
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 219–244
December 6, 2023 ©2023 Association for Computational Linguistics

The Vault: A Comprehensive Multilingual Dataset for Advancing Code
Understanding and Generation

Dung Nguyen Manh1,
∗
, Nam Le Hai1,3,

∗
, Anh T. V. Dau1,3,

Anh Minh Nguyen1, Khanh Nghiem1, Jin Guo4,5, Nghi D. Q. Bui2

1FPT Software AI Center
{dungnm31, namlh35, anhdtv7, minhna4, khanhnv22}@fpt.com

2Fulbright University, Viet Nam
nghi.bui@fulbright.edu.vn

3Hanoi University of Science and Technology, Viet Nam
4School of Computer Science, McGill University, Canada

5Mila - Quebec AI Institute

Abstract

We present The Vault, an open-source dataset
of high quality code-text pairs in multiple pro-
gramming languages for training large lan-
guage models to understand and generate code.
We propose methods for thoroughly extract-
ing samples that use both rules and deep learn-
ing to ensure that they contain high-quality
pairs of code and text, resulting in a dataset
of 42 million high-quality code-text pairs. We
thoroughly evaluated this dataset and discov-
ered that when used to train common code lan-
guage models (such as CodeT5, CodeBERT,
and CodeGen), it outperforms the same models
train on other datasets such as CodeSearchNet.
These evaluations included common coding
tasks such as code generation, code summa-
rization, and code search. The Vault can be
used by researchers and practitioners to train
a wide range of big language models that un-
derstand code. Alternatively, researchers can
use our data cleaning methods and scripts to
improve their own datasets. We anticipate that
using The Vault to train large language mod-
els will improve their ability to understand and
generate code, propelling AI research and soft-
ware development forward. We are releasing
our source code and a framework to make it
easier for others to replicate our results.

1 Introduction

The advent of deep learning and advancements in
large language models (LLMs) have spurred a rev-
olution in the field of code representation learning.
These developments, supported by the growing ac-
cessibility of vast open-source code repositories,
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have heralded the emergence of code large lan-
guage models (CodeLLMs) for code generation
and understanding tasks. The sheer volume of
these repositories and the rich, unprocessed raw
data they contain, serve as unparalleled resources
for training LLMs. Consequently, current state-of-
the-art models for coding tasks effectively utilize
these expansive datasets for training. However, it is
important to note that these datasets, including The
Stack [Kocetkov et al., 2022] and The Pile [Gao
et al., 2020a], often comprise unprocessed data.

Alternatively, there are established datasets,
such as CONCODE [Iyer et al., 2018b], FunCom
[LeClair et al., 2019], Deepcom [Hu et al., 2020]
for code summarization tasks; APPS [Hendrycks
et al., 2021] for text-to-code generation; and Code-
SearchNet [Husain et al., 2019] for code search.
These datasets contain carefully curated code-text
pairs. Although considerably smaller in compari-
son to raw code datasets (e.g., 2.3M functions in
CodeSearchNet [Husain et al., 2019] versus 197M
files in The Stack [Kocetkov et al., 2022]), they
provide high-quality code-text pairings that signifi-
cantly enhance the effectiveness of model training.

Consequently, we identify two main types of
datasets used to train CodeLLMs: large yet un-
processed, and smaller yet well-structured (e.g.,
arranged into code-text pairs). The scaling law
[Kaplan et al., 2020, Gordon et al., 2021, Sorscher
et al., 2022] indicates that the volume of train-
ing data is crucial for model performance. How-
ever, other studies underscore the importance of
dataset quality over quantity in training superior
LLMs [Zhou et al., 2023, Sorscher et al., 2022, Dau
et al., 2022, Brown et al., 2020, Khan et al., 2020].
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Given these observations, we propose that an ideal
dataset for training CodeLLMs should combine
both elements: it should be expansive in volume
and meticulously processed to ensure quality.

In this paper, we present The Vault dataset, de-
tailing its creation process, the toolkit developed
for constructing and quality-controlling code-text
pairs from raw source code, as well as an analysis
of The Vault’s metrics. We also share empirical
results obtained from utilizing The Vault to fine-
tune well-known foundational models. Our specific
contributions include the following:

• A dataset with approximately 42M pairs of high-
quality code-text pairs (approximately 10 times
larger than CoDesc), 243M unimodal samples,
and 69M pairs of line comments with context
from 10 popular programming languages (Java,
JavaScript, Python, Ruby, Rust, Golang, C#,
C++, C, PHP), more diverse than CodeSearch-
Net, which has six programming languages.

• A novel approach to use a pre-trained language
model for detecting and removing noisy samples
to complement traditional rule-based methods.

• A thorough report of the process for transforming
raw source code into code-text pairs and filtering
noisy samples. We have released the toolkit used
in this process to the open community via a pub-
lic GitHub repository, including tools for parsing
code and docstrings in different programming
languages.

• We perform extensive evaluation where we fine-
tuned different CodeLLMs with The Vault com-
pared to other datasets, such as CodeSearch-
Net on various code understanding tasks, includ-
ing code generation, code summarization and
code search. The results show that models fine-
tuned on The Vault outperform those fine-tuned
on CodeSearchNet (code summarization, code
search) and outperform the original model by a
significant margin (code generation on pass@k
over Human Eval dataset).

2 Related works

Code Large Language Models for Understand-
ing and Generation Code large language mod-
els facilitate various code understanding and code
generation tasks, including but not limited to code
generation [Feng et al., 2020a, Wang et al., 2023,
Elnaggar et al., 2021], code completion [Feng et al.,

2020a, Wang et al., 2023, Peng et al., 2021], pro-
gram repair [Xia et al., 2022], and code trans-
lation [Roziere et al., 2020]. A significant por-
tion of recent research employs language models,
originally developed for natural language process-
ing, for handling code [Feng et al., 2020a, Wang
et al., 2023, Guo et al., Ahmad et al., 2021b, Bui
et al., 2021, Elnaggar et al., 2021, Peng et al.,
2021, Kanade et al., 2020, Chakraborty et al., 2022,
Ahmed and Devanbu, 2022, Niu et al., 2022]. Such
approaches largely regard code as analogous to text
and adapt pretraining strategies that mirror those
used for natural languages. CodeBERT [Feng et al.,
2020a], for instance, modifies a Roberta model [Liu
et al., 2019] to pretrain a code model on multiple
programming languages. CodeT5 [Wang et al.,
2021] and CodeT5+ [Wang et al., 2023] employs
unique identifier information from source code to
pretrain the T5 model [Raffel et al., 2019] for code
in a multi-modal fashion.

Datasets for Code Representation Learning:
Code is commonly represented in training datasets
for foundational LLMs, including the ROOTS cor-
pus [Laurençon et al., 2023] for training BLOOM
[Scao et al., 2022] and The Pile [Gao et al., 2020a]
for training LLaMA [Touvron et al., 2023]. The
code data represented in these datasets are unla-
beled raw source code from GitHub. There is also
a family of code-only datasets for training or fine-
tuning coding-specific LLMs, including The Stack
[Kocetkov et al., 2022], a 3TB corpus of permis-
sively licensed source code, preceded by CodePar-
rot with 50GB of deduplicated source code [Tun-
stall et al., 2022]. These massive datasets are usu-
ally used to train CodeLLMs. However, labeled
data are required for training and evaluating LLMs
for coding tasks involving source code and natural
language descriptions. CodeXGLUE is a bench-
mark dataset Lu et al. [2021] for 10 coding tasks
that include 14 subsets, four of which are code-text
pairs. Most of the code-text pairs in CodeXGLUE
come from CodeSearchNet.

CodeSearchNet (CSN) has also been employed
for pretraining LLMs, enabling supervised learning
techniques to achieve state-of-the-art performance
for models such as CodeT5+ [Wang et al., 2023]
and UniXcoder [Guo et al., 2022]. A few code-
text pair datasets set out to surpass CSN in size.
CoDesc combines existing parallel datasets (CSN,
DeepCom [Hu et al., 2020], CONCODE [Iyer et al.,
2018a], and FunCom [LeClair et al., 2019]), and
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then refines the results from the superset, which
yielded 4.2M Java data samples. PyMT5 [Clement
et al., 2020] is a dataset with 7.7M Python code-
text. However, both of these datasets each contains
code for a single programming language. Notable
datasets created from Stack Overflow 1 include the
necessary code-text data for generating post titles
[Gao et al., 2020b, Liu et al., 2022].

