
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 78–82
December 6, 2023 ©2023 Association for Computational Linguistics

Beyond the Repo: A Case Study on Open Source Integration with GECToR

Sanjna Kashyap Zhaoyang Xie Kenneth Steimel Nitin Madnani
Educational Testing Service

Princeton, NJ, USA
skashyap@ets.org zxie@etscanada.ca ksteimel@ets.org nmadnani@ets.org

Abstract

We present a case study describing our efforts
to integrate the open source GECToR code and
models into our production NLP pipeline that
powers many of Educational Testing Service’s
products and prototypes. The paper’s contribu-
tions includes a discussion of the issues we en-
countered during integration and our solutions,
the overarching lessons we learned about inte-
grating open source projects, and, last but not
least, the open source contributions we made
as part of the journey.

1 Introduction

GECToR (Grammatical Error Correction Tag, not
Rewrite)1 is a set of deep learning models devel-
oped by Grammarly for the task of Grammatical Er-
ror Correction or GEC (Omelianchuk et al., 2020).
GECToR achieves state-of-the-art results for the
GEC task and its inference speed is up to 10 times
as fast as that of equivalent Transformer-based
sequence-to-sequence (seq2seq) GEC systems.

The most commonly proposed systems for the
GEC task leverage seq2seq Neural Machine Trans-
lation (NMT) models to "translate" from errorful
text to corrected text. However, such systems gener-
ally suffer from slow inference and require a large
amount of data. To deal with these issues, GECToR
simplified the task from sequence generation to se-
quence tagging. To train this tagging system, GEC-
ToR utilizes three training stages: pre-training on
synthetic data, fine-tuning on parallel datasets that
contain both errorful and corrected texts, and fur-
ther fine-tuning on a combination of high-quality,
parallel datasets containing both errorful/corrected
as well as error-free texts. However, one of the
largest benefits of GECToR to the NLP community
is that it was open sourced under a commercially-
unrestricted Apache 2.0 license.

1https://github.com/grammarly/gector

2 Requirements

Educational Testing Service (ETS) has developed
a pipeline that uses a service-based architecture
to combine multiple NLP services into scalable
and robust backend applications (Madnani et al.,
2018). These applications are used to evaluate the
speaking and writing proficiency of students’ writ-
ten essays or spoken responses and provide both
automatic scores as well as actionable feedback.
Specifically, our pipeline provides descriptive feed-
back on multiple dimensions such as the student’s
grammar, mechanics, vocabulary, text complexity,
style, organization, among others. Our pipeline is
used for various high-stakes assessments, e.g., the
Analytical Writing section from GRE (Graduate
Record Examinations)2 and the Independent and
Integrated Writing prompts from TOEFL iBT (Test
of English as a Foreign Language Internet-Based
Test).3

Our pipeline has two main requirements: (1) ev-
ery NLP service should return its results in less than
a few seconds to enable near real-time feedback
and (2) all models used in services should be opti-
mized for precision over recall to minimize unfair
penalization of students. After a careful evalua-
tion of GECToR’s GEC performance and inference
speed, we felt comfortable in replacing our existing
GEC system with GECToR.

GECToR provides three already trained English
GEC models based on BERT, RoBERTa, and XL-
NET. It also has scripts for training and inference.
Since our pipeline is English-only for now, the ex-
isting GEC models perfectly fit our needs. There-
fore, our integration efforts focus entirely on the
inference side.

2https://www.ets.org/gre.html
3https://www.ets.org/toefl.html

78

https://github.com/grammarly/gector
https://www.ets.org/gre.html
https://www.ets.org/toefl.html


3 Related Work

Adopting open source software in commercial envi-
ronments has been a topic of much interest. There
are several barriers to open source use: lack of
knowledge, inability to incorporate it into existing
legacy systems, too many forks created by different
groups, technological immaturity, et cetera (Nagy
et al., 2010). One formal approach that can be used
to assess an open source project before putting it
into production is the Open Source Maturity Model
(OSMM) which assesses factors like the product,
support, training, documentation, product integra-
tion and professional services, and gives them a
weighted score. However, this model is only a first
step in identifying which projects are worth a more
in-depth evaluation (Golden, 2005). In this pa-
per, we hope to provide a detailed case study with
illustrative, concrete steps for using open source
projects.

