
NLP-OSS 2023

The 3rd Workshop for Natural Language Processing Open
Source Software (NLP-OSS)

Proceedings of the Workshop

December 6, 2023

©2023 Empirical Methods in Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-045-5

i

Program Committee

Program Chairs

Geeticka Chauhan
Jeremy Gwinnup
Dmitrijs Milajevs
Elijah Rippeth
Liling Tan

Reviewers

Sina Ahmadi, Zaid Alyafeai, Abhinav Arora

Guillaume Becquin, Steven Bethard, Tenzin Singhay Bhotia, Francis Bond, Daniel Braun

Geeticka Chauhan, Won Ik Cho, Marco Cognetta

Steve DeNeefe, Gérard Dupont

Ignatius Ezeani

Michael Wayne Goodman, Jeremy Gwinnup, Jana Götze

David M Howcroft, Phu Mon Htut

Cassandra L Jacobs

Thomas H Kober, Philipp Koehn

Arun Balajiee Lekshmi Narayanan, Pasquale Lisena

Nitin Madnani, Shubhanshu Mishra, Wafaa Mohammed, Anish Mohan, John Xavier Morris

Aakanksha Naik

Odunayo Ogundepo, Atul Kr Ojha, Akintunde Oladipo

Aline Paes, Flammie A Pirinen, Matt Post

Elijah Rippeth, Alexander M Rush

Lane Schwartz, Micah Shlain, Mallika Singh, Sudhakar Singh, Aitor Soroa, Shilpa Suresh

Liling Tan, Raphael Tang, Christoph Teichmann, Tommaso Teofili, Jörg Tiedemann, Vijay Mu-
rari Tiyyala, Atnafu Lambebo Tonja

Taha Zerrouki

ii

Table of Contents

calamanCy: A Tagalog Natural Language Processing Toolkit
Lester James Validad Miranda . 1

Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models
Michael Günther, Georgios Mastrapas, Bo Wang, Han Xiao and Jonathan Geuter 8

Deepparse : An Extendable, and Fine-Tunable State-Of-The-Art Library for Parsing Multinational
Street Addresses

David Beauchemin . 19

PyThaiNLP: Thai Natural Language Processing in Python
Wannaphong Phatthiyaphaibun, Korakot Chaovavanich, Charin Polpanumas, Arthit Suriyawon-

gkul, Lalita Lowphansirikul, Pattarawat Chormai, Peerat Limkonchotiwat, Thanathip Suntorntip and
Can Udomcharoenchaikit . 25

Empowering Knowledge Discovery from Scientific Literature: A novel approach to Research Artifact
Analysis

Petros Stavropoulos, Ioannis Lyris, Natalia Manola, Ioanna Grypari and Haris Papageorgiou . . 37

Zelda Rose: a tool for hassle-free training of transformer models
Loı̈c Grobol . 54

GPT4All: An Ecosystem of Open Source Compressed Language Models
Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron Miller, Richard Guo, Benjamin M Schmi-

dt, Brandon Duderstadt and Andriy Mulyar . 59

Kani: A Lightweight and Highly Hackable Framework for Building Language Model Applications
Andrew Zhu, Liam Dugan, Alyssa Hwang and Chris Callison-Burch . 65

Beyond the Repo: A Case Study on Open Source Integration with GECToR
Sanjna Kashyap, Zhaoyang Xie, Kenneth Steimel and Nitin Madnani . 78

Two Decades of the ACL Anthology: Development, Impact, and Open Challenges
Marcel Bollmann, Nathan Schneider, Arne Köhn and Matt Post . 83

nanoT5: Fast & Simple Pre-training and Fine-tuning of T5 Models with Limited Resources
Piotr Nawrot . 95

AWARE-TEXT: An Android Package for Mobile Phone Based Text Collection and On-Device Processing
Salvatore Giorgi, Garrick Sherman, Douglas Bellew, Sharath Chandra Guntuku, Lyle Ungar and

Brenda Curtis . 102

SOTASTREAM: A Streaming Approach to Machine Translation Training
Matt Post, Thamme Gowda, Roman Grundkiewicz, Huda Khayrallah, Rohit Jain and Marcin

Junczys-Dowmunt .110

An Open-source Web-based Application for Development of Resources and Technologies in Underre-
sourced Languages

Siddharth Singh, Shyam Ratan, Neerav Mathur and Ritesh Kumar . 120

Rumour Detection in the Wild: A Browser Extension for Twitter
Andrej Jovanovic and Björn Ross . 130

iii

DeepZensols: A Deep Learning Natural Language Processing Framework for Experimentation and
Reproducibility

Paul Landes, Barbara Di Eugenio and Cornelia Caragea . 141

Improving NER Research Workflows with SeqScore
Constantine Lignos, Maya Kruse and Andrew Rueda . 147

torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A
Case Study on NLP

Yoshitomo Matsubara . 153

Using Captum to Explain Generative Language Models
Vivek Miglani, Aobo Yang, Aram H. Markosyan, Diego Garcia-Olano and Narine Kokhlikyan165

nerblackbox: A High-level Library for Named Entity Recognition in Python
Felix Stollenwerk . 174

News Signals: An NLP Library for Text and Time Series
Chris Hokamp, Demian Gholipour Ghalandari and Parsa Ghaffari . 179

PyTAIL: An Open Source Tool for Interactive and Incremental Learning of NLP Models with Human in
the Loop for Online Data

Shubhanshu Mishra and Jana Diesner . 190

Antarlekhaka: A Comprehensive Tool for Multi-task Natural Language Annotation
Hrishikesh Terdalkar and Arnab Bhattacharya . 199

GPTCache: An Open-Source Semantic Cache for LLM Applications Enabling Faster Answers and Cost
Savings

Fu Bang . 212

The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
Dung Nguyen Manh, Nam Le Hai, Anh T. V. Dau, Anh Minh Nguyen, Khanh Nghiem, Jin Guo

and Nghi D. Q. Bui . 219

SEA-LION (Southeast Asian Languages In One Network): A Family of Southeast Asian Language Mo-
dels

William Tjhi, David Ong and Peerat Limkonchotiwat . 245

trlX: A Framework for Large Scale Open Source RLHF
Louis Castricato . 246

Towards Explainable and Accessible AI
Brandon Duderstadt and Yuvanesh Anand . 247

iv

Program

Thursday, May 26, 2022

09:15 - 10:15 Invited Talk 1

SEA-LION (Southeast Asian Languages In One Network): A Family of Southeast
Asian Language Models
William Tjhi, David Ong and Peerat Limkonchotiwat

10:30 - 11:00 Coffee Break

11:00 - 11:30 Lightning Session 1

11:30 - 12:15 Poster Session 1

Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models
Michael Günther, Georgios Mastrapas, Bo Wang, Han Xiao and Jonathan Geuter

Deepparse : An Extendable, and Fine-Tunable State-Of-The-Art Library for Par-
sing Multinational Street Addresses
David Beauchemin

PyThaiNLP: Thai Natural Language Processing in Python
Wannaphong Phatthiyaphaibun, Korakot Chaovavanich, Charin Polpanumas, Ar-
thit Suriyawongkul, Lalita Lowphansirikul, Pattarawat Chormai, Peerat Limkon-
chotiwat, Thanathip Suntorntip and Can Udomcharoenchaikit

Zelda Rose: a tool for hassle-free training of transformer models
Loı̈c Grobol

Kani: A Lightweight and Highly Hackable Framework for Building Language
Model Applications
Andrew Zhu, Liam Dugan, Alyssa Hwang and Chris Callison-Burch

Beyond the Repo: A Case Study on Open Source Integration with GECToR
Sanjna Kashyap, Zhaoyang Xie, Kenneth Steimel and Nitin Madnani

Two Decades of the ACL Anthology: Development, Impact, and Open Challenges
Marcel Bollmann, Nathan Schneider, Arne Köhn and Matt Post

v

Thursday, May 26, 2022 (continued)

nanoT5: Fast & Simple Pre-training and Fine-tuning of T5 Models with Limited
Resources
Piotr Nawrot

AWARE-TEXT: An Android Package for Mobile Phone Based Text Collection and
On-Device Processing
Salvatore Giorgi, Garrick Sherman, Douglas Bellew, Sharath Chandra Guntuku,
Lyle Ungar and Brenda Curtis

SOTASTREAM: A Streaming Approach to Machine Translation Training
Matt Post, Thamme Gowda, Roman Grundkiewicz, Huda Khayrallah, Rohit Jain
and Marcin Junczys-Dowmunt

An Open-source Web-based Application for Development of Resources and Te-
chnologies in Underresourced Languages
Siddharth Singh, Shyam Ratan, Neerav Mathur and Ritesh Kumar

Rumour Detection in the Wild: A Browser Extension for Twitter
Andrej Jovanovic and Björn Ross

12:15 - 13:45 Lunch Break

13:45 - 14:45 Invited Talk 2

trlX: A Framework for Large Scale Open Source RLHF
Louis Castricato

14:45 - 15:15 Lightning Session 2

15:15 - 15:30 Coffee Break

15:30 - 16:15 Poster Session 2

GPT4All: An Ecosystem of Open Source Compressed Language Models
Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron Miller, Richard Guo, Be-
njamin M Schmidt, Brandon Duderstadt and Andriy Mulyar

DeepZensols: A Deep Learning Natural Language Processing Framework for
Experimentation and Reproducibility
Paul Landes, Barbara Di Eugenio and Cornelia Caragea

vi

Thursday, May 26, 2022 (continued)

Improving NER Research Workflows with SeqScore
Constantine Lignos, Maya Kruse and Andrew Rueda

torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep
Learning Studies: A Case Study on NLP
Yoshitomo Matsubara

Using Captum to Explain Generative Language Models
Vivek Miglani, Aobo Yang, Aram H. Markosyan, Diego Garcia-Olano and Narine
Kokhlikyan

nerblackbox: A High-level Library for Named Entity Recognition in Python
Felix Stollenwerk

News Signals: An NLP Library for Text and Time Series
Chris Hokamp, Demian Gholipour Ghalandari and Parsa Ghaffari

PyTAIL: An Open Source Tool for Interactive and Incremental Learning of NLP
Models with Human in the Loop for Online Data
Shubhanshu Mishra and Jana Diesner

GPTCache: An Open-Source Semantic Cache for LLM Applications Enabling
Faster Answers and Cost Savings
Fu Bang

The Vault: A Comprehensive Multilingual Dataset for Advancing Code Under-
standing and Generation
Dung Nguyen Manh, Nam Le Hai, Anh T. V. Dau, Anh Minh Nguyen, Khanh
Nghiem, Jin Guo and Nghi D. Q. Bui

16:15 - 17:15 Invited Talk 3

Towards Explainable and Accessible AI
Brandon Duderstadt and Yuvanesh Anand

vii

Wednesday, December 6, 2023

09:00 - 09:15 Opening Remarks

17:15 - 17:30 Closing Remarks

viii

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 1–7
December 6, 2023 ©2023 Association for Computational Linguistics

calamanCy: A Tagalog Natural Language Processing Toolkit

Lester James V. Miranda
ExplosionAI GmbH
lj@explosion.ai

Abstract

We introduce calamanCy, an open-source
toolkit for constructing natural language pro-
cessing (NLP) pipelines for Tagalog. It is built
on top of spaCy, enabling easy experimenta-
tion and integration with other frameworks.
calamanCy addresses the development gap by
providing a consistent API for building NLP
applications and offering general-purpose mul-
titask models with out-of-the-box support for
dependency parsing, parts-of-speech (POS)
tagging, and named entity recognition (NER).
calamanCy aims to accelerate the progress of
Tagalog NLP by consolidating disjointed re-
sources in a unified framework. The cala-
manCy toolkit is available on GitHub: https:
//github.com/ljvmiranda921/calamanCy.

1 Introduction

Tagalog is a low-resource language from the Aus-
tronesian family, with over 28 million speakers in
the Philippines (Lewis, 2009). Despite its speaker
population, few resources exist for the language
(Cruz and Cheng, 2022). For example, Univer-
sal Dependencies (UD) treebanks for Tagalog are
tiny (� 20k words) (Samson, 2018; Aquino and
de Leon, 2020), while domain-specific corpora are
sparse (Cabasag et al., 2019; Livelo and Cheng,
2018). In addition, Tagalog language models (LMs)
(Cruz and Cheng, 2022; Jiang et al., 2021) are few,
while most multilingual LMs (Conneau et al., 2020;
Devlin et al., 2019) underrepresent the language
(Lauscher et al., 2020). Thus, consolidating these
disjointed resources in a coherent framework is still
an open problem. The lack of such framework ham-
pers model development, experimental workflows,
and the overall advancement of Tagalog NLP.

To address this problem, we introduce cala-
manCy,1 an open-source toolkit for Tagalog NLP.
It is built on top of spaCy (Honnibal et al., 2020)

1“calamanCy” derives its name from kalamansi, a citrus
fruit native to the Philippines.

and offers end-to-end pipelines for NLP tasks such
as dependency parsing, parts-of-speech (POS) tag-
ging, and named entity recognition (NER). cala-
manCy also provides general-purpose pipelines
in three different sizes to fit any performance or
accuracy requirements. This work has two main
contributions: (1) an open-source toolkit with out-
of-the box support for common NLP tasks, and
(2) comprehensive evaluations on several Tagalog
benchmarks.

2 Related Work

Open-source toolkits for NLP There has been
a growing body of work in the development of
NLP toolkits in recent years. For example, DaCy
(Enevoldsen et al., 2021) and HuSpaCy (Orosz
et al., 2022) serve the language-specific needs of
Danish and Hungarian respectively. In addition,
scispaCy (Neumann et al., 2019) and medspaCy
(Eyre et al., 2021) were built to focus on scientific
text. These tools employ spaCy (Honnibal et al.,
2020), an industrial-strength open-source software
for natural language processing. Using spaCy as
a foundation is optimal, given its popularity and
integration with other frameworks such as Hugging-
Face transformers (Wolf et al., 2020). However, no
tool has existed for Tagalog until now. We aim to
fill this development gap and serve the needs of the
Tagalog language community through calamanCy.

Evaluations on Tagalog NLP Tasks Structured
evaluations for core NLP tasks, such as dependency
parsing, POS tagging, and NER, are meager. How-
ever, we have access to a reasonable amount of
data to conduct comprehensive benchmarks. For
example, TLUnified (Cruz and Cheng, 2022) is
a pretraining corpus that combines news reports
(Cruz et al., 2020), a preprocessed version of Com-
monCrawl (Suarez et al., 2019), and several other
datasets. However, it was evaluated on domain-
specific corpora that may not easily transfer to more

1

https://github.com/ljvmiranda921/calamanCy
https://github.com/ljvmiranda921/calamanCy

Entity Description Examples

Person
(PER)

Person entities limited to humans. It may be a single indi-
vidual or group.

Juan de la Cruz, Jose
Rizal, Quijano de Manila

Organization
(ORG)

Organization entities limited to corporations, agencies,
and other groups of people defined by an organizational
structure.

Meralco, DPWH, United
Nations

Location
(LOC)

Location entities are geographical regions, areas, and
landmasses. Geo-political entities are also included within
this group.

Pilipinas, Manila, CAL-
ABARZON, Ilog Pasig

Table 1: Entity types used for annotating TLUnified-NER (derived from the TLUnified pretraining corpus of
Cruz and Cheng, 2022).

general tasks. In addition, Tagalog has two Uni-
versal Dependencies (UD) treebanks, Tagalog Ref-
erence Grammar (TRG) (Samson, 2018) and Ug-
nayan (Aquino and de Leon, 2020), both with POS
tags and relational structures for parsing grammar.
This paper will fill the evaluation gap by providing
structured benchmarks on these core tasks.

