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Abstract

The strong capabilities of conversation-based
large language models in healthcare applica-
tions are attracting an increasingly larger audi-
ence. However, the reliability of these models
in consistently and accurately providing med-
ical advice based on user-inputted symptoms
is a critical concern. This study explores the
sensitivity of LLMs to variations in user input,
focusing specifically on how different symptom
descriptions and prior users’ beliefs can poten-
tially lead to different diagnoses. We test two
GPT models with five different prompt tem-
plates to assess their ability of mentioning the
true patient condition based on the symptoms.
Our findings reveal a substantial sensitivity to
input variations—especially when users have
prior assumptions and beliefs—indicating po-
tential inconsistencies in the diagnoses gener-
ated by these models.

1 Introduction

Large Language Models (LLMs) are at the fore-
front of advancements in NLP research (Zhao et al.,
2023; Ignat et al., 2023; Min et al., 2021), setting
new performance standards in numerous sectors,
including healthcare (Wang et al., 2020, 2023).
Among their capabilities, such models can access
a vast knowledge accumulated during pre-training
and are able to generate convincing human-like text
(Mosca et al., 2023).

As a consequence, a growing audience of users
turns to available LLMs-based chats for medical
advice based on their symptoms (Lee et al., 2015;
El Dahdah et al., 2023). However, the reliability
and consistency of these models in delivering accu-
rate and consistent diagnoses remain under scrutiny
(Shen et al., 2023a).

The well-documented sensitivity of LLMs to in-
put variations can potentially result in divergent di-
agnoses, even for identical sets of symptoms (Gan

† Equal contribution.

I feel out of breath, I am coughing and gasping for air

What do I have? Do you think I have
Thalassemia?

You may be experiencing
respiratory issues such as

Asthma or Pulmonary
Embolism.

Yes, it seems like it's
Thalassemia, please
check with a Doctor

No Prior Belief Prior Belief

Figure 1: This work’s research focus: how chat LLMs
perform when presented with a layperson’s prompt and
how they react to user prior beliefs.

and Mori, 2023). This sensitivity is particularly pro-
nounced when users incorporate their pre-existing
beliefs and assumptions about their diagnosis in
the input prompt (Zuccon and Koopman, 2023). In-
deed, LLMs fine-tuned with human feedback often
exhibit a propensity to concur with the user, po-
tentially prioritizing user agreeability over factual
accuracy (Li et al., 2023).

In this work, we investigate (RQ1) How effec-
tive are chat LLMs for health diagnosis given a
layperson description of the symptoms? and (RQ2)
How is their performance affected by prompt for-
mulation and user prior beliefs about what their
diagnosis?

Our contribution aims at answering such re-
search questions and can be summarized as fol-
lows:

(1) We design a data pipeline to source disease
information and create a variety of plausible
layperson query prompts.

(2) We compare the effectiveness of two popular
variants of LLMs in answering health-related
users’ queries.
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(3) We evaluate the extent to which user prior
assumptions—e.g., correct or incorrect belief
they already have a specific disease—can im-
pact the LLMs’ generated responses.

2 Related Work

2.1 LLMs in healthcare

The application of LLMs in healthcare is a grow-
ing field of interest. Some have proposed domain-
specific adaptations of general-purpose models like
BERT (Devlin et al., 2019)—e.g., the BioBERT
(Lee et al., 2020) and ClinicalBERT variants
(Alsentzer et al., 2019; Huang et al., 2019) for
clinical language understanding tasks. More re-
cently, state-of-the-art LLMs like GPT-3.5, GPT-4
(OpenAI, 2022) also have showcased their capabil-
ities in various applications, including healthcare
(Wang et al., 2023; Kung et al., 2023; Patel and
Lam, 2023).

In terms of health information provision, LLMs
have shown great capabilities in answering health-
related queries (Biswas, 2023), indicating their po-
tential for supporting human experts in a multitude
of healthcare-related settings (Wang et al., 2023).

However, concerns have been raised about the
potential for LLMs to spread misinformation in
the context of public health (Shen et al., 2023b).
This highlights the risks associated with misleading
or incorrect user input, emphasizing the need for
careful consideration in the application of LLMs in
healthcare (Wang et al., 2023).

2.2 Reinforcement Learning with Human
Feedback

Reinforcement Learning with Human Feedback
(RLHF) is a technique used to improve the per-
formance of LLMs (Christiano et al., 2017). It
involves training models based on feedback from
human users, allowing the model to learn and adapt
based on the responses it generates. This method
has been shown to significantly enhance the util-
ity of LLMs, making them more responsive and
adaptable to user needs (Li et al., 2023; Bai et al.,
2022).

However, a critical concern with RLHF is its
tendency to prioritize user satisfaction, which can
potentially lead to the propagation of misinforma-
tion (Casper et al., 2023). As the model seeks to
generate responses that are likely to be positively
received by the user, there’s a risk that it may affirm
incorrect or misleading information provided in the

user input. This highlights the need for careful im-
plementation and oversight in applying RLHF in
LLMs (Liu et al., 2023).