3 The Vault dataset

3.1 Overview
The Stack [Kocetkov et al., 2022] stands as
the largest publicly accessible, multilingual,
permissive-licensed source code dataset, with a
size of 3TB. The Stack serves as the foundational
dataset for constructing The Vault, wherein we
transform raw source code into a compendium of
high-quality code-text pairs. Our transformation
pipeline is designed to efficiently extract data from
source code, create text-code pairings, and remove
noise, yielding three distinct output datasets, as
detailed in Figure 2. We draw from a subset of
The Stack, which comprises code in 10 prevalent
programming languages, such as C, C#, C++, Java,
JavaScript, GoLang, PHP, Python, Ruby, and Rust
(out of the total 300 languages featured in The
Stack). Each language-specific raw source code
feeds into a custom-built tree-sitter2 parser.

This parser is designed to extract functions,
classes, methods, block code snippets, and their
corresponding block or inline comments. The fig-
ure 1 illustrated a basic structure of a code file that
contains multiple levels of code snippets. By ap-
plying a breadth-first search on the Abstract Syntax
Tree (AST) of the root node, the parser is able to
traverse down different node and leaf levels (class,
function, and inline), result three separate datasets:

1. The first output dataset, referred to as Dpaired,
contains pairs of classes (node 1) and functions
(node 3) with corresponding block comments
that serve as docstrings (node 2). After the ini-
tial construction, this dataset proceeds through
a pipeline that employs both rule-based filters
and Deep Learning-based classification to re-
move noisy samples that fail to meet the criteria
detailed in Section 3.2.

2. The second output dataset, denoted as Dunimodal,
1https://stackoverflow.com/
2https://tree-sitter.github.io/

tree-sitter/

consists of standalone functions and classes, not
paired with any docstring or comments, thereby
forming a unimodal dataset.

3. The third and final dataset, Dblock, includes pairs
of arbitrary code blocks (node 4) and inline com-
ments (node 5). To construct this set, we capture
all inline comments. Each comment is paired
with the preceding code block, tagged as the
“previous context” (node 4a), and the following
code block, “next context” (node 4b).

A large number of block comments adhere to
widely accepted docstring formats (Appendix A.5),
encompassing neatly organized details about the
name (identifier) of the associated function or class,
their parameters, arguments, and return types. We
channel these block comments through docstring
parsers, which we have developed and made pub-
licly available, to extract this information as meta-
data for each sample in our dataset. We contend
that this metadata could prove beneficial for down-
stream tasks, prompt settings, and other applica-
tions (Figure 8). Collectively, these three datasets
(Dblock, Dunimodal, and Dpaired) constitute The Vault.
Note that through the evaluation process, only
Dpaired is used since its contains data that is suitable
for training and comparison with other datasets.

3.2 Data Cleaning Pipeline
From preliminary survey of the output dataset con-
taining pairs of classes and functions with their
corresponding block comments Dpaired, we ob-
serve salient patterns that would impair the training
quality for code related tasks. We implemented a
set of rule-based filters (section 3.2.1) to remove
irrelevant information or reformat textual data to be
more descriptive of the corresponding code block.
To address cases where the code-text pairs have
inadequate or erroneous semantic correlation, we
trained a deep-learning model based on CodeBERT
(section 3.2.2) to score the semantic consistency of
a code-text pair and remove low-scoring samples.

3.2.1 Remove Noisy Sample by Rules
Our data pipeline employs 13 rule-based filters
to eliminate noisy patterns in the source dataset.
These filters, detailed in Table 1, are categorized
into three main groups: enhancing readability, pro-
moting consistency, and preserving the intended
usage of the code.

In terms of readability, we strip delimiters, math
formulas, HTML tags, and metadata tags from the
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// Java program for implementation of QuickSort

class QuickSort
{
    /* This function takes last element as pivot,
       places the pivot element at its correct
       position in sorted array, and places all
       smaller (smaller than pivot) to left of
       pivot and all greater elements to right
       of pivot */

    int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
        int i = (low-1); // index of smaller element

        for (int j=low; j<high; j++)
        {
            // If current element is smaller than or
            // equal to pivot
            if (arr[j] <= pivot)
            {
                i++;
 
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
 
        // swap arr[i+1] and arr[high] (or pivot)

        int temp = arr[i+1];
        arr[i+1] = arr[high];
        arr[high] = temp;
 
        return i+1;
    }
}

1. Class Node

3. Function Node

2. Block comment Node

5. Line comment Node

4. Nodes
Node 4a and 4b are
previous and next

context respectively

Node 2 is the
docstring of this
function node

4a

4b

Figure 1: The tree-sitter node structure. Classes (1) and functions (3) are extracted along with their corresponding
docstring, which may be in the form of a block comment (2) or a line comment (5). The line comments (5) are
extracted along with their preceding (4a) and succeeding (4b) code nodes for the inline dataset.

text. This ensures a cleaner and more coherent
code-text pairing. For consistency, we remove ele-
ments that may cause irregularities in the dataset.
This includes stripping hyperlinks and embedded
code, and removing empty comments, overly short
or long comments, non-English comments, auto-
generated blocks, and work-in-progress comments.
Lastly, to preserve the original purpose of the code,
we remove comments that are questions or serve as
examples or notes. This rigorous filtering process
guarantees a high-quality dataset, improving the
effectiveness of code-focused language models.

3.2.2 Remove Low-Quality Samples with
Classifier

Beyond the use of rule-based filtering methods, a
crucial question arises: how do we ensure align-
ment between code and text? Random comments
unrelated to the functionality of the code snippet
can contaminate the dataset, necessitating the re-
moval of such misaligned samples to guarantee
quality. To address this issue, we constructed a clas-
sifier utilizing CodeBERT [Feng et al., 2020b], de-
signed to score the semantic relationship between
a function or class and its corresponding docstring.

Categories Percentage (%)

Readability

Strip Delimiters 13.430
Strip Math Formulas 0.021
Strip HTML Tags 3.180
Strip Metadata Tags 5.260

Consistency

Strip Hyperlink 0.510
Strip Embedded Code 12.680
Remove Empty Comments 71.470
Remove Comments Too Short / Long 4.100
Remove Non-English Comments 3.230
Remove Auto-gen Blocks 0.050
Remove Work-in-Progress Comments 0.002

Intended usage

Remove Comments as Questions 0.020
Remove Comments as Examples or Notes 0.460

Table 1: The percentage of constructed code-text pairs
from The Stack caught by each rule-based filter.

In our scoring model, we input code snippets and
docstrings separated by a token < /s >. Approx-
imately 12% of the already rule-filtered code-text
pairs dataset was randomly selected for training.
As labeled data was unavailable, we generated neg-
ative samples by randomly pairing functions and
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Classifier

Functions & classes w/ comment

Rule
Functions & classes wo/ comment

Functions & classes w/
docstring metadata

Code block w/ comment

FunctionsCode blocks

Classes

Raw files Tree-sitter Parsers

Figure 2: Pipeline to create datasets of code blocks with comments Dblock, unimodal code Dunimodal, and code-text
pairs Dpaired from raw source code.

Language Number of functions #Repositories #Tokens

w/docstring All #Unique code
token

#Unique
docstring token

#Unique
identifier

Python 7,825,291 39,221,539 628,069 22,050,020 1,633,062 3,423,694
PHP 4,696,756 30,323,578 439,514 11,203,393 715,546 1,133,437
JavaScript 1,683,568 33,015,657 355,761 4,895,923 501,750 753,399
Java 6,667,422 69,744,181 321,129 16,536,979 1,749,151 2,525,492
C# 3,350,316 35,736,746 150,657 5,485,063 409,220 1,233,383
C++ 1,709,448 28,684,400 116,897 5,630,067 678,063 1,155,241
C 1,685,966 13,762,988 88,556 5,764,837 750,146 1,197,164
Go 5,153,436 23,832,763 241,238 6,818,885 2,472,000 1,918,773
Rust 864,987 8,230,575 68,615 2,130,327 221,877 315,331
Ruby 461,585 4,342,191 61,804 1,436,713 146,237 213,005
Total 34,098,775 286,894,618 2,364,144 73,077,761 7,351,960 12,869,338

Table 2: The size of extracted function data in each programming language.

docstrings within the same programming language.
We then passed the representation of the < s >
token to a linear layer, which produced a semantic
correlation score between 0.0 and 1.0. Code-text
pairs were then filtered using a binary classification
gate with a threshold of 0.5.

To validate our model, we employed GPT 3.5-
turbo for analogous predictions. A million pre-
dictions were generated from unseen instances,
from which we selected 300 per language: 200
high-confidence instances (100 consistent and 100
inconsistent code-text predictions) and 100 low-
confidence instances. GPT 3.5-turbo was in-
structed to assign a consistency score (1-10) for
each instance’s code-docstring pair, serving as a
benchmark for our model’s predictions. For high-
confidence instances, our model agreed with the
GPT 3.5-turbo scores over 80% of the time. Al-
though our model faced challenges with ambiguous
samples, the Area Under the Curve (AUC) met-
ric proved suitable due to our primary goal of ex-

cluding misalignments while preserving matched
examples. An average AUC of 0.89 indicates
that our approach effectively reduced dataset noise
without discarding numerous informative samples.
Detailed configurations and evaluation results are
available in Appendix A.2.