3 Implementation

The best way to use calamanCy is through its
trained pipelines. After installing the library, users
can access the models in a few lines of code:

import calamancy as cl
nlp = cl.load("tl_calamancy_md-0.1.0")
doc = nlp("Ako si Juan de la Cruz.")

Here, the variable nlp is a spaCy processing
pipeline2 that contains trained components for POS
tagging, dependency parsing, and NER. Applying
this pipeline to a text will produce a Doc object
with various linguistic features. calamanCy offers
three pipelines of varying capacity: two static word
vector-based models (md, lg), and one transformer-
based model (trf). We will discuss how we devel-
oped these pipelines in the following section.

3.1 Pipeline development

Data annotation for NER There is no gold-
standard corpus for NER, so we built one. To
construct the NER corpus, we curated a portion
of TLUnified (Cruz and Cheng, 2022) to contain
Tagalog news articles. Including the author, we
recruited two more annotators with at least a bache-
lor’s degree and whose native language is Tagalog.
The three annotators labeled for four months, given
three entity types as seen in Table 1. We chose the

2https://spacy.io/usage/processing-pipelines

Dataset Examples PER ORG LOC

Training 6252 6418 3121 3296
Development 782 793 392 409
Test 782 818 423 438

Table 2: Dataset statistics for TLUnified-NER.

entity types to resemble ConLL (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003), a
standard NER benchmark. We excluded the MISC
label to reduce uncertainty and confusion when
labeling. Then, we measured inter-annotator agree-
ment (IAA) by taking the pairwise Cohen’s κ on all
tokens and then averaged them for all three pairs.
This process resulted in a Cohen’s κ score of 0.81.
To avoid confusion with the original TLUnified
pretraining corpora, we will refer to this annotated
NER dataset as TLUnified-NER. The final dataset
statistics can be found in Table 2. For the depen-
dency parser and POS tagger, we merged the TRG
(Samson, 2018) and Ugnayan (Aquino and de Leon,
2020) treebanks to leverage their small yet relevant
examples.

Model training We considered three design di-
mensions when training the calamanCy pipelines:
(1) the presence of pretraining, (2) the word rep-
resentation, and its (3) size or dimension. Model
pretraining involves learning vectors from raw text
to inform model initialization. Here, the pretraining
objective asks the model to predict some number of
leading and trailing UTF-8 bytes for the words—a
variant of the cloze task (Devlin et al., 2019). A
model’s word representation may involve training
static word embeddings using floret,3 an efficient
version of fastText (Bojanowski et al., 2017), or

3https://github.com/explosion/floret

2

https://spacy.io/usage/processing-pipelines
https://github.com/explosion/floret

Pipeline Pretraining objective Word embeddings Dimensions

Medium-
sized pipeline
(tl_calamancy_md)

Predict some number of
leading and trailing UTF-
8 bytes for the words.

Uses floret vectors
trained on the TLUnified
corpora.

50k unique vectors (200
dimensions), Size: 77
MB

Large-sized
pipeline
(tl_calamancy_lg)

Same pretraining objec-
tive as the medium-sized
pipeline.

Uses fastText vectors
trained on Common-
Crawl corpora.

714k unique vectors
(300 dimensions), Size:
455 MB

Transformer-
based pipeline
(tl_calamancy_trf)

No separate pretraining
because there’s no token-
to-vector component.

Context-sensitive vec-
tors from a transformer
network.

Uses roberta-tagalog-
base. Size: 813 MB

Table 3: Language pipelines available in calamanCy (v0.1.0). The pretraining method for the word-vector models
is a variant of the cloze task. All pipelines have a tagger, parser, morphologizer, and ner spaCy component.

Dataset Task / Labels Description

Hatespeech (Cabasag
et al., 2019)

Binary text classification
(hate speech, not hate
speech)

Contains 10k tweets collected during the 2016
Philippine Presidential Elections labeled as
hate speech or non-hate speech.

Dengue (Livelo and
Cheng, 2018)

Multilabel text classifi-
cation (absent, dengue,
health, sick, mosquito)

Contains 4k dengue-related tweets collected
for a health infoveillance application that clas-
sifies text into dengue subtopics.

TLUnified-NER (Cruz
and Cheng, 2022)

Named entity recognition
(Person, Organization,
Location)

A held-out test split from the annotated TLUni-
fied corpora containing news reports and other
articles. See Table 2.

Merged UD (Sam-
son, 2018; Aquino and
de Leon, 2020)

Dependency parsing and
POS tagging

Merged version of the Ugnayan and TRG
treebanks from the Universal Dependencies
framework.

Table 4: Datasets for benchmarking calamanCy.

using context-sensitive vectors from a transformer
(Vaswani et al., 2017). Finally, a model’s dimen-
sion is our way to tune the tradeoff between perfor-
mance and accuracy.

The general process involves pretraining a fil-
tered version of TLUnified, constructing static
word embeddings if necessary, and training the
downstream components. We used TLUnified-
NER to train the NER component, and then trained
the dependency parser and POS tagger using the
combined treebanks. Ultimately, we devised three
language pipelines as seen in Table 3.

4 Evaluation

Architectures We used spaCy’s built-in archi-
tectures for each component in the calamanCy
pipeline. The token-to-vector layer uses the multi-
hash embedding trick (Miranda et al., 2022) to
reduce the representation size. For the parser and
named entity recognizer, we used a transition-based

parser that maps text representations into a series
of state transitions. As for the text categorizer, we
utilized an ensemble of a bag-of-words model and
a feed-forward network.

Experimental set-up We assessed the cala-
manCy pipelines on various Tagalog benchmarks
as detailed in Table 4. We also tested on text cat-
egorization, an unseen task, for robustness. For
NER evaluation, we used a held-out test split from
TLUnified-NER. We measured their performance
across five trials and then reported the average and
standard deviation. For treebank-related bench-
marks (POS tagging and dependency parsing), we
followed UD’s data split guidelines (Nivre et al.,
2022) and performed 10-fold cross-validation to
compensate for the size of the corpora (� 20k to-
kens).

We also tested a cross-lingual transfer learning
approach, i.e., finetuning a model from a source
language closely related to Tagalog. According to

3

Text categorization NER Dep. pars. & POS tag.
Model Hatespeech

(binary)
Dengue
(multilabel)

TLUnified-
NER

Merged UD,
UAS / LAS

Merged UD,
POS Acc.

Monolingual (Ours)
tl_calamancy_md 74.40±0.05 65.32±0.04 87.67±0.03 76.47 / 54.40 96.70
tl_calamancy_lg 75.62±0.02 68.42±0.01 88.90±0.01 82.13 / 70.32 97.20
tl_calamancy_trf 78.25±0.06 72.45±0.02 90.34±0.02 92.48 / 80.90 97.80

Cross-lingual transfer
uk_core_news_trf 75.24±0.03 65.57±0.01 51.11±0.02 54.77 / 37.68 82.86
ro_core_news_lg 69.01±0.01 59.10±0.01 02.01±0.00 84.65 / 65.30 82.80
ca_core_news_trf 70.01±0.02 59.42±0.03 14.58±0.02 91.17 / 79.30 83.09

Multilingual finetuning
xlm-roberta-base 77.57±0.01 67.20±0.01 88.03±0.03 88.34 / 76.07 94.29
bert-base-multilingual 76.40±0.02 71.07±0.04 87.40±0.02 90.79 / 78.52 95.30

Table 5: Benchmark evaluation scores for monolingual, cross-lingual, and multilingual pipelines across a variety
of tasks and datasets. We evaluated the text categorization and NER tasks across five trials, and then conducted
10-fold cross-validation for dependency parsing. F1-scores are reported on the text categorization and NER tasks.

Aquino and de Leon (2020), the closest languages
to Tagalog are Indonesian (id), Ukrainian (uk), Viet-
namese (vi), Romanian (ro), and Catalan (ca). They
obtained these results via a distance metric (Agić,
2017) based on the World Atlas for Language Struc-
tures (Haspelmath et al., 2005). However, only uk,
ro, and ca have equivalent spaCy pipelines, so we
only compared against those three. Finally, we also
compared against multilingual language models
by finetuning on XLM RoBERTa (Conneau et al.,
2020) and an uncased version of multilingual BERT
(Devlin et al., 2019). These LMs contain Tagalog
in their training pool and are common alternatives
for building Tagalog NLP applications.

5 Discussion

Table 5 shows the F1-scores for the text categoriza-
tion and NER tasks, the unlabeled (UAS) and la-
beled attachment scores (LAS) for the dependency
parsing task, and the tag accuracy for POS tagging.

The calamanCy pipelines are competitive across
all core NLP tasks while maintaining a smaller
compute footprint. As shown in the text catego-
rization and NER results, users with low compute
budgets can attain similar performance to multilin-
gual LMs by using medium- or large-sized cala-
manCy models. The transformer-based calamanCy
pipeline is the best option for users who priori-
tize accuracy. However, we were surprised that
most alternative approaches perform better in de-
pendency parsing. We attribute this performance

to the added strength of multilingual and cross-
lingual information, which we don’t have when
training solely on a smaller treebank. We plan to
improve dependency parsing performance by build-
ing a larger treebank within the Universal Depen-
dencies framework. For practical applications, we
recommend users to start with a medium- or large-
sized calamanCy model before trying out GPU-
intensive pipelines. Only then can they switch to a
transformer-based pipeline to get accuracy gains.

6 Conclusion

In this paper, we introduced calamanCy, a natu-
ral language processing toolkit for Tagalog. Our
work has two main contributions: (1) an open-
source toolkit containing general-purpose multitask
pipelines with out-of-the-box support for common
NLP tasks, and (2) comprehensive benchmarks
that compare against alternative approaches, such
as cross-lingual or multilingual finetuning. We
hope that calamanCy is a step forward to improv-
ing the state of Tagalog NLP. As a low-resource
language, consolidating resources into a unified
framework is crucial to advance research and im-
prove collaboration. In the future, we plan to create
a more fine-grained NER benchmark corpus and
extend calamanCy to natural language understand-
ing (NLU) tasks. Finally, the project is hosted on
GitHub (https://github.com/ljvmiranda921/
calamanCy) and we are happy to receive commu-
nity feedback and contributions.

4

https://github.com/ljvmiranda921/calamanCy
https://github.com/ljvmiranda921/calamanCy

Limitations

The TLUnified-NER corpus utilized for training the
NER component of calamanCy comprises of new
articles from early 2000s to the present. In addition
the Universal Dependencies (UD) corpora for the
POS tagger and dependency parser components
are relatively modest in size, containing fewer than
10k tokens. Hence, the performance for these tasks
during test-time could potentially be constrained
by these factors.

Finally, reproducing the transformer pipelines
may require a T4 or V100 GPU. The biggest bottle-
neck for reproduction is pretraining on the whole
TLUnified corpus. In a 64vCPU machine with
256GB of RAM, the pretraining process can take
three full days for 20 epochs.

References
Željko Agić. 2017. Cross-lingual parser selection

for low-resource languages. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 1–10, Gothenburg, Sweden.
Association for Computational Linguistics.

Angelina Aquino and Franz de Leon. 2020. Parsing
in the absence of related languages: Evaluating low-
resource dependency parsers on Tagalog. In Pro-
ceedings of the Fourth Workshop on Universal De-
pendencies (UDW 2020), pages 8–15, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alex Brandsen, Suzan Verberne, Milco Wansleeben,
and Karsten Lambers. 2020. Creating a dataset for
named entity recognition in the archaeology domain.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4573–4577, Mar-
seille, France. European Language Resources Asso-
ciation.

Neil Vicente P. Cabasag, Vicente Raphael C. Chan,
Sean Christian Y. Lim, Mark Edward M. Gonza-
les, and Charibeth K. Cheng. 2019. Hate Speech in
Philippine Election-Related Tweets: Automatic De-
tection and Classification Using Natural Language
Processing. Philippine Computing Journal Dedi-
cated Issue on Natural Language Processing, pages
1–14.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jan Christian Blaise Cruz and Charibeth Cheng. 2022.
Improving large-scale language models and re-
sources for Filipino. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 6548–6555, Marseille, France. Euro-
pean Language Resources Association.

Jan Christian Blaise Cruz, Jose Kristian Resabal, James
Lin, Dan John Velasco, and Charibeth Ko Cheng.
2020. Exploiting News Article Structure for Au-
tomatic Corpus Generation of Entailment Datasets.
In Pacific Rim International Conference on Artificial
Intelligence.

Louise Deleger, Qi Li, Todd Lingren, Megan Kaiser,
Katalin Molnar, Laura Stoutenborough, Michal
Kouril, Keith Marsolo, and Imre Solti. 2012. Build-
ing gold standard corpora for medical natural lan-
guage processing tasks. In AMIA Annual Sympo-
sium Proceedings, pages 144–53.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kenneth C. Enevoldsen, L M Hansen, and Kristof-
fer Laigaard Nielbo. 2021. DaCy: A Unified Frame-
work for Danish NLP. In Workshop on Computa-
tional Humanities Research.

Hannah Eyre, Alec B. Chapman, Kelly S. Peterson,
Jianlin Shi, Patrick R. Alba, Makoto M. Jones,
Tamára L Box, Scott L Duvall, and Olga V Pat-
terson. 2021. Launching into clinical space with
medspaCy: a new clinical text processing toolkit in
Python. Proceedings of the AMIA Annual Sympo-
sium, 2021:438–447.

Martin Haspelmath, Matthew Dryer, David Gil, and
Comrie Bernard. 2005. The World Atlas of Lan-
guage Structures. In Oxford University Press.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Shengyi Jiang, Yingwen Fu, Xiaotian Lin, and Nankai
Lin. 2021. Pre-trained Language Models for Taga-
log with Multi-source Data. In Natural Language
Processing and Chinese Computing.

5

https://aclanthology.org/W17-0401
https://aclanthology.org/W17-0401
https://aclanthology.org/2020.udw-1.2
https://aclanthology.org/2020.udw-1.2
https://aclanthology.org/2020.udw-1.2
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/2020.lrec-1.562
https://aclanthology.org/2020.lrec-1.562
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2022.lrec-1.703
https://aclanthology.org/2022.lrec-1.703
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Paul M. A. Lewis. 2009. Ethnologue: languages of the
world. https://ethnologue.com/language/tgl.
Accessed: June 2023.

Evan Dennison S. Livelo and Charibeth Ko Cheng.
2018. Intelligent Dengue Infoveillance Using Gated
Recurrent Neural Learning and Cross-Label Fre-
quencies. 2018 IEEE International Conference on
Agents (ICA), pages 2–7.

Lester James V. Miranda, Ákos Kádár, Adriane
Boyd, Sofie Van Landeghem, Anders Søgaard, and
Matthew Honnibal. 2022. Multi hash embeddings in
spaCy. ArXiv, abs/2212.09255.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association
for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe,
Filip Ginter, Jan Hajivc, Christopher D. Man-
ning, Sampo Pyysalo, Sebastian Schuster,
Francis M. Tyers, and Daniel Zeman. 2022.
Data Release Checklist - Universal Dependen-
cies. https://universaldependencies.org/
release_checklist.html#data-split. Ac-
cessed: June 2023.

György Orosz, Zsolt Szántó, Péter Berkecz, Gergo
Szabó, and Richárd Farkas. 2022. HuSpaCy: an
industrial-strength Hungarian natural language pro-
cessing toolkit. ArXiv, abs/2201.01956.

Nils Reiter. 2017. How to develop annotation guide-
lines. https://sharedtasksinthedh.github.
io/2017/10/01/howto-annotation/. Accessed:
June 2023.

Stephanie Dawn Samson. 2018. A treebank prototype
of Tagalog. Bachelor’s thesis, University of Tübin-
gen, Germany.

