
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 199–211
December 6, 2023 ©2023 Association for Computational Linguistics

Antarlekhaka: A Comprehensive Tool for
Multi-task Natural Language Annotation

Hrishikesh Terdalkar and Arnab Bhattacharya
{hrishirt, arnabb} @cse.iitk.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur, India

Abstract

One of the primary obstacles in the advance-
ment of Natural Language Processing (NLP)
technologies for low-resource languages is the
lack of annotated datasets for training and test-
ing machine learning models. In this paper,
we present Antarlekhaka, a tool for manual
annotation of a comprehensive set of tasks rele-
vant to NLP. The tool is Unicode-compatible,
language-agnostic, Web-deployable and sup-
ports distributed annotation by multiple simul-
taneous annotators. The system sports user-
friendly interfaces for 8 categories of annota-
tion tasks. These, in turn, enable the annota-
tion of a considerably larger set of NLP tasks.
The task categories include two linguistic tasks
not handled by any other tool, namely, sen-
tence boundary detection and deciding canoni-
cal word order, which are important tasks for
text that is in the form of poetry. We pro-
pose the idea of sequential annotation based on
small text units, where an annotator performs
several tasks related to a single text unit before
proceeding to the next unit. The research ap-
plications of the proposed mode of multi-task
annotation are also discussed. Antarlekhaka
outperforms other annotation tools in objective
evaluation. It has been also used for two real-
life annotation tasks on two different languages,
namely, Sanskrit and Bengali. The tool is avail-
able at https://github.com/Antarlekhaka/code.

1 Introduction and Motivation

Manual annotation plays an important role in nat-
ural language processing (NLP). It is particularly
important in the context of low-resource languages
for the creation of datasets.

There are a number of syntactic and semantic
tasks in NLP which can utilize annotation by do-
main experts. Lemmatization, morphological anal-
ysis, parts-of-speech tagging, named entity recog-
nition, dependency parsing, constituency parsing,
co-reference resolution, sentiment detection, dis-
course analysis and so on are some examples of

such common NLP tasks.
There’s a need of considering historical con-

text and respecting the perspectives of Indigenous
language speaking communities when conducing
NLP research involving these languages (Schwartz,
2022). Sanskrit, a classical language, has a large
amount of text available digitally; however, it still
suffers from poor performance in standard NLP
tasks. Hence, manual annotation of text in Sanskrit
is of prime necessity. Further, most of the clas-
sical Sanskrit literature is in poetry form follow-
ing mostly free word order (Kulkarni et al., 2015),
without any punctuation marks. Therefore, certain
specialized tasks, such as sentence boundary detec-
tion and canonical word ordering, are needed for
Sanskrit text processing

Consider an example1 from a Sanskrit text,
Valmiki Ramayana, (Dutt et al., 1891) shown in
Fig. 1. The sentence boundaries are denoted using
square brackets ([and]). The half-verse boundaries
are marked by single forward slashes (/) and the
verse boundaries by two forward slashes (//). It can
be observed that the sentence boundaries do not
coincide with the verse boundaries. In particular,
there may be multiple sentences present in a single
verse, or a sentence may extend across multiple
verses. Further, the right side of the arrow shows
that the canonical word order is different from the
order in which words appear in the original text.

For such languages that either do not use punc-
tuations or use them in a limited amount, sentence
boundary detection is an important task. Addition-
ally, in languages with relatively free word order,
decision of a canonical word order is also relevant.
These two tasks also play a vital role when deal-
ing with the corpora in the form of poetry, making
them potentially relevant for all languages.

Performing multiple annotation tasks on the

1Using IAST transliteration scheme: https:
//en.wikipedia.org/wiki/International_Alphabet_of_
Sanskrit_Transliteration

199

https://github.com/Antarlekhaka/code
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration

[na rocate mama-api-etad-ārye]1 [yad-rāghavo vanam /
tyaktvā rājyaśriyaṃ gacchet]2 [striyā vākyavaśaṃ gataḥ // 2
viparītaś ca vṛddhaś ca viṣayaiś ca pradharṣitaḥ /
nṛpaḥ kim iva na brūyāc codyamānaḥ samanmathaḥ // 3]3
[...]

[ārye etad mama api na rocate]1
[yad rāghavo rājyaśriyaṃ tyaktvā vanam gacchet]2
[viparītaḥ vṛddhaḥ ca viṣayaiḥ pradharṣitaḥ ca codyamānaḥ
samanmathaḥ ca striyā vākyavaśaṃ gataḥ nṛpaḥ kim iva na brūyāt]3
[...]

Figure 1: Sanskrit verses from Valmiki Ramayana. Original text appears on the left with sentence boundary markers
added. The canonical word order is shown on the right.

same corpus is common, and the order of these
tasks can be important due to their interdependence.
Specifically, in cases2 where sentence boundary de-
tection is relevant, it must be performed before any
other annotation task. For instance, determining
the word order of a sentence requires finalizing the
constituent words first. The same holds true for
tasks such as dependency parsing, sentence classi-
fication, and discourse analysis.