There are major forks and re-implementations of
the original GECToR project available on GitHub.
fast-gector4 claims to be a faster and simpler imple-
mentation of the original project leveraging AMP5

and DeepSpeed (Rasley et al., 2020). However, we
were unable to reproduce the same results as the
original model in our experiments with fast-gector.
gector-large (Tarnavskyi et al., 2022) focuses on
improving GECToR by upgrading the Transformer
encoders, and using an ensemble model for span-
level edits. According to the paper, while the larger
encoders do yield better performance, they do so
at the cost of speed with inference being 2.3-2.5x
slower.

4 Integration

In this section, we discuss the challenges we faced
when integrating GECToR into our pipeline and
our solutions.

4.1 Issues

Before we delve into the integration issues, we
want to impress upon the reader that the existence
of such issues should not detract from or minimize
the usefulness of GECToR (or other open source
software) to the NLP community. However, we
feel that an honest discussion of such real-world
issues can provide both the authors and users of
such software with useful, actionable information.

4https://github.com/cofe-ai/fast-gector
5https://developer.nvidia.com/

automatic-mixed-precision

GECToR was open sourced as part of a research
publication and aligns well with the needs of the
academic community. However, as we attempted to
adapt it for use in a commercial NLP pipeline, we
felt that some critical requirements were not fully
addressed in its original design. This mismatch be-
tween the original authors’ intended use and users
seeking to productionize it led to challenges in uti-
lizing GECToR effectively in its original form.

The system was not under active development,
which posed challenges for commercial adoption.
The dynamic nature of commercial environments
needs ongoing development and maintenance to
keep pace with rapidly evolving requirements and
security issues. A specific challenge in adopting
GECToR for our purposes was that it used sig-
nificantly older versions of Python, PyTorch, and
AllenNLP (Gardner et al., 2018). Its reliance on
these outdated dependencies prevented seamless
integration into our existing environments and lim-
ited access to the latest features and optimizations.

GECToR was also not packaged for easy instal-
lation, further complicating its integration into ex-
isting environments. The library could only be
used by cloning the repository, downloading the
model, and running some scripts created by the
authors. Packaging GECToR and streamlining its
installation process would be vital to ensure smooth
continuous integration and deployment.

GECToR was designed to leverage AllenNLP, a
powerful NLP library. However, its usage did not
fully exploit the capabilities that AllenNLP offered,
namely its high-level abstractions and API, leading
to potentially sub-optimal performance. Properly
utilizing AllenNLP would significantly enhance the
library’s overall effectiveness and result in more
standardized and maintainable code.

4.2 Solutions

To address the issues we identified with GECToR in
the previous section, we undertook several mitiga-
tion strategies. These efforts focused on enhancing
its functionality, compatibility, and maintainabil-
ity while still preserving the overall integrity of
the original codebase. To implement these strate-
gies, we forked GECToR on GitHub6 and added
the following improvements to our fork.

6https://github.com/EducationalTestingService/
gector

79

https://github.com/cofe-ai/fast-gector
https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
https://github.com/EducationalTestingService/gector
https://github.com/EducationalTestingService/gector


4.2.1 Regression & unit tests
To ensure that any modifications or updates made
by us do not lead to differences in predictions made
by the existing models, the very first thing we did
in our fork was to implement a comprehensive test
suite comprising of a total of 95 tests (37 unit tests
as well as 58 regression tests). We decided that a
good way to get started was to test each AllenNLP
component separately, e.g., the tokenizer, the token
indexer, the embedder etc. This gave us not only
a clear structure to follow but also a reasonable
granularity for the test cases.

The test suite not only helps in verifying the
correctness of the system but also acts as a safety
net to prevent potential differences in the future.
We also added a continuous integration plan using
Github Actions to automatically run the complete
test suite for any changes made to the codebase.