Pedro Ortiz Suarez, Benoît Sagot, and Laurent Romary.
2019. Asynchronous Pipeline for Processing Huge
Corpora on Medium to Low Resource Infrastruc-
tures. In 7th Workshop on the Challenges in the
Management of Large Corpora.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

A Appendix

A.1 Reproducibility
All the experiments and models in this pa-
per are available publicly. Readers can head
over to https://github.com/ljvmiranda921/
calamanCy for all related software. Note that the
XLM-RoBERTa and multilingual BERT experi-
ments may at least require a T4 or V100 GPU.

To reproduce the calamanCy models, head
over to models/v0.1.0. To reproduce the
benchmarking experiments, head over to the
report/benchmark directory. Readers who are
interested in the training set-up (e.g., hyperparam-
eters, architectures used, etc.) can check the con-
figuration (.cfg) files in the respective project’s
configs/ directory.

A.2 Building the TLUnified-NER corpus
The TLUnified-NER dataset is a named entity
recognition corpus containing the Person (PER),
Organization (ORG), and Location (LOC) entities.
It includes news articles and other texts in Tagalog
from 2009 to 2020. It was based on the TLU-
nified pretraining corpora by (Cruz and Cheng,
2022). The author, together with two more an-
notators, annotated TLUnified in the course of four
months. We employed an iterative approach as
recommended by Reiter (2017), which included re-
solving disagreements and updating the annotation
guidelines.

6

https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://ethnologue.com/language/tgl
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://universaldependencies.org/release_checklist.html#data-split
https://universaldependencies.org/release_checklist.html#data-split
https://sharedtasksinthedh.github.io/2017/10/01/howto-annotation/
https://sharedtasksinthedh.github.io/2017/10/01/howto-annotation/
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/ljvmiranda921/calamanCy
https://github.com/ljvmiranda921/calamanCy

500 1,500 2,500 3,500 4,500 5,500

Number of examples (cumulative)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

r-
an

n
ot

at
or

ag
re

em
en

t

Cohen's κ (all tokens)
Cohen's κ (annotated)
F1-score

Metrics

IAA after each annotation round

Figure 1: Inter-annotator agreement measurement
after each annotation round. Each mark represents the
end of a round. For each round, the annotators discuss
disagreements, update the annotation guidelines, and
evaluate the current set of annotations.

Metric IAA

Cohen’s κ on all tokens 0.81
Cohen’s κ on annotated tokens only 0.65
F1 score 0.91

Table 6: Inter-annotator agreement (IAA) measure-
ments. We obtained these values by computing for the
pairwise comparisons between all annotator-pairs and
averaging the results.

To get the inter-annotator agreement (IAA)
score, we took Brandsen et al. (2020)’s work on the
Archaeology dataset as inspiration. We computed
Cohen’s κ for all tokens, and only annotated tokens.
In addition, we also measured the (3) pairwise F1
score without the ‘O’ label (Deleger et al., 2012).
Table 6 shows the IAA measurements while Figure
1 shows their growth after each annotation round.

7

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 8–18
December 6, 2023 ©2023 Association for Computational Linguistics

JINA EMBEDDINGS: A Novel Set of High-Performance Sentence
Embedding Models

Michael Günther and Louis Milliken and Jonathan Geuter
Georgios Mastrapas and Bo Wang and Han Xiao

Jina AI
Ohlauer Str. 43, 10999 Berlin, Germany

{michael.guenther,louis.milliken,jonathan.geuter,
georgios.mastrapas,bo.wang,han.xiao}@jina.ai

Abstract

JINA EMBEDDINGS constitutes a set of high-
performance sentence embedding models adept
at translating textual inputs into numerical rep-
resentations, capturing the semantics of the
text. These models excel in applications like
dense retrieval and semantic textual similar-
ity. This paper details the development of JINA
EMBEDDINGS, starting with the creation of
high-quality pairwise and triplet datasets. It
underlines the crucial role of data cleaning in
dataset preparation, offers in-depth insights into
the model training process, and concludes with
a comprehensive performance evaluation us-
ing the Massive Text Embedding Benchmark
(MTEB). Furthermore, to increase the model’s
awareness of grammatical negation, we con-
struct a novel training and evaluation dataset of
negated and non-negated statements, which we
make publicly available to the community.

1 Introduction

Sentence embedding models are an effective instru-
ment for encoding the semantic nuances of words,
phrases, and larger textual units into a continuous
vector space. They encapsulate the complexities
of contexts and lexical and grammatical interre-
lationships within a text, facilitating downstream
tasks like information retrieval, semantic similarity
evaluation, and text classification.

Despite the potential of these models, questions
remain about the effectiveness of different data
preprocessing strategies, the optimal loss function
for training sentence embedding models, and the
impact on performance of increasing the number
of model parameters. This paper addresses these
challenges.

We have develop a novel dataset specifically to
train our sentence embedding models. Furthermore,
we design a dataset specifically to sensitize our
models to distinguish negations of statements from
confirming statements. This paper also presents

JINA EMBEDDINGS, a set of high-performance sen-
tence embedding models trained on these datasets.
The JINA EMBEDDINGS set is expected to com-
prise five distinct models, ranging in size from 35
million to 6 billion parameters. Three of those
models are already trained and published. 1

The JINA EMBEDDINGS models employ con-
trastive training on the T5 architecture [Raffel et al.,
2020]. It’s important to note that we opt to use the
T5 model as our base due to its pre-training on a
mixed set of downstream tasks. We argue that in-
corporating this approach can potentially enhance
our ability to accurately gauge the effectiveness of
our training strategy.

Our large-scale contrastive fine-tuning approach
surpasses zero-shot T5 and delivers a performance
level on par with other leading T5-based sentence
embedding models such as Sentence-T5 [Ni et al.,
2022a] and GTR [Ni et al., 2022b]. Consequently,
this work demonstrates that high-quality sentence
embeddings can be achieved with the judicious use
of resources and innovative training methodologies.

2 Dataset Preparation

In order to develop models that excel across a
wide range of tasks, we collate a comprehensive
set of both public and custom datasets. These
datasets target various retrieval objectives, such
as e-commerce search, duplicate detection, web
retrieval, article retrieval for question-answering,
and text classification. Consolidating these datasets
into a unified format facilitates concurrent model
training for all tasks.

Definition of Format: Given the lack of non-
relevance information in many of the datasets, we
reformat each training item into pairs, designated
as (q, p) ∈ Dpairs . Each pair includes a query

1jina-small-v1 , jina-base-v1 , jina-large-v1 are
available at https://huggingface.co/jinaai, and are also
ranked in the MTEB leaderboard on Hugging Face: https:
//huggingface.co/spaces/mteb/leaderboard.

8

https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

string q and an associated target string p. To lever-
age explicit non-relevance judgments, we create an
auxiliary set of triplets (q, p, n) ∈ Dtriplets , which
pair a query string q with a match p (positive) and
a non-matching string n (negative).

Data Extraction: The methods used to extract
pairs and triplets are specific to each source dataset.
For example, given a question-answer dataset, we
use questions as query strings and answers as target
strings. Retrieval datasets often contain queries that
can serve as query strings and relevant and non-
relevant annotated documents which can operate as
matching and non-matching strings.

Training Steps: Our training process is a two-
step approach. Initially, we train on pairs and then
fine-tune the model using the triplets, as detailed in
Section 3.3.

2.1 Pairwise Data Preparation
The substantial size and inconsistent quality of
many large datasets necessitates a rigorous filtering
pipeline. We apply the following steps to filter
training data:

De-Duplication: Duplicated entries within train-
ing data can negatively impact model perfor-
mance [Hernandez et al., 2022], and potentially
lead to overfitting. Consequently, we remove du-
plicate entries from our dataset. Considering the
dataset’s volume, we employ hash functions to
identify and eliminate text pairs that map to du-
plicate hash values. We normalize whitespace
and capitalization before checking for duplicates.
Empty pairs and pairs with identical elements are
also removed.

Language Filtering: Since we design
our embedding models for English, we use
the fasttext-language-identification
model2 based on the fasttext text classification
method [Joulin et al., 2017] to remove non-English
training items from the dataset.

Consistency Filtering: Consistency filtering
means excluding training pairs with low seman-
tic similarity. Previous studies suggest that elim-
inating low-similarity pairs using an auxiliary, al-
beit less precise, model boosts performance [Dai
et al., 2023, Wang et al., 2022]. We employ the
all-MiniLM-L6-v2 model3 for consistency filter-

2fasttext-language-identification (https:
//huggingface.co/facebook/fasttext-language-identification)

3all-MiniLM-L6-v2 model (https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2)

ing in this manner: We generate embeddings for
1M pairs (qi, pi)i randomly sampled from Dpairs.
For every pair (q, p) ∈ Dpairs in the dataset, we
verify whether p is among the top two passages
most similar to q based on the cosine similarity
of their embeddings compared to all passages pi,
i = 1, ..., 1M.

The application of these preprocessing steps re-
duces the size of the dataset from over 1.5 billion
mixed-quality pairs to 385 million high-quality
pairs. This reduction permits us to train our model
with significantly less data than typical embedding
models without sacrificing embedding quality.4

2.2 Triplet Data Preparation

For the triplet dataset, we forego de-duplication
and language filtering and we assume the quality
of these datasets already meets our quality require-
ments. However, we validate the relevance of the
“positive” item with respect to the “query” for each
triplet in a manner similar to consistency filtering.
Instead of contrasting the embedding cosine sim-
ilarity s(q, p) against a sample set, we compare it
solely with the similarity s(q, n) of the embeddings
derived from the same triplet (q, p, n) ∈ Dtriplets .
This is accomplished using a cross-encoder model,
which evaluates the pair directly without gener-
ating embedding representations. More specifi-
cally, we leverage the ms-marco-MiniLM-L-6-v2
model5 to verify whether the difference in retrieval
scores determined by the model exceeds a threshold
r(q, p)− r(q, n) > κ, with threshold κ = 0.2, and
eliminate all other pairs. This methodology draws
inspiration from the de-noising strategy proposed
in [Qu et al., 2021].

2.3 Negation Data Preparation

We observe that many embedding models strug-
gle to accurately embed negations. For instance,
when embedding the three sentences: “A couple
walks hand in hand down a street.”, “A couple is
walking together.”, and “A couple is not walking to-
gether.”, the first two should be embedded close to-
gether, while the second and third, contradictory in

4For instance, models like all-MiniLM-L6-v2 and
all-mpnet-base-v2 are trained on nearly 1.2 billion pairs,
whereas other T5-based models such as sentence-t5-base
or sentence-t5-large are trained on 2.2 billion pairs.

5ms-marco-MiniLM-L-6-v2 (https://huggingface.co/
cross-encoder/ms-marco-MiniLM-L-6-v2)

9

https://huggingface.co/facebook/fasttext-language-identification
https://huggingface.co/facebook/fasttext-language-identification
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

(a) Original Distribution after Filtering (b) Adjusted by Sampling Rates

Figure 1: The composition of 385 million pairwise data

Figure 2: The composition of 927,000 triplets data

meaning, should be positioned further apart.6 How-
ever, for instance, the all-MiniLM-L6-v2 model
assigns a cosine similarity of 0.7 to the first two
sentences, while attributing a similarity of 0.86 to
the second and third.7

We decide to address this problem by creating
our own negation dataset8. This dataset, based on
positive pairs from the SNLI dataset9 and negatives
created with GPT-3.5, comprises triplets (anchor,
entailment, negative) akin to the example given
above, where (anchor, entailment) form a positive
pair and the “negative” contradicts both the “an-
chor” and “entailment”, while remaining syntac-
tically very similar to “entailment”. This dataset
forms a subset of our aforementioned triplet dataset,
with training details provided in Section 3.3.

Our model evaluation on the negation dataset,
6Although it could be argued that for certain tasks, like

document retrieval, it might still be desirable for contradicting
texts to be embedded closely. Regardless, in this example, the
first two sentences should be assigned a higher similarity.

7Interestingly, our large model does correctly assign a co-
sine similarity of 0.77 to the positive pair, and only a similarity
of 0.62 to the negative pair, after fine-tuning with our negation
dataset.

8The negation dataset is available at https://
huggingface.co/datasets/jinaai/negation-dataset

9https://huggingface.co/datasets/snli

which includes a comparative analysis with other
popular open-source models, is presented in Sec-
tion 4.3.

2.4 Data Composition

Our dataset of text pairs, represented as Dpairs =
D1 ⊔ · · · ⊔Dn, is aggregated from 32 individual
datasets. This amounts to a total of 1.6 billion pairs
before filtering, which is subsequently reduced to a
robust 385 million high-quality pairs after rigorous
filtering.

In comparison, our dataset of triplets initially
comprises a total of 1.13 million entries before
filtering, streamlined to 927,000 triplets after filter-
ing.

The composition of our datasets after filtering is
illustrated in Figure 1a for the text pairs, and in Fig-
ure 2 for the triplets. Together, these form the final
dataset for the training of the JINA EMBEDDINGS

models.

3 Training

Training takes place in two distinct phases. The
first phase centers on training the model using the
voluminous quantity of text pairs, consolidating the
semantics of an entire text phrase into a single rep-
resentative embedding. The second phase uses the
relatively small triplet dataset, comprising an an-
chor, an entailment, and a hard-negative, teaching
it to differentiate between similar and dissimilar
text phrases.

3.1 Training on Pairwise Data

Each model within the JINA EMBEDDINGS set is
based on, and trained using, the zero-shot T5 mod-
els of corresponding size, as detailed in [Raffel
et al., 2020]. The zero-shot T5 models are com-
posed of encoder-decoder pairs. However, Ni et al.

10

https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/datasets/snli

[2022a] has demonstrated that it is more effective
to calculate text embeddings using only the encoder
component of the T5 models, as opposed to deploy-
ing both encoder and decoder. Consequently, the
JINA EMBEDDINGS models use only the encoders
of their respective T5 models.

During tokenization, JINA EMBEDDINGS mod-
els use SentencePiece [Kudo and Richardson,
2018] to segment input text and encode them into
WordPiece tokens [Kudo, 2018]. Following the en-
coder model, a mean pooling layer is implemented
to generate fixed-length representations from the
token embeddings.

For the training process involving pairs, we em-
ploy InfoNCE [van den Oord et al., 2018], a con-
trastive loss function. This function calculates the
loss for a pair (q, p) ∼ B within a batch B ∈ Dk

of text pairs, where the batch size is k, as follows:

Lpairs
NCE (B) := E(q,p)∼B

[
− ln

es(q,p)/τ
∑k

i=1 e
s(q,pi)/τ

]

The loss is calculated by comparing the cosine sim-
ilarity between a given question q and its target p,
with the similarity to all other targets in the batch.
We found that calculating the loss in both direc-
tions results in greater improvements during train-
ing. Accordingly, the loss is defined as follows:

Lpairs(B) := Lpairs
NCE (B) + Lpairs

NCE
(B), where

Lpairs

NCE
(B) := E(q,p)∼B

[
− ln

es(p,q)/τ
∑k

i=1 e
s(p,qi)/τ

]
.

Intuitively, Lpairs

NCE
matches the target string to

all query strings instead. The constant τ denotes a
temperature parameter which we set to τ = 0.05.
This method of calculating the loss is based on a
similar method in [Neelakantan et al., 2022].

3.2 Data Sampling in Pairwise Training

Rather than sequentially training on individual
datasets, we opt for a parallel approach, training
on all datasets concurrently. We postulate that this
parallel training promotes enhanced model gener-
alization across diverse tasks. Despite this, each
training batch is exclusively composed of data from
a single dataset. This ensures that loss calculations,
performed across the entire batch, do not conflate
data from different tasks.