In this paper, we describe Antarlekhaka3, a
tool for distributed annotation that provides user-
friendly interfaces to facilitate the annotation pro-
cess of various common NLP tasks in a straight-
forward and efficient way. We propose a sequen-
tial annotation model, where an annotator carries
out multiple annotation tasks relevant for a small
text unit, such as a verse, before proceeding to
the next. The tool has full Unicode support and
is designed to be language-agnostic, meaning it
can be used with corpora from any language, mak-
ing it highly versatile. The tool sports eight task-
specific user-friendly annotation interfaces corre-
sponding to eight general categories of NLP tasks:
sentence boundary detection, canonical word or-
dering, free-form text annotation of tokens, token
classification, token graph construction, token con-
nection, sentence classification and sentence graph
construction. The goal of the tool is to streamline
the annotation process, making it easier and more
efficient for annotators to complete multiple NLP
tasks on the same corpus. Annotators can partic-
ipate in the annotation without any programming
knowledge. Additionally, the tool’s easy setup and
intuitive administrator interface make it accessible
to administrators with minimal technical expertise.

2 Background

An annotation tool is crucial for the successful com-
pletion of any annotation task, and its success relies
heavily on its usability for the annotators. Apart
from this, the tool should be easily installable and

2For corpora without clear sentence boundaries, like lan-
guages with limited punctuation or poetic corpora

3Antarlekhaka is a Sanskrit word meaning ‘annotator’.

should support web deployment for distributed an-
notation, allowing multiple annotators to work on
the same task from different locations. The admin-
istration interface of the tool should also be intu-
itive and should provide convenient access to com-
mon administrative tasks such as corpus upload,
ontology creation, and user access management.
Additionally, often there is a need for multiple an-
notation tasks to be completed on the same corpus.
A well-designed annotation tool should encompass
these features to ensure a smooth, efficient, and
accurate annotation process.

Numerous text annotation tools are available that
target specific annotation tasks, such as WebAnno
(Yimam et al., 2013), INCePTION (Klie et al.,
2018), GATE Teamware (Bontcheva et al., 2013),
FLAT (van Gompel, 2014), BRAT (Stenetorp et al.,
2012), doccano (Nakayama et al., 2018) and more.
However, each of these tools falls short in fulfilling
all the requirements of an ideal annotation tool. For
instance, WebAnno is rich in features but becomes
complex to use and experiences performance is-
sues as the number of lines displayed on the screen
increases. Both WebAnno and BRAT lack full
support for Firefox (Fort, 2016), an issue that was
rectified in INCEpTION. GATE Teamware suffers
from shortcomings such as inadequate support for
relation and co-reference annotation (Herik et al.,
2018), installation issues (Neves and Ševa, 2021)
and complexity for average users (Yimam et al.,
2013). FLAT uses a non-standard FoLiA XML data
format and the system is not intuitive (Neves and
Ševa, 2021). BRAT has not been actively4 devel-
oped and exhibits issues such as slowness, limited
scope for configuration and limitations regarding
file formats (Yimam et al., 2013). The tool doc-
cano, although simple to set up and intuitive, only
supports labeling tasks. Sangrahaka (Terdalkar and
Bhattacharya, 2021), while being easy to set up
and use, focuses only on the annotation towards
creation of knowledge graphs and lacks support
towards general-purpose NLP annotation tasks.

Some annotation tools including INCEpTION

4The latest version was published in 2012

200

Table 1: Comparison of NLP annotation tools based on primary features and supported tasks

INCEpTION GATE BRAT FLAT doccano Sangrahaka Antarlekhaka

Distributed Annotation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Easy Installation ✓ ✓ ✓ ✓ ✓
Sequential Annotation ✓
Querying Interface ✓
Token Text Annotation ✓ ✓ ✓ ✓ ✓
Token Classification ✓ ✓ ✓ ✓ ✓ ✓
Token Graph ✓ ✓ ✓ ✓ ✓ ✓
Token Connection ✓ ✓ ✓ ✓ ✓ ✓
Sentence Boundary ✓ ✓
Word Order ✓
Sentence Classification ✓ ✓
Sentence Graph ✓

use spans for marking most annotations, which a
user by selecting and dragging mouse cursor over
the corpus text. This method, while versatile, has
a trade-off that the annotation process is slower
and more tedious. Importantly, none of these tools
address crucial tasks like canonical word ordering.
Hence, there is a need for an annotation tool that is
user-friendly, easy to install and deploy, and encom-
passes all the necessary tasks for NLP annotation.

Thus, for the general purpose multi-task annota-
tion of NLP tasks, we present Antarlekhaka. The
annotation is performed in a sequential manner on
small units of text (e.g., verses in poetry). The
application is language and corpus agnostic. The
tool is able to process data in two different for-
mats: the standard CoNLL-U5 format and plain
text format. Regular-expressions based tokenizer
is applied when using the data in plain text format.