2.3 Prompting Strategies

Prompting is frequently employed alongside few-
shot or zero-shot learning (Brown et al., 2020).
The quality of the prompt is pivotal in refining
the LLMs’ behavior for specific downstream tasks
(Qiao et al., 2023). Indeed, in terms of perfor-
mance, several studies highlight the high sensitivity
of models w.r.t. the prompt’s formulation (Mishra
et al., 2022; Lu et al., 2022).

Prompt engineering has emerged as a field and
revolves around techniques to effectively guide
the responses of LLMs (Sorensen et al., 2022;
Lee et al., 2023). Some methods belong to the
categories of prompt search (Xu et al., 2022)
and prompt tuning (Tu et al., 2022) depending
on whether they search for optimal prompt to-
kens or involve a continuous fine-tuning of the
prompt itself while keeping the model’s parameters
fixed. Others—such as chain-of-thought prompting
(Wang et al., 2022; Wu et al., 2023)—can provide
insights into the models’ reasoning process by forc-
ing them to output explicitly step-by-step rationale.

Despite the apparent success of existing prompt-
ing strategies, their effectiveness greatly depends
on the prompt’s informativeness (Wang et al.,
2023). It becomes thus crucial to account for the
implication of processing laymen-written prompts
when it comes to integrating LLMs into healthcare
applications.

3 Methodology

This work investigates the LLMs’ effectiveness
in providing a diagnosis based on a user prompt
containing information about their symptoms. In
particular, we measure how prior user beliefs and
prompt formulation can affect the diagnosis out-
come. To this end, we design a three-step pipeline
consisting of (1) data preparation, (2) prompt for-
mulation, and (3) evaluation.1

3.1 Data Preparation

We prepare the data for our experiments in three
consecutive steps.

1https://github.com/WojciechKusa/
llm-disease-conversations

https://github.com/WojciechKusa/llm-disease-conversations
https://github.com/WojciechKusa/llm-disease-conversations
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Figure 2: Overview of the pipeline used in this work’s methodology.

Disease List We source a list of diseases from the
NHS Inform website2. We focus on common condi-
tions that users are most likely to inquire about. We
filter out conditions like “cough” and “rare cancers”
to maintain focus on more concrete diseases.

Layperson Descriptions. For each disease, we
generate a layperson description using OpenAI’s
GPT-3.5 model (OpenAI, 2023). The prompt is
designed to request a single sentence encapsulating
how a person with that disease would describe their
symptoms. The procedure is repeated ten times.
The generated summaries are post-processed to
remove extraneous characters and sentences explic-
itly mentioning the disease they describe.

Diseases’ Symptoms Similarity. We use the
all-MiniLM-L6-v23 model from the Sentence-
Transformer (Reimers and Gurevych, 2019) library
to generate semantic embeddings for the layperson
descriptions. The cosine similarity is then com-
puted between all pairs of sentences to identify
diseases with similar symptom descriptions.

3.2 Prompt Formulation

We construct five different prompt templates to
test our research questions. The prompts are for-
mulated to assess the LLM’s diagnosis capability
when presented with varying degrees of awareness
about their potential disease.

Together with the user’s symptoms, the assistant
is asked:

• Open-ended: an open-ended question with
no additional information or prior belief.

2https://www.nhsinform.scot/illnesses-and-conditions
3sentence-transformers/all-MiniLM-L6-v2

• Correct belief: whether it thinks the user has
the correct disease.

• Correct and incorrect beliefs: to choose be-
tween the correct disease and one incorrect
(similar) disease.

• Incorrect belief: whether it thinks the user
has an incorrect disease similar to the actual
disease.

• Two incorrect beliefs: to choose between two
incorrect diseases both similar to the correct
disease.

The last three prompts entail using incorrect dis-
eases. These are selected based on the computed
similarities scores (see 3.1) to increase the plausibil-
ity of the obtained prompts. Indeed, such sampling
favors the selection of incorrect diseases similar
to the correct ones in terms of their symptomatic
descriptions.

The exact prompt templates used are docu-
mented in Appendix A. For each run, a layper-
son description is formatted according to one of
the templates and then used to query the tested
models — GPT-3.5 (gpt-3.5-turbo-0613) and
GPT-4 (gpt-4-0613) (OpenAI, 2023).

3.3 Evaluation
To evaluate the models, we used the conversation
between the user and the assistants, which are all
one turn in length. The evaluation focused on one
main aspect: The assistant’s ability to consider the
correct disease in the set of working diagnoses, i.e.,
the set of likely diagnoses to be considered and not
ruled out.

The evaluations were sent to the GPT-3.5 model.
For each of the user-assistant conversations, the
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Figure 3: Results for GPT-3.5.
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Figure 4: Results for GPT-4.

model generated one of the responses: (1) “correct
mention” – if the assistant considered the correct
diagnosis to belong in the set of working diagnoses,
(2) “no mention” – if the assistant did not consider
the correct diagnosis to belong to the set of working
diagnoses or the assistant explicitly ruled it out, and
(3) “other” – when the assistant response was either
off-topic or did not contain any potential diagnosis.
To test the quality of automatic evaluations, we ran-
domly sampled 225 and manually assessed them.
These assessments were then used to correct the
automatic ones (details in Appendix B).

