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Abstract

Many machine translation toolkits make use
of a data preparation step wherein raw data is
transformed into a tensor format that can be
used directly by the trainer. This preparation
step is increasingly at odds with modern re-
search and development practices because it
produces a static, unchangeable version of the
training data, making common training-time
needs difficult (e.g., subword sampling), time-
consuming (preprocessing with large data can
take days), expensive (e.g., disk space), and
cumbersome (managing experiment combina-
torics). We propose an alternative approach that
separates the generation of data from the con-
sumption of that data. In this approach, there
is no separate pre-processing step; data gener-
ation produces an infinite stream of permuta-
tions of the raw training data, which the trainer
tensorizes and batches as it is consumed. Addi-
tionally, this data stream can be manipulated by
a set of user-definable operators that provide on-
the-fly modifications, such as data normaliza-
tion, augmentation or filtering. We release an
open-source toolkit, SOTASTREAM, that imple-
ments this approach: https://github.com/
marian-nmt/sotastream. We show that it
cuts training time, adds flexibility, reduces ex-
periment management complexity, and reduces
disk space, all without affecting the accuracy
of the trained models.

1 Introduction

A cumbersome component of training machine
translation systems is working with large amounts
of data. Modern high-resource parallel datasets
are often on the order of hundreds of millions of
parallel sentences, and backtranslation easily dou-
bles that (Kocmi et al., 2022, Appendix A). Be-
cause this data is too large to fit into main memory,
toolkits such as FAIRSEQ (Ott et al., 2019) and
SOCKEYE (Hieber et al., 2022) make use of a pre-
processing step, which transforms the training data
from its raw state into a static sequence of tensors.
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Figure 1: The SOTASTREAM approach separates data
generation from consumption. Whereas offline ten-
sorization requires model-specific parameters such as
the vocabulary, which ties processed data to a partic-
ular training, SOTASTREAM produces data on the fly,
avoiding time-consuming production and space-wasting
storage of preprocessed data.

These tensors can then be read in via an index and
memory-mapped shards, allowing for quick assem-
bly into batches at training time.

While this offline preprocessing prevents data
loading from becoming a bottleneck in training, it
creates a number of other problems:

• it breaks an abstraction: the tensorized data
is tied to specific modeling decisions, such as
the vocabulary;

• it is cumbersome: the tensorized data cannot
be easily changed, and even minor variations
of the data must be processed separately and
then managed;

• it is time-consuming: pre-processing can take
considerable time and must be completed be-
fore training can start; and

• it is wasteful: each data variant replicates the
original’s disk space.

These problems exist for construction of any model,
but are exacerbated in research settings, which of-
ten explore variations of the training data.

We describe an alternative that factors genera-
tion of data from the consumption of that data by
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the training toolkit. This view presents the training
data as an infinite stream of permutations of the raw
training samples. This stream is then consumed by
the training toolkit, which tensorizes it on the fly,
consuming data into a buffer from which it can as-
semble batches. This framework eliminates all the
problems above: variants of the data are indepen-
dent of any model; arbitrary manipulations can be
applied on the fly; preprocessing time is amortized
over training, which can start as soon as the first
batch can be constructed;and no extra disk space
or management is required.

We release an open-source implementation of
the proposed data generation framework called SO-
TASTREAM1. SOTASTREAM is written in Python
and uses Infinibatch2 to provide a stream of data
over permutations of data sources. It additionally
provides an easily-extendable set of mixers, aug-
mentors, and filters that allow data to be probabilis-
tically manipulated on the fly. A particular config-
uration of manipulators is provided by the user in
the form of a dynamically-loadable pipeline, which
defines a parameterizable recipe that can be used
for training. SOTASTREAM uses multiprocessing to
reach high throughput levels that prevent starvation
of the training toolkit. And finally, it employs a
standard UNIX API, writing data to STDOUT.

After presenting this framework (§ 2), we con-
duct a quality comparison to demonstrate that it
does not reduce model quality (§ 4). We then inves-
tigate stream bandwidth under various pipelines as
well as necessary toolkit consumption needs (§ 5).
We conclude by demonstrating a number of use
cases (§ 6).