Tab. 1 shows a comparison of the prominent an-
notation tools. We also conduct an objective eval-
uation of Antarlekhaka using the scoring method-
ology proposed by (Neves and Ševa, 2021). We
modify the criteria suitable to the domain of NLP
annotation. Details of the evaluation are described
in Sec. 4. It is important to note that while some
of the existing tools, in theory, have the capabil-
ity to support certain NLP tasks, they may not be
designed with user-friendly interfaces.

3 Architecture

Antarlekhaka is a language-agnostic, multi-task,
distributed annotation tool presented as a Web-
deployable software. The tool makes use of several
technologies, including Python 3.8 , Flask 2.2.2 ,
and SQLite 3.38.3 for the backend, and HTML5,
JavaScript, and Bootstrap 4.6 for the frontend.

Flask web framework powers the backend of
Antarlekhaka providing a robust and scalable in-

5https://universaldependencies.org/format.html

frastructure. A web framework is responsible for
a range of backend tasks, including routing, tem-
plating, managing user sessions, connecting to
databases and others. The recommended way to
run the tool in a production environment is using
a Web Server Gateway Interface (WSGI) HTTP
server, such as Gunicorn , which can operate be-
hind a reverse proxy server such as NGINX or
Apache HTTP Server . However, any WSGI server,
including the built-in server of Flask, can be uti-
lized to run the application.

SQLite is used as the database management sys-
tem to store and manage the data and metadata
associated with the annotation tasks. An Object
Relational Mapper (ORM) SQLAlchemy6 is used
to interact with the relational database. This allows
the user to choose any supported dialect of tradi-
tional SQL, such as SQLite, MySQL , PostgreSQL ,
Oracle , MS-SQL , Firebird , Sybase and others7.

The frontend of the tool, built using HTML5,
JavaScript, and Bootstrap, provides user-friendly
interfaces for annotators and administrators. The
tool provides a feature-rich administrative interface
to manage user access, corpus, tasks and ontology.
The tool also includes eight types of intuitive anno-
tation interfaces, explained in detail in Sec. 3.3.

The tool simplifies setup with a single configura-
tion file that controls various customizable aspects.
Overall, by combining the state-of-the-art technolo-
gies, Antarlekhaka offers a powerful and flexible
solution for large-scale annotation projects.

3.1 Workflow

The workflow of the system is demonstrated in
Fig. 2. The application is presented as a full-stack
web-based software. It follows a single-file configu-
ration system. An administrator may configure the
tool and deploy it to web, making it immediately

6https://www.sqlalchemy.org/
7https://docs.sqlalchemy.org/en/20/dialects/

201

https://universaldependencies.org/format.html
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/20/dialects/

Upload
Corpus

Setup
Tasks

Task 1

Database

Administrator

Annotator

Visualize

Export

Task 2

Task n

Unit 1

Task 1

Task 2

Task n

Unit 2

Annotation

Figure 2: Workflow of Antarlekhaka

available for use. User registration is supported.
User access is controlled by a 4-tier permission sys-
tem, namely User, Annotator, Curator and Admin.

The tool has eight annotation interface templates
corresponding to eight generic categories of NLP
annotation tasks: sentence boundary detection,
canonical word order, free-form token annotation,
token classification, token graph construction, to-
ken connection, sentence classification, and sen-
tence graph construction. Various NLP tasks can be
modelled using each of these categories. More than
one tasks of same category may be required for a
specific annotation project. For example, named en-
tity recognition (NER) and parts-of-speech (POS)
tagging are both examples of token classification.
To facilitate this, the administrative interface allows
an administrator to create multiple tasks of each
category. Additionally, an administrator can also
control the set of active tasks, order of the tasks,
ontology for the relevant tasks, corpus management
and user access management.

We propose a streamlined sequential mode of
annotation where an annotator completes multiple
tasks for a single unit of text before moving on to
the next unit. The set and order of tasks is cus-
tomizable through an administrative interface. We
consider a small logical block of text as a unit for
the annotation, e.g., a verse from the poetry corpus.

3.2 Data

The data for corpus can be in either of two for-
mats: CoNLL-U format or plain text format and
can contain Unicode text. CoNLL-U is a widely
used format for linguistic annotation, and it is based
on the column format for treebank data. The for-
mat is designed to store a variety of linguistic an-
notations, including part-of-speech tags, lemmas,
morphological features, and dependencies between
words in a sentence. Data in CoNLL-U format can

be obtained from treebanks such as Universal De-
pendencies (De Marneffe et al., 2021), which is
a project that aims to develop cross-linguistically
consistent treebank annotation. In addition, NLP
tools such as Stanza (Qi et al., 2020) are capable of
processing a general corpus of text and producing
data in CoNLL-U format.

Plain text data is processed using a regular-
expression based tokenizer, which is a process that
splits the text into individual units of meaning, such
as verses, lines and tokens using patterns defined
in the form of regular expressions to identify the
respective separators. The plain text processor mod-
ule is a pluggable component. An administrator
may reimplement it using any language specific
features or tools as long as the data output by the
module meets the current format specifications.