4.2.2 Updated dependencies
One of the critical steps in making GECToR suit-
able for production was to update its dependencies
to modern, supported versions. We carefully up-
dated the library to work seamlessly with the latest
versions of Python (3.7 only → 3.8 through 3.10),
PyTorch (1.10.0 → 1.12.1), AllenNLP (0.8.4 →
2.10.0), and many other dependencies. By doing so,
we ensured compatibility with more modern infras-
tructure and took advantage of the latest advance-
ments in frameworks and tools. This allows the
installation of GECToR in existing CI and deploy-
ment environments via package managers such as
conda,7 and minimizes dependency conflicts. Our
regression tests ensured that there were no changes
to the output as a result of our updating the package
versions.

4.2.3 True AllenNLP-ification
We followed AllenNLP’s recommended abstrac-
tions and guidelines to re-architect our fork of GEC-
ToR, enabling a more streamlined integration with
AllenNLP. The architecture adopted was largely
influenced by the design and modules of AllenNLP.
Utilities for training and inference were already
provided by AllenNLP so our changes largely re-
shaped the existing GECToR codebase to function
as an extension of AllenNLP. Specifically:

1. To facilitate better configurability and ease of
use, we registered GECToR modules with the
AllenNLP framework: each file in our fork

7https://docs.conda.io/en/latest/

contains one type of AllenNLP component
like tokenizers, token indexers, models, pre-
dictors, and dataset readers. The registration
allowed model architecture, tokenizer settings
and preprocessing options to be referenced
and contained in a single jsonnnet file used
for both training and inference.

2. Users can now access GECToR directly
through AllenNLP-supported configuration
files, enhancing its usability.

3. GECToR models can now be bundled into an
AllenNLP model archive for easy distribution
and inference.

Since we completed this work on GECToR, Al-
lenNLP has been archived and is no longer being
maintained. We discuss the implications of this in
§5.4.

4.2.4 Packaging & easy installation
We architected our GECToR fork to better support
packaging, created a conda recipe, and deployed
a publicly-available package on our public conda
channel.8 This makes the installation of GECToR
significantly easier and reproducible (Arvan et al.,
2022), unlike installing from the Github source
repository every time since it is challenging to keep
track of any changes made to the code since the
last installation from source. We also packaged the
GECToR RoBERTa model for easy installation via
conda.9

By implementing rigorous testing, updating de-
pendencies, aligning with AllenNLP guidelines,
and creating easily installable packages, we were
able to successfully mitigate the challenges asso-
ciated with productionizing the original version of
GECToR. We argue that these efforts have trans-
formed GECToR into a more robust and adaptable
library for grammatical error correction, suitable
for use in any production Python environment.

5 Lessons learned

While bolstering GECToR, we learned a few gen-
eral lessons about open source development and
integration that we would like to share.

5.1 Projects should explicitly state a purpose.
In our opinion, open source authors should explic-
itly state the purpose of their projects. Document-

8https://anaconda.org/ets/gector
9https://anaconda.org/ets/gector-roberta

80

https://docs.conda.io/en/latest/
https://anaconda.org/ets/gector
https://anaconda.org/ets/gector-roberta


ing whether the codebase is intended solely for
research purposes or whether it is ready for pro-
duction can help potential users easily estimate
the level of effort required for integration. We
hope our message is clear. Open source research
projects like GECToR are invaluable for the com-
munity. However, the level of involvement required
to productionize research codebases can vary sig-
nificantly.

5.2 Estimation of effort is hard but necessary.

It is crucial to perform a careful analysis of the ef-
fort involved in integrating an open source project
into a production codebase. Most popular open
source projects are under active development and
are used by a large number of users and organiza-
tions. Such projects are usually created or main-
tained by commercial organizations with dedicated
teams working on them. Any issues or feature re-
quests have a higher chance of being addressed and
implemented respectively.

However, sometimes a smaller project or one
open sourced as part of a research publication
might be more suitable for your needs. In such
cases, you must do your best to examine the code-
base and develop a reasonable estimate for the in-
tegration effort. It is essential to carefully test the
project and develop a plan to gauge whether the
level of work as indicated by the resulting estimate
can be offset by the value provided to your own
product or project.