2 Training from data streams

The core idea underlying SOTASTREAM is to
cleanly separate data generation from consumption
of that data during training. The data generator is
responsible for producing training samples, and the
trainer consumes them. This factorization allows
us to separate properties of the data (such as their
sources, mixing ratios, and augmentations) from
properties of training and the model (such as tensor
format, batch size, and so on).

The current approach relies on standard UNIX

I/O pipes as an interface between these two pieces.
However, SOTASTREAM could also be used to gen-
erate data for offline uses, or modified to allow

1https://github.com/marian-nmt/sotastream
2https://github.com/microsoft/infinibatch

consumption through some other API, such as a
library call that returns a generator.

2.1 Data generation
SOTASTREAM is a data generator. At a high level,
it works by defining a pipeline. This pipeline reads
from a set of zero or more input data sources, ap-
plies any augmentations, and produces a single
output stream.

Pipelines Pipelines are implemented by inherit-
ing from the base Pipeline class. The class im-
plementation is responsible for defining the input
data sources, reading from them, applying augmen-
tations, and returning a single output stream. These
are depicted in Figure 2, a simplified presentation
that elides other support features, such as providing
the mixing weights for the input data sources.

The pipeline has three basic components:

1. Build a stream for each input data source;

2. apply a sequence of augmentors; and

3. merge the streams to a single output stream.

Data sources SOTASTREAM uses Infinibatch to
return a generator over a permutation of the sam-
ples in a data source. Each DataSource object
receives two key arguments: a file path to the data
source on disk, d, and a processor function, f , to
read it. This can be seen in Figure 2 in the call to
create_data_stream(d, f).

The data is received as a path to a directory of
compressed TSV file shards. Infinibatch requires
that data be presented in this way.3 For each data
epoch, Infinibatch produces a permutation of these
shards. The shards are then passed, in turn, to the
function f , which is responsible for opening, read-
ing, and processing the shard. It is important to
note that Infinibatch provides an infinite stream of
data; that is, it will iterate indefinitely over its input
data, subject to the constraint that no shard (within
a data source) will be seen n + 1 times until all
shards have been seen n times. See the Multipro-
cessing section (§ 2.3) below for important caveats
related to multiprocessing and MPI training).

Augmentations The second argument to
create_data_stream is a generator function, f ,

3SOTASTREAM can also receive a path to a single com-
pressed TSV file, in which case it splits the file into shards
under a temporary directory. The default shard size is 1e6
lines. The results of this automatic sharding are cached using
an MD5 checksum.
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@pipeline("robust -case")
class RobustCasePipeline(Pipeline):

def __init__(self , pa_dir: str , bt_dir: str , ** kwargs):
super ().__init__ (** kwargs)
pa_stream = self.create_data_stream(pa_dir , processor=Augment)
bt_stream = self.create_data_stream(bt_dir ,

processor=partial(Augment , tag="[BT]")) # tag the BT data
self.stream = Mixer([pa_stream , bt_stream], self.mix_weights)

# definitions of other class methods go here ...

def LowerCase(stream: Generator[Line]) -> Generator[Line]:
for line in stream:

line [0] = line [0]. lower() # lowercase the source side
yield line

def TitleCase(stream: Generator[Line]) -> Generator[Line]:
for line in stream:

line[0], line [1] = line [0]. title(), line [1]. title () # titlecase both sides
yield line

def TagData(stream: Generator[Line], tag: str) -> Generator[Line ]}:
for line in stream:

line [0] = f"{tag} {line}" # add a target language tag to the source
yield line

def Augment(path: str , tag: str = None) -> Generator[Line]:
stream = UTF8File(path) # open the path to the shard

stream = Mixer( # randomly mix casing variants
[ stream , LowerCase(stream), TitleCase(stream) ],
[ 0.95, 0.04, 0.01 ],

)

if tag is not None:
stream = TagData(stream , tag)

return stream

Figure 2: A simplified pipeline. Streams are built by composing generator functions over input data sources (here,
parallel and backtranslated data). This example tags the backtranslated stream, then mixes it with the parallel stream
using weights provided on the command line (defaulting to 1:1). It then applies random source-lowercasing (4%)
and title-casing (1%).

class Line:
def __init__(self , line: str):

if line is not None:
self.fields = line.split("\t")

else:
self.fields = []

Figure 3: The (simplified) Line object, a lightweight
wrapper around a single row of tab-separated input data.

an Infinibatch primitive whose task is to open each
shard and produce an output data stream. The
output is in the form of Line objects (Figure 3),
each of which is a class representation of the TSV
input. By convention in machine translation, fields
0 and 1 are treated as source and target segments,
respectively, but the code itself makes no such
assumptions.