Our dataloader operates by initially selecting a
dataset, followed by sampling the requisite number
of data points from it to constitute a batch for the
worker (refer to Section 4). Prior to training, the
pairs within the datasets are thoroughly shuffled.

Sampling a dataset Di follows a probability dis-
tribution ρ across all datasets Di. The probability
of sampling Di is ρ (Di) =

|Di|si∑n
j=1 |Dj |sj and is con-

tingent upon the dataset’s size |Di| and a scaling
factor si.

Given the disparity in dataset sizes, it is critical
to frequently sample from larger datasets to pre-
vent overfitting on the smaller ones. Furthermore,
we manipulate the sampling rates of datasets using
scaling factors to prioritize training on high-quality
datasets and achieve balance among text domains.
In scenarios where datasets with higher sampling
rates deplete their items before the completion of
a training epoch, the dataset is reset, enabling the
model to cycle through its items anew. This en-
sures that high-sampling-rate datasets contribute
multiple times within a single training epoch.

Figure 1b displays the proportion of each dataset
used based on their sampling rates. Following the
creation of this adjusted distribution, the frequency
of sampling from larger datasets significantly di-
minishes, resulting in only 180 million pairs actu-
ally being used during training.

3.3 Training on Triplet Data

Following the completion of pairwise training, the
model progresses to the next phase which involves
training on the triplet datasets. This phase uses
a different loss function, leveraging negatives for
improved model performance.

We experimented with various triplet loss func-
tions and found that the best results are achieved
through a combination of multiple commonly used
triplet loss functions. Specifically, we use the
extended version of the InfoNCE loss Ltriplets

NCE+ ,
given by (2), which employs additional nega-
tives [Reimers, 2023], the reverse InfoNCE loss
Ltriplets

NCE
from the initial training phase as given by

(3), and the triplet margin loss function Ltriplets
3 as

presented in (4) [Chechik et al., 2010].
The triplet function Ltriplets

3 determines the co-
sine similarity difference between the query and
target s(q, n), and the query and negative match
s(q, n). Furthermore, it establishes a minimal mar-
gin ε = 0.05 between these two values. If the
negative is more similar to the query or the margin

11

is violated, Ltriplets
3 returns a positive value. Oth-

erwise, it yields 0, which is achieved through the
application of the ReLU activation function. For
the temperature parameter, we opted for a value of
τ = 0.05.

4 Evaluation

We conduct a comprehensive evaluation to compare
our models against other state-of-the-art models
(Section 4.1), investigate the impact of our filtering
pipeline (Section 4.2), and evaluate the models’
sensitivity to negation of statements (Section 4.3).
Section 6 mentions details about the training.

To provide comprehensive results on the per-
formance of models on various downstream tasks
applicable to embeddings, we rely on the MTEB
benchmark frameworks introduced by Muen-
nighoff et al. [2023]. This also compromises all the
retrieval tasks included in the BEIR [Thakur et al.,
2021] benchmark. We also publish the code for
executing it on our models on the Hugging Face
pages of our model10. For evaluating models on
the negation dataset, we use our own separate eval-
uation tool11.

4.1 Performance Against State-of-the-Art
Models

To gauge the performance of the JINA EMBED-
DINGS set in relation to other similarly sized open-
source and close-sourced models, we select repre-
sentative models from five distinct size categories,
as depicted in Table 1. Additionally, we include
sentence-t5 and gtr-t5 xl and xxl models, which are
based on T5 models with 3 billion and 11 billion
parameters, respectively. This inclusion allows in-
vestigating the performance variation with models
of such massive scales.

Table 6 presents the scores for MTEB’s sentence
similarity tasks, wherein the models within the
JINA EMBEDDINGS set outshine their similarly
sized counterparts across numerous tasks. Notably,
the jina-large-v1 model consistently delivers
comparable, if not superior, results to models in
the billion-parameter scale. jina-base-v1 and
jina-small-v1 also exhibit competitive perfor-
mances with models of analogous sizes, exceeding

10https://huggingface.co/jinaai/
jina-embedding-b-en-v1/blob/main/mteb_
evaluation.py

11https://huggingface.co/jinaai/
jina-embedding-b-en-v1/blob/main/negation_
evaluation.py

Model Parameters
Embedding
Dimensions

sentence-t5-xxl 4.9b 768
gtr-t5-xxl 4.9b 768
gtr-t5-xl 1.2b 768
sentence-t5-xl 1.2b 768

jina-large-v1 330m 1024
gtr-t5-large 330m 768
sentence-t5-large 330m 768

all-mpnet-base-v2 110m 768
jina-base-v1 110m 768
gtr-t5-base 110m 768
sentence-t5-base 110m 768

jina-small-v1 35m 512
all-MiniLM-L6-v2 23m 384

Table 1: Model sizes and output dimensions

their peers on the BIOSSES12 task. This highlights
the benefits of training with highly diverse data
sources.

jina-base-v1 consistently demonstrates perfor-
mances similar to or better than gtr-t5-base, which
was trained specifically for retrieval tasks [Ni et al.,
2022b]. However, it seldom matches the scores of
sentence-t5-base, which was trained on sentence
similarity tasks [Ni et al., 2022a].

The evaluation of model performances on re-
trieval tasks, presented in Table 8, reflects a similar
relationship among gtr-t5, sentence-t5, and JINA

EMBEDDINGS. Here, gtr-t5 models, which have
been specially trained on retrieval tasks, consis-
tently score the highest for their respective sizes.
JINA EMBEDDINGS models follow closely behind,
whereas sentence-t5 models trail significantly. The
JINA EMBEDDINGS set’s capability to maintain
competitive scores across these tasks underscores
the advantage of multi-task training.

As illustrated in Table 7, jina-large-v1 also
achieves exceedingly high scores on reranking
tasks, often outperforming larger models. Similarly,
jina-base-v1 surpasses gtr-t5-large and sentence-
t5-large on several reranking tasks, which could
once again be attributed to the specific training
tasks of sentence-t5 and gtr-t5.

12https://tabilab.cmpe.boun.edu.tr/BIOSSES/
DataSet.html

12

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html

Ltriplets(B) := Ltriplets
NCE+ (B) + Ltriplets

NCE
(B) + Ltriplets

3 (B), where (1)

Ltriplets
NCE+ (B) := E(q,p,n)∼B

[
− ln

exp(s(q, p)/τ)
∑k

i=1 exp(s(q, pi)/τ) + exp(s(q, ni)/τ)

]
, (2)

Ltriplets

NCE
(B) := E(q,p,n)∼B

[
− ln

exp(s(p, q)/τ)
∑k

i=1 exp(s(p, qi)/τ)

]
, (3)

Ltriplets
3 (B) := E(q,p,n)∼B

[
ReLU

(
s(q, n)− s(q, p) + ε

)]
. (4)

Model RR RT STS

sentence-t5-xxl 56.42 42.24 82.63
gtr-t5-xxl 56.66 48.48 78.38
gtr-t5-xl 55.96 47.96 77.80
sentence-t5-xl 54.71 38.47 81.66

jina-large-v1 56.42 44.81 80.96
gtr-t5-large 55.36 47.42 78.19
sentence-t5-large 54.00 36.71 81.83

all-mpnet-base-v2 59.36 43.81 80.28
jina-base-v1 55.84 44.03 79.93
gtr-t5-base 54.23 44.67 77.07
sentence-t5-base 53.09 33.63 81.14

jina-small-v1 53.07 38.91 78.06
all-MiniLM-L6-v2 58.04 41.95 78.90

Table 2: Average Scores for Reranking (RR), Retrieval
(RT) and sentence similarity tasks (STS)

4.2 Impact of Filtering Steps

We evaluate the effectiveness of our dataset prepro-
cessing pipeline by performing an ablation study.
In this study, we fine-tune our smallest model on
the Reddit dataset, where various preprocessing
steps are individually applied. The corresponding
results are presented in Table 3.

The ablation study’s results underscore the value
of both language and consistency filtering as cru-
cial preprocessing steps. Their combined applica-
tion results in the highest performance across the
majority of benchmarks.

Specifically for the Reddit dataset, we observe a
significant performance boost with the application
of consistency filtering, while language filtering
only marginally enhances the performance. We
can account for this disparity by noting that the
language filter removes only 17.4% of the Reddit

data, while consistency filtering screens out 84.313.
Reddit samples are primarily in English, but many
are positive pairs with very low similarity, making
consistency filtering more effective than language
filtering.

The effectiveness of these preprocessing steps,
however, does exhibit variability across different
datasets.

4.3 Effectiveness of Negation Data

To determine the effectiveness of our models on
negation data, we evaluate them against the test
split of our negation dataset, comparing the results
with other open source models. We measure per-
formance with respect to two metrics: one mea-
sures the percentage of samples where the model
positions the anchor and entailment closer than
the anchor and negative (which is an easy task, as
the anchor and negative are syntactically dissim-
ilar), the other measures the percentage of sam-
ples where the model positions the anchor and
entailment closer than the entailment and negative
(which is a hard task, as the entailment and negative
are syntactically more similar than the anchor and
entailment). The former is denoted by EasyNega-
tion, the latter by HardNegation. The outcomes
of these evaluations are displayed in Table 4. We
assess our models both before and after fine-tuning
on the triplet data, denoted as <model>pairwise and
<model>all, respectively.

From the results, we observe that across all
model sizes, fine-tuning on triplet data (which in-
cludes our negation training dataset) dramatically
enhances performance, particularly on the Hard-
Negation task. Our models are on par with other
state-of-the-art open-source models in terms of per-

13It is pertinent to note that the subsets filtered out overlap,
thus the combined application of language and consistency
filtering filters out only 86.8% of the data.

13

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

Retrieval
Data Preparation Quora SciFact Trec-Cov

No Extra Filter 0.734 0.218 0.242
Language 0.741 0.218 0.250
Consistency 0.805 0.381 0.297
Language + Consistency 0.806 0.379 0.306

Sentence Similarity
Data Preparation STS12 STS13 STS14 STS15 STS16 STS17 STS22

No Extra Filter 0.558 0.668 0.573 0.694 0.706 0.764 0.606
Language 0.561 0.668 0.579 0.697 0.704 0.765 0.609
Consistency 0.652 0.728 0.652 0.760 0.755 0.808 0.610
Language + Consistency 0.653 0.727 0.656 0.764 0.757 0.810 0.609

Table 3: Evaluation of Data-Preparation Effectiveness on the Reddit Dataset. Retrieval evaluated on nDCG@10,
Sentence Similarity on Spearman.

formance, while achieving this with only a fraction
of the training data required by their counterparts.

5 Related Work

The field of embedding models has seen significant
advanced over the years, with the development of
various models featuring diverse architectures and
training pipelines. For instance, Sentence-BERT
[Reimers and Gurevych, 2019] uses BERT to gen-
erate sentence embeddings. Similarly, Sentence-T5
[Ni et al., 2022a], based on the encoder architec-
ture of T5, demonstrates superior performance over
Sentence-BERT on numerous benchmarks. The
study underscores the effectiveness of encoders
for sentence embeddings, contrasting with another
approach that explores the use of decoders [Muen-
nighoff, 2022].

Knowledge distillation [Hinton et al., 2015] of-
fers an alternative approach to model training. In
this setup, a larger, pre-trained model acts as a
mentor, instructing a smaller model during training.
This methodology can be seamlessly integrated
with a contrastive loss function, presenting an av-
enue for future investigation.

Embedding models can also be characterized
based on their functionality. For instance, while
some models are designed to solely embed queries,
others are trained to embed queries along with spe-
cific instructions, generating task-dependent em-
beddings [Su et al., 2023]. An example of this
using a T5-based model is the large dual encoder
[Ni et al., 2022b], which is fine-tuned for retrieval
tasks and computes a retrieval score directly.

Recent studies [Neelakantan et al., 2022, Wang
et al., 2022] emphasize the benefits of contrastive
pre-training coupled with fine-tuning on hard neg-
atives. Both approaches have achieve state-of-the-
art results on multiple benchmarks, with [Wang
et al., 2022] also employing consistency filtering
as part of their preprocessing pipeline.

6 Training Details

For training, we employ A100 GPUs and leverage
the DeepSpeed stage 2 distributed training strategy
[Rajbhandari et al., 2020] for effective multi-device
management. For training our models we use the
AdamW optimizer, coupled with a learning rate
scheduler that adjusts the learning rate during the
initial stages of training. The hyperparameters used
across all three models throughout the training pro-
cess are listed in Table 5.

7 Conclusion

This paper introduces the JINA EMBEDDINGS set
of embedding models, demonstrating that competi-
tive performance on various tasks can be achieved
while substantially reducing the amount of training
data, when compared to other models with compa-
rable backbones. Through an extensive evaluation
on the MTEB benchmark, we show that employ-
ing judicious data filtering techniques can lead to
enhanced performance in comparison to training
with a larger, yet lower-quality dataset. These find-
ings significantly shift the paradigm, indicating that
training large language models for embedding tasks
can be conducted with less data than previously as-

14

EasyNegation HardNegation Parameters Training samples

jina-small-v1pairwise 88.4% 8.4% 35m 385m
jina-base-v1pairwise 93.0% 13.8% 110m 385m
jina-large-v1pairwise 94.6% 16.6% 330m 385m
jina-small-v1all 96.6% 35.2% 35m 386m
jina-base-v1all 97.8% 54.6% 110m 386m
jina-large-v1all 98.2% 65.4% 330m 386m

all-MiniLM-L6-v2 94.8% 29.4% 23m 1170m
all-mpnet-base-v2 97.4% 67.6% 110m 1170m
sentence-t5-base 96.0% 55% 110m 2275m
sentence-t5-large 98.2% 64.0% 330m 2275m

Table 4: Evaluating a Range of Models on the Negation Dataset: A Benchmark Analysis of JINA EMBEDDINGS
Trained on Both Pairwise-Only and Combined Pairwise and Triplet Data. The negation dataset is available at
https://huggingface.co/datasets/jinaai/negation-dataset

Hyperparameters Value

of devices 8
Sequence length 512
Model precision 32 bit
Learning rate 0.00005
of steps for learning rate warm-up 500
Batch size for jina-small-v1 4096
Batch size for jina-base-v1 2048
Batch size for jina-large-v1 1024

Table 5: Hyperparameters

sumed, leading to potential savings in training time
and resources.

However, we acknowledge the limitations of the
current methodologies and the performance of the
JINA EMBEDDINGS set. During the training on
pairs, the sampling rate selection was based on
a heuristic approach. Given the vast size of the
search space for these sampling rates, we leaned
on our intuition and dataset familiarity to prioritize
higher-value datasets over their lower-value coun-
terparts. This subjective approach, however, points
to the need for more objective methods for future
advancements.

Additionally, the JINA EMBEDDINGS set fell
short on some tasks. For instance, calculating
sentence similarity on our negation dataset (as de-
scribed in Section 4.3) didn’t meet our expectations
(see Table 4) nor achieves competitive scores for
classification and clustering tasks on the MTEB
benchmark. These performance shortcomings sug-
gest a possible deficit in the representation of these

types of tasks in our training data, necessitating
further investigation.

Looking ahead, we aim to refine our training
processes to deliver models with improved perfor-
mance and greater sequence length. Our future
endeavors also include generating bilingual train-
ing data and training an embedding model capable
of understanding and translating between two lan-
guages, thereby expanding the utility and versatility
of the JINA EMBEDDINGS set.

References
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of trans-
fer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):
5485–5551, 2020.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1864–1874, 2022a.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith
Hall, Ming-Wei Chang, et al. Large dual encoders
are generalizable retrievers. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 9844–9855, 2022b.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tris-
tan Hume, et al. Scaling laws and interpretabil-
ity of learning from repeated data. arXiv preprint
arXiv:2205.10487, 2022.