5.3 Test, test, test!

Many open source projects do not implement any
form of testing since it’s not perceived to be neces-
sary for research projects. However, in our opinion,
a good testing setup is critical irrespective of the
eventual use case since it assures users that the
code actually behaves as expected. This may seem
like a large cost to take on upfront, but can sig-
nificantly reduce technical debt in the future. We
strongly recommend that everyone who contributes
to open source consider adding unit/regression test-
ing along with a CI plan which can help identify
bugs and failures as and when they happen, re-
gardless of whether their project is meant only for
experimental purposes.

5.4 Always have a contingency plan.

One of the primary concerns with open source
projects is the risk of abandonment by their original

authors. While many projects have active maintain-
ers and thriving communities, there have been in-
stances where developers discontinue support and
maintenance. The case of AllenNLP10 serves as
an example of how a once prominent open source
library can become stagnant or archived due to
shifting priorities or organizational changes.

This can have serious consequences for those
who have integrated such projects into their pro-
duction environment since bugs and security vul-
nerabilities will likely go unaddressed in the future.
Therefore, it is important to be prepared for such
scenarios and have a well-defined strategy in place
for either taking on the entire maintenance of the
library or transitioning to an alternate solution.

6 Future Work

In the future, we plan to take our own advice from
§5.4 and transition our fork of GECToR away from
AllenNLP. We plan to replicate the functionality
we need by using actively maintained open source
projects from Huggingface such as Transformers
(Wolf et al., 2020), Datasets (Lhoest et al., 2021),
and Accelerate11 directly.

7 Conclusion

We presented a case study on integrating an open
source project into a commercial, production NLP
pipeline. While we consider the primary contribu-
tions of this paper to be a clear and concise descrip-
tion of the issues we faced (and solved) as well as
the larger lessons we learned, we also hope that
the NLP community will benefit from our fork of
GECToR that is actively maintained, more modern,
more robustly tested, and easier to use for infer-
ence.

References
Mohammad Arvan, Luís Pina, and Natalie Parde. 2022.

Reproducibility in computational linguistics: Is
source code enough? In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2350–2361, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.

10https://github.com/allenai/allennlp
11https://huggingface.co/docs/accelerate/index

81

https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.18653/v1/2022.emnlp-main.150
https://github.com/allenai/allennlp
https://huggingface.co/docs/accelerate/index


AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

B. Golden. 2005. Succeeding with Open Source.
Addison-Wesley information technology series.
Addison-Wesley.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sasko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clement Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, François Lagu-
nas, Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A Community Library for Natural Lan-
guage Processing. CoRR, abs/2109.02846.

Nitin Madnani, Aoife Cahill, Daniel Blanchard,
Slava Andreyev, Diane Napolitano, Binod Gyawali,
Michael Heilman, Chong Min Lee, Chee Wee Leong,
Matthew Mulholland, and Brian Riordan. 2018. A
Robust Microservice Architecture for Scaling Auto-
mated Scoring Applications. ETS Research Report
Series, 2018(1).

Del Nagy, Areej M. Yassin, and Anol Bhattacher-
jee. 2010. Organizational adoption of open source
software: Barriers and remedies. Commun. ACM,
53(3):148–151.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr" Skurzhanskyi. 2020.
GECToR – Grammatical Error Correction: Tag, Not
Rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170. Association for Com-
putational Linguistics.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge
distilling of large sequence taggers for grammatical
error correction. In Accepted for publication at 60th
Annual Meeting of the Association for Computational
Linguistics (ACL 2022), Dublin, Ireland.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing.

82

https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://books.google.com/books?id=S4d9SzBjGIgC
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1145/1666420.1666457
https://doi.org/10.1145/1666420.1666457
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/2020.bea-1.16
https://arxiv.org/pdf/2203.13064.pdf
https://arxiv.org/pdf/2203.13064.pdf
https://arxiv.org/pdf/2203.13064.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