The function is not limited in just reading and re-

turning the data. A key feature of SOTASTREAM is
augmentations, which are arbitrary manipulations
of a data stream that are easy to stack and accumu-
late. This is accomplished by composing genera-
tors. Figure 2 contains a number of examples in
the Augment function. It first opens a stream on a
path (passed from Infinibatch, containing a path to
a sharded file name). It then applies lowercasing
and title-casing to the input stream probabilisti-
cally, using a Mixer class to select among them
with specified weights. Finally, it prepends a tag to
the data, if requested by the caller.

Outputting the stream Finally, at the top
level, the (augmented) streams from different data
sources are merged into a single stream. This works
in the same way as the above Mixer class exam-
ple. One additional feature is that the Pipeline
class provides the ability to set these top-level data
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weights from the command line (--mix-weights).

2.2 Data consumption

The main requirements for the trainer are to con-
sume data into a pool, apply subword processing,
organize into batches, and run backpropagation
against the training objective. Because these are
done on the fly, rather than in preprocessing, special
considerations must be implemented to ensure that
this extra processing does not become a bottleneck
for training.

In Section 5, we experiment with an implemen-
tation in the Marian toolkit (Junczys-Dowmunt
et al., 2018). Marian makes use of multiple worker
threads, which pre-fetch data from STDIN into an
internal memory pool, where the data is tokenized
and integerized. When the pool is filled, it is sorted
and batched (according to run-time settings). In
the meantime, prefetching continues into a sec-
ond pool. As training proceeds, these two pools
are used alternately for filling via prefetching and
batch generation.

2.3 Multiprocessing

In order to sustain a sufficient throughput, SOTAS-
TREAM makes use of multiprocessing. This can be
increasingly important if the augmentations applied
are expensive to compute. We quantify the effects
of multiprocessing for generation under a handful
of pipelines of varying complexity in Section 5.

Internally, this is accomplished with the
multiprocessing library. We create separate sub-
processes, each of which is provided with indepen-
dent access to the data sources. The parent process
maintains a pipe to each subprocess, and queries
them in sequence, reading a fixed number of lines
from each in turn, and passing them to the standard
output.

An important issue is raised when working with
subprocesses. If each subprocess were to return an
independent permutation over the input data, merg-
ing subprocesses would not itself result in a per-
mutation. To address this, each of n subprocesses
is initalized with 1

n of the data shards, themselves
assigned in round-robin order across the subpro-
cesses. In this way, we guarantee a permutation
in settings where the number of processes evenly
divides the number of shards.

When working over MPI, no such coordination
takes place. Each MPI instantiation will receive a
different randomly-seeded shard permutation.

3 Experimental setup

Our experimental goal is to demonstrate that the
many advantages of SOTASTREAM do not come at
a cost in accuracy (§ 4) or speed (§ 5). We do this
by comparing to a number of other data loading
methods. In order to isolate the effects of changing
the data loader, we conduct all of our experiments
within the Marian toolkit. Marian does not support
offline data preprocessing; instead, we compare a
number of different streaming settings that cover
best-case scenarios for data loading.

3.1 Streaming variations

We compare the following data-loading variations.

• Full loading. In this scenario, the trainer has
direct memory access to the entire data source.
For our experiments, Marian loads the com-
plete datasets into main memory. There is
some startup cost, after which all access to the
data is immediate.

• Sequential streaming. In this approach, the
training data is read sequentially, in a loop
over the entire training set. Data is prefetched
into a pool of a specified size, from which
mini-batches are assembled. Since data is
read sequentially, there is no randomization
across data epochs. The pool size determines
an upper bound on memory usage.

• Randomized sequential streaming. In this vari-
ant of sequential streaming, the lines in each
data source are randomly permuted prior to be-
ing read, providing a corpus-level permutation
on top of sequential streaming’s pool-based
reordering.

• SOTASTREAM. Our Infinibatch-based stream-
ing approach.