15

https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1

Armand Joulin, Édouard Grave, Piotr Bojanowski, and
Tomáš Mikolov. Bag of tricks for efficient text clas-
sification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
427–431, 2017.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith
Hall, and Ming-Wei Chang. Promptagator: Few-shot
dense retrieval from 8 examples. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=
gmL46YMpu2J.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. Rocketqa: An optimized training
approach to dense passage retrieval for open-domain
question answering. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 5835–5847, 2021.

Taku Kudo and John Richardson. Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 66–71, 2018.

Taku Kudo. Subword regularization: Improving neural
network translation models with multiple subword
candidates. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75, 2018.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. URL http:
//arxiv.org/abs/1807.03748.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen

Krueger, David Schnurr, Felipe Petroski Such,
Kenny Hsu, Madeleine Thompson, Tabarak Khan,
Toki Sherbakov andcalculating Joanne Jang, Pe-
ter Welinder, and Lilian Weng. Text and code
embeddings by contrastive pre-training. CoRR,
abs/2201.10005, 2022. URL https://arxiv.org/
abs/2201.10005.

Nils Reimers. http://plastimatch.org/doxygen/
classHausdorff__distance.html##details
Last Access: 14th July 2023, 2023.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Ben-
gio. Large scale online learning of image similarity
through ranking. Journal of Machine Learning Re-
search, 11(3), 2010.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. Mteb: Massive text embedding bench-
mark, 2023.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. Beir: A
heterogenous benchmark for zero-shot evaluation of
information retrieval models, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–
3992, 2019.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings
for semantic search, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network, 2015.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. One embed-
der, any task: Instruction-finetuned text embeddings,
2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE,
2020.

16

https://openreview.net/forum?id=gmL46YMpu2J
https://openreview.net/forum?id=gmL46YMpu2J
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
http://plastimatch.org/doxygen/classHausdorff__distance.html####details
http://plastimatch.org/doxygen/classHausdorff__distance.html####details

Appendix

Model BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS
Benchm.

sentence-t5-xxl 80.43 80.47 78.85 88.94 84.86 89.32 84.67 89.46 65.33 84.01
sentence-t5-xl 73.12 79.98 79.02 88.80 84.33 88.89 85.31 88.91 64.32 83.93
gtr-t5-xxl 81.91 74.29 70.12 82.72 78.24 86.26 81.61 85.18 65.76 77.73
gtr-t5-xl 78.94 73.63 69.11 81.82 77.07 86.01 82.23 84.90 66.61 77.65
sentence-t5-large 78.93 80.34 79.11 87.33 83.17 88.28 84.36 88.99 62.39 85.36
gtr-t5-large 84.86 73.39 70.33 82.19 77.16 86.31 81.85 83.93 64.30 77.60
jina-large-v1 84.43 79.20 74.53 83.16 78.09 86.91 83.65 90.16 64.89 84.60
sentence-t5-base 75.89 80.18 78.05 85.85 82.19 87.46 84.03 89.57 62.66 85.52
gtr-t5-base 79.00 71.45 68.59 79.09 74.64 84.85 81.57 85.80 66.17 79.58
all-mpnet-base-v2 80.43 80.59 72.63 83.48 78.00 85.66 80.03 90.60 67.95 83.42
jina-base-v1 83.58 79.14 75.06 80.86 76.13 85.55 81.21 88.98 66.22 82.57
all-MiniLM-L6-v2 81.64 77.58 72.37 80.60 75.59 85.39 78.99 87.59 67.21 82.03
jina-small-v1 82.96 76.33 74.28 78.55 73.84 83.71 80.03 87.49 64.25 79.20
text-emb-ada-002* 86.35 80.60 69.80 83.27 76.09 86.12 85.96 90.25 68.12 83.17

Table 6: Spearman Correlation for Sentence Similarity Tasks

Model AskUbuntu-
DupQuestions

MindSmall-
Reranking SciDocsRR StackOverflow-

DupQuestions
sentence-t5-xxl 66.16 30.60 76.09 52.85
sentence-t5-xl 62.86 29.77 75.16 51.05
gtr-t5-xxl 63.23 31.93 77.96 53.50
gtr-t5-xl 63.08 31.50 76.49 52.79
sentence-t5-large 61.51 30.27 74.88 49.34
gtr-t5-large 61.64 31.84 76.39 51.58
jina-large-v1 62.83 31.48 80.97 50.38
sentence-t5-base 59.73 30.20 73.96 48.46
gtr-t5-base 60.86 31.33 73.71 51.01
all-mpnet-base-v2 65.85 30.97 88.65 51.98
jina-base-v1 62.40 31.56 79.31 50.11
all-MiniLM-L6-v2 63.48 30.80 87.12 50.76
jina-small-v1 60.25 30.68 74.16 47.18
text-emb-ada-002* 62.05 31.45 81.22 50.54

Table 7: Mean Average Precision (mAP@10) for Reranking Tasks

* text-emb-ada-002 appears in a separate category since no model size is known and the embedding size is much higher
compared to other models.

17

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

Model FEVER HotpotQA MSMARCO NQ Quora
Retrieval SciFact TREC

COVID
Argu
Ana

Climate
FEVER DBPedia FiQA

2018 NFCorpus SCIDOCS Touche
2020

sentence-t5-xxl 51.20 42.14 27.67 52.87 85.96 55.38 59.48 39.85 14.63 39.19 46.68 35.08 17.17 21.65
sentence-t5-xl 36.12 37.17 25.17 46.29 85.85 50.91 54.77 39.40 10.61 33.65 44.71 33.18 15.97 22.51
gtr-t5-xxl 74.08 59.67 44.05 57.24 89.09 66.77 51.90 53.77 27.21 41.28 46.78 34.18 15.88 26.76
gtr-t5-xl 72.18 58.91 43.52 56.16 88.91 64.2 60.09 52.81 27.01 39.74 44.19 33.34 15.71 25.26
sentence-t5-large 36.21 33.95 23.96 42.02 85.73 49.91 46.11 39.27 11.36 31.55 43.55 31.10 15.38 21.63
gtr-t5-large 72.66 57.85 42.73 55.09 88.47 63.42 56.68 52.09 26.90 39.55 42.79 32.63 15.51 28.29
jina-large-v1 71.90 54.95 40.34 51.40 88.09 59.76 57.25 46.48 21.26 34.13 37.27 32.24 18.45 20.73
sentence-t5-base 26.17 33.20 20.70 36.32 85.49 45.76 40.70 44.85 10.37 27.77 34.83 28.65 14.15 20.30
gtr-t5-base 68.93 54.93 41.16 50.47 87.98 59.74 56.05 50.83 24.88 35.24 35.15 30.22 14.00 25.89
all-mpnet-base-v2 50.86 39.29 39.75 50.45 87.46 65.57 51.33 46.52 21.97 32.09 49.96 33.29 23.76 19.93
jina-base-v1 73.29 52.78 37.77 47.87 87.63 59.40 60.57 49.01 21.48 32.44 34.06 30.38 17.63 18.59
all-MiniLM-L6-v2 51.93 46.51 36.54 43.87 87.56 64.51 47.25 50.17 20.27 32.33 36.87 31.59 21.64 16.90
jina-small-v1 69.12 47.48 31.80 38.89 85.69 52.40 52.30 43.57 17.25 28.28 25.19 25.96 15.29 16.67
text-emb-ada-002* 74.99 60.90 40.91 51.58 87.60 72.75 68.47 57.44 21.64 39.39 44.41 36.97 18.36 21.61

Table 8: Normalized Discounted Cumulative Gain (nDCG@10) for retrieval tasks

18

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 19–24
December 6, 2023 ©2023 Association for Computational Linguistics

Deepparse : An Extendable, and Fine-Tunable State-Of-The-Art Library
for Parsing Multinational Street Addresses

David Beauchemin, Marouane Yassine
Department of Computer Science and Software Engineering, Laval University

Group for Research in Artificial Intelligence of Laval University (GRAIL)
Québec, Canada

david.beauchemin@ift.ulaval.ca, marouane.yassine.1@ulaval.ca

Abstract

Segmenting an address into meaningful com-
ponents, also known as address parsing, is
an essential step in many applications from
record linkage to geocoding and package de-
livery. Consequently, a lot of work has been
dedicated to develop accurate address parsing
techniques, with machine learning and neural
network methods leading the state-of-the-art
scoreboard. However, most of the work on ad-
dress parsing has been confined to academic
endeavours with little availability of free and
easy-to-use open-source solutions.

This paper presents Deepparse, a Python open-
source, extendable, fine-tunable address pars-
ing solution under LGPL-3.0 licence to parse
multinational addresses using state-of-the-art
deep learning algorithms and evaluated on over
60 countries. It can parse addresses written
in any language and use any address stan-
dard. The pre-trained model achieves average
99 % parsing accuracies on the countries used
for training with no pre-processing nor post-
processing needed. Moreover, the library sup-
ports fine-tuning with new data to generate a
custom address parser.

1 Introduction

Address Parsing is the task of decomposing an ad-
dress into its different components (Abid et al.,
2018). This task is essential to many applications,
such as geocoding and record linkage. Indeed, it
is quite useful to detect the different parts of an
address to find a particular location based on tex-
tual data to make an informed decision. Similarly,
comparing two addresses to decide whether two
or more database entries refer to the same entity
can prove to be quite difficult and prone to errors if
based on methods such as edit distance algorithms
given the various address writing standards.

There have been many efforts to solve the ad-
dress parsing problem. From rule-based techniques
(Xu et al., 2012) to probabilistic approaches and

neural network models (Abid et al., 2018), much
progress has been made in reaching accurate ad-
dresses segmentation. These previous works did
a remarkable job of finding solutions for the chal-
lenges related to the address parsing task. However,
most of these approaches either do not take into
account parsing addresses from different countries
or do so but at the cost of a considerable amount
of meta-data and substantial data pre-processing
pipelines (Mokhtari et al.; Li et al., 2014; Wang
et al., 2016; Sharma et al., 2018).

However, most of the work on address parsing
has been confined to academic endeavours with lit-
tle availability of free and easy-to-use open-source
solutions. In an effort to solve some of the lim-
itations of previous methods, as well as offer an
open-source address parsing solution, we have cre-
ated Deepparse1 (Yassine and Beauchemin, 2020)
an LGPL-3.0 licenced Python library. Our work
allows anyone with a basic knowledge of Python
or command line terminal to conveniently parse
addresses from multiple countries using state-of-
the-art deep learning models proposed by Yassine
et al. (2020, 2022). Deepparse’s goal is to parse
multinational addresses written in any language
or using any address writing format with an ex-
tendable and fine-tunable address parser. In addi-
tion, Deepparse proposes a functionality to easily
customize the aforementioned models to new data
along with an easy-to-use Docker FastAPI to parse
addresses.

This paper’s contributions are: First, we describe
an open-source Python library for multinational ad-
dress parsing. Second, we describe its implemen-
tation details and natural extensibility due to its
fine-tuning possibilities. Third, we benchmark it
against other open-source libraries.

1https://deepparse.org/

19

https://deepparse.org/

2 Related work

Address parsing has been approached on the aca-
demic front using probabilistic machine learning
models such as Hidden Markov Models and Con-
ditional Random Fields (CRF) (Li et al., 2014;
Wang et al., 2016; Abid et al., 2018), as well as
deep learning models mainly based on the recur-
rent neural network (RNN) architecture (Sharma
et al., 2018; Mokhtari et al.; Abid et al., 2018).
Regarding openly available software, most of the
existing packages cater to US postal addresses. For
instance, pyaddress2 allows for the decomposition
of US addresses into eight different attributes with
a possibility to specify acceptable “street names”,
“cities” and “street suffixes” in order to improve
parsing accuracy. Similarly, address-parser3 iden-
tifies as “Yet another python address parser for
US postal addresses” and enables users to extract
multiple address components such as “house num-
bers”, “street names”, “cardinal directions” and
“zip codes”. These two packages are based on a
combination of predefined component lists and reg-
ular expressions. In contrast, usaddress4 uses a
probabilistic model that users can fine-tune using
their data. Another openly available avenue for ad-
dress parsing is Geocoding APIs, which can result
in highly precise parsed addresses based on reverse
geocoding. However, while being openly available,
Geocoding APIs are often not free and not always
convenient to use for a programming layperson.

The aforementioned approaches are limited to
parsing addresses from a single country and either
cannot handle a multinational scope of address pars-
ing or would need to be adjusted to do so. To tackle
this problem, Libpostal5, a C library for interna-
tional address parsing, has been proposed. This
library uses a CRF-based model trained with an
averaged Perceptron for scalability. The model
was trained on Libpostal dataset6 and achieved a
99.45 % full parse accuracy7 using an extensive
pre and post-processing pipeline. However, this
requires putting addresses through a heavy pre-
processing pipeline before feeding them to the pre-
diction model, and it does not seem possible to
develop a new address parser based on the docu-

2https://github.com/SwoopSearch/pyaddress
3https://github.com/CivicKnowledge/address_parser
4https://github.com/datamade/usaddress
5https://github.com/openvenues/libpostal
6https://github.com/openvenues/libpostal#training-data
7The accuracy was computed considering the entire se-

quence and was not focused on individual tokens.

mentation. A thorough search of the relevant litera-
ture yielded no open-source neural network-based
software for multinational address parsing.

3 Implementation

Deepparse is divided into three high-level compo-
nents: pre-processors, embeddings model, and tag-
ging model. The first component, the pre-processor,
is a series of simple handcrafted pre-processing
functions to be applied as a data cleaning proce-
dure before the embedding component, such as
lowercasing the address text and removing com-
mas. By default, Deepparse simply lowercase and
removes all commas in the address. The library
does not require a complex pre-processing pipeline,
but one can be defined and used more complex
one if needed since Deepparse is built so users can
handcraft and use a custom pre-processor during
this phase.

The last two components are illustrated in Fig-
ure 1. We can see that the embeddings model com-
ponent (black) encodes each token (i.e. word) of
the address into a recurrent dense representation.
At the end of the sentence, the component generates
a single dense representation for the overall address
generated from the individual address components.
Then, this address-dense representation is used as
input to the tagging model component (red), where
each address component is decoded and classified
into its appropriate tag. These two components
do not rely on named entity recognition to parse
addresses as opposed to the one proposed by Abid
et al. (2018).

Deepparse proposes two embeddings model ap-
proaches and four pre-trained tagging model archi-
tectures; all approaches can be used with CPU or
GPU setup. All pre-trained approaches have been
trained on our publicly available dataset8, based on
to the Libpostal dataset, and achieved parse accu-
racies higher than 99% on the 20 trained countries
without using pre or post-processing9.

The following sub-section will briefly discuss
how these two components work. For more de-
tails on the algorithms behind both components,
readers can refer to Yassine et al. (2020, 2022).
We will finish this section with a presentation on
Deepparse’s unique flexibility in developing a new

8https://github.com/GRAAL-Research/deepparse-
address-data

9The accuracy for each sequence is computed as the pro-
portion of the tags predicted correctly by the model. Predicting
all the tags correctly for a sequence yields perfect accuracy.

20

https://github.com/SwoopSearch/pyaddress
https://github.com/CivicKnowledge/address_parser
https://github.com/datamade/usaddress
https://github.com/openvenues/libpostal
https://github.com/openvenues/libpostal#training-data
https://github.com/GRAAL-Research/deepparse-address-data
https://github.com/GRAAL-Research/deepparse-address-data

address parser.