After the data has been imported, it is organized
in a five-level hierarchy structure consisting of:
Corpus, Chapter, Verse, Line, and Token. The hier-
archical structure of the data provides a clear and
organized framework for annotating and analyzing
the data, making it easier to capture the relation-
ships between different elements of the data.

3.3 Task Categories and Interfaces

The annotation supports annotation towards eight
categories of annotation tasks and offers intuitive
interfaces for each category. Annotators view the
corpus in the form of text units (e.g., verses) on
the left, and an annotation area on the right. After
submitting annotations for a task, the interface au-
tomatically advances to the next task. Annotators
are expected to complete all the tasks associated
with a text unit before moving on to the next unit.
This, however, is not strictly enforced, allowing
annotator to still go back to modify annotations.
Fig. 3 showcases the overall annotation interface.

The administrator can configure task-related in-
formation, including task titles, instructions, active
tasks, and their order, through the administrative
interface. This interface is illustrated in Fig. 5
(Appx. A). Tasks such as user access management,
corpus creation, and ontology management also
have intuitive administrative interfaces. Next, we
provide a detailed description of each task category
and its corresponding interface.

3.3.1 Sentence Boundary Detection
The importance of the sentence boundary task is
not limited to languages without distinct sentence
markers; it also pertains to poetry text, making it

202

Figure 3: Annotation Interface: a Sanskrit corpus split into small units, and annotation area with task tabs

relevant to all languages.
The annotator’s task is to identify and mark sen-

tence boundaries by placing the delimiter ‘##’ (two
‘hash’ symbols) at the end of each sentence in the
provided editable text area prefilled with the orig-
inal text. If the sentence does not end in the dis-
played unit, the user does not add any delimiters.
After marking sentence boundaries, the user can
proceed to the next annotation task. An illustration
of this annotation task is shown in Fig. 6 (Appx. A).

It is worth mentioning that although the sentence
boundary task is given primary citizen treatment,
it can still be turned off for languages where it is
not applicable. In such instances, the boundaries
of annotation text units (e.g., verses) are treated as
sentence boundaries.

3.3.2 Canonical Word Order
All sentences that end in the current unit of text
are displayed to the annotator as a list of sortable
tokens. The annotator can rearrange these tokens
into the correct canonical word order by dragging
them into place. Additionally, if any tokens are
missing, the annotator can add them as well. A
visual representation of this task is shown in Fig. 7
(Appx. A). The sorting capability is made possible
through the use of the jQuery UI (Sortable plugin)8.

3.3.3 Token Annotation
The token annotation interface allows an annotator
to add free-form text associated with every token.
This free-form text can have different purposes,
such as to identify the root word of a word (lemma-
tization), to separate multi-word expressions into
individual words (compound splitting), to analyze
the morphological structure of a word (morpholog-
ical analysis), etc. The token annotation interface
is shown in Fig. 8 (Appx. A).

8https://api.jqueryui.com/sortable/

3.3.4 Token Classification
Token classification is a process of assigning pre-
defined categories to individual tokens in text data.
It is a special case of free-form token annotation,
wherein the annotations are guided by an ontology.
For such a task, an administrator must create an on-
tology. During the annotation process, an annotator
is provided with a list of tokens, each accompanied
by a dropdown menu, from which they can select
the appropriate category for relevant tokens. Some
common examples of token classification tasks in-
clude NER, dependency tagging, POS tagging, and
compound classification. Fig. 9 (Appx. A) illus-
trates the token classification interface.

3.3.5 Token Graph
A token graph is a graph representation of the sen-
tence, where the nodes are tokens belonging to a
single sentence and the relations are based on an
ontology. Tasks such as dependency parse tree,
constituency graph, action graph are examples of
tasks belonging to this category.

Semantic triple9 is a standard format to repre-
sent and store graph-structured information in a
relational database in a systematic manner. The in-
terface allows an annotator to add multiple relations
per sentence in the form of subject-predicate-object
triples, where subject and object are tokens from
the sentence and the predicate is a relation from the
task specific ontology. The valid values of subject,
object and predicate appear in individual dropdown
menu elements for the annotator to choose from.
Erroneous triples may also be removed. During
the annotation process, an annotator can view the
current status of the token graph at any time using
the ‘Show Graph’ button. Fig. 10 (Appx. A) shows
the token graph interface with graph visualization.

9https://en.wikipedia.org/wiki/Semantic_triple

203

https://api.jqueryui.com/sortable/
https://en.wikipedia.org/wiki/Semantic_triple

3.3.6 Token Connection
Token connection is similar to token graph, how-
ever, there is a single type of relation to be cap-
tured. For example, when marking co-references,
only connecting the two tokens to each other is
sufficient, while the relationship ‘is-coreference-of’
is implicit. The tool provides a special simplified
interface for this scenario. In addition to implicit
relations, token connections can also be established
across sentences. The annotator is presented with
a list of clickable tokens from the current sentence
as well as tokens from a context window of pre-
vious n (a configuration parameter with default
as 5) sentences. The annotator can add a connec-
tion by clicking on the source token and the target
token one after the other and confirming the con-
nection. If a connection is added in error, it can
be removed as well. In some cases, a connection
might extend beyond the default context window.
To address this, we have incorporated a button that
an annotator can click to load additional context
when needed. The token connection interface is
shown in Fig. 11 (Appx. A).