In addition, we use our model to find noisy ex-
amples in the rule-based noise-remove version of
CodeSearchNet in CodeXGlue. Table 3 presents
some inconsistent examples found by our model
for Python, Java and JavaScript of CSN. It can
be observed that detected pairs show strong incon-
sissency between docstring and code.

4 Empirical Evaluation

In this section, we aim to assess the quality of
The Vault in comparison with other datasets, such
as CSN. To substantiate this quality, we fine-tune
prominent CodeLLMs on tasks that necessitate the
involvement of both code and text, including code
summarization, code search, and code generation.
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Languages Inconsistent pairs

Python

// Handy for templates.
def has_urls(self):

if self.isbn_uk or self.isbn_us or self.official_url or self.notes_url:
return True

else:
return False

Java

// only for change appenders
public MapContentType getMapContentType(ContainerType containerType){

JaversType keyType = getJaversType(Integer.class);
JaversType valueType = getJaversType(containerType.getItemType());
return new MapContentType(keyType, valueType);

}

JavaScript

// we do not need Buffer pollyfill for now
function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);

}

Table 3: Examples of Inconsistent pairs in CodeSearchNet found by our model in Python, Java, and Javascript. “//”
represents for docstring section. More examples are demonstrated in Table 15 in Appendix section.

Dataset #PL
#Function

w/ docstring w/o docstring
PyMT5 [Clement et al., 2020] 1 ≈ 7,700,000 -
CoDesc [Hasan et al., 2021] 1 4,211,516 -
CodeSearchNet [Husain et al., 2019] 6 2,326,976 4,125,470
CodeXGLUE CSN [Lu et al., 2021] 6 1,005,474 -
Deepcom [Hu et al., 2020] 1 424,028 -
CONCODE [Iyer et al., 2018b] 1 2,184,310 -
Funcom [LeClair et al., 2019] 1 2,149,121 -
CodeT5 [Wang et al., 2021] 8 3,158,313 5,189,321
THEVAULT 10 34,098,775 205,151,985

Table 4: Comparison of THEVAULT function set to other
code-text datasets.

We then compare these models, which have been
fine-tuned on The Vault, with those fine-tuned on
CSN. The comparison is made using the same test
datasets and commonly employed metrics, such as
BLEU, MRR, and pass@k.

4.1 Dataset Statistics

Table 2 provides the statistics of the samples for
each programming language after undergoing our
data-cleaning pipeline. In total, we have approxi-
mately 34M samples. The table also includes other
information, like the number of tokens for code and
docstrings, and the quantity of repositories.

Table 4 offers a comparison between The Vault
and other parallel datasets frequently used for pre-
training and fine-tuning downstream tasks. These
datasets include Funcom [LeClair and McMillan,
2019], Deepcom [Hu et al., 2020], CONCODE
[Iyer et al., 2018b], CSN [Husain et al., 2019],
CoDesc [Hasan et al., 2021], and non-public data
used for pretraining [Clement et al., 2020, Ciurume-

lea et al., 2020, Wang et al., 2021].
We split the training set into two smaller subsets:

the small set and the medium set that contain 5%
and 20% of the full training set, respectively. To re-
duce data leakage during training, we employed the
MinHash LSH technique to filter training instance
clusters that are close to samples in the validation
and test sets of CSN, HumanEval, and MBPP. Addi-
tionally, during dataset partitioning, we prevented
content from the same repository from appearing in
multiple sets, thereby avoiding any potential inter-
nal data leakage. A more detailed analysis of The
Vault’s data samples at the class and code block
levels can be found in Appendix A.4.

4.2 Experiment Setup

Data splitting: During the experiment phase, The
Vault (Dpaired) was split into three distinct datasets:
training, validating, and testing sets. To avoid data
leakage, we reinforced a policy where code sam-
ples from the same repository must all be in the
same set. In the splitting algorithm, we also in-
cluded as a goal the preservation of the token length
distribution from The Vault’s dataset in each subset.

For richer comparisons, the training set was fur-
ther branched off to two smaller sets, the small and
medium training sets, sampling 5% and 20% of
the full training set, respectively. Details about ex-
periment data can be found in Table 12. Note that
TheVault/small has a comparable size with CSN,
making it fair to assess and compare the quality of
these two datasets.
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Model Dataset Python Java JavaScript Go PHP Ruby Total/Avg
CODESEARCHNET TESTSET (BLEU-4)

CodeT5
raw-TheStack 16.18 9.06 6.23 19.05 7.07 5.78 11.84/10.56
CodeSearchNet 19.55 20.38 16.15 19.83 26.26 15.38 21.24/19.59
TheVault/small 18.94 17.72 13.96 19.92 20.43 15.22 18.83/17.70

PLBART
raw-TheStack 0.86 3.06 0.59 10.91 2.29 0.47 3.23/3.03
CodeSearchNet 17.99 17.38 14.84 17.98 22.54 14.08 18.78/17.47
TheVault/small 14.93 15.66 11.95 17.03 18.00 11.49 15.95/14.84

THEVAULT TESTSET (BLEU-4)

CodeT5
raw-TheStack 16.18 9.06 6.23 19.05 7.07 5.78 11.84/10.56
CodeSearchNet 10.86 8.00 8.42 17.87 17.85 10.26 16.11/12.21
TheVault/small 12.26 11.13 9.68 31.64 38.86 11.23 25.12/19.13

PLBART
raw-TheStack 1.69 4.02 0.43 24.60 4.83 0.49 7.19/6.01
CodeSearchNet 10.24 7.26 7.64 16.90 13.83 9.60 14.39/10.91
TheVault/small 10.23 9.28 8.95 22.78 34.32 9.74 20.29/15.88

Table 5: Smoothed BLEU-4 results for code summarization. The “Total” column demonstrates combined data in
all languages to calculate BLEU, while “Avg” is the average BLEU score on the language level.

Model Fine-tune data
Python Java JavaScript Go PHP Ruby Avg

CODESEARCHNET TESTSET (MRR)

CodeBERT
raw-TheStack 0.3713 0.3492 0.3148 0.5519 0.2731 0.2748 0.3559
CodeSearchNet 0.3793 0.4636 0.4437 0.6201 0.4741 0.5219 0.4838
TheVault/small 0.4074 0.4857 0.4466 0.6578 0.6578 0.5251 0.5301

RoBERTa
CodeSearchNet 0.3479 0.448 0.4254 0.5684 0.4623 0.5147 0.6952
TheVault/small 0.4849 0.5581 0.4962 0.7446 0.5166 0.59 0.5651

UniXCoder
CodeSearchNet 0.3935 0.4549 0.4459 0.5861 0.489 0.5446 0.4857
TheVault/small 0.4427 0.4909 0.4506 0.6416 0.4515 0.5702 0.5079

THEVAULT TESTSET (MRR)

CodeBERT
raw-TheStack 0.318 0.3245 0.1837 0.4194 0.1718 0.0878 0.2509
CodeSearchNet 0.2881 0.3213 0.2409 0.4123 0.1854 0.2579 0.2843
TheVault/small 0.3501 0.4214 0.3216 0.4864 0.2351 0.2904 0.3165

RoBERTa
CodeSearchNet 0.2644 0.3329 0.2371 0.2375 0.1577 0.2574 0.2478
TheVault/small 0.4533 0.5519 0.4386 0.5021 0.2876 0.3717 0.4342

UniXCoder
CodeSearchNet 0.2959 0.344 0.2508 0.185 0.1646 0.2669 0.2512
TheVault/small 0.3852 0.4279 0.3491 0.4628 0.238 0.3201 0.3639

Table 6: Comparison between the models fine-tuned on the CODESEARCHNET and on different THEVAULT training
subsets on code search task.

Infrastructure: All experiments are conducted
on 4 NVIDIA A100 GPUs.

Code search: We select CodeBERT [Feng et al.,
2020a], RoBERTa [Liu et al., 2019] and UniX-
Coder [Guo et al., 2022] as the encoder for embed-
ding source code and natural query, for all exper-
iments. We train 10 epochs for each model with
a sequence max length of 512, and a learning rate
2−5.

Code summarization: CodeT5-base [Wang
et al., 2021] is employed for the summarization
task. We set the max input tokens to 512 and the
max output tokens to 400. We train for 5 epochs
with batch size of 512, the learning rate of 2−4.

Code generation: We use CodeGen 350M and
2B Multi [Nijkamp et al., 2023] to evaluate code
generation. We use the same configuration as in
the code summarization task.

Additionally, we present supplementary re-
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sults to demonstrate the efficiency of our process
pipeline and offer a thorough evaluation of the
dataset’s versatility and adaptability with various
architectures and frameworks in the Appendix A.8.

