
Proceedings of the Third Workshop on NLP for Medical Conversations, pages 1–12
November 1, 2023. ©2023 Association for Computational Linguistics

1

Clinical note section classification on doctor-patient conversations in
low-resourced settings

Zhuohao Chen1∗, Jangwon Kim2, Yang Liu2, Shrikanth Narayanan1

1University of Southern California, Los Angeles, USA
2Amazon, Seattle, USA

sail.usc.edu, {jangwok, yangliud}@amazon.com

Abstract

In clinical visits, clinical note writing is a time-
consuming and cost-prohibitive manual task
for clinicians. Although virtual medical scribes
have been proposed to generate clinical notes
(semi-)automatically, the data sparsity issue is
still a challenging problem in practice. Identi-
fying the topic of clinical utterances in doctor-
patient conversations is one of the key strate-
gies for automation. In this paper, we propose
an utterance-level note section classification
method for the situation of the limited amount
of in-house data. We leverage an external, un-
supervised corpus of medical conversations to
transfer knowledge using the framework of Un-
supervised Meta-learning with Task Augmenta-
tion (UMTA). Our experiments are performed
on both manual transcripts and machine tran-
scripts generated by automatic speech recogni-
tion (ASR). The results show that our strategies
achieve substantial gains in prediction accuracy
over several baseline approaches and are robust
to ASR errors.

1 Introduction

The information from doctor-patient conversations
is typically extracted by electronic health records
(EHRs), the digitized clinical notes that summa-
rize the patient’s medical history and treatment
plan. However, the manual work of generating
EHRs increases the burden on physicians and is
costly in time, leading to the complaint from med-
ical practitioners (Sinsky et al., 2016; Patel et al.,
2018). To mitigate these problems, scientists de-
veloped (partly) automated medical scribes to pro-
duce structured clinical notes from doctor-patient
conversations directly (Finley et al., 2018; Jeblee
et al., 2019a; Krishna et al., 2021a). Clinical sec-
tion classification of speech utterances is one of the
key components of automation. Previous studies
used various machine learning models, e.g., con-
ditional random field (Wallace et al., 2014)), word
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sequence embedding (Jeblee et al., 2019b), and
recurrent neural network (Rajkomar et al., 2019;
Schloss and Konam, 2020; Krishna et al., 2021b)
for automatic clinical note writing systems.

The limited amount of supervised data makes it
challenging to develop automatic systems. Clinical
conversations and medical records are highly sensi-
tive and confidential data with privacy concerns.
Also, annotation tasks require medical domain
knowledge, thus the process is slow and costly.
A couple of studies employed a large number of
labeled encounters (Schloss and Konam, 2020; Kr-
ishna et al., 2021b), but their datasets are not pub-
licly released. Recent studies leveraged transfer
learning and optimization-based meta-learning by
using out-of-domain data (Finn et al., 2017; Nichol
et al., 2018). They used human transcriptions, not
speech audio, which is not available in a real tele-
health scenario.

In this paper, we develop an automatic clinical
section classification method for clinician-patient
speech conversation data. The primary focus of this
work is to mitigate the data sparsity issue in our in-
house data by using Unsupervised Meta-learning
framework with Task Augmentation (UMTA). We
also boost model performance by integrating con-
textual and speaker-role information. Finally, we

Abbr. Topic description
Nb. of utterances
Train Dev Test

PS positive reported symptoms 1017 391 326
NS negative/denied symptoms 253 76 82
SH social history 137 53 46

Med
confirmed past medical history

164 37 76confirmed allergies
confirmed family history

Plan what clinician asks patient to do 601 191 203
None None of above 1866 652 588

Total instances 4069 1407 1358

Table 1: The number of utterances for clinical note
sections



2

Figure 1: An example episode of doctor-patient conversation.

experiment with manual transcript data and ma-
chine transcript data – the 1-best of Automatic
Speech Recognition (ASR) output. Results suggest
that our approach improves prediction accuracy
over several baseline approaches on both types of
data.