3.3.7 Sentence Classification
Sentence classification is a task where sentences
are classified into different categories, e.g., senti-
ment classification and sarcasm detection. This
task is similar to ontology-driven token classifi-
cation, with the difference being that classes are
associated with sentences rather than tokens. The
ontology is predefined by the administrator while
setting up the task. The annotator can select the
category for a sentence from a dropdown menu.
Fig. 12 (Appx. A) illustrates the sentence classifi-
cation interface.

3.3.8 Sentence Graph
Sentence graph is a graph representation of rela-
tionships between sentences, captured as subject-
predicate-object triples. The connections can be be-
tween tokens or complete sentences. Tokens from
the previous n (a configuration parameter with de-
fault as 5) sentences are presented as buttons ar-
ranged in the annotated word order. An annotator
creates connections by clicking on the source and
target tokens and selecting the relationship from
a dropdown menu based on an ontology. A spe-
cial token is provided to denote the entire sentence
as an object. Tasks such as timeline annotation
and discourse graphs are examples of tasks belong-
ing to this category. Fig. 13 (Appx. A) shows the

interface for creating sentence graph connections.
Similar to the token graph task, an annotator can
also visualize the sentence graph.

3.4 Clone Annotations

The administrative interface offers the capability
to replicate annotations from one user to another.
This feature proves valuable in cases where certain
annotators possess expertise in specific tasks or if
an annotator leaves a task incomplete, requiring
another annotator to resume the task from their
account. The cloned annotations are displayed just
like regular annotations. However, they maintain
the source information, including the annotator’s
ID and a reference to the original annotation.

3.5 Pluggable Heuristics

The tool supports the use of heuristics as ‘pre-
annotations’ to assist annotators. Heuristics are cus-
tom functions that generate suggestions for the an-
notators to use or ignore. These heuristics are often
specific to the language and corpus, and thus, must
be implemented by the administrator when setting
up the tool. The codebase of the tool outlines the
format and type specifications of the heuristics,
making them a pluggable component.

3.6 Progress Report

Detailed progress tracking serves multiple essen-
tial functions. Firstly, it provides project managers
with the capability to allocate resources effectively
and oversee the distribution of tasks among chap-
ters. This facilitates the early detection of potential
bottlenecks or areas needing extra focus. Moreover,
the breakdown of progress contributes to streamlin-
ing the annotation process, guaranteeing the steady
advancement of all chapters and tasks at an opti-
mal rate. To facilitate this, we’ve developed an
interface that offers a comprehensive overview of
annotators’ progress. This interface provides a de-
tailed breakdown of advancements on a per-chapter
and per-task basis, enabling thorough tracking and
evaluation of their contributions.

3.7 Export

The export interface enables the access, retrieval
and visualization of the annotated data for each task
in a clear and straightforward manner. Annotator
can easily view and export the data in two formats
(1) a human-readable format for easy inspection
and (2) a machine-readable format compatible with

204

the standard NLP tools. The specifics of the stan-
dard format depend on the task. For example, a
standard format for NER datasets is the BIO format
(Tjong Kim Sang and De Meulder, 2003), which
stands for begin, inside, and outside. The B-tag
marks the beginning of a named entity, while the
I-tag indicates the continuation of a named entity.
The O-tag signifies that a word is not part of a
named entity. Fig. 14 (Appx. A) illustrates the ex-
port interface showcasing the capability to export
NER data in the standard BIO format. The inter-
face facilitates the visualization and export of graph
representations for tasks related to graphs. The ex-
port interface is accessible not only to annotators
but also to curators, allowing them to review anno-
tations made by other users. This feature serves as
a mechanism for quality control.

3.8 Language Independence

Unicode is a widely used standard for encoding,
representing, and handling text in a uniform and
consistent way across various languages, comput-
ing platforms and applications. The standard as-
signs unique numerical codes to each character in
a large number of scripts. Thus, full Unicode sup-
port allows users to work with text data in their
preferred languages.

4 Evaluation

The tool is being used for annotation of a large cor-
pus in Sanskrit, namely, Valmiki Ramayana. The
details of this project are described in Sec. 4.3.
Additionally, the tool is also being used for the an-
notation of plain text corpus in Bengali language.

Following (Terdalkar and Bhattacharya, 2021),
we have evaluated our tool using a two-fold eval-
uation method of subjective and objective evalua-
tion. We have not used the time taken for annota-
tion as an evaluation metric since annotators often
spend more time processing the text to identify
the relevant information than physically annotating.
Hence, it may not be a reliable measure.

4.1 Subjective Evaluation

For the subjective evaluation, an online survey was
conducted, with participation from 16 annotators.
They were asked to rate the tool on a scale of 1
to 5 across various categories including ease of
use, annotation interface, and overall performance.
The feedback from annotators was predominantly
positive. The tool received a score of 4.3 for ease

Figure 4: Word cloud of comments received in a survey

of use, 4.4 for annotation interface, and an overall
score of 4.1. Furthermore, we gathered comments
from users, and a word cloud over these comments
can be found in Fig. 4.

