similarities be-
tween idioms in different languages as a result of
the fine-tuning process.

6.2 Mean Reciprocal Rank

To assess the performance of the final model, we
employed the Mean Reciprocal Rank (MRR) met-
ric. We treated the sense embedding of a given
idiom as a query and the sense embedding of the
translation of that idiom as a target. We calcu-
lated MRR values on both the fine-tuned model and
XLM-RoBERTa before fine-tuning so we could ex-
amine the effects of fine-tuning. By applying this
technique, we aimed to gauge the model’s effec-
tiveness in placing idioms close to translations of
themselves in a vector space. The results are shown
in the Table 4.

From the data provided in the table, it’s evident
that the fine-tuning process had a significant posi-
tive impact on the model’s performance. The MRR
values for the fine-tuned model consistently out-
performed those of the model without fine-tuning.
This suggests that the fine-tuning process effec-
tively enhanced the model’s ability to generate
sense-based vector representations of idioms.

Test Batch MRR before MRR after
No. Size fine-tuning fine-tuning
1 26 0.2184 0.4771
2 36 0.1205 0.3138
3 40 0.0698 0.1825

Table 4: The results of our MRR tests.

7 Conclusion and Future Work

In conclusion, our study presented a method of
clustering idioms in different languages by their
sense, making use of pre-trained transformer mod-
els. Our experiments show that our model works
effectively but struggles in some circumstances.

During our tests, we found the model sometimes
failed to cluster idioms of similar sense together.
This can be partly attributed to the binary nature
of triplet loss which fails to capture degrees of
similarity between idioms.

Additionally, we identified a potential bias in the
model’s weighting of relationships between idioms
in the same language.

To address these issues, further work can be done
to mitigate these issues. We will work towards de-
veloping better loss functions and finding methods
of reducing the bias.

Limitations

While our model shows promise at cross-lingual
idiom sense clustering, we feel that there is room
for improvement. This can partly be improved by
larger datasets. By incorporating more diverse and
comprehensive idiomatic expressions from differ-
ent languages, the model can learn more robust
representations and better capture the nuances of
idiomatic senses.

Additionally, we believe that a more sophis-
ticated loss function could further enhance
the model’s clustering capabilities. Instead of
considering binary relationships between idioms,
this loss function would consider the degree of
relatedness between the idioms. This would allow
the model to consider varying degrees of similarity
between idioms resulting in better performance.
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Figure 9: UMAP Projection of sense embeddings produced by the fine-tuned model.

Figure 10: UMAP Projection of sense embeddings produced by XLM-RoBERTa before fine-tuning.
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