4.3 Evaluation Results
4.3.1 Code Summarization
For this task, we utilize the Vault and CSN to fine-
tune CodeT5 [Wang et al., 2023] for the task of
code summarization. The Vault and CSN exhibit
significant differences in docstring format. The
Vault retains the complete docstring format, offer-
ing comprehensive descriptions of core logic, pa-
rameters, arguments, and return types. This feature
enables versatile applications in code documen-
tation and various downstream tasks. Addition-
ally, we save the first sentence of each complete
docstring as metadata, termed as short docstring.
To facilitate fair comparison between The Vault
and CSN, we apply post-processing to our full
docstrings and short docstrings training sets,
thereby reducing format distribution disparity.

Table 5 shows the results when comparing
CodeT5 trained on CSN and The Vault for the
code summarization task. Usage of full doc-
strings and short docstrings are signified by “-L”
and “-S” respectively. We use smoothed BLEU-4
score as the evaluation metric. We present fur-
ther experimental outcomes using the Rouge-L
and BERTScore metrics in Appendix, Table 14.
The results show that CodeT5 fine-tuned on The
Vault yields significantly better performance than
on CSN. Although the performance gain when eval-
uated using the CSN test set is marginal (20.49
versus 19.59), it is worth noting that, despite the
intermediary processing, CSN is a considerably
smaller dataset with more consistent docstring pat-
terns. In contrast, our dataset is substantially larger
and exhibits greater diversity, thereby encouraging
broader generalization. When evaluated against
The Vault’s test set, the model fine-tuned on CSN
lags behind by over 10%.

4.3.2 Code Search
We utilize CodeBERT, RoBERTa and UniXCoder
to fine-tune both The Vault and CodeSearchNet for
the purpose of the code search task. The results
of this task, when fine-tuning the model on The
Vault and CodeSearchNet, are illustrated in Table 6.
Remarkably, we attain superior results in most lan-
guages when fine-tund using the smallest dataset,
TheVault/small, in contrast to solely fine-tuning on

Model Fine-tune dataset pass@1 pass@10 pass@100

HUMANEVAL

CodeGen 350M

- 6.67 10.61 16.84
Py/CodeSearchNet 2.76 8.76 14.72
(250k) Py/TheVault 3.74 10.57 16.26
raw/PyTheVault 6.64 15.42 24.80
Py/TheVault 8.14 18.12 30.07

CodeGen 2B
- 14.51 24.67 38.56
Py/TheVault 14.00 25.74 41.72

MBPP

CodeGen 350M
- 7.46 24.18 46.37
Py/TheVault 10.13 33.96 53.20

CodeGen 2B
- 18.06 45.80 65.34
Py/TheVault 27.82 50.06 65.06

Table 7: Result on code generation benchmarks using
CodeGen Multi 350M and 2B model.

the CodeSearchNet corpus. We also furnish a base-
line Mean Reciprocal Rank (MRR) score. MRR
is a widely used metric for evaluating code search
tasks, and in our case, it is trained on 10 different
programming languages and assessed using the test
set from CodeSearchNet and The Vault.

4.4 Code Generation

We experiment with the CodeGen Multi-350M
model [Nijkamp et al., 2023] on the HumanEval
and MBPP datasets to generate code. The scope
of our experiment was limited because the bench-
marks only support Python. We use this checkpoint
and continue fine-tuning this model on The Vault
because CodeGen Multi-350M is trained on the
dataset with multiple languages.

To create Multi-PyCSN and Multi-PyTheVault
models, we fine-tuned the CodeGen pretrained
model on Python subsets of CSN and TheVault.
We sampled the training Python set of TheVault to
match the size of the Python subset in CSN with
250K samples in the first round of fine-tuning. Ad-
ditionally, raw-PyTheStack is a subset of Python
data from The Stack mirroring the size of Python
data present in The Vault dataset, which helps us
to demonstrate the advancements achieved in our
pipeline.

The results of this experiment are shown in table
7. We can see that fine-tuning the CodeGen Multi
350M on The Vault causes the model to improve
significantly in terms of pass@1, pass@10, and
pass@100 on the HumanEval and MBPP bench-
marks. Additionally, CodeGen 2B is used to as-
sess The Vault on larger scale models. Similar to
experiments on small models, table 7 shows that
The Vault can improve the performance of pre-
trained large-scale models. These results validate
The Vault’s ability to improve the performance of
pre-existing pretrained models. In the future, we
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will expand our evaluation to even larger scale mod-
els and assess The Vault’s impact on them.

5 Conclusion

In this paper, we have presented The Vault, a large
dataset of high-quality code-text pairs from 10 pro-
gramming languages, totaling more than 41 million
samples. The Vault was carefully curated to ensure
that each pair meets quality standards, with de-
tailed and informative descriptions and consistent
coding styles. Our analysis has observed various
intriguing patterns and trends that shed light on
the characteristics of programming languages and
coding practices. We are confident that The Vault
will be a valuable resource for researchers and prac-
titioners in this rapidly evolving field, providing
a solid foundation for developing innovative ap-
proaches and advancing the state-of-the-art code
large language models.

Limitations

In our approach, we employed 13 heuristic and
context-specific rule-based filters, curated from
manual data observations. While these filters effec-
tively mitigated noisy patterns, their deterministic
nature precluded comprehensive generalizability.
To address this, we supplemented these rules with
a deep learning approach as described in Section
3.2.2. However, the absence of labeled training
data necessitated pseudo-random sample genera-
tion, which could compromise model soundness
and potentially eliminate quality code-text pairs.
Although cross-validation with GPT 3.5-turbo oc-
casionally revealed scoring inconsistencies, we be-
lieve that human labeling and model fine-tuning
could further refine the dataset.

Compared to The Stack and The Pile, our dataset
is smaller, mainly due to our rigorous quality con-
trol procedures. Moreover, creating AST parsers
for each programming language is a non-trivial
task, limiting our dataset to 10 popular program-
ming languages compared to The Stack’s 300.
Nonetheless, our framework’s codebase is publicly
available, encouraging future contributions to ex-
tend our parsers and rules to additional languages.

The current study primarily utilized small mod-
els with less than 2 billion parameters to illustrate
the value of The Vault. These models effectively
demonstrated the dataset’s potential, but further
research with larger models would shed light on
its robustness and scalability across more complex
tasks. In future work, we plan to conduct experi-
ments using large-scale language models to further
assess the impact of our dataset.
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A Appendix

A.1 Rule-based filters
While some datasets eliminate all special characters
(!@#$%&*() -+=/.,’— ‘) and keep only the first
sentence or the paragraph preceding the first double
endline symbol [Hasan et al., 2021, Mahmud et al.,
2021], our heuristic rules take a different approach.
Instead of discarding such characters outright, we
selectively remove the noisy elements while aiming
to capture as many informative sections as possible.

We analyze each docstring block individually
and retain the sections that meet our quality crite-
ria. Table 8 provides comprehensive descriptions
of our 13 rule-based filters, accompanied by illus-
trative examples. Additionally, table 9 presents the
corresponding percentages of code-text pairs gen-
erated through the application of these rule-based
filters.

A.2 Deep learning-based refinement method
To detect semantic inconsistency between code-text
pairs, we considered fine-tuning on large founda-
tional models such as CodeGen [Nijkamp et al.,
2023], BLOOM [Scao et al., 2022] or leverage
GPT 3.5-turbo APIs. However, these approaches
would incur very high costs in terms of financial
resources, time, and computational power. We de-
cided to train a dedicated model to deal with this
specific task and use GPT 3.5-turbo to cross-check
the predictions.

Training: We trained our model based on Code-
BERT, [Feng et al., 2020a]. The model assigns a
score for semantic correspondence between code
and text, before passing through binary classifi-
cation into Consistent and Inconsistent categories.
We randomly chose 5M samples (500K for each
language in The Vault) and divided them into train-
ing, validation, and testing sets at a ratio of 3:1:1.
The input to the model is the concatenation of the
docstring and the code together with the < /s >
token used to separate them (Figure 3). We use the
representation of the < s > token and feed it into
a linear layer to obtain the output logit.

Since labeled data was unavailable, we utilized
self-supervised learning. We created negative sam-
ples by randomly pairing a function with a doc-
string from the same programming language (Fig-
ure 3).

Cross-check: We used GPT 3.5-turbo to per-
form similar classifications for semantic consis-
tency of code-text pairs. We used a prompting

template to ask GPT 3.5-turbo to score each pair
of code-text on a scale of 1 to 10 for semantic cor-
respondence with a detailed explanation and ran
this prompting template on systematically selected
300 data points from each language with 100 data
points in each of the following groups:

• Consistency group: Examples that the model
gives high confidence prediction to class Con-
sistent. We select the top 100 based on the
output probability for class 1.

• Inconsistency group: Examples that the model
gives high confidence prediction to class In-
consistent. We select the top 100 based on the
output probability for class 0.