3.1 Embedding Model
Our objective was to build a single neural network
to parse addresses from multiple countries. Thus,
access to embeddings for different languages at
runtime was necessary. Since the use of alignment
vectors (Joulin et al., 2018; Conneau et al., 2017)
would have introduced the unnecessary overhead
of detecting of the source language to project word
embeddings from different languages in the same
space, Deepparse proposes the following two meth-
ods.

First, we use a fixed pre-trained monolingual
French fastText model. We chose French embed-
dings since this language shares Latin roots with
many languages in our test set. It is also due to
the large corpus on which these embeddings were
trained. We refer to this embeddings model tech-
nique as fastText.

Second, we use an encoding of words using
MultiBPEmb and merge the obtained embeddings
for each word into one word embedding using an
RNN. This method has been shown to give good
results in a multilingual setting (Heinzerling and
Strube, 2019). Our RNN network of choice is
a Bidirectional LSTM (Bi-LSTM) with a hidden
state dimension of 300. We build the word em-
beddings by running the concatenated forward and
backward hidden states corresponding to the last
time step for each word decomposition through
a fully connected layer of which the number of
neurons equals the dimension of the hidden states.
This approach produces 300-dimensional word em-
beddings. We refer to this embeddings model tech-
nique as BPEmb.

3.2 Tagging Model
Our downstream tagging model is a Seq2Seq
model. Using Seq2Seq architecture as tagging
model is effective for data with sequential pattern
(Huang et al., 2019; Omelianchuk et al., 2021; Jin
and Yu, 2021; Raman et al., 2022) such as ad-
dress. The architecture consists of a one-layer
unidirectional LSTM encoder and a one-layer uni-
directional LSTM decoder followed by a fully-
connected linear layer with a softmax activation.
Both the encoder’s and decoder’s hidden states
are of dimension 1024. The embedded address
sequence is fed to the encoder that produces hid-
den states, the last of which is used as a context
vector to initialize the decoder’s hidden states. The

decoder is then given a “Beginning Of Sequence”
(BOS) token as input, and at each time step, the
prediction from the last step is used as input. To
better adapt the model to the task at hand and to
facilitate the convergence process, we only require
the decoder to produce a sequence with the same
length as the input address. This approach differs
from the traditional Seq2Seq architecture in which
the decoder makes predictions until it predicts the
ends-of-sequence token. The decoder’s outputs are
forwarded to the linear layer, of which the number
of neurons equals the tag space dimensionality. The
softmax activation function computes probabilities
over the linear layer’s outputs to predict the most
likely token at each time step.

Deepparse proposes four pre-trained tagging
model architectures: one using each embedding
model approach, namely fastText and BPEmb,
and one using each embedding model approach
with an added attention mechanisms. Attention
mechanisms are neural network components that
can produce a distribution describing the inter-
dependence between a model’s inputs and out-
puts (general attention) or amongst model inputs
themselves (self-attention). These mechanisms are
common in natural language processing encoder-
decoder architectures such as neural machine trans-
lation models (Bahdanau et al., 2015) since they
have been shown to improve models’ performance
and help address some of the issues RNNs suffer
from when dealing with long sequences. Also, Yas-
sine et al. (2022) has shown that the attention mech-
anism has significantly increased performance for
incomplete addresses. Incomplete addresses do not
include all the components defined by a country-
written standard—for example, an address missing
its postal code. They are cumbersome and cause
problems for many industries, such as delivery
services and insurance companies (Nagabhushan,
2009).

Choosing a Model The difference between all
four models is their capabilities to generate bet-
ter results on unseen address patterns and unseen
language. For example, as shown in Yassine et al.
(2020), BPEmb embeddings models generate better
parsing on address from India, even if the language
and address pattern was unseen during training
compared to FastText embeddings model. How-
ever, this increase in generalization performance
comes at the cost of longer inference time (will be
discussed in section 4). As shown in Yassine et al.

21

Created in Master PDF Editor

2325 rue de l'université Québec QC g1v0a6

_0000 _rue _de _l ' université _québec _q c ▁g 0 v 0 a 0

BOS

StreetNumber StreetName StreetName StreetName Municipality Province PostalCode EOS

S S SS S S SS

Figure 1: Illustration of our architecture using one of the two embedding model component (black) approach.
Each word in the address is encoded using an embedding model, in this case, MultiBPEmb (the BPE segmentation
algorithm replaces the numbers in the address with zeros). The embeddings are fed to a BiLSTM (rounded rectangle
with two circles). The last hidden state for each word is run through a fully connected layer (rounded rectangle with
one circle). The resulting embeddings are given as input to the tagging model components (red). The “S” in the
fully connected layer following the Seq2Seq decoder stands for the Softmax function.

(2022), models using the attention mechanism also
demonstrate the same improved generalization per-
formance compared to their respective embeddings
approaches but with the same cost of inference per-
formance. Thus, one must trade off generalization
performance over inference performance.

3.3 Developing a New Parser

One of the unique particularities of Deepparse is
the ability to develop a new parser for one’s specific
needs. Namely, one can fine-tune one of our pre-
trained models for their specific needs using our
public dataset or theirs. Doing so can improve
Deepparse’s performance on new data or unseen
countries, giving Deepparse great flexibility. As
shown in Figure 2, developing (i.e. fine-tuning) a
new parser using our pre-trained public models is
relatively easy and can be done with a few Python
lines of code.

Moreover, as shown in Figure 3, one can also
use Deepparse to retrain our pre-trained models on
new prediction tags easily, and it is not restricted
to the ones we have used during training, making
it flexible for new addresses pattern.

Finally, as shown in Figure 4 it is also possible to
easily reconfigure the tagging model architecture to
either create a smaller architecture, thus potentially
reducing memory usage and inference time, or in-
crease it to improve performance on more complex
address data. Also, one can do all of the above at
the same time.

4 Practical results

In this section, since Libpostal and Deeparse are
comparable in terms of accuracy, both are almost
perfect; we benchmark Deepparse memory us-
age and inference time with 183,000 addresses of
the Deepparse dataset. Our parsing experiment
processes 183,000 addresses using different batch
sizes (20, . . . , 29) and assesses memory usage and
inference time performance for Libpostal and Deep-
parse. Since Deepparse can batch address, we as-
sess the inference time as the average processing
time per address (i.e. Total time to process all addresses

183,000 =
time per address). Libpostal does not offer batch-
ing functionality. The experiment used a GPU and
a CPU to assess the accelerator’s gain. Thus, we
also assess GPU memory usage in our experiment
that uses such devices.

Our experiment was conducted on Linux OS
22.04, with the latest Python version (i.e. 3.11),
Python memory_profiler 0.61.0, Torch 2.0 and
CUDA 11.7 (done March 21, 2023). Our GPU
device is an RTX 2080.

Table 1 and Table 2 present our experiment re-
sults using respectively a GPU device or not (i.e.
CPU) with or without using batch processing. In
both tables, we can see that Libpostal achieved
better inference time performance. However, Deep-
parse still achieved interesting performance, partic-
ularly with batching that reduced by one order of
magnitude the average processing time of execu-
tion.

22

a d d r e s s _ p a r s e r = A d d r e s s P a r s e r (mode l_ type =" f a s t t e x t ")
a d d r e s s _ p a r s e r . r e t r a i n (d a t a s e t , t r a i n _ r a t i o = 0 . 8 , epochs =5)

Figure 2: Code example to fine-tune our "FastText" pre-trained model on a new dataset for 5 epochs using a
80-20 % train-evaluation dataset ratio.

a d d r e s s _ p a r s e r = A d d r e s s P a r s e r (mode l_ type =" f a s t t e x t ")
n e w _ t a g _ d i c t i o n a r y = { "ATag" : 0 , " AnotherTag " : 1 , "EOS" : 2}
a d d r e s s _ p a r s e r . r e t r a i n (d a t a s e t , p r e d i c t i o n _ t a g s = t a g _ d i c t i o n a r y)

Figure 3: Code example to retrained our "FastText" pre-trained model on a new dataset with new tags.

GPU
Memory usage

(GB)

RAM
usage
(GB)

Mean time
of execution

(not batched) (s)

Mean time
of execution
(batched) (s)

fastText ∼1 ∼8 ∼0.0023 ∼0.0004
fastTextAttention ∼1.1 ∼8 ∼0.0043 ∼0.0007
BPEmb ∼1 ∼1 ∼0.0055 ∼0.0015
BPEmbAttention ∼1.1 ∼1 ∼0.0081 ∼0.0019

Libpostal 0 ∼2.3 ∼0.00004 ∼N/A

Table 1: GPU and RAM usage and average processing
time to parse 183,000 addresses using a GPU device
with or without batching.

RAM
usage
(GB)

Mean time
of execution

(not batched) (s)

Mean time
of execution
(batched) (s)

fastText ∼8 ∼0.0128 ∼0.0026
fastTextAttention ∼8 ∼0.0230 ∼0.0057
BPEmb ∼1 ∼0.0179 ∼0.0044
BPEmbAttention ∼1 ∼0.0286 ∼0.0075

Libpostal ∼1 ∼0.00004 ∼N/A

Table 2: RAM usage and average processing time to
parse 183,000 addresses using only CPU with or without
batching.

5 Future Development and Maintaining
the Library

As our development roadmap, we plan to improve
the documentation by adding a training guide on
how one can develop its address parser. Also, we
plan to offer new deep learning architecture that
leverages more recent progress, such as a Trans-
former based architecture and to support more
words embedding models, such as contextualized
embeddings like ELMO embeddings (Peters et al.,
2018). Moreover, we plan to offer a minimalist
application to address parsing for coding layper-
sons. Finally, we aim at improving inference time
performance by using recent integration of quan-
tization technique (Cheng et al., 2018; Wu et al.,
2020) in PyTorch, namely, “performing computa-
tions and storing tensors at lower bitwidths than
floating point precision” (PyTorch, 2023). The li-

brary is maintained mainly by the library authors,
and three to four releases are published yearly to
improve and maintain the solution.

6 Conclusion

In conclusion, we have described Deepparse, an ex-
tendable and fine-tunable state-of-the-art library for
parsing multinational street addresses. It is an open-
source library, has over 99.9% test coverage and
integrates easily with existing natural language pro-
cessing pipelines. Deepparse offers great flexibility
to users who can develop their address parser us-
ing our easy-to-use fine-tuning interface. Although
slower than the Libpostal alternative implemented
in low-level language C, Deepparse successfully
parses more than 99% of address components.

Acknowledgment

This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(IRCPJ 529529-17) and a Canadian insurance com-
pany. We wish to thank the reviewers for their
comments regarding our work and methodology.

References

N. Abid, A. ul Hasan, and F. Shafait. 2018. DeepParse:
A Trainable Postal Address Parser. In Digital Image
Computing: Techniques and Applications, pages 1–8.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu,
and Han-qing Lu. 2018. Recent Advances in Ef-
ficient Computation of Deep Convolutional Neural
Networks. Frontiers of Information Technology &
Electronic Engineering, 19:64–77.

23

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

a d d r e s s _ p a r s e r = A d d r e s s P a r s e r (mode l_ type =" f a s t t e x t ")
s eq2seq_pa rams = { " e n c o d e r _ h i d d e n _ s i z e " : 512 , " d e c o d e r _ h i d d e n _ s i z e " : 512}
a d d r e s s _ p a r s e r . r e t r a i n (d a t a s e t , s eq2seq_pa rams = seq2seq_pa rams)

Figure 4: Code example to train a new model using our Seq2Seq architecture with a different configuration (i.e.
encoder and decoder hidden size).

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word Translation Without Parallel Data.

Benjamin Heinzerling and Michael Strube. 2019. Se-
quence tagging with contextual and non-contextual
subword representations: A multilingual evaluation.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics, pages 273–291.

Yi-Ting Huang, Yu-Yuan Chen, Chih-Chun Yang, Yeali
Sun, Shun-Wen Hsiao, and Meng Chang Chen. 2019.
Tagging Malware Intentions by Using Attention-
Based Sequence-To-Sequence Neural Network. In
Information Security and Privacy, pages 660–668.
Springer.

Guozhe Jin and Zhezhou Yu. 2021. A Hierarchical
Sequence-To-Sequence Model for Korean POS Tag-
ging. Transactions on Asian and Low-Resource Lan-
guage Information Processing, 20(2):1–13.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Hervé Jégou, and Edouard Grave. 2018. Loss in
Translation: Learning Bilingual Word Mapping with
a Retrieval Criterion. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Xiang Li, Hakan Kardes, Xin Wang, and Ang Sun.
2014. HMM-Based Address Parsing: Efficiently
Parsing Billions of Addresses on MapReduce. In
Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, page 433–436. Association for Computing
Machinery.

Shekoofeh Mokhtari, Ahmad Mahmoody, Dragomir
Yankov, and Ning Xie. Tagging Address Queries in
Maps Search. Proceedings of the AAAI Conference
on Artificial Intelligence, 33:9547–9551.

P Nagabhushan. 2009. A Soft Computing Model for
Mapping Incomplete/Approximate Postal Addresses
to Mail Delivery Points. Applied Soft Computing,
9(2):806–816.

Kostiantyn Omelianchuk, Vipul Raheja, and Oleksandr
Skurzhanskyi. 2021. Text Simplification by Tagging.
arXiv:2103.05070.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. arXiv:1802.05365.

PyTorch. 2023. Quantization — PyTorch 2.0 docu-
mentation. Accessed online (30-07-2023) https://
pytorch.org/docs/stable/quantization.html.

Karthik Raman, Iftekhar Naim, Jiecao Chen, Kazuma
Hashimoto, Kiran Yalasangi, and Krishna Srini-
vasan. 2022. Transforming Sequence Tagging Into a
Seq2Seq Task. arXiv:2203.08378.

S. Sharma, R. Ratti, I. Arora, A. Solanki, and G. Bhatt.
2018. Automated Parsing of Geographical Ad-
dresses: A Multilayer Feedforward Neural Network
Based Approach. In IEEE International Conference
on Semantic Computing, pages 123–130.

M. Wang, V. Haberland, A. Yeo, A. Martin, J. Howroyd,
and J. M. Bishop. 2016. A Probabilistic Ad-
dress Parser Using Conditional Random Fields and
Stochastic Regular Grammar. In International Con-
ference on Data Mining Workshops, pages 225–232.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. 2020. Integer Quantiza-
tion for Deep Learning Inference: Principles and
Empirical Evaluation. arXiv:2004.09602.

Sen Xu, Soren Flexner, and Vitor R. Carvalho. 2012.
Geocoding billions of addresses: Toward a spatial
record linkage system with big data.

Marouane Yassine and David Beauchemin. 2020. Deep-
parse: A State-Of-The-Art Deep Learning Multina-
tional Addresses Parser.

Marouane Yassine, David Beauchemin, François Lavi-
olette, and Luc Lamontagne. 2022. Multinational
Address Parsing: A Zero-Shot Evaluation. Interna-
tional Journal of Information Science and Technol-
ogy, 6(3):40–50.

Marouane Yassine, David Beauchemin, François Lavio-
lette, and Luc Lamontagne. 2020. Leveraging Sub-
word Embeddings for Multinational Address Parsing.
In 2020 IEEE Congress on Information Science and
Technology, pages 353–360.