For toolkits that support preprocessing, it is typi-
cal to construct an index, which organizes the pre-
sorted and tensorized data into memory-mappable
shards. Marian does not have a preprocessing op-
tion, which means that we have no comparison to
a setting where tensorization is done offline. We
thus consider full-loading to be the closest equiv-
alent, since preprocessing is in fact a stand-in for
full loading. This can only possible affect speed
comparisons (§ 5).

113



3.2 Model parameters

We conduct experiments in a large-data and small-
data setting. Our large-data setting is English–
German. We train on 297m lines of Paracrawl v9
(Bañón et al., 2020) from WMT22 (Kocmi et al.,
2022). We use a 32k shared unigram subword
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018), trained jointly over both
sides. We train a standard base Transformer model
(Vaswani et al., 2017) with 6/6 encoder/decoder lay-
ers, an embedding size of 1024, a feed-forward size
of 4096, and 8 attention heads. The large model
is trained for 20 virtual epochs. Since there are
roughly 7.4 billion target-side tokens after tokeniz-
ing the data, this equates to roughly three passes
over the data.

For the small-data setting, we train on Czech–
Ukrainian, also from WMT22. This dataset has
roughly 12m parallel lines. We use the same model
and parameter settings, but train for only five vir-
tual epochs, or roughly 30 data epochs, since the
model converges by then.

3.3 Evaluation

We evaluate on the WMT21/en-de and WMT22/cs-
uk test sets. We use a number of metrics to capture
variation:

• BLEU (Papineni et al., 2002) and chrF
(Popović, 2015), both computed with sacre-
bleu4 (Post, 2018).

• COMET20/22 (Rei et al., 2020), us-
ing model wmt20-comet-da (EN-DE) or
wmt22-comet-da (CS-UK).

4 Quality Comparison

Table 1 contains metric results for both our high-
and low-resource settings. For English–German,
we observe rough equivalence across all training
methods and metrics, which establishes SOTAS-
TREAM as a viable data preparation tool. A similar
pattern holds for Czech–Ukrainian, except for the
odd outlier of the sequential streaming approach.
This approach simply ‘cat‘ed the training data re-
peatedly until model convergence. This result is
strongest for COMET and less pronounced for
BLEU and chrF. We have no clear explanation for
this; one guess is that in smaller data settings, with

4Version 2.3.1 with default settings.

no filtering, curriculum effects may be more pro-
nounced, and this is the only data generation ap-
proach with no randomization. Among approaches
that permuted the data, SOTASTREAM is on par
with the others. We therefore consider it to pass the
quality benchmark.

5 Speed

Next we ask whether SOTASTREAM has a negative
effect on speed. We examine speed in three settings:
generation speed (§ 5.1), Marian’s consumption
speed (§ 5.2), and total runtime (§ 5.3).

5.1 Data generation
We first examine how fast SOTASTREAM can write
data to STDOUT.

Our benchmark consists of a producer and a con-
sumer connected by UNIX pipe. The producer
varies among the tools we compare in our bench-
mark (described below), while the consumer is a
lightweight script, whose sole purpose is to count
records from STDIN and report the yield rate (the
number of lines per second). All benchmarks are
run one at a time, on the same machine,5 with no
other CPU- or I/O-intensive processes are compet-
ing for resources. We run each benchmark multiple
times and report the average.

We compare the following generation tools:

• zcat: A wrapper to GNU gzip6 that decom-
presses and outputs lines. This serves as the
best case scenario, where the producer is im-
plemented in an efficient way (e.g. C/C++)
and has no time-consuming augmentations.

• zcat.py: Similar to zcat, but based on gzip
API from Python’s standard library.7

• default pipeline: SOTASTREAM’ default, re-
turning lines from a single data source (§ 2.1)
with no augmentations.

• case augmentor pipeline: the pipeline from
Figure 2. It mixes two data sources, applies
case transformations, and prepends a "[BT]"
tag to the backtranslated data.

We benchmark multiple worker subprocesses: n ∈
{1, 2, 4, 8, 16, 32}. The throughput measured is

5An Intel Xeon E5-2620 CPU with 32 cores, 660 GB of
RAM, and running Ubuntu 20.04 LTS.