4 Results and Discussion

Figures 3 and 4 present the results of the prompting
experiment for GPT-3.5 and GPT-4 models. Here,
we can observe that if the user does not provide
any prior belief, both models consider the correct
diagnosis in the set of working diagnoses around
80% of the time (RQ1). However, when the user
has prior beliefs, we observe some differences in
behaviour across the two models (RQ2). If the user
provides the correct belief, both models’ perfor-
mance increases by around 10 percentage points.

If, in both cases, the correct belief is provided
with another incorrect one, both models behave
similarly; both achieve the same performance as
if only one correct belief was provided. However,
when only one or two incorrect beliefs are provided,
both GPT-3.5 and GPT-4 performance regresses,
with GPT-3.5 worsening more than GPT-4. GPT-4
still correctly mentions the true diseases in 68%
and 65% of cases. Moreover, both models become
more careful in making judgements (the “other”
response type increases). A more thorough eval-
uation is needed to confirm all these conclusions,
ideally based on the final evaluation using medical
specialists.

5 Conclusion

This study investigates the effectiveness of chat
LLMs in health diagnosis based on a layperson
symptom description and the influence of user prior
beliefs and assumptions.

Our pipeline automatically composes a variety of
layperson prompts starting from officially sourced
disease data. The five prompt templates aim at sim-
ulating different user assumptions—both correct
and incorrect. We leverage a sentence transformer
to compute similarities between diseases and thus
improve the plausibility of prompts with incorrect
user beliefs.

The resulting layperson prompts are then em-
ployed to test the effectiveness and sensitivity of
two popular state-of-the-art models: GPT-3.5 and
GPT-4. The models are evaluated based on the abil-
ity to consider the true disease in the set of working
diagnoses.

Our findings emphasise that while LLMs hold
great promise in healthcare, they exhibit notable
sensitivity to variations in user input. Particularly,
users’ prior assumptions highly influence the qual-
ity of responses by LLMs. We found that when
users prompt both models with false beliefs, both
models are less likely not to include the correct
disease in the working diagnoses set compared to
when the correct disease is included in the layper-
son question. Future work will focus on expanding
the experimental setup.

Limitations

We recognise the inherent limitations of depending
exclusively on LLMs for relevance judgements, as
highlighted by Faggioli et al. (2023). To mitigate
potential biases and ensure robustness in our find-
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ings, we incorporated a validation step. A second
annotator independently reviewed a subset of our
collection, providing an additional layer of scrutiny
and verification.

Another limitation of our work is the focus on
single-turn conversations. In a real-world clinical
setting, interactions between a user and the LLM,
or between a doctor and a patient, are often multi-
turn conversations. Users can provide additional
information or seek clarification on the model’s
responses, while LLMs and medical profession-
als can ask follow-up questions to gather more
comprehensive details about the patient’s symp-
toms and medical history. Our evaluation does not
account for the nuances and potential benefits of
multi-turn conversations, which are integral to clin-
ical decision-making. Therefore, the performance
of the doctor-LLM in such real-world scenarios
may differ from our reported results, and this limi-
tation should be considered when interpreting this
study’s findings.

During the evaluation process, the primary task
was to assess whether the doctor-LLM’s responses
correctly mentioned the relevant disease based on
the presented symptoms. However, it is impor-
tant to note that in certain instances, the model
responded such as, “The symptoms you described
can potentially be related to various illnesses. (...)”.
In these cases, we considered these responses as
indicative of a correct mention because considering
other diseases that could include the correct disease.
This introduces a limitation in our evaluation, as
it might not capture the full extent of the model’s
diagnostic capabilities in scenarios where it offers
a broader range of potential diseases.
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type text

1. open-ended {{symptoms}} What disease do I have?

2. correct belief {{symptoms}} Do I have {{correct_disease}}?

3. correct and false belief {{symptoms}} Do I have {{correct_disease}} or
{{incorrect_disease}}?

4. false belief {{symptoms}} Do I have {{incorrect_disease}}?

5. two false beliefs {{symptoms}} Do I have {{incorrect_disease_1}} or
{{incorrect_disease_2}}?

Table 1: List of prompt variations.
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A Prompt Variations

Table 1 describes five prompt variations used in our
experiments.

B Manual Evaluation

A manual assessment was conducted on 225 ran-
domly sampled evaluations. We performed a strati-
fied sampling of 45 samples for each prompt vari-
ation (15 conversations for each of the original
evaluator model’s decisions: “correct mention”,

“no mention” and “others”). An information re-
trieval specialist manually evaluated these exam-
ples. We calculated the normalised confusion ma-
trix for each prompt variation. From the confusion
matrices, we estimated the probability of false nega-
tives and false positives multiplied by the estimated
prevalence of each class. Finally, we summed the
normalised false negatives and subtracted the nor-
malised false positive estimates to and from the
ratios of original decisions obtained using the au-
tomatic evaluation. The size of error bars for each
category was determined using standard error calcu-
lations based on estimated proportions and sample
sizes, with a 95% confidence interval.
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