24

https://doi.org/10.18653/v1/P19-1027
https://doi.org/10.18653/v1/P19-1027
https://doi.org/10.18653/v1/P19-1027
https://doi.org/10.1145/2666310.2666471
https://doi.org/10.1145/2666310.2666471
https://doi.org/10.1609/aaai.v33i01.33019547
https://doi.org/10.1609/aaai.v33i01.33019547
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://deepparse.org
https://deepparse.org
https://deepparse.org
https://doi.org/10.1109/CiSt49399.2021.9357170
https://doi.org/10.1109/CiSt49399.2021.9357170

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 25–36
December 6, 2023 ©2023 Association for Computational Linguistics

PyThaiNLP: Thai Natural Language Processing in Python

Wannaphong Phatthiyaphaibun♢, Korakot Chaovavanich†, Charin Polpanumas†,
Arthit Suriyawongkul‡, Lalita Lowphansirikul♢, Pattarawat Chormai§¶,

Peerat Limkonchotiwat♢, Thanathip Suntorntip♣, Can Udomcharoenchaikit♢
♢VISTEC, †PyThaiNLP, ‡Trinity College Dublin,

§Technische Universität Berlin, ¶Max Planck School of Cognition, ♣Wisesight
wannaphong.p_s21@vistec.ac.th

Abstract

We present PyThaiNLP, a free and open-
source natural language processing (NLP)
library for Thai language implemented in
Python. It provides a wide range of software,
models, and datasets for Thai language. We
first provide a brief historical context of tools
for Thai language prior to the development of
PyThaiNLP. We then outline the functionali-
ties it provided as well as datasets and pre-
trained language models. We later summarize
its development milestones and discuss our ex-
perience during its development. We conclude
by demonstrating how industrial and research
communities utilize PyThaiNLP in their work.
The library is freely available at https://
github.com/pythainlp/pythainlp.

1 Introduction

In recent years, the field of natural language pro-
cessing has witnessed remarkable advancements,
catalyzing breakthroughs for various applications.
However, Thai has remained comparatively under-
served due to the challenges posed by limited lan-
guage resources (Arreerard et al., 2022).

Thai is the de facto national language of Thai-
land. It belongs to Tai linguistic group within
the KraDai language family. According to Ethno-
logue (Eberhard et al., 2023), there are 60.2 mil-
lion users of Central Thai, of which 20.8 million
are native (2000). If including the Northern (6
million, 2004), Northeastern (15 million, 1983),
and Southern (4.5 million, 2006) variants, there
are estimated 85.7 million users of Thais speakers
around the world.

Thai is a scriptio continua or has neither spaces
nor other marks between the words or sentences
in its most common writing style. (Sornlertlam-
vanich et al., 2000). The lack of clear word and
sentence boundaries leads to ambiguity that can-
not be disambiguated using merely just grammati-
cal knowledge (Supnithi et al., 2004).

Although many closed-source open APIs for
NLP have an ability to process Thai language1, we
believe that an open-source toolbox is essential for
both researchers and practitioners to not only ac-
cess the NLP capabilities but also gain full trans-
parency and trust on both training data and algo-
rithms.2 This allows the community to adapt and
further develop the functionalities as needed, mak-
ing a crucial step towards democratizing NLP.

This paper introduces PyThaiNLP, an open-
source Thai natural language processing library
written in Python programming language. Its fea-
tures span from a simple dictionary-based word
tokenizer, to a statistical named-entity recogni-
tion, and an instruction-following large language
model. The library was released in 2016 under an
Open Source Initiative-approved Apache License
2.0 that allows free use and modification of soft-
ware, including commercial use.

2 Open-source Thai NLP before
PyThaiNLP

Before PyThaiNLP started in 2016, some free and
open-source software do exist for different Thai
NLP tasks, but there were no unified open-source
toolkits that unified multiple tools or tasks in a sin-
gle library, and the number of available Thai NLP
datasets was low compared to high-resource lan-
guages like Chinese, English, or German.

Natural Language Toolkit (NLTK) (Bird and
Loper, 2004), one of the most comprehensive and
most popular NLP libraries in Python at the time,
did not support Thai. OpenNLP, another popular
free and open-source NLP toolkit written in Java,

1Such as those provided by commercial cloud service
providers and “AI for Thai”, the government-funded Thai AI
service platform at https://aiforthai.in.th/.

2For a discussion about concentrated power and the polit-
ical economy of ’open’ AI, see Widder et al. (2023).

25

https://github.com/pythainlp/pythainlp
https://github.com/pythainlp/pythainlp
https://aiforthai.in.th/

started having Thai models in version 1.4 (2008)3

but in version 1.5 (2010) Thai was no longer listed
in its supported languages4.

Open Thai language resources, like annotated
corpora, were also limited in size and num-
ber. “Publicly available” datasets tend to have re-
stricted access, either through restrictive licenses5

or the registration requirement, or both.
Because there is a few toolkits available, lim-

ited in documentation and performance, short of
rigorous benchmarking, and/or lack of mainte-
nance, Thai NLP reseachers had to spend their lim-
ited time and resources building basic components
and/or collecting a dataset before they could pro-
ceed further for more advanced problems. The lim-
ited availability of source codes and datasets also
affects reproducibility.

Examples of Thai NLP tools and datasets before
PyThaiNLP:

• Word tokenization: ICU BreakIterator
(IBM Corporation et al., 1999) [Unicode
License] based on Gillam (1999), LibThai
(Thai Linux Working Group, 2001) [LGPL],
KU Wordcut (Sudprasert and Kawtrakul,
2003) [GPL], SWATH (Charoenporn-
sawat, 2003) [GPL] based on Meknavin
et al. (1997), LexTo (National Electronics
and Computer Technology Center, 2006)
[LGPL], OpenNLP (Bierner et al., 2008)
[LGPL], TLex (Haruechaiyasak and Kongy-
oung, 2009) [Freeware], and wordcutpy
(Satayamas, 2015) [LGPL]. Haruechaiyasak
et al. (2008) provided a comparative study of
some of these tools.

• Part-of-speech (POS) tagging: OpenNLP
and RDRPOSTagger (Nguyen et al., 2014)
[GPL] support Thai POS tagging. There
are corpora such as ORCHID (Sornlertlam-
vanich et al., 1999) and NAiST (Kawtrakul

3
https://opennlp.sourceforge.net/models-1.4.

Its README from December 2008 also mentioned
Thai components: https://web.archive.org/web/
20081219153426/http://opennlp.sourceforge.net/
README.html

4
https://opennlp.sourceforge.net/models-1.5.

Arreerard et al. (2022), however, reports that Apache
OpenNLP supports these basic Thai NLP tasks: word
tokenization, part-of-speech tagging, and sentence detection.

5Even today, this practice continues: take, for in-
stance, the LST20 corpus from NECTEC, which has mul-
tiple layers of linguistic annotation. However, the free
version can only be used for non-commercial purposes.
See https://opend-portal.nectec.or.th/en/dataset/
lst20-corpus.

et al., 2002) which provide not only POS but
also word boundaries.

• Named-entity recognition (NER): Polyglot
(Al-Rfou, 2015) [GPL], a multilingual NLP
software, supports Thai NER based on Al-
Rfou et al. (2015). For datasets, BEST-
2009 corpus (Kosawat et al., 2009) is avail-
able but cannot be used commercially, as
its license is Creative Commons Attribution-
NonCommercial-ShareAlike Public License.

• Automatic speech recognition (ASR): Thai
Language Audio Resource Center (Thai
ARC) corpus (Hoonchamlong et al., 1997)
provides audio recordings of dialects and
speech styles, with transcripts; it is not de-
signed specifically for ASR. NECTEC-ATR
(Kasuriya et al., 2003a), LOTUS (Kasuriya
et al., 2003b), LOTUS-BN (Chotimongkol
et al., 2009), LOTUS-Cell (Chotimongkol
et al., 2010), CU-MFEC (Kertkeidkachorn
et al., 2012) and TSync-2 are ASR corpora
for different domains and tasks; their licenses
are not fully open. See Charoenporn et al.
(2004), Wutiwiwatchai and Furui (2007), and
Kertkeidkachorn et al. (2012) for reviews.

Apart from the ones listed above, more open-
source Thai word tokenizers were released after
2009 as a result of BEST (Benchmark for En-
hancing the Standard of Thai language process-
ing) evaluation for Thai word segmentation orga-
nized by the National Electronics and Computer
Technology Center (NECTEC) in 2009 (Kosawat,
2009), and 20106. Unfortunately, these tokenizers
are no longer maintained and are not accessible at
the time of writing. The most impactful contribu-
tion from BEST, however, is the BEST-2010 word
segmentation dataset that was publicly released.
This dataset provides a basis for a lot of modern
Thai open-source word segmentation software.

We should also mention the Thai Language
Toolkit (TLTK) (Aroonmanakun and Thamron-
grattanarit, 2018). While releasing its source
code a few years after, it is richer in features
than PyThaiNLP at the time. Its first release on
Python Package Index (version 0.3.4, February
2018) includes statistical syllable and word seg-
mentation (Aroonmanakun, 2002), POS tagging,
and spelling suggestion. Its latest version, as

6
https://thailang.nectec.or.th/archive/

indexa290.html

26

https://web.archive.org/web/20081219153426/http://opennlp.sourceforge.net/README.html
https://web.archive.org/web/20081219153426/http://opennlp.sourceforge.net/README.html
https://web.archive.org/web/20081219153426/http://opennlp.sourceforge.net/README.html
https://opennlp.sourceforge.net/models-1.5
 https://opend-portal.nectec.or.th/en/dataset/lst20-corpus
 https://opend-portal.nectec.or.th/en/dataset/lst20-corpus
https://thailang.nectec.or.th/archive/indexa290.html
https://thailang.nectec.or.th/archive/indexa290.html

of writing, features discourse unit segmentation,
NER, grapheme-to-phoneme conversion, IPA tran-
scription, romanization, and more. To date, TLTK
and PyThaiNLP are the only two comprehensive
Thai NLP libraries for Python. However, TLTK’s
documentation is still quite limited.

3 PyThaiNLP and Its Ecosystem

Our primary objective is to ensure the user-
friendliness and simplicity of the library. Draw-
ing inspiration from NLTK, we follow nu-
merous established interfaces. For example,
word_tokenize and pos_tag. In addition, we
also create datasets and pre-trained models for the
Thai language. Figure 1 illustrates the overview
of PyThaiNLP’s functionalities and its ecosystem.
Table 1 displays the development milestones of
PyThaiNLP.

We will discuss here only popular features and
major datasets/models.

3.1 Features

3.1.1 Word and Sentence Tokenization
PyThaiNLP supports many word tokenization al-
gorithms.7 The default algorithm is NewMM
which is dictionary-based maximum matching
(Sornlertlamvanich, 1993) and utilizes Thai char-
acter cluster (Theeramunkong et al., 2000). The
pure-Python tokenizer performs reasonably well
on public benchmarks. Chormai et al. (2020)
demonstrated that it is the fastest word tokenizer
on the BEST 2010 benchmark, with 71.18% ac-
curacy (compared to state-of-the-art at 95.60%).
Thanathip Suntorntip ported NewMM to Rust pro-
gramming language8, resulting in an even faster
word tokenizer in our toolbox.

For sentence tokenization, we trained a condi-
tional random field (CRF) model, using python-
crfsuite (Peng and Korobov, 2014), on translated
TED transcripts and Thai sentence boundaries are
assumed to be denoted by English sentence bound-
aries (Lowphansirikul et al., 2021b).

3.1.2 Spell Checking
For spell checking, we have many engines; the
Norvig (2007) one uses a spelling dictionary

7For the ease of experimenting with different word
tokenization algorithms, Pattarawat Chormai has cre-
ated a Thai word tokenizers collection as a Docker
container image: https://github.com/PyThaiNLP/
docker-thai-tokenizers.

8
https://github.com/pythainlp/nlpo3

from Thai National Corpus (Aroonmanakun et al.,
2009), symspellpy (mmb L, 2018) that is a Python
port of SymSpell v6.7.1, and phunspell (Wright,
2021) that is a port of Hunspell.

3.1.3 Phonetic Algorithm and Transliteration
PyThaiNLP supports a couple of grapheme-to-
phoneme (g2p) conversion engines. We trained
Thai-g2p model with data from Wiktionary9, a
free online dictionary.

PyThaiNLP implemented many Thai Soundex
algorithms. For example, Lorchirachoonkul
(1982), Udompanich (1983), Thai-English cross-
language Soundex (Suwanvisat and Prasitjutrakul,
1998), and MetaSound (Metaphone-Soundex com-
bination) (Snae and Brückner, 2009).

PyThaiNLP supports the following transliter-
ation implementations: Thai romanization us-
ing the Royal Thai General System of Tran-
scription (RTGS), transliteration of romanized
Japanese/Korean/Mandarin/Vietnamese texts to
Thai using Wunsen library (cakimpei, 2022)10,
and Thai word pronunciation.

3.1.4 Sequence Tagging (NER and POS)
We create a named-entity recognition model called
Thai NER (Phatthiyaphaibun, 2022) by finetun-
ing the WangchanBERTa model (Lowphansirikul
et al., 2021a) and CRF model.

For part-of-speech tagging, we trained a CRF
tagger, a perceptron tagger (Honnibal, 2013), a
unigram tagger, and finetuned the Wangchan-
BERTa model. The POS training sets are derived
from ORCHID corpus (Sornlertlamvanich et al.,
1999), Blackboard Treebank annotated based
on the LST20 Annotation Guideline (Boonkwan
et al., 2020), and Parallel Universal Dependencies
(PUD) treebanks (Smith et al., 2018).

3.1.5 Coreference Resolution and Entity
Linking

For coreference resolution, we create Han-Coref,
a Thai coreference resolution corpus and model
(Phatthiyaphaibun and Limkonchotiwat, 2023).

For entity linking, PyThaiNLP supports it using
BELA model (Plekhanov et al., 2023).

3.1.6 Word Embeddings
We extract token embeddings from our thai2fit
(Polpanumas and Phatthiyaphaibun, 2021), a

9
https://www.wiktionary.org/

10The library implements various transliteration systems
that recommended by the Royal Society of Thailand.

27

https://github.com/PyThaiNLP/docker-thai-tokenizers
https://github.com/PyThaiNLP/docker-thai-tokenizers
https://github.com/pythainlp/nlpo3
https://www.wiktionary.org/

Figure 1: Functionalities, datasets, and pre-trained language models available in PyThaiNLP’s ecosystem.

word-level ULMFiT language model (Howard and
Ruder, 2018) (Howard and Gugger, 2020) trained
on Thai Wikipedia, and use them as word em-
beddings for PyThaiNLP. It was the state-of-the-
art pre-trained model in many Thai classification
benchmarks (Polpanumas and Suwansri, 2020) be-
fore the multilingual BERT model was released
(PyCon Thailand, 2019).

3.1.7 Machine Translation

We collaborated with VISTEC-depa Thailand
Artificial Intelligence Research Institute (AIRe-
search.in.th)11 to create the English-Thai transla-
tion dataset and model. The model outperformed
Google Translate on an out-of-sample test set at
the time of release (Lowphansirikul et al., 2021b).

3.1.8 Automatic Speech Recognition

In order to develop a dataset for ASR, PyThaiNLP
members contribute to the development of Com-
mon Voice corpus (Ardila et al., 2020), including
Thai sentence cleanup and validation rules for its
Sentence Collector12, an online campaign inviting
people to contribute Thai sentences, and offline
events for volunteers to contribute their voices and
voice validation.

Utilizing Common Voice Corpus 7.0, we cre-
ated a Thai ASR model in collaboration with

11AIResearch.in.th is an initiative co-funded by a research
university and a government agency, namely Vidyasirimedhi
Institute of Science and Technology (VISTEC) in Wang
Chan, Rayong, and the Digital Economy Promotion Agency
(depa) under the Ministry of Digital Economy and Society, to
create AI infrastructure for Thailand.

12
https://github.com/common-voice/

sentence-collector

AIResearch.in.th and achieved the lowest charac-
ter error rate in a benchmark (VISTEC-depa AI
Research Institute of Thailand, 2023).