• Uncertainty group: Examples that the model
gives uncertain predictions. We select the low-
est top 50 examples for each class.

The systematic sampling scheme helped us se-
lect 2994 samples in function level to be scored out
of millions, reducing the cost of requesting GPT
3.5-turbo API while enabling meaningful analysis.
The prompt input to GPT 3.5-turbo is as follow:
I want you to act as an unbiased

docstring evaluator for code. I will
give you a docstring along with a

source code, and you will give me a
score for the consistency between
them. The score will be on a scale
of 1 to 10, 10 means the docstring
can effectively summarize the code
while 1 means they are inconsistent.
The response answers must contain

the score and the explanation that
follows the format in the response
format.

- Response format:
Score: X
Explanation: Y

- Docstring:
"{docstring}"

- Code:
"{code}"

Empirical Evaluation Results: Table 10
presents the performance of our model with GPT
3.5 turbo’s scores as a reference, along with the
scoring result for each group. In groups with high
confidence, we witness a strong correlation be-
tween our model and GPT 3.5-turbo, with a high
score for Consistency (7.81) and a low score for
Inconsistency (3.15). A similar pattern is observed
in the Uncertainty group, where the average score
is close to the middle of the scale at 5.74.
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Categories Syntax Feature Action Docstring

Comment
Delimiter

Unnecessary comment delimiter Update

/**
* Lexical essentially tokenizer.

*
*/

→ Lexical essentially tokenizer.

Hyperlink URL Link Update

Deletes a Mux asset
@see

https://docs.mux.com/v1/reference#deletean-asset

→ Deletes a Mux asset

Embedded
Code

Inline or embedded code snippets,
command lines, or script excerpts Update

Set the trust level for a key in GPG keychain.
code-block:: bash
salt ’*’ gpg.trust-key key-id=’3FAD9F1E’
trust-level=’marginally’

→ Set the trust level for a key in GPG keychain.
code-block:: bash

Question Question: Why? How?, . . . Update
isup <url> - Is it down for everyone, or just you?

→ isup <url>

Math
formula

\sqrt(), \exp(), \mathbf, . . . Update

Recursive filter design using a least-squares
method.

{[}B,A{]} = YULEWALK(N,F,M) finds the N-th order
recursive filter coefficients B and A.

→ Recursive filter design using a least-squares
method.

Metadata
Tag

Metadata tags or annotations Update

Creates a slice of ‘array’ with ‘n’ elements
dropped

from the end.
@static
@memberOf
@since 3.0.0

→ Creates a slice of ‘array’ with ‘n’ elements
dropped from the end.

HTML Tags HTML tags: <p>... </p>, . . .
Special tags. Update

Constructs a <code>GeneralStoresProductModel</code>
from a plain JavaScript object.

→ Constructs a GeneralStoresProductModel from a
plain JavaScript object.

Example
and note

Code example, note from developers Update

Pull packages data dir.
note: Uses su to access package’s data dir.

→ Pull packages data dir.

Unsuitable
Length

Length < 5, length > 500 Remove Write objects

Non-
English

Not written in English Remove
Retorna uma estrutura com os argumentos
passados para o programa.

Auto-gen Auto-generated Remove
*<!-begin-user-doc->
<!-end-user-doc->
@generated

Under-dev Under-development Remove
Deprecate this build, so that it will be rebuilt if
any other test run wants to use it.

No com-
ment

No docstring/comment in function Remove null

Table 8: Rule-based filters and examples.
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Categories Python PHP JavaScript Java C# C++ C Rust Ruby Go Total
Comment Delimiter 12.02 33.38 9.94 11.98 16.7 6.92 13.28 8.43 9.13 4.95 13.43
Hyperlink 0.95 0.44 0.66 0.25 0.71 0.15 0.11 0.59 1.11 0.65 0.51
Embedded Code 31.65 1.09 1.38 1.41 1.39 6.51 6.16 0.67 3.18 2.41 12.68
Question 0.03 0 0.02 0.02 0.01 0.03 0.02 0.06 0.13 0.02 0.02
Math formula 0.1 0 0.01 0.01 0.01 0.02 0.02 0.01 0 0 0.021
Metadata Tag 0.62 6.81 1.86 2.69 2.15 4.35 6.14 0.83 1.69 0.46 5.26
HTML Tags 0.79 0.68 0.8 2.7 17.15 0.31 0.45 1.13 1.56 0.13 3.18
Example and note 1.4 0.26 0.36 0.34 0.22 0.18 0.4 0.45 0.79 0.3 0.46
Unsuitable Length 5.11 8.79 3.90 2.20 2.75 4.58 3.86 2.26 5.19 4.37 4.10
Non-English 1.69 5.72 3.26 4.16 2.62 4.1 1.94 0.42 1.53 1.77 3.23
Auto-gen 0.01 0 0 0.2 0 0 0 0 0 0 0.05
Under-dev 0.02 0 0 0 0 0 0 0 0 0 0.002
No comment 60.54 49.0 78.5 77.15 76.16 80.95 72.28 80.43 71.55 69.75 71.47

Table 9: The percentage of constructed code-text pairs from The Stack caught by each rule-based filter, by
programming language.

<s> </s>
...

...

Positive example

<s> </s>

Negative example

Java 

random
select

</s>

</s>

Figure 3: Input representation and Negative sample generation for code-docstring inconsistency detection.

In addition, we use GPT 3.5-turbo’s scores to
generate pseudo-labels and calculate accuracy and
AUC for our model. We set a relative threshold of
5 to determine the labels. It can be witnessed that
our model performs well in high-confidence groups
but struggles in the uncertainty group. However,
the accuracy is influenced by the choice of rela-
tive threshold, we consider Area Under the Curve
(AUC) to measure the false positive and true pos-
itive rates. The metric shows a convincing result
averaging 0.89, enabling us to effectively reduce a
high amount of noise in our dataset while avoiding
excluding too many informative examples. Finally,
after removing noisy data using the proposed deep
learning method, we notice a decrease of 1.3% in
the dataset.

We use our model to find noisy examples in the
rule-based noise-remove version of CodeSearch-
Net in CodeXGlue. Table 15 illustrates some exam-
ples found in 6 programming languages. It can be
observed that detected pairs show strong inconsis-
tency between docstring and code. For instance, the
docstring of the first example in Python does not
give much insight into what the code does or its pur-

pose. The code defines a method named ‘has url’
which checks if the attributes have a non-empty
value; however, the docstring mentions templates
which does not provide enough context to fully un-
derstand how this code relates to templates or its
broader purpose. A similar pattern also presents
in the remaining examples. An example that pro-
vides more clarity is the second example in Ruby.
The docstring describes a function with a ‘YAML
filePath’ parameter, but the function itself does not
actually have this parameter. Besides, our model
is able to identify non-English samples (the sec-
ond example in PHP) that are not captured by the
rule-based method.

A.3 Analysis of Function-Level Data in The
Vault

Detailed description of function level data in The
Vault can be found in Figure 4.

A.3.1 Code and Docstring Analysis
Token Length Distribution: When training seq-
to-seq LLMs, maximum input and output lengths
are typically required. By understanding the distri-
bution of sequence lengths in the corpus, we can
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Language GPT 3.5-turbo score (accuracy) Accuracy (%) AUCConsistency Inconsistency Uncertainty
Python 8.19 ± 1.15 (99%) 3.76 ± 1.96 (69%) 6.20 ± 2.12 (44%) 70.67 0.8559
PHP 7.73 ± 1.32 (96%) 3.01 ± 1.45 (90%) 4.90 ± 2.23 (49%) 78.33 0.8863
JavaScript 7.73 ± 1.25 (99%) 2.95 ± 1.40 (89%) 5.58 ± 2.29 (49%) 79.00 0.8984
Java 7.65 ± 1.71 (94%) 2.73 ± 1.32 (93%) 5.83 ± 2.12 (53%) 80.00 0.9014
C# 7.70 ± 1.35 (97%) 3.31 ± 1.56 (82%) 5.35 ± 2.09 (46%) 75.00 0.8606
C++ 7.51 ± 1.64 (92%) 2.82 ± 1.46 (89%) 5.80 ± 2.33 (57%) 79.33 0.8787
C 7.79 ± 1.10 (98%) 2.99 ± 1.48 (88%) 5.81 ± 2.08 (47%) 77.67 0.9108
Go 8.08 ± 1.21 (99%) 3.68 ± 1.67 (74%) 6.09 ± 2.06 (50%) 74.83 0.8819
Rust 8.03 ± 1.20 (99%) 3.72 ± 1.77 (75%) 6.83 ± 1.62 (50%) 74.67 0.9051
Ruby 7.72 ± 1.03 (98%) 2.51 ± 1.04 (96%) 5.01 ± 2.23 (49%) 81.00 0.9203
All 7.81 ± 1.33 (97%) 3.15 ± 1.59 (84%) 5.74 ± 2.19 (49%) 77.05 0.8874

Table 10: Evaluate CodeBERT using the consistency score provided by GPT 3.5-turbo. We report the mean ± the
standard deviation for the score in each subset.
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Figure 4: Distribution and the number of functions by the presence of docstrings. Functions with docstrings are
further divided into two categories: functions removed by rule-based filters and functions in the final code-text
dataset.
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Figure 5: Code and Docstring tokens length distribution.
The plot shows the lower to upper quartile values of the
number of tokens in the data. The orange solid line |
indicates the median and the green triangle ▲ presents
the mean.

choose appropriate input and output lengths for
training. This can help improve the performance of
training a language model and prevent the resulting
LLMs from producing outcomes too short or too
long for the intended use cases [Kaplan et al., 2020,
Brown et al., 2020].