6https://git.savannah.gnu.org/cgit/gzip.git/
tree/zcat.in

7https://docs.python.org/3/library/gzip.html
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English–German (newstest2021) Czech–Ukranian (wmttest2022)
Model COMET20 BLEU chrF COMET22 BLEU chrF

Best constrained 54.8 31.3 60.7 91.6 34.7 61.5

Full loading 55.9± 0.4 34.9± 0.1 62.0± 0.0 85.5± 0.2 27.9± 0.4 55.6± 0.2
Sequential streaming 56.1± 0.2 35.0± 0.2 62.1± 0.0 86.4± 0.1 28.7± 0.3 56.6± 0.2
Randomized streaming 55.8± 0.2 35.1± 0.0 62.2± 0.0 85.6± 0.1 27.8± 0.0 55.6± 0.2
SOTASTREAM 55.9± 0.1 34.9± 0.1 62.1± 0.1 85.7± 0.2 28.5± 0.4 56.2± 0.2

Table 1: Mean over three runs for our high- and low-resource scenarios. The best constrained system is WeChat-AI
(Zeng et al., 2021) for EN-DE and AMU (Nowakowski et al., 2022) for CS-UK.
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Figure 4: Generation and consumption rates with SO-
TASTREAM and Marian, respectively. SOTASTREAM is
not a bottleneck, but is easily able to generate data and
transmit it through the POSIX API to sustain training.

as lines/s and is given Figure 4. zcat, being the
fastest, yields over 585k lines/s, and Python’s al-
ternative (zcat.py) yields 342k lines/s.8 Our SO-
TASTREAM default with a single worker yields
approximately 136k lines/s, which can be increased
with more workers and plateaus after a certain rate
(possibly due to a bottleneck in number of parallel
reads supported by underlying storage device). As
we add more augmentations and mixture processes,
we observe a lower yield rate than no-augmentation
baselines (expected). However, yield rate can be
improved with more worker processes.

5.2 Consumption

We have shown the rate at which SOTASTREAM

can generate data. In this section, we show the
rate at which one particular NMT trainer (Marian)
consumes training data. Training time and the con-
sumption rate varies based the size of model being
trained, and the number of GPUs used for training.

We train smaller Transformer models than used
8Measured on CPython v3.11; prior versions of CPython

are found to be slower.

Model Time (Hours)

Full loading 36.84 ±0.16
Sequential streaming 35.51 ±0.15
Randomized streaming 35.73 ±0.05
SOTASTREAM 35.86 ±0.27

Table 2: End-to-end training time.

for Table 1, since smaller models train faster and
therefore have higher data consumption needs. We
use 6/6 encoder/decoder layers, 512-dimensional
embeddings, and feedforward sublayers of size
2048. We report consumption rate for six settings:
one vs. eight GPUs,9 and using one, four, or eight
prefetching worker threads. As shown in Figure 4,
a trainer with single GPU consumes about 1523
lines/s, and with eight GPUs, the consumption rate
increases to 8957 lines/s. Even in the best case
scenario (smaller model, more GPUs, and more
prefetcher threads), the consumption rates of train-
ing process are lower than SOTASTREAM produc-
tion rate.

We recommend running multiple workers when
augmentations are slow in order to maintain suf-
ficient output rates. We do not experiment with
them here, but in multi-node training settings coor-
dinated with MPI, one (multiprocess) instance of
SOTASTREAM should be run per node.

5.3 Total time to run
Table 2 verifies that SOTASTREAM’s amortized ap-
proach is neither slower nor faster than other ap-
proaches when total runtime is considered.

6 Example Use Cases

In this section we show example use cases how SO-
TASTREAM can be used to simply and easily mod-
ify data on the fly. This provides all the advantages
of training for robustness without the cumbersome
task of generating (and managing) data that has

9NVIDIA Tesla V100s with 32GB.
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been preprocessed in many different forms, which
are combinatorial and impose high costs on the
complexity of managing training runs.

6.1 Mixing multiple streams of data

Training machine translation models often requires
combining different data sets in desired proportions
in order to balance their size or quality or other
properties. The example in Figure 2 demonstrates
that combining original parallel data and back-
translated data can be efficiently achieved in SO-
TASTREAM by mixing multiple data streams with
specific data weighting. The weights for each data
stream can be then specified using the command-
line options:

sotastream robust -case \
parallel.tsv.gz backtrans.tsv.gz \
--mix -weights 1 1

The weights are normalized and used as probabili-
ties with the Mixer augmentor.