2 Data

Our (in-house) target task data consists of speech
audio recordings of dyad clinician-patient conver-
sations and full clinical documents. Clinician-role
participants are real nurses, nurse practitioners, and
medical doctors, while patient-role participants are
mock patients. In order to minimize concerns over
Protected Health Information (PHI), the mock pa-
tients were given randomly selected (fake) Reasons
for Visit (RFVs), then instructed to mimic specific
and realistic situations. Clinicians typically led
telehealth sessions as realistically as possible. Af-
ter the visits, clinicians completed clinical notes
according to the SOAP (Subjective, Objective, As-
sessment, and Plan) coding scheme (Podder et al.,
2021).

The in-house speech audio data was manually
transcribed at the utterance level by a transcription
service provider. Finally, a specialized labeling
team manually annotated the clinical note sections:
seven sections from (sub)headings of clinical notes
and “Other”. Fig 1 shows an episode of a labeled

snippet. The details of the topic definitions are
presented in Appendix A. Table 1 shows statis-
tics of section label distribution. Sections “aller-
gies”, “family history” and “past medical history”
are merged in our experiments, because the data
size of these sections was too small. The in-house
data consists of 6,860 utterances in total. We parti-
tioned the data into train/dev/test sets by sessions
in a ratio of 28/10/10, without the overlap of tele-
health visits.

Another piece of data we used was simulated
clinician-patient conversations purchased from ex-
ternal medical data vendors. This data was col-
lected from various specialties and scenarios, in-
cluding in-patient and out-patient, and telehealth
and offline visits. In total, it has 300,000 utter-
ances with role annotations and human transcrip-
tions. However, there is no section label.

For in-house data, machine transcriptions were
generated using Amazon Transcribe Medical.

3 Methods

3.1 BERT fine-tuning strategies

This section describes our methods to classify sec-
tions by using only in-domain data. A pre-trained
bidirectional encoder representations from Trans-
former (BERT) (Devlin et al., 2019) is fine-tuned
with three different strategies: 1) incorporating con-
textual utterances, 2) incorporating role informa-
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Figure 2: The framework of two-phase fine-tuning.

tion and 3) role-specified fine-tuning.
First, we added preceding and following utter-

ances instead of feeding a single utterance as the
input to the model and examined their impact on
accuracy. Our hypothesis is that contextual infor-
mation can benefit prediction accuracy. Second,
we learned that the speaker-role information could
improve topic categorization (Khosla et al., 2020)
and incorporated it into the input by using role-
specific tokens: “[PAT]" for patient’s utterances
and “[CLI]" for clinician’s utterances. They were
placed in front of the utterances. For example,
{[PAT ], Ui−2, [CLI], Ui−1, [CLI], Ui, [PAT ],
Ui+1, [CLI], Ui+2} were used as the input for pre-
dicting the section of clinician’s utterance Ui with
the context size of 2 (ranging from Ui−2 to Ui+2).

Finally, we examined the benefit of two-phase
fine-tuning of Fig 2 to learn role-specific language
patterns. This is motivated by our observations of
different language patterns used by patients and
clinicians for the same clinical note section. For
example, clinicians use questions a lot for section
“History of Present Illness”, while patients use an-
swer statements. In the first phase fine-tuning, we
performed the regular BERT fine-tuning on all ut-
terances. Then, in the second phase, we fine-tuned
the model on role-specific utterance data. In the
end, we trained two BERT models, one for each
role.

3.2 Leveraging external data
To overcome the data sparsity issue of the in-house
data, our strategy is to leverage external datasets
and transfer knowledge to our task domain. We
propose an algorithm of Unsupervised Meta-
learning with Task Augmentation (UMTA). Fig 3
shows the framework of UMTA. This meta-transfer
framework learns from external data first before
fine-tuning the model on in-domain data. The

challenges on meta-transfer learning from external
data are (1) that the external data is unsupervised
(no section label), and (2) that there is a shift
between the external data and the in-house data,
because of their differences in clinical visit
scenarios and specialties, and (3) that technically,
meta-learning calls a large number of source tasks.
To address these challenges, we incorporate three
more steps before normal meta-learning.