4.2 Objective Evaluation
The objective evaluation utilized a scoring mech-
anism similar to that employed in previous stud-
ies (Neves and Ševa, 2021; Terdalkar and Bhat-
tacharya, 2021). We retained the additional cate-
gories introduced by (Terdalkar and Bhattacharya,
2021) while incorporating supplementary cate-
gories pertinent to the comprehensive assessment
of a general-purpose NLP tool. These supplemen-
tary categories were designed to gauge the tool’s
support for a diverse range of NLP tasks. Conse-
quently, a total of 29 categories were employed for
the evaluation process. Each tool was assigned a
rating: 1 for full support of a feature, 0.5 for partial
support, and 0 for the absence of a feature.

In this evaluation, Antarlekhaka achieved a score
of 0.79, outperforming other tools like Sangrahaka
(0.74), INCEpTION (0.74) and FLAT (0.71). The
detailed list of the 29 categories used for objectively
scoring the annotation tools can be found in Tab. 2.

4.3 Case Study: Large Sanskrit Text
The Valmiki Ramayana, an ancient Sanskrit text,
presents a rich and intricate narrative with a diverse
array of characters, events, emotions, and settings,
making it an ideal choice for annotation purposes.
We employ Antarlekhaka, for this large-scale an-
notation task, as a case study. The text, sourced
from the Digital Corpus of Sanskrit (DCS) (Hell-
wig, 2010–2021), comprises a total of 18754 verses
distributed across 606 chapters.

The annotation is being performed with the help
of 119 annotators to annotate 5 tasks per verse.
These annotations have resulted in the following
task-specific datasets:
• Sentence Boundary: 1972 sentence markers

across 1499 verses;
• Canonical Word Ordering: 1886 sentences;

205

Table 2: Objective evaluation criteria for annotation tools. Each feature is evaluated on a ternary scale of 0, 0.5 and
1, where 0 indicates absence of the feature, 0.5 indicates partial support and 1 indicates full support for the feature.

Criteria Tools

ID Description Weight INCEpTION doccano FLAT BRAT Sangrahaka Antarlekhaka

P1 Year of the last publication 0 1 0 0 1 1 1
P2 Citations on Google Scholar 0 1 0 0 1 0 0
P3 Citations for Corpus Development 0 1 0 0 1 0 0
T1 Date of the last version 1 1 1 1 0.5 1 1
T2 Availability of the source code 1 1 1 1 1 1 1
T3 Online availability for use 1 0 0 1 0 0 0
T4 Easiness of Installation 1 0 1 1 0.5 1 1
T5 Quality of the documentation 1 1 1 1 1 0.5 0.5
T6 Type of license 1 1 1 1 1 1 1
T7 Free of charge 1 1 1 1 1 1 1
D1 Format of the schema 1 1 1 1 0.5 1 1
D2 Input format for documents 1 1 0.5 1 1 1 1
D3 Output format for annotations 1 1 1 1 0.5 0 0
F1 Allowance of multi-label annotations 1 1 0 1 1 1 1
F2 Allowance of document level annotations 0 0 0 0 0 0 0
F3 Support for annotation of relationships 1 1 0 0 1 1 1
F4 Support for ontologies and terminologies 1 1 0 1 1 1 1
F5 Support for pre-annotations 1 0.5 0 0.5 0.5 0 0
F6 Integration with PubMed 0 0 0 0 0 0 0
F7 Suitability for full texts 1 0.5 0.5 1 1 1 1
F8 Allowance for saving documents partially 1 1 1 1 1 1 1
F9 Ability to highlight parts of the text 1 1 1 1 1 1 1
F10 Support for users and teams 1 0.5 0.5 1 0.5 0.5 0.5
F11 Support for inter-annotator agreement 1 1 0.5 0 0.5 0.5 0.5
F12 Data privacy 1 1 1 1 1 1 1
F13 Support for various languages 1 1 1 1 1 1 1
A1 Support for querying 1 0 0 0 0 1 0
A2 Crash tolerance 1 0 0 0 0 1 0.5
A3 Web-based / Distributed annotation 1 1 1 1 1 1 1
A4 Sequential Annotation 1 0 0 0 0 1 1
A5 Support for Sentence Boundary Annotation 1 1 0 0 0 0 1
A6 Support for Word Order Annotation 1 0 0 0 0 0 1
A7 Support for Token Classification Tasks 1 1 1 1 1 1 1
A8 Support for Sentence Classification Tasks 1 1 0 0 0 0 1

Total 29 21.5 16.0 20.5 18.5 21.5 23.0
Score 0.74 0.55 0.71 0.64 0.74 0.79

• Named Entity Recognition: 1717 entities in 947
verses based on custom ontology with 89 labels;

• Co-reference Resolution: 2271 co-reference con-
nections across 950 verses;

• Action Graph: 90 action graphs with 720 rela-
tions from 71 verses, where an action graph cap-
tures action-related words, encompassing verbs,
participles, and other action-denoting words and
their relationships with other words.
We continue to enhance these datasets through

the ongoing annotation endeavour.