This approach, when compared to the traditional
offline preparation of the data, is much simpler,
more scalable, saves disk space and does not re-
quire complicated ratio-computation and data over-
or downsampling.

6.2 Data augmentation for robustness

SOTASTREAM’s augmentors provide a flexible
framework for developing different methods for
data augmentation, for example, case manipulation
for robustness against different casing variants of
the input text. It is demonstrated in the example in
Figure 2, where LowerCase is an augmentor that
lowercases the source text, and TitleCase con-
verts both source and target sides to the English
title-cased format. The frequency of each variant
is easily controlled with the same Mixer used to
join separate data sources. The on-the-fly approach
simplifies experiments when testing multiple varia-
tions, which is often needed in order to find optimal
augmentation methods and ratios, it minimizes the
burden of experiment management.

Many other types of robustness augmentation
(Li et al., 2019), such as source-side punctuation
removal, spelling errors generation, etc., can be
implemented in a similar way.

6.3 Filtering bad data examples

In SOTASTREAM it is straightforward to do data
filtering on the fly. This type of filtering is espe-
cially useful in scenarios in which external data is

used for model training or fine-tuning that cannot
be manually filtered in a controlled way.

For example, a URLFilter filter that removes
lines that have unmatched URLs between the
source and target fields can be implemented using
the provided MatchFilter:
def URLFilter(stream):

pattern = r'\bhttps ?:\S+[a-z]\b'
return MatchFilter(stream , pattern)

6.4 Subword tokenization sampling
The boundary separating data generation from con-
sumption can be blurred. For example, instead of
producing raw text output, the tool could generate
subwords, if provided with a subword model. This
facilitates randomized sampling of different sub-
word segmentations from a Unigram LM model
with SentencePiece’s Python wrapper:
import sentencepiece as sp
spm = sp.SentencePieceProcessor(

model_file=SPM_VOCAB)

def spm_enc(stream , spm , fields =[0, 1]):
for line in stream:

for field in fields:
line[field] = spm.encode(

line[field], out_type=str ,
enable_sampling=True))

yield line

6.5 Training document-context models
When training document models (e.g., Post and
Junczys-Dowmunt (2023)), we can easily construct
pseudo-documents on the fly if the training data is
augmented with a document identifier field:
def read_docs(stream):

doc , previd = [], None
for line in stream:

docid = line [2]
if len(doc) and docid != previd:

yield doc
doc = []

doc.append(line)
previd = docid

if len(doc):
yield doc

A wrapper around this function could merge the
source and target sides of the Line object, perhaps
subject to parameters such as a maximum sequence
length, a maximum number of sentences, and struc-
tural tokens to be used as affixes.

6.6 Alignments and other data types
SOTASTREAM has been primarily designed for ma-
chine translation, which requires providing source
and target texts as separate fields. Other data types
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or metadata can be generated on the fly or provided
as additional fields in the input stream. By design
the existing augmentors pass forward the unused
fields, which makes introducing new fields that are
used only by a subset of augmentors simple.

The example below demonstrates on-the-fly
generation of word alignment using SimAlign
(Jalili Sabet et al., 2020):
import simalign as sa
aln = sa.SentenceAligner ()

def align(stream , aln , fields =[0, 1]):
i, j = fields
for line in stream ,

res = aln.get_word_aligns(line[i],
line[j])

res = " ".join(f"{p[0]}-{p[1]}"
for p in res['mwmf'])

line.append(res)
yield line

The word alignment can be used directly by the
trainer, e.g., for guided alignment training (Chen
et al., 2016), or used by subsequent augmentors that
may require it, e.g., constrained terminology trans-
lation annotations (Bergmanis and Pinnis, 2021).