Step 1 We perform utterance clustering on the
source corpus (the external dataset) and produce
latent reasoning labels. Specifically, we use
BERT to extract features from the data and then
use k-mean clustering to group them into M
clusters. The extracted features are the pooled
output (embedding of the initial [CLS] token)
so that the instances within the same cluster are
semantically similar. To align the clustering results
more closely with the target classes, we utilize
the BERT model (referred to as F ) following the
initial fine-tuning on our in-house dataset. Next,
we label utterances by their cluster indices. These
clusters are used to construct simulated source
tasks, and we hypothesize that they benefit meta-
learning performance by increasing task variability.

Step 2 Let z ∈ Z = {1, 2, ..., N} be the target la-
bel variables. We define the distance between a
cluster label and a target label variable as follows:

D(y = l, z = k) =

∑ml
i=1 1{F (xli) = k}

ml
(1)

where D(y = l, z = k) denotes the proportion
of the utterances in the l-th cluster for which the
model F does not assign the label k. A lower
value of D(·) indicates that the utterances with
the cluster label y = l and target label z = k have
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Figure 3: The framework of unsupervised meta-learning with task augmentation (UMTA)

greater similarity.

Algorithm 1 Unsupervised Meta-learning with
Task Augmentation

1: Producing Source Tasks:
2: Initialize with a pre-trained BERT; K,M,N ∈

N
3: Fine-tune BERT with in-domain data
4: Perform K-mean clustering on in-house data

using embeddings from the fine-tuned BERT
to get the cluster labels set Y = {1, 2, ...,M}

5: Create empty cluster groups G1, G2, ..., GN .
6: for i = 1 to K do
7: for j = 1 to N do
8: Compute D(y, z = j), y ∈ Y using

Equation(1), y∗ = argmin
y∈Y

D(y, z = j)

9: Add y∗ to Gj ; remove y∗ from Y
10: Pick one label from each group in

G1, G2, ..., GN to produce NK different
source tasks {Ti}N

K

i=1

11:

12: Meta-Transfer Learning:
13: Initialize the model parameters Φ with a pre-

trained BERT; ns ∈ N, λ, δ > 0
14: while not done do
15: Select a batch of tasks {Ti} with the prob-

ability proportional to the task size
16: for all Ti do
17: Perform by ns steps of gradient descent

with the learning rate λ to obtain Φns
i .

18: Update: Φ = Φ+δ 1
|{Ti}|

∑
i(Φ

ns
i −Φ)

Step 3: After calculating the distance between
each pair of source clusters and target classes, we
take turns picking the most similar cluster label
for each target label. Algorithm 1 describes this
process. Then, for each target class, we create
cluster groups G1, G2,... GN , each of which

contains K clusters that represent the K source
clusters with the smallest D(·) value. We select
one cluster from each group to produce KN source
tasks for meta pre-training. The labels of these
source tasks are in one-to-one correspondence with
the target classes, which we hypothesize that it is
beneficial to knowledge transfer.

Fig 3 shows an illustration of the UMTA frame-
work. After the first three steps above (colored in
blue in Fig 3), we feed the generated source tasks
into the meta-learning pre-training to learn informa-
tion from the in-house data. We adopt the Reptile
algorithm for training because it achieves the best
performance among the optimization-based meta-
learning algorithms on the benchmark dataset (Dou
et al., 2019). As described in Algorithm 1, we se-
lect a task with the probability proportional to the
size of its dataset, following the work of (Dou et al.,
2019) and (Chen et al., 2022). The parameters λ
and δ denote the learning rate of the inner loop
and that of the outer loop, respectively. And ns

denotes the inner update step. After performing the
intermediate task with meta-transfer learning, we
continue training BERT with the two-phase fine-
tuning as described in Section 3.1 to obtain the final
prediction model.

4 Experiments and Discussions

4.1 Experimental Setup

All of our models were implemented in PyTorch
(version 1.12.0) (Paszke et al., 2019) with CUDA
10.2. We ran each task 10 times and report the
average performance of accuracy. The language
model we adopt is BERT-base1. We set the max se-
quence length depending on how many contextual
utterances we incorporated, which covered more

1https://github.com/huggingface/pytorch-pretrained-
BERT
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Figure 4: An example of producing source tasks for a two-way classification target task, K: size of cluster groups

than 99% of the sentences. For the BERT fine-
tuning processes, we selected the best learning rate
among {1e-5, 2e-5, 3e-5} on the validation set. We
employed a decoupled weight decay regularizer
and a linear learning rate scheduler for optimiza-
tion (Loshchilov and Hutter, 2018). The model
was trained with a batch size of 64 and 5 epochs,
selected by their lowest validation loss. For the in-
termediate task of meta-learning, we set λ = 5e−5
and δ = 2e − 5. We pre-trained the model for 3
epochs, sampled 8 tasks per step, and fixed the
inner update step ns to be 5.