Our tokenization process utilizes the tree-sitter
framework to parse source code into nodes on an
abstract syntax tree; each node is considered a to-
ken. For docstring tokenization, we tokenize by
word and punctuation. The code and docstring
tokens length distribution for each programming
language is illustrated in Figure 5. The number of
tokens present in a function (average of around 100
tokens) is considerably more than the number of
tokens found in the docstrings (average of 15-30
tokens) that describe it. In particular, among the
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10 programming languages, C and C++ have the
highest number of tokens in a function. This can
be attributed to the fact that these languages are
low-level languages, which typically require more
code to perform a task when compared to higher-
level languages. In the case of docstrings, their
number of tokens is determined not only by the
naturalness of the description in practice but also
by cleaning rules outlined in Section 3.2.1. From
Figure 5-Right and Table 9, it can be observed
that the docstrings in Java and C are lengthy but
are slightly cleaned by update-action rules, indicat-
ing that the docstrings in these two languages are
typically long and more detailed in practice. Mean-
while, the number of tokens of docstrings in C# is
the lowest. The cleaning rules may have played a
role, as a significant proportion of the samples in
C# has been updated based on Comment Delimite
(16,7%) and HTML Tags (17,15%) rules.

Table 2 depicts the overall number of distinct
tokens for each programming language. As our
dataset contains extensive unique tokens, we be-
lieve that model training on The Vault can effec-
tively handle unseen tokens. Besides, we find that
multiple function names are reused due to the rela-
tively small number of unique identifiers compared
to the total number of functions in the dataset. This
finding implies that even for humans, naming func-
tions might be a difficult task.

Docstring Styles: Alongside typical docstrings
that provide brief descriptions of the source code,
many adhere to formatting and style conventions
like Google, Jsdoc, and reST styles, among others.
Our toolkit, designed to parse docstrings and ex-
tract metadata into a dictionary, supports 11 preva-
lent docstring styles. The styles we support and
the information we aim to extract are depicted in
figures 10 and 8 in Appendix A.5. This rich dataset
could inspire research on advanced problems, such
as controlling docstring style during generation or
crafting explanations for function parameters.

Figure 9 provides statistics on the number of
docstrings following a standard style. The data
suggests that styled docstrings constitute a small
fraction of the overall code-text dataset. One pos-
sible explanation is that our style detection rules
are stringent, excluding docstrings with even mi-
nor syntax deviations, which might result in un-
derestimating the number of docstrings adhering
to a specific format. For styled docstrings, Figure
9-bottom presents the distribution of the number

of extracted attributes for each programming lan-
guage, with most having between 1 to 5 elements.
We make our docstring-style parser available to
the community to facilitate easy customization and
enhancement.

A.4 Analyzing for Class and Inline Comment
Set

In Table 11, we provide a statistical analysis of the
number of classes and inline comments in both the
raw set and the filtered set. Since the class structure
is not defined in C and Go, we do not have their
information to give in this table.

Initially, we excluded a substantial number of
class samples from the raw dataset that lacked doc-
strings. The remaining class-docstring pairs un-
derwent additional processing. Since the nature
of classes and functions is similar, their function-
alities can be meaningfully defined by pairs of a
code snippet and a docstring. However, one of the
problems when constructing paired data for class-
comment samples is the large code snippet length
of the class structure. As a result, we set the maxi-
mum number of code tokens that a class can have
to 5000. On average, the code-token length of the
class set is approximately 500, which is around five
times longer compared to the average token length
in the function set, while the number of docstring-
token lengths is similar between the two sets, as
shown in Figure 6. Each pair of class-docstring
is also examined via a rule-based filtering process,
as described in Section 3.2.1, serving as a sample
point in Dpair dataset.

In the Dblock analysis, we initiate the initial for-
mation of the sub-dataset by identifying and extract-
ing inline comments within code functions. The ex-
tracted comments undergo a series of cleaning pro-
cedures similar to those applied to the docstrings
(as discussed in Section 3.2.1). After eliminating
noisy samples, we proceed to establish various in-
tervals for the number of comment tokens, aiming
to determine the optimal upper and lower bounds
that yield high-quality collected comments. Our
observations reveal that inline comments exceed-
ing 15 tokens typically incorporate code snippets,
while comments containing fewer than 3 tokens
lack substantial meaningful information. Conse-
quently, this interval serves as a filtering criterion
to generate the final version of Dblock. Figure 7
shows the distribution of code-token length and
docstring-token length in Dblock set.
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Language
Number of raw classes Number of classes

after filtering
Number of raw

inline comments
Number of inline comments

after filteringw/ comment wo/ comment
Python 497,550 1,440,539 422,187 24,066,884 14,013,238
PHP 2,223,472 6,232,180 1,173,916 9,892,486 5,873,744
JavaScript 494,819 2,409,932 291,479 4,426,086 1,438,110
Java 8,438,772 11,997,783 4,872,485 24,982,298 17,062,277
C# 2,378,379 9,097,968 1,437,800 10,130,704 6,274,389
C++ 285,184 791,355 174,370 20,770,494 10,343,650
Rust 188,517 3,591,465 93,311 2,998,368 2,063,784
Ruby 721,338 2,903,507 353,859 1,236,143 767,563
C - - - 16,009,812 6,778,239
Go - - - 7,574,542 4,390,342
Total 15,228,031 38,464,729 8,819,407 122,087,817 69,005,336

Table 11: The number of classes and inline comments associated with the class and inline set. The symbol ‘-’
indicates that this information is unavailable due to the nonexistence of traditional classes in C and Go.
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Figure 6: Code and Docstring tokens length distribution of the Class set after filtering.
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Figure 7: Code and Docstring tokens length distribution of Dblock set after filtering.

A.5 Docstring Styling

A docstring is a string literal used as a form of docu-
mentation for a module, function, class, or method

definition in programming languages. It is usu-
ally placed as the first statement in the code block
(which can be inside or outside the code block it-
self) and enclosed by a comment delimiter (e.g.,
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triple quotes (“‘) or a star slash (\*)). Depending on
developer comment habit or docstring style format,
docstrings can form two types: one-line docstrings
and multi-line (or block) docstrings. A docstring
can provide a concise summary of the functionality
while also providing a detailed description of the
code block, including its parameters, return val-
ues, exceptions, and other relevant information (as
illustrated in Figure 8)

The primary purpose of a docstring is to provide
clear, concise, and easily accessible documenta-
tion for a code block. Docstring styles are conven-
tions followed while writing docstrings to ensure
consistency, readability, and ease of understanding
throughout a codebase. This has become a standard
for clean code in the industry and has developers
saving tons of time when it comes to understanding
or (auto-)generating documentation (using Sphinx,
Doxygen, etc).

There are several popular docstring styles, such
as Google Style, NumPy Style, reStructuredText
(reST) Style for Python programmers, JavaDoc
Style or Doxygen for Java users, each with its own
formatting rules, structure and target programming
language (docstring style examples and preferred
language are listed in Figure 10). The statistic for
docstring style corresponding to function level is
presented in Figure 9. We believe that information
inside a docstring is extremely useful and can pro-
vide numerous advantages for various applications
in the fields of AI for source code, such as pro-
viding more precise and relevant search results for
code search and retrieval tasks, or the performance
of code analysis or refactoring can be significantly
improved while the identifier of a parameter and its
corresponding docstring information is available.

A.6 Experiment setup

Data splitting: During the experiment phase, The
Vault (Dpaired) was split into three distinct datasets:
training, validating, and testing sets. To avoid data
leakage, we reinforced a policy where code sam-
ples from the same repository must all be in the
same set. In the splitting algorithm, we also in-
cluded as a goal the preservation of the token length
distribution from The Vault’s dataset in each subset.

For richer comparisons, the training set was fur-
ther branched off to two smaller sets, the small
and medium training sets, sampling 5% and 20%
of the full training set, respectively. Details about
experiment data can be found in 12.