5 Potential for NLP Research

A natural language annotation tool simplifies the
process of creating datasets for machine learning
models, which is useful for NLP tasks such as
lemmatization, NER, POS tagging, co-reference
resolution, text classification, sentence classifica-
tion, and relation extraction. Annotator-friendly
and intuitive interfaces can simplify the otherwise
tedious process of manual annotation process to
a great extent. The effectiveness of higher-level
tasks such as question-answering, grammatical er-
ror correction and machine translation often relies

on the success of several low-level tasks, which
can be handled by a multiple task annotation tool.
The tool’s ability to handle large amounts of data
and multiple users simultaneously can contribute
to faster completion of these tasks.

6 Conclusions
We have developed a web-based multi-task anno-
tation tool called Antarlekhaka for sequential an-
notation of various NLP tasks. It is available at
https://github.com/Antarlekhaka/code. The tool is
language-agnostic and has full Unicode support.
The tool sports eight categories of annotation tasks
and an annotator-friendly interface for each cate-
gory. Multiple annotation tasks from each category
are supported. The tool enables creation of datasets
for computational linguistics tasks without expect-
ing any programming knowledge from the annota-
tors or administrators. It is actively being used for
a large-scale annotation project, involving a large
Sanskrit corpus and a significant number of annota-
tors, as well as another annotation task in Bengali
language. Antarlekhaka has a potential to propel
research opportunities in NLP by simplifying the
conduction of large-scale annotation projects.

206

https://github.com/Antarlekhaka/code

7 Limitations

While Antarlekhaka is a powerful tool for annota-
tion, it does have some limitations. These include:
• Subjectivity in annotations: Manual annota-

tion can introduce subjective biases and incon-
sistencies among annotators. Currently, there
is no in-built automated mechanism to ensure
inter-annotator agreement and quality check is
performed manually with a small set of cura-
tors. Nevertheless, we plan to implement inter-
annotator agreement metrics in future.

• Language-specific challenges: Antarlekhaka may
encounter challenges specific to certain lan-
guages or linguistic phenomena, including varia-
tions in syntax, morphology, or semantic nuances
that may require additional customization or fine-
tuning. Additionally, languages with complex
orthographic systems or unique writing conven-
tions may pose difficulties.

• Dependency on sequential annotation: Sequen-
tial annotation is one of the strong features of the
tool. However, if the sentence boundary detec-
tion task is enabled, it imposes a dependency in
the sense that other tasks can be performed only
after marking the sentence boundaries.

• Constraints on AI-guided annotation support:
While Antarlekhaka supports incorporation of
heuristics as pluggable components, the in-built
support for AI-guided annotation is still limited
in nature. The inherent language-specific char-
acteristics and limitations of various NLP tools
present challenges in delivering a fully language-
agnostic guided annotation system. However, our
future plans involve the integration of established
NLP tools to offer more comprehensive guidance
for annotators during the annotation process.

8 Ethics Statement

The research conducted in the development and use
of Antarlekhaka adheres to ethical considerations
and guidelines. The annotation tasks performed
using the tool involve the analysis and processing
of language data. We ensure the following ethical
principles:
• Informed Consent: Prior to engaging in annota-

tion tasks, all annotators participating in the re-
search are informed about the nature of the tasks,
their purpose, and the potential use of the anno-
tated data. Annotators provide their voluntary
consent to participate.

• Anonymity and Privacy: All personal information

of annotators is kept confidential and handled se-
curely. The data collected during the annotation
process is anonymized to protect the privacy of
individuals involved.

• Data Usage: The annotated data is solely used
for research purposes and in compliance with rel-
evant data protection regulations. It is not shared
with any third parties without explicit consent or
legal requirements.

• Bias Mitigation: We strive to minimize any bi-
ases that may arise during the annotation pro-
cess. Annotators are provided with guidelines
and training to ensure consistency and fairness
in their annotations. Regular quality checks are
being performed to address any potential bias
issues for the Sanskrit text corpus.

• Annotator Pool: Annotators for the Sanskrit
text corpus are under-graduate and post-graduate
level Sanskrit students from various institutes and
colleges. This ensured that annotations were of
accepted quality. Participation in the annotation
task was voluntary, and everybody who wanted
to annotate was allowed to do so.
By adhering to these ethical principles, we aim to

contribute to the responsible advancement of Natu-
ral Language Processing technologies and promote
ethical practices in language annotation research.

207

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-
based, collaborative text annotation framework. Lan-
guage Resources and Evaluation, 47(4):1007–1029.

Marie-Catherine De Marneffe, Christopher D Manning,
Joakim Nivre, and Daniel Zeman. 2021. Universal
dependencies. Computational linguistics, 47(2):255–
308.

Manmatha Nath Dutt et al. 1891. The Ramayana, vol-
ume 1. Girish Chandra Chackravarti.