4.2 Language Model Adaptation

To achieve a better pre-trained language model for
our task, we adapted BERT to the healthcare con-
versation domain via domain-adaptive pre-training
(Gururangan et al., 2020) using masked word pre-
diction and next sentence prediction using external
data. To learn the roles and contextual information,
we prefixed the role tokens “[CLI]" and “[PAT]"
to each utterance and splice the corpus every three
utterances. We trained BERT for 20,000 steps with
the external data, setting the learning rate to 2e-5,
the batch size to 32, and the maximum sequence
length to 128. The adapted language model is de-
noted as careBERT.

4.3 Experimental Results
The experimental results of accuracy we present
are all relative values compared to the baseline (the
results are masked by dash symbols) in each table.

4.3.1 Results with In-domain Data Only
Table 2 shows experimental performance of incor-
porating contextual utterances and role informa-
tion with in-house data only. Both the average
and standard deviation of the prediction accuracy
are reported. If we do not use the role tokens
and set the context size to zero, the method is
identical to normal BERT fine-tuning. We also
compared with the performance of support vector
machine-based (SVM) with bag-of-word (BOW)

Approach role
tokens

context
size Acc(%)

BOW+SVM N/A 0 -
TF-IDF+SVM N/A 0 +2.2

BERT-based
Methods

no 0 +5.1±1.1
no 1 +2.0±1.6
no 2 +0.2±1.7
yes 0 +4.2±1.2
yes 1 +10.7±1.2±1.2±1.2
yes 2 +8.9±1.4

Table 2: Effect of incorporating contextual utterances
and role information in clinical topic classification.
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Acc(%) of
clinician’s data

Acc(%) of
patient’s data

overall
Acc(%)

BERT with
clinician’s data

- N/A N/A

BERT with
patient’s data

N/A -3.3 N/A

BERT with
all data

+1.8+ -1.3+ +0.1∗

two-phase
fine-tuning

+4.7+ +2.1∗ +3.7∗

∗ is significantly higher than + at p < 0.05.

Table 3: The comparison between direct BERT fine-
tuning and two-phase fine-tuning approaches. N/A: not
applicable.

and term frequency-inverse document frequency
(TF-IDF) transformations, denoted by BOW+SVM
and tfidf+SVM, respectively. In Table 2 shows that
adding contextual utterances improves accuracy
only when incorporating role tokens for speak-
ers, presumably because otherwise, the model can
hardly detect the target utterance. We found that
the best context size for this task was one, and in-
creasing the value degraded the performance. We
hypothesize that a bigger context size makes the
input more complicated, which hurts performance
in low-resource situations. Hence, for direct BERT
fine-tuning with in-domain data, the best perfor-
mance is achieved by specifying role tokens and
employing one utterance before and after the target
utterance as an input sequence. We used this input
configuration for all other experiments. Table 3
demonstrates that the two-phase fine-tuning out-
performs the direct BERT fine-tuning, indicating
the benefit of adding role tokens. Finally, training
with data of both roles shows better performance
than training with data of a single role, suggesting
that additional information from a different role
data offers useful information for better prediction
accuracy in the low-resource setting in this study.

4.3.2 Results of Leveraging Out-Of-Domain
Data

Table 4 shows results of various pre-trained BERT
models. blueBERT is a publicly available model
that was trained on written clinical notes and other
medical data (Peng et al., 2019). careBERT model
achieves the best accuracy, suggesting that adapting
the language model to the medical conversational
domain boosts accuracy (2.3% normalized accu-
racy boost in two-phase fine-tuning, compared to
BERT-base). blueBERT performed worst, which

BERT-base blueBERT careBERT
Two-phase
Fine-tuning

- -2.9 +2.3

Table 4: The results of clinical topic classification tasks
with different pre-trained language models.