6.7 Integration with data collection tools
SOTASTREAM can integrate tools like MTData,
which automates the collection and preparation of
machine translation data sets (Gowda et al., 2021).
The following example shows mtdata pipeline
which downloads the specified data sets and mixes
them as per −−mix-weights argument:
sotastream -n 1 mtdata --langs rus -eng \

Statmt -news_commentary -16-eng -rus \
Statmt -backtrans_ruen -wmt20 -rus -eng \
OPUS -paracrawl -v9-eng -rus \
--mix -weights 2 1 1

6.8 Generating data sets for offline use
If the training tool does not support consuming
training data from the standard input, SOTAS-
TREAM can be used for static data generation.
While the real advantages of SOTASTREAM accrue
when making use of its on-the-fly data manipula-
tions, this approach retains some of its benefits.

6.9 Other uses
The SOTASTREAM approach to factoring data gen-
eration, as well as SOTASTREAM itself, could also
be used for generating non-textual content. The
benefits of not writing data to disk would be greater
in settings where input disk space is larger than
plain text, such as translation from visual repre-
sentations (Salesky et al., 2021). Nor does it need

to be limited to sequence-to-sequence settings; we
imagine the approach could be useful for training
of LLMs.

7 Related Work

To our knowledge, SOTASTREAM is novel in pre-
senting a framework for the generation of training
data as a distinct component in the model train-
ing pipeline. It emphasizes a clean separation be-
tween data generation and training, multithreading
for throughput, and the use of the standard UNIX

pipeline interface.
It is not the first to propose streaming data, how-

ever. Although Fairseq’s documentation empha-
sizes a preprocessing step,10, Fairseq can also read
and process raw data on the fly if it can be loaded
completely into memory. Pytorch (Paszke et al.,
2019) also provides “iterable-style” DataPipes for
iterating over data samples,11 but as far as we know,
they are not widely used for machine translation
training. They could, however, provide an inter-
face to SOTASTREAM for Python-based training
toolkits.

There are many libraries focused on data aug-
mentation. A number of these are focused just on
text augmentations, including nlpaug (Ma, 2019),
TextAttack (Morris et al., 2020), and TextFlint (Gui
et al., 2021). Another tool is AugLy (Papakipos
and Bitton, 2022), a multimodal tool for text, au-
dio, images, and video that provides robust training
against adversarial perturbations. Many of these
libraries could be useful within SOTASTREAM’s
general framework.

8 Conclusion

The data-preprocessing approach that is common
in machine translation model training makes it pos-
sible to work with increasingly large datasets, but
this ability does not come without costs. It is time-
consuming to copy and process data, and can be
expensive to store on disk. If data is compiled
with model-specific parameters that tie the data to
a particular model training, it prevents or at least
complicates reusability. This problem is further
exacerbated by research settings where one of the
experimental parameters is manipulations of the
training data, since each variant (and potentially

10https://web.archive.org/web/20230609072600/
https://fairseq.readthedocs.io/en/latest/
getting_started.html

11https://pytorch.org/data/main/torchdata.
datapipes.iter.html
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their cross-products) must be written to disk and
then managed.

We have described an approach that separates
data generation from data consumption, and shared
SOTASTREAM, an implementation that makes use
of the standard UNIX pipeline. The requirement is
that preprocessing must now be computed on the
fly. Our experiments show that this does not slow
down training, nor does it affect the accuracy of
the models trained. The approach provides flexi-
bility, saves processing time and disk space, and
simplifies experiment management.

Limitations

We have only investigated data consumption rates
in a single toolkit, Marian, written in C++. It’s
possible that the online preprocessing requirements
may be too much for toolkits written in languages
without a proper thread implementation.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and Marcin Junczys-Dowmunt. 2023. Escap-
ing the sentence-level paradigm in machine transla-
tion.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Elizabeth Salesky, David Etter, and Matt Post. 2021.
Robust open-vocabulary translation from visual text
representations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7235–7252, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Xianfeng Zeng, Yijin Liu, Ernan Li, Qiu Ran, Fan-
dong Meng, Peng Li, Jinan Xu, and Jie Zhou.
2021. WeChat neural machine translation systems
for WMT21. In Proceedings of the Sixth Conference
on Machine Translation, pages 243–254, Online. As-
sociation for Computational Linguistics.

119

https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2201.06494
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/2304.12959
http://arxiv.org/abs/2304.12959
http://arxiv.org/abs/2304.12959
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.emnlp-main.576
https://doi.org/10.18653/v1/2021.emnlp-main.576
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://aclanthology.org/2021.wmt-1.23
https://aclanthology.org/2021.wmt-1.23