Language
Training set

Valid set Test set
Small Medium Full

Python 370,657 1,952,110 7,772,647 30,992 21,652
Java 351,213 1,612,366 6,629,193 22,677 15,552
JavaScript 82,931 404,729 1,640,416 22,044 21,108
PHP 236,638 1,155,476 4,656,371 21,375 19,010
C 105,978 381,207 1,639,319 27,525 19,122
C# 141,090 783,166 3,305,891 24,787 19,638
C++ 87,420 410,907 1,671,268 20,011 18,169
Go 267,535 1,319,547 5,109,020 19,102 25,314
Ruby 23,921 112,574 424,339 17,338 19,908
Rust 35,367 224,015 825,130 16,716 23,141
Total 1,702,750 8,356,097 33,673,594 222,567 202,614

Table 12: The proportion of training, validation, and
test set of THEVAULT.

Infrastructure: All experiments are conducted
on 4 NVIDIA A100 GPUs.

Code search: We select CodeBERT, as the en-
coder for embedding source code and natural query,
for all experiments. We train 10 epochs for each
model with a sequence max length of 512, and a
learning rate 2−5.

Code summarization: Codet5-base is em-
ployed for the summarization task. We set the
max input tokens to 512 and the max output tokens
to 400. The training batch size is set to 512, the
learning rate is 2−4, and training for 5 epochs.

Code generation: We use 350M parameters of
CodeGen to evaluate code generation. We use the
same configuration as in the code summarization
task.

A.7 Experimental results on code
summarization

We report Rouge-L, BERTScore, and BLEU-4 met-
rics on test sets of CSN and The Vault in Table 14.
The results obtained from the experiments clearly
indicate that models trained on our dataset con-
sistently outperform CSN on all three evaluation
metrics. This notable improvement across the met-
rics serves as strong evidence for the syntactic and
semantic richness embedded within our dataset for
code summarization. This highlights the effective-
ness of our dataset in enabling models to grasp
contextual information and generate high-quality
summaries that accurately represent the underlying
code functionality.

A.8 Ablation study
In this section, we assess TheVault’s versatility
and adaptability by providing additional experi-
mental results on several architectures (RoBERTa
[Liu et al., 1907], UniXcoder [Guo et al., 2022],
PLBART [Ahmad et al., 2021a]) for code search
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Model Fine-tune data Python Java JavaScript Go PHP Ruby Rust C C++ C# Avg
CODESEARCHNET TESTSET (MRR)

CodeBERT

CodeSearchNet 0.3793 0.4636 0.4437 0.6201 0.4741 0.5219 - - - - 0.4838
TheVault/small 0.4074 0.4857 0.4466 0.6578 0.6578 0.5251 - - - - 0.5301
TheVault/medium 0.6585 0.6945 0.6197 0.8571 0.638 0.7096 - - - 0.6962
TheVault 0.6952 0.7242 0.6562 0.8789 0.6646 0.7474 - - - - 0.7278

RoBERTa CodeSearchNet 0.3479 0.448 0.4254 0.5684 0.4623 0.5147 - - - - 0.6952
TheVault/small 0.4849 0.5581 0.4962 0.7446 0.5166 0.59 - - - - 0.5651

UniXCoder CodeSearchNet 0.3935 0.4549 0.4459 0.5861 0.489 0.5446 - - - - 0.4857
TheVault/small 0.4427 0.4909 0.4506 0.6416 0.4515 0.5702 - - - - 0.5079

THEVAULT TESTSET (MRR)

CodeBERT

CodeSearchNet 0.2881 0.3213 0.2409 0.4123 0.1854 0.2579 - - - - 0.2843
TheVault/small 0.3501 0.4214 0.3216 0.4864 0.2351 0.2904 0.326 0.2996 0.3015 0.3483 0.3165
TheVault/medium 0.5929 0.6215 0.549 0.6862 0.3642 0.514 0.5705 0.5362 0.5264 0.5268 0.5488
TheVault 0.6448 0.6633 0.592 0.7111 0.3891 0.5607 0.6243 0.5947 0.5932 0.5616 0.5935

RoBERTa CodeSearchNet 0.2644 0.3329 0.2371 0.2375 0.1577 0.2574 - - - - 0.2478
TheVault/small 0.4533 0.5519 0.4386 0.5021 0.2876 0.3717 0.4195 0.3805 0.37 0.4099 0.4342

UniXCoder CodeSearchNet 0.2959 0.344 0.2508 0.185 0.1646 0.2669 - - - - 0.2512
TheVault/small 0.3852 0.4279 0.3491 0.4628 0.238 0.3201 0.363 0.2934 0.2861 0.3473 0.3639

Table 13: Code search results of various architectures and training dataset.

and code summarization tasks. Besides, in order to
validate the efficiency of our processing pipeline,
we conduct a comparison between the performance
of models trained on The Stack (raw data) and The
Vault (processed data). Specifically, we established
three function-level subsets, each approximately
the size of TheVault/small (≈1.7M code-text in-
stances). These subsets were created by randomly
sampling the raw function-level dataset extracted
from The Stack, without applying any filtering (re-
ferred to as raw-TheStack). We use three different
seeds to sample raw-TheStack and report the aver-
age result. Tables 13 and 14 illustrate the results
for code search and code summarization, corre-
spondingly. As a result, in the code search task,
models trained on The Vault consistently outper-
form all baseline models, underscoring both the ef-
ficiency of our processing pipeline and the dataset’s
ability to generalize across different architectures.
For code summarization, our pipeline has simi-
larly witnessed strong effectiveness compared to
raw-TheStack. Particularly, during training on the
raw-TheStack dataset for the code summarization
task, we found that the PLBART and CodeT5 gen-
erate outputs with substantial noise. These outputs
are characterized by a prevalence of special tokens
like // and *. This finding strongly underscores the
efficacy of our filtering process in enhancing the
quality of the dataset. However, the result using
CSN shows superior performance on CSN’s testset
than using The Vault. The reason for this is our
mention of the post-processing step (section 4.3.1)
to reduce the difference between the CSN and The
Vault filtering methods, where the syntactic distri-
bution can still exhibit nonidentical characteristics,

which can affect the BLEU score. However, this
gap could be reduced by using the full version of
The Vault as shown in Table 5.
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Language Finetune dataset CodeSearchNet The Vault
Rouge-L BERTScore BLEU-4 Rouge-L BERTScore BLEU-4

Python

CodeSearchNet 34.000 88.827 19.55 (20.36) 26.798 87.055 10.86
TheVault/medium-S 34.676 88.905 19.74 30.335 87.633 13.06
TheVault-S 36.499 89.211 21.15 31.786 87.929 14.14
TheVault/medium-L 33.848 88.734 18.88 30.947 87.716 13.36
TheVault-L 35.024 88.921 19.83 32.251 87.954 14.33

Java

CodeSearchNet 35.625 89.132 20.38 (20.46) 27.297 87.385 8.00
TheVault/medium-S 33.385 88.490 18.62 31.320 87.897 11.17
TheVault-S 35.495 88.907 20.43 33.137 88.268 12.00
TheVault/medium-L 32.561 88.161 18.29 30.773 87.596 11.50
TheVault-L 35.221 88.782 20.37 32.882 88.000 12.47

JavaScript

CodeSearchNet 28.330 87.568 16.15 (16.24) 24.895 86.519 8.42
TheVault/medium-S 26.528 87.017 14.88 27.891 86.846 10.58
TheVault-S 28.345 87.384 16.30 29.817 87.320 11.71
TheVault/medium-L 27.062 87.057 14.95 28.290 86.936 10.83
TheVault-L 27.869 87.276 15.63 30.572 87.391 12.38

PHP

CodeSearchNet 41.346 89.981 26.26 (26.09) 39.960 89.281 17.85
TheVault/medium-S 34.802 88.125 21.78 63.984 93.287 37.72
TheVault-S 37.297 88.676 23.53 65.401 93.580 38.30
TheVault/medium-L 33.325 87.963 20.27 65.195 93.679 39.13
TheVault-L 36.478 88.641 23.21 67.089 94.012 40.13

Go

CodeSearchNet 40.076 90.487 19.83 (19.76) 38.189 89.994 17.87
TheVault/medium-S 42.011 90.816 21.38 54.030 92.372 34.47
TheVault-S 44.649 91.188 24.37 54.889 92.541 35.44
TheVault/medium-L 41.480 90.731 21.22 56.721 92.994 39.27
TheVault-L 44.063 91.108 23.96 57.681 93.130 40.38

Ruby

CodeSearchNet 28.196 87.371 15.38 (15.69) 24.500 86.417 10.26
TheVault/medium-S 29.680 87.559 16.09 26.904 86.964 12.26
TheVault-S 31.133 87.830 17.15 28.535 87.280 13.79
TheVault/medium-L 29.389 87.565 15.42 27.485 87.044 12.63
TheVault-L 30.634 87.759 16.53 29.141 87.223 14.24