Language
Model

Two-Phase
Fine-tuning

UMTA
K=2 K=4 K=6 K=8

BERT-base - +1.4 +2.7 +3.5 +3.0
careBERT +2.3 +3.7 +4.4 +5.0 +4.5

Table 5: Comparison between UMTA and two-phased
fine-tuning approaches. K: size of cluster groups for
UMTA.

suggests that the impact of different data type (clin-
ical note v.s. dialogue) is significant.

Table 5 compares the performance of UMTA
and the two-phase fine-tuning algorithm. UMTA
leverages the external corpus by using our pro-
posed algorithm, while two-phase fine-tuning uses
in-domain data only. For UMTA, the number of
clusters was 50. K is the size of cluster groups.
Results show that UMTA makes good use of out-
of-domain data and improves accuracy. Finally, K
= 6 was the optimal. We speculate that it’s related
to the impact of K to model: It leverages too little
data and generates too few source tasks when K is
too small, while it includes more irrelevant source
clusters, reducing the task similarity, when K is
too big.

To better understand how the UMTA framework
improves the classification tasks, we performed an
ablation study by grouping the clusters randomly at
the stage of Fig 4(iii), instead of using any similar-
ity metric. We denote the modified framework as
UMTA-random. Fig 5 presents the comparison be-
tween the UMTA and UMTA-random for different
values of K. Unlike UMTA, which has an opti-
mal value of K, the result of UMTA-random im-
proves monotonically as K increases, presumably
because the random selection procedure does not
affect the similarity between the produced source
and target tasks. The UMTA-random still improves
accuracy with all K values, compared to two-phase
fine-tuning (baseline in Table 5). However, it de-
grades the performance of the UMTA. It indicates
that our proposed framework benefits the predict-
ing tasks by implementing meta-learning for the
intermediate task and the cluster grouping strategy
to increase task similarity.
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Figure 5: The comparison between standard UMTA
and the random version of UMTA in which we form the
cluster groups by selecting clusters randomly. We report
the relative values of accuracy compared to two-phase
fine-tuning. Language model: BERT-base

Finally, we compared UMTA with self-training
(Vu et al., 2021) which is another popular way of
leveraging external data. Also, we compare the
impact of using ASR transcripts, compared to us-
ing human transcripts. careBERT was used as the
base pre-trained model. Table 6 shows the results.
First, using ASR transcripts instead of manual tran-
scripts decreases performance of all models, which
is expected. It is noteworthy that self-training led
to enhanced prediction accuracy compared to a
two-phase fine-tuning approach using human tran-
scripts. Conversely, employing ASR transcripts
resulted in a decline in accuracy. However, UMTA
improved accuracy on both human transcripts and
ASR transcripts over two-phase fine tuning, sug-
gesting the robustness of UMTA to the ASR er-
ror. In addition, the best accuracy was achieved
by UMTA for both manual transcripts and ASR
transcripts.

Data
Format

Two-Phase
Fine-tuning

Self-training UMTA

Manual - +0.7±0.3 +2.7±0.1±0.1±0.1

ASR -1.3±0.7 -1.9±0.5 +1.6±0.1±0.1±0.1

Table 6: The comparison between the results on the
manual transcripts and ASR derived transcripts using
careBERT.

5 Conclusion and Future Work

In this study, we performed clinical utterance classi-
fication on manual transcripts and ASR transcripts
with several strategies for low-resource scenarios.
We incorporated contextual and role information
into the model and showed their accuracy boost.

To handle the data sparsity issue, we leveraged
a larger size of unsupervised external dataset by
adapting BERT to the medical conversational do-
main and using our proposed UMTA to improve
the knowledge transfer toward the target task. Our
experiment results show that UMTA showed the
best performance and robust against ASR errors.

We believe there is still room for improvement.
Contextual information from longer time window
(e.g., at the beginning, in the middle, or the final
in a clinical visit) may benefit section classifica-
tion performance, because clinicians typically lead
conversations with patients, following their proto-
cols.. For instance, clinicians typically ask History
of Present Illness (HPI) early, discuss assessment
and plan at the end. Another dimension of improve-
ment is to extend its application to offline visits by
speaker diarization, where the role of an utterance
cannot be captured by audio channels.