Karën Fort. 2016. Collaborative annotation for reliable
natural language processing: Technical and socio-
logical aspects. John Wiley & Sons.

Oliver Hellwig. 2010–2021. The Digital Corpus of
Sanskrit (DCS).

Hendrik Jacob Herik, Ana Paula Rocha, and Joaquim
Filipe. 2018. Agents and Artificial Intelligence: 9th
International Conference, ICAART 2017, Porto, Por-
tugal, February 24 {u2013} 26, 2017, Revised Se-
lected Papers. Springer International Publishing.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
proceedings of the 27th international conference on
computational linguistics: system demonstrations,
pages 5–9.

Amba Kulkarni, Preethi Shukla, Pavankumar Satuluri,
and Devanand Shukl. 2015. How free is free word
order in sanskrit. The Sanskrit Library, USA, pages
269–304.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2021. An extensive
review of tools for manual annotation of documents.
Briefings in bioinformatics, 22(1):146–163.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. arXiv preprint arXiv:2003.07082.

Lane Schwartz. 2022. Primum non nocere: Before
working with indigenous data, the acl must confront
ongoing colonialism. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics, volume 2.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. Brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations

at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2021.
Sangrahaka: A tool for annotating and querying
knowledge graphs. In Proceedings of the 29th
ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2021,
page 1520–1524, New York, NY, USA. Association
for Computing Machinery.

Erik F Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: language-
independent named entity recognition. In Proceed-
ings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 142–
147.

Maarten van Gompel. 2014. Folia linguistic annotation
tool. https://github.com/proycon/flat.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6.

208

https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1145/3468264.3473113
https://doi.org/10.1145/3468264.3473113
https://github.com/proycon/flat

A Screenshots of Various Interfaces

We showcase various interfaces of Antarlekhaka in
this section. An administrative interface for manag-
ing tasks is shown in Fig. 5. Figs. 6 to 13 illustrate
annotation interfaces for each task category. Fig. 14
highlights the export interface with the capability
to export the data in the standard format.

Figure 5: Task Management Interface: Add, Edit, Acti-
vate, Deactivate, Reorder Tasks

Figure 6: Sentence Boundary Annotation Interface

Figure 7: Word Order Annotation Interface

Figure 8: Token Annotation Interface: Lemmatization

Figure 9: Token Classification Interface: Named Entity
Recognition

Figure 10: Token Graph Interface with Graph Visualiza-
tion: Action Graph

209

Figure 11: Token Connection Interface: Co-reference
Resolution

Figure 12: Sentence Classification Interface

Figure 13: Sentence Graph Interface

B Schema

Antarlekhaka utilizes a relational database to store
information such as, corpus data, user data, task
data and annotations. A relational database allows
for efficient storage and retrieval of functional data,
as well as the ability to establish relationships be-
tween different pieces of data. For example, anno-
tations of specific verses by specific users can be
linked allowing the system to quickly locate and
display relevant annotations when needed.

B.1 Tasks
The information regarding tasks is stored in a single
table within the relational database. This table
serves as a centralized repository for information
related to each task, including its title, category, and
instructions for annotators. Each task is assigned a
unique identifier known as a ‘task id’, which serves
as a means of easily referring or linking to a specific
task.

B.2 Ontology
Ontology is required for four task categories: token
classification, token graph, sentence classification,
and sentence graph. The ontology information is
stored as a flat list of labels in four separate tables,
each specific to a particular task category. There
may be multiple tasks corresponding to each of
these categories. Therefore, every ontology table
also has a ‘task id’ column which associates the
ontology entries with the corresponding tasks. This
setup allows for clear organization and linking of
the ontology information with the relevant tasks.

B.3 Annotations
There are eight annotation tables, each correspond-
ing to a different category of annotation tasks. An-
notations of all tasks belonging to each category are
stored in the corresponding table. The annotations
are linked to the semantic units of text, specifically,
the sentences marked in the sentence boundary task.
The other seven annotation tables include a ref-
erence to the ‘boundary id’. In cases where the
sentence boundary task is not necessary, the bound-
aries of the annotation text units (e.g., verse) are
considered as sentence boundaries and annotated
automatically in the background using a special
annotation user. Additionally, to facilitate multiple
instances of tasks from each task category, every
annotation table contains a reference to the ‘task
id’. Finally, each annotation table sports a tailored
schema to support the recording of task specific an-
notations. An ‘annotator id’ associated with every
task annotation table, allows for proper organiza-
tion and tracking of the annotations.

Fig. 15 shows the Entity Relationship (ER) di-
agram on a subset of tables from the relational
database of Antarlekhaka.

210

Figure 14: Export Interface: NER data in the standard BIO format

Figure 15: Entity Relationship Diagram illustrating some relevant links. Tables are color coded. Yellow: Annotation
Tables, Orange: Ontology Tables, Blue: Corpus Tables, Pink: User Tables, Green: Task Information Table. The
annotation table for ‘Sentence Boundary’ task is highlighted, showing the references incoming (red) and outgoing
(green) references to other tables.

211