Total

CodeSearchNet 36.739 89.341 21.24 30.563 87.853 16.11
TheVault/medium-S 34.935 88.755 19.91 39.589 89.278 26.02
TheVault-S 37.120 89.163 21.73 41.079 89.591 27.41
TheVault/medium-L 34.086 88.585 19.16 40.544 89.473 27.71
TheVault-L 36.305 89.024 21.14 42.187 89.753 29.32

C

TheVault/medium-S - - - 28.132 86.277 10.21
TheVault-S - - - 33.275 87.353 13.39
TheVault/medium-L - - - 29.151 86.566 11.32
TheVault-L - - - 35.009 87.807 14.86

C#

TheVault/medium-S - - - 39.480 89.616 23.88
TheVault-S - - - 46.854 90.819 31.11
TheVault/medium-L - - - 39.720 89.652 24.30
TheVault-L - - - 46.594 90.788 31.05

C++

TheVault/medium-S - - - 28.029 86.719 14.55
TheVault-S - - - 29.942 87.116 16.18
TheVault/medium-L - - - 28.815 86.827 14.85
TheVault-L - - - 30.754 87.163 16.65

Rust

TheVault/medium-S - - - 30.416 87.758 13.30
TheVault-S - - - 32.535 88.126 14.72
TheVault/medium-L - - - 30.999 87.862 13.75
TheVault-L - - - 32.857 88.142 15.18

Table 14: Experimental results for code summarization. For models that are finetuned on The Vault, “-S” annotation
refers to finetuning process using short docstring field as summarization, while “-L” represents the docstring field.
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Languages Inconsistent pairs

Python

// Handy for templates.
def has_urls(self):

if self.isbn_uk or self.isbn_us or self.official_url or self.
notes_url:

return True
else:

return False

// compresses the waveform horizontally; one of
// ‘‘"normal"‘‘, ‘‘"resync"‘‘, ‘‘"resync2"‘‘
def phase_type(self, value):

self._params.phase_type = value
self._overwrite_lock.disable()

Go

// InWithTags, OutWithTags, Both, BothWithTags
func Predicates(from Shape, in bool) Shape {

dir := quad.Subject
if in {

dir = quad.Object
}
return Unique{NodesFrom{

Quads: Quads{
{Dir: dir, Values: from},

},
Dir: quad.Predicate,

}}
}

// select Surf ro PhomtomJS
func (self *DefaultRequest) GetDownloaderID() int {

self.once.Do(self.prepare)
return self.DownloaderID

}

Java

// supplied callback function.
public boolean rm(Pipe pipe, IMtrieHandler func, XPub pub)

{
assert (pipe != null);
assert (func != null);
return rmHelper(pipe, new byte[0], 0, 0, func, pub);

}

// only for change appenders
public MapContentType getMapContentType(ContainerType

containerType){
JaversType keyType = getJaversType(Integer.class);
JaversType valueType = getJaversType(containerType.

getItemType());
return new MapContentType(keyType, valueType);

}
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Languages Inconsistent pairs

JavaScript

// we do not need Buffer pollyfill for now
function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);

}

// WeakMap works in IE11, node 0.12
function (fn, name) {
function proxiedFn() {
’use strict’;
var fields = privates.get(this); // jshint ignore:line
return fn.apply(fields, arguments);

}

Object.defineProperty(proxiedFn, ’name’, {
value: name,
configurable: true

});

return proxiedFn;
}

PHP

// -> NEW
public function consumerId()

{
if (isset($this->session->data[’customer_id’]) === true) {

return $this->session->data[’customer_id’];
}
return null;

}

// disini mo ba atur akan apa mo kamana
private function _parse_routes()

{
$uri=implode(’/’, $this->uri->segments());

if (isset($this->router[$uri])) {
return $this->_set_request(explode(’/’, $this->router

[$uri]));
}

foreach ($this->router as $key → $val) {
$key = str_replace(’:any’, ’.+’, str_replace(’:num’,

’[0-9]+’, $key));

if (preg_match(’#ˆ’.$key.’$#’, $uri)) {
if (strpos($val, ’$’) !== FALSE AND strpos($key,

’(’) !== FALSE) {
$val = preg_replace(’#ˆ’.$key.’$#’, $val,

$uri);
}

return $this->_set_request(explode(’/’, $val));
}

}

$this->_set_request($this->uri->segments());
}
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Languages Inconsistent pairs

Ruby

// Initialize a new page, which can be simply rendered or
// persisted to the filesystem.
def method_missing(name, *args, &block)

return meta[name.to_s] if meta.key?(name.to_s)
super

end

// Accepts the path of the YAML file to be parsed into
// commands - will throw a CommandException should it have
// invalid parameters
// @param filePath [String] Path for YAML file
def action_options

# Attempt resolution to outputs of monitor
return @action_options unless @monitor_class.outputs.length >

0
action_options = @action_options.clone
@monitor_class.outputs.each do |output, _type|
action_options.each do |option_key, option_value|
action_options[option_key] =
option_value.gsub("{{#{output}}}", @monitor.send(output).

to_s)
end

end
action_options

end

Table 15: Inconsistent pairs in CodeSearchNet found by our model. “//” represents for docstring section.

def x_intercept (m, b): 
"""

Return the x intercept of the line M{y=m*x+b}. 

The X{x intercept} of a line is the point at which it crosses

the x axis (M{y=0}).

This function can be used in conjuction with L{z_transform}

to find an arbitrary function's zeros.

@type m: number

@param m: The slope of the line.

@type b: number

@param b: The y intercept of the line. The X{y intercept} of

a line is the point at which it crosses the y axis (M{x=0}).

@type count: string

@param count: The outlier param

@rtype: number

@return: the x intercept of the line M{y=m*x+b}.

@author: Epydoc's Documents
@see: https://epydoc.sourceforge.net/manual-epytext.html

"""

pass

Docstring Style:
Epytext

5. Return's docstring
and type

3. Param's docstring
and type

1. Short docstring

2. Docstring

6. Others

Identifier Parameter list

4. Outlier param's
docstring and type

Figure 8: Structure of a docstring and its metadata.
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Python PHP JavaScript Java C# C++ C Rust Ruby
0.00

0.25

0.50

0.75

1.00
1e7

w/style
all

Languages Python PHP JavaScript Java C# C++ C Rust Ruby
w/style 2853520 8271 39295 14432 2754629 32517 25233 84427 156286
all 9893858 5455989 2562158 7886299 4011467 1934958 1978551 1076588 544867

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 9: Number of docstrings follows a specific style over all extracted code-text pairs. Upper figure and Middle
table illustrate statistics for docstrings with style. Lower figures present the histogram of extracted attributes in the
range of 1-20 for docstrings in each language. Golang does not have a supported style.
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Google Style

Python"""
Test function.
Args:
    param1 (int): Description of param1.
    param2 (str): Description of param2.
Returns:
    bool: Description of the return value.
"""

/**
* Test function.
*
* @param param1 Description of param1.
* @param param2 Description of param2.
* @return Description of the return value.
*/

JavaDoc

Java C C++ C#Java C C++ C#

Jsdoc

JavaScript/**
* Test function.
*
* @param {int} param1 - Description of param1.
* @param {string} param2 - Description of param2.
* @return {bool} Description of the return value.
*/

reST

Python

reST

Python"""Test function.
:param param1: Description of param1.
:type param1: int
:param param2: Description of param2.
:type param2: str
:return: Description of the return value.
:rtype: bool
"""

Rdoc

Ruby

Rdoc

=begin
Test method.

@param param1 [Integer] Description of param1.
@param param2 [String] Description of param2.
@return [Boolean] Description of the return value.
=end

RustDoc

Rust

RustDoc

Rust/**
* Test function.
** # Arguments
* `param1`: Description of param1.
* `param2`: Description of param2.
* # Returns
* Description of the return value.
*/

PHPdoc

PHP

PHPdoc

PHP/**
* Test function.
*
* @param int $param1 Description of param1.
* @param string $param2 Description of param2.
* @return bool Description of the return value.
*/

Doxygen

C C++ C#C C++ C#/**
* Test function.
* @brief Constructor.
* @param param1 Description of param1
* @param param2 Description of param2
* @see Test()
*/

XML

C#/// <summary>
/// Test function.
/// </summary>
/// <param name="param1">Description of param1.
</param>
/// <param name="param2">Description of param1.
</param>
/// <returns>
/// Description of the return value.
/// </returns>

Epytext

PythonPython"""
Test function.
@type param1: int
@param param1: Description of param1
@type param2: string
@param param2: Description of param2
@rtype: bool
@return: Description of the return value.
"""

NumPy Style

Python

NumPy Style

Python"""
Test function.
Parameters
----------
param1 : int
Description of param1.
param2 : str
Description of param2.
Returns
-------
bool
Description of the return value.
"""

Figure 10: Supported docstring styles.
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