Limitations

Apart from the one mentioned in Sec 5 that we do
not incorporate longer temporal information of the
clinical visits, this work has two more limitations.
Firstly, we purchased the external data from a medi-
cal data vendor, which is still costly. Consequently,
it is imperative to conduct further investigations to
explore whether the UMTA can efficiently trans-
fer knowledge from the publicly available dataset.
While the clinical section coding scheme of SOAP
is designed for written notes, adapting it to clinical
visit transcripts necessitates the development of an-
notation rules to map utterances to specific clinical
section topics. Furthermore, the labeling task was
carried out by non-experts who underwent training
and calibration demonstrations prior to the coding
process, which might introduce some level of noise
into the labeled data.

References
Zhuohao Chen, Nikolaos Flemotomos, Zac Imel, David

Atkins, and Shrikanth Narayanan. 2022. Leveraging
open data and task augmentation to automated be-
havioral coding of psychotherapy conversations in
low-resource scenarios. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022,
pages 5787–5795, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

https://doi.org/10.18653/v1/2022.findings-emnlp.425
https://doi.org/10.18653/v1/2022.findings-emnlp.425
https://doi.org/10.18653/v1/2022.findings-emnlp.425
https://doi.org/10.18653/v1/2022.findings-emnlp.425


8

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1192–
1197, Hong Kong, China. Association for Computa-
tional Linguistics.

Gregory Finley, Erik Edwards, Amanda Robinson,
Michael Brenndoerfer, Najmeh Sadoughi, James
Fone, Nico Axtmann, Mark Miller, and David
Suendermann-Oeft. 2018. An automated medical
scribe for documenting clinical encounters. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–15, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Suchin Gururangan, Ana Marasović, Swabha
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A Appendix

Our in-house data is a mock customer dataset
simulating the nursing situation from a specific
business institution. For every conversation, both
transcriptions and clinical notes are provided by
the in-house experts. Since the dialogue is different
from the written notes, we propose a coding
scheme to map the utterances to the materials
from the clinical notes. A specific labeling team
performed the annotation work who demonstrated
calibration prior to coding process, which resulted
in high inter-rater reliability (ICC > 0.8 (Cohen,
1960)). Details and examples of each topic label
are presented as follows:

PS: positive reported symptoms, patient’s assess-
ment, vaccines states (in many cases it is related to
the symptoms).

PS is short for positive reported symptoms. As
shown in the Fig 6, we not only code for clinician’s
words but also annotate patient’s feedback.

Note: Onset/Timing/Duration (OTD) and Sever-
ity/Pain (SP) are included in PS.

NS: negative/denied symptoms.

If the patient’s answer to the clinician is a denial,
we annotate the utterances of both clinician and
patient to be negative/denied symptoms and ‘NS’
for short.

Med: confirmed past medication history.

Med means "confirmed medication history".
Following the clinical note convention of in-house
data, we only code for confirmed medications.
For the medication related to the patient’s current
symptoms, we code it as "PS". For the denied
medication, we code it by “N".

A: confirmed allergies.

For the allergies related to the patient’s current
symptoms, we code it as "PS" following the
clinical note convention of in-house data. For the
denied family allergies, we code it by “N".

SH: social history.

The social history section records the substances in
the patient’s personal life that have the potential
to be clinically significant, such as alcohol and
drugs. Unlike medication history, both confirmed
and denied items are recorded. In this example of
Fig 10, the content of the social history section is
“no smoke".

FH: confirmed family history.

For the denied family history, we code it by “N".

Plan: what doctor asks patient to do.

The doctor usually explains why the plan is
good before or after he tells the patient about the
plan/suggestion. We only code for the plan in this
case and ignore the explanation.

N: none of above.

If an utterance belongs to none of previous topics,
we label it by “N”.
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Figure 6: An example of the label positive reported symptoms.

Figure 7: An example of the label negative/denied symptoms.

Figure 8: An example of the label confirmed past medical history.

Figure 9: An example of the label confirmed allergies.
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Figure 10: An example of the label social history.

Figure 11: An example of the label confirmed family history.

Figure 12: An example of the label plan.