3.2 Datasets

3.2.1 VISTEC-TPTH-2020: Word
Tokenization, Spell Checking and
Correction

VISTEC-TPTH-2020 is a Thai word tokenization
and spell checking dataset in the social media
domain, the largest one to date (Limkonchotiwat
et al., 2021). We collected 50,000 sentences from
top trending posts on Twitter in 2020 and selected
only posts with substantial character counts. This
dataset is a multi-task dataset, including mention
detection, spell checking, and spell correction.

3.2.2 Thai NER: Named Entity Recognition
Thai NER is a Thai named-entity recognition
dataset. We curated text from various domains
including news, Wikipedia articles, government
documents, as well as text from other Thai NER
datasets. The data is manually re-labeled for con-
sistency (Phatthiyaphaibun, 2022).

3.2.3 Han-Coref: Coreference Resolution
Han-Coref is a coreference resolution dataset con-
taining 1,339 documents in news and Wikipedia
domains (Phatthiyaphaibun and Limkonchotiwat,
2023).

3.2.4 scb-mt-en-th-2020: English-Thai
Machine Translation

scb-mt-en-th-2020 is an English-Thai sentence
pair dataset consisting of 1,001,752 text pairs

28

 https://github.com/common-voice/sentence-collector
 https://github.com/common-voice/sentence-collector

(Lowphansirikul et al., 2021b). It is a collabora-
tive work with AIResearch.in.th.

3.3 Pre-trained Language Models

WangchanBERTa is an encoder-only pre-trained
Thai language model. Based on public bench-
marks, it is the current state-of-the-art (Lowphan-
sirikul et al., 2021a). It is also a collaborative work
with AIResearch.in.th.

WangChanGLM (Polpanumas et al., 2023) is
a multilingual instruction-following model fine-
tuned from XGLM (Lin et al., 2022).

4 Community and Project Milestones

4.1 Foundation Years (2016-2019)

Wannaphong Phatthiyaphaibun, a high school stu-
dent at the time, created PyThaiNLP in 2016 as a
hobby project. He wanted to create a simple Thai
chatbot in Python. He used PyICU as a word tok-
enizer and soon found out that Thai language did
not have a comprehensive NLP toolkit in Python
like NLTK (Bird and Loper, 2004). He decided
to create PyThaiNLP and hosted the project on
GitHub13.

After the first few official releases, following
Korakot Chaovavanich’s suggestion, a “Thai Natu-
ral Language Processing” group has been created
as a public Facebook group14. This serves as a
main venue to showcase PyThaiNLP’s capabilities
and a hub for Thai NLP researchers and practition-
ers to discuss the field. Today, the group has over
16,000 members and is Thailand’s largest NLP in-
terest group. This communication channel also
performs a recruiting function for us. The first of-
fline meetup of the group occurred in 24 May 2018
as a bird-of-a-feather session after a Data Science
BKK meetup15.

Many of our main contributors, such as Charin
Polpanumas and Arthit Suriyawongkul organi-
cally joined the project from the community. At
this stage, we created foundational capabilities
such as word tokenization, part-of-speech tagging,
subword tokenization, named-entity recognition,
and word vectors. A lot of code cleaning, re-
organization, and documentation also happened
around 2018-2019. This included the adoption

13
https://github.com/pythainlp/pythainlp

14
https://www.facebook.com/groups/thainlp

15
https://www.facebook.com/groups/thainlp/

permalink/564348637279964/

of PEP 484 type hints16 and other Python best
practices to make the code even more readable
and facilitate off-line type checkers. The adoption
of PyThaiNLP can be reflected by the number of
stars on GitHub the project received over the years
(Figure 2).

4.2 Gaining Resources for Large Language
Models (2019-present)

The growing activity of PyThaiNLP development
can be seen from the number of code commits
to the Git repository, which reached its peak in
Q4 201917. In 2020, the project began a col-
laboration with AIResearch.in.th. Their main fo-
cus was to create and distribute open-source mod-
els and datasets. This collaboration has pro-
vided PyThaiNLP with computational resources
we need to scale up our operations as well as addi-
tional developers for maintaining the project, such
as Lalita Lowphansirikul.

Under the collaboration, we have built an
English-Thai sentence pair dataset and the
state-of-the-art English-Thai translation model
(Lowphansirikul et al., 2021b), the RoBERTa-
based monolingual language model Wangchan-
BERTa (Lowphansirikul et al., 2021a), and most
recently the multilingual instruction-following
model WangChanGLM (Polpanumas et al., 2023).

Due to limited computational and human re-
sources, we prioritize features with the high-
est impact-to-effort ratio. For example, during
2019-2020, there were two types of dominant
transformer-based language models: encoder-only
BERT family and decoder-only GPT family. We
opted to pursue the encoder-only models and
trained WangchanBERTa because, at the time, it
required relatively fewer resources to train and had
better performance across impactful tasks such as
text classification, sequence tagging, and extrac-
tive question answering. It was not until decoder-
only models proved to create more value-added
in 2022 that we started to train such models as
WangChanGLM.

4.3 Community and Infrastructure for
Software Quality

It is important to be noted that the community not
only made contributions in the form of feature im-
provements but also in the areas of documenta-

16
https://peps.python.org/pep-0484/

17
https://github.com/PyThaiNLP/pythainlp/

graphs/contributors

29

https://github.com/pythainlp/pythainlp
https://www.facebook.com/groups/thainlp
https://www.facebook.com/groups/thainlp/permalink/564348637279964/
https://www.facebook.com/groups/thainlp/permalink/564348637279964/
https://peps.python.org/pep-0484/
https://github.com/PyThaiNLP/pythainlp/graphs/contributors
https://github.com/PyThaiNLP/pythainlp/graphs/contributors

Years Notable Features
2016 Word tokenization, part-of-speech tagging
2017 Soundex, spell checking, WordNet support
2018 Text classification language model, NER corpus/model, date and time parsing/formatting
2019 Syllable tokenization, date and time spell out
2020 ASR model, machine translation dataset/model, grapheme-to-phoneme conversion
2021 Autoencoding language model, word-to-phoneme conversion
2022 Dependency parsing, nested NER, text augmentation
2023 Coreference resolution dataset/model, generative language model

Table 1: Notable features introduced to PyThaiNLP over the years.

tion, including computational documentation (e.g.,
Jupyter notebooks), improving code quality and
test suite, and streamlining software testing and
delivery. Some of which may not be visible to the
users but are crucial for the development of the
project.

On the infrastructure side, test automation and
continuous integration (CI) helps us systemati-
cally reinforce code style, detect code security vul-
nerabilities, maintain code coverage, and test the
library in different computer configurations.

We were since 2017 rely on free Travis CI18

and AppVeyor19 for continuous integration work-
flow and later in June 2020 completely migrated
to GitHub Actions20. Every GitHub pull requests
will go through Black21 for code formatting and
Flake822 for PEP 8 code style23 and cyclomatic
complexity checks (McCabe, 1976). pip installa-
tion package will be built and tested against the
test suite in Linux, macOS, and Windows24. The
package then can be automatically publish to the
Python Package Index directly from the CI, once
it passed all the tests in every platform.

PyThaiNLP code coverage reached 80% to-
wards the end of 2018, compare to under 60% in
2017. Code coverage is a metric that can help as-
sess the quality of the test suite, and it therefore re-
flects how well the functionalities are thoroughly
tested. The coverage went over 90% in August

18
https://www.travis-ci.com/

19
https://www.appveyor.com/

20
https://github.com/features/actions

21
https://github.com/psf/black

22
https://flake8.pycqa.org

23
https://peps.python.org/pep-0008/

24Easy installation and consistent behavior across plat-
forms are what we aim for. This is one of the reasons why
we developed a pure-Python NewMM. The previous imple-
mentation of our default word tokenizer requires marisa-trie,
a trie data structure library in C++. Unfortunately, marisa-trie
does not officially support mingw32 compiler on Windows.

2019 and kept stable at this level until 202225.
From early 2022, we experienced a gradual

drop of the code coverage to 80%. The main rea-
son is a growing number of features that require
a large language model that cannot fit inside our
standard GitHub-hosted runners. We have to re-
move some of the tests for those features. Before
2022, we also tested our library against versions
of CPython and PyPy, but now it has been reduced
to only CPython 3.8 due to the lack of support
for other Python versions in some of our machine
learning dependencies.

Some of the common code improvements we
made after analyzing code coverage and other tests
were the removal of unused code, fixing inconsis-
tent behavior in different operating systems, bet-
ter handling of a very long string, empty string,
empty list, null, and/or negative values, and better
handling of exceptions in control flow, resulting a
code that is smaller and more robust.

5 PyThaiNLP in the Wild

5.1 PyThaiNLP and Its Research Impact

Researchers worldwide use PyThaiNLP to work
with Thai language. For instance, for word tok-
enization in cross-lingual language model pretrain-
ing (Lample and Conneau, 2019), universal de-
pendency parsing (Smith et al., 2018), and cross-
lingual representation learning (Conneau et al.,
2020). In addition, research and industry-grade
tools namely SEACoreNLP26, an open-source ini-
tiative by NLPHub of AI Singapore, and spaCy
(Honnibal et al., 2020) include PyThaiNLP as part
of their toolkit.

25Our code coverage is measured by coverage.py which is
included in our continuous integration workflow. The cover-
age stats are made available online by Coveralls at: https:
//coveralls.io/github/PyThaiNLP/pythainlp

26
https://seacorenlp.aisingapore.net/docs/

30

https://www.travis-ci.com/
https://www.appveyor.com/
https://github.com/features/actions
https://github.com/psf/black
https://flake8.pycqa.org
https://peps.python.org/pep-0008/
https://coveralls.io/github/PyThaiNLP/pythainlp
https://coveralls.io/github/PyThaiNLP/pythainlp
https://seacorenlp.aisingapore.net/docs/

5.2 PyThaiNLP and Its Industry Impact

PyThaiNLP is used in many real-world business
use cases in firms of all sizes both domestic and
international. User feedback generally highlights
how the library has sped up their product devel-
opment cycles involving Thai NLP as well as its
effectiveness in terms of business outcomes. The
most frequently used functionalities are tokeniza-
tion and text normalization. We introduce here se-
lected use cases from national and multinational
firms in banking, telecommunication, insurance,
retail, and software development.

Siam Commercial Bank (BKK:SCB; USD
10B market cap) is one of Thailand’s largest
banks. The bank operates a chatbot to automat-
ically answer customer queries. Their data ana-
lytics team finetuned WangchanBERTa for intent
classification to enhance its question-answering
capabilities as well as to detect personal informa-
tion in customers’ inputs in order to exclude them
from their internal training sets. Moreover, the
team relies on basic text processing functions such
as tokenization and normalization to speed up their
development process. They have also found the
published performance benchmarks to be useful
when selecting models for their tasks.

True Corporation (BKK:TRUE; 6B) is one of
the two providers in Thailand’s duopoly telecom-
munication market. Its subsidiary, True Digital
Group, uses PyThaiNLP both for digital media
analysis and for recommendation engine on pro-
duction. They featurized their Thai-text contents
using thai2fit word vectors and saw a noticeable
uplift in user engagement and subsequent business
outcomes. They also combined our word vectors
with Top2Vec (Angelov, 2020) to perform topic
modeling and improve customer experience.

Central Retail Digital (BKK:CRC; 6B) is a
digital transformation unit serving Central Retail,
Thailand’s largest department store. Their data
science team used PyThaiNLP mainly to enhance
search and recommendation offerings across five
business units and other six million customers.
Word tokenization and text normalization were
used to preprocess product information and search
queries as input for the product search system.
Since most search systems are built for languages
with white spaces as word delimiters, this prepro-
cessing step has allowed their product search to
outperform out-of-the-box solutions which are not
compatible with Thai. For content-based recom-

Figure 2: Number of stars PyThaiNLP has received
from GitHub users over the years.

mendations, the team featurized production infor-
mation to create a model that recommends similar
products to customers.

AIA Thailand (HKG:1299; 109B global) is
the Thai headquarter of the global insurance firm
American Insurance Association. Their data sci-
ence team employs PyThaiNLP in analyzing their
inbound and outbound call logs using word tok-
enization, text normalization, stop word handling,
and local-time-format string handling functionali-
ties. For the inbound calls, they normalize and tok-
enize the logs to perform topic modeling and iden-
tify critical topics of conversation to emphasize
both automated voice bot and human staff train-
ing and allocation. This resulted in improved per-
centage of calls that the voice bot fulfilled success-
fully and reduced call waiting time. For the out-
bound calls, they perform keyword identification
from the logs processed by PyThaiNLP to gain in-
sights to improve customer retention.

VISAI is a VISTEC university spin-off that
provides machine learning tools and consulting
services. It has finetuned WangchanBERTa to
perform text classification, named entity recogni-
tion, and relation extraction on unstructured data
of their clients to create a queryable knowledge
graph. They also use tokenization and text normal-
ization functionalities to facilitate text processing
for all their NLP-based products.

6 Conclusion and Future Works

This paper introduces the PyThaiNLP library, ex-
plains its features and datasets (as illustrated in
Figure 1), and discusses the community and the
engineering project supporting the library.

By 2023, we will have implemented the open-
source version of most general NLP capabilities

31

available in English for Thai27. We see the follow-
ing items as the next major milestones:

• Domain-specific datasets/models Some ca-
pabilities are not performing well on specific
use cases; for instances, named-entity recog-
nition in financial reports, medical terms
translation, and legal documents question an-
swering. We believe more domain-specific
datasets and models will help close this gap.

• Robust benchmark for Thai NLP tasks
As NLP has garnered more attention, more
models and datasets, both open- and closed-
source, will be available. It will, therefore,
be imperative to have a robust benchmark in
comparing the models’ performance and the
datasets’ quality.

• Correctness and consistency Search key
generation (such as Soundex), sorting, and
tokenization28 have to be deterministic and
strictly follow a specification, or an appli-
cation may behave in an unexpected fash-
ion. More test cases and verification might
be needed for these features.

• Efficient mechanism to load and manage
datasets/models To reduce the size of the li-
brary and to carter the use in a system with a
restricted network connection29.

• Seamless integration with language-
agnostic tools The ultimate goal is for
developers to no longer need PyThaiNLP as
Thai language is supported by standard NLP
libraries such as spaCy and Hugging Face
(Wolf et al., 2020). We have begun this work
with integrating our text processing functions
and models to spaCy.

Acknowledgements

First and foremost, we appreciate the contribu-
tions from all PyThaiNLP contributors30. We
would like to thank: 1) VISTEC-depa Thailand
AI Research Institute and its director Sarana Nu-
tanong for research collaboration and support in

27
https://nlpforthai.com/

28Some phonetic algorithm and transliteration rely on syl-
lable tokenization

29
https://github.com/PyThaiNLP/pythainlp/

issues/298
30
https://github.com/PyThaiNLP/pythainlp/

graphs/contributors

terms of academic guidance, computational re-
sources, and personnel; 2) the companies featured
in the industry impact section and respective inter-
viewees Chrisada Sookdhis, Jayakorn Vongkulb-
hisal, Kowin Kulruchakorn, Phasathorn Suwansri,
and Pongtachchai Panachaiboonpipop; 3) Ekapol
Chuangsuwanich for academic guidance and con-
tribution to models and datasets; and 4) MacSta-
dium for infrastructure support. We are much
obliged to free and open-source software commu-
nity for software building blocks and best prac-
tices, including but not limited to NumFOCUS,
fast.ai, Hugging Face, and Thai Linux Working
Group. Moreover, we thank organizations who
care enough to develop multilingual resources to
accommodate low-resource languages, most no-
tably Meta AI. Lastly, we cannot thank enough
volunteers of various open-content communities,
including Wikipedia, Common Voice, TED Trans-
lators, and similar local initiatives; modern NLP
will not be possible without their accumulated ef-
fort.

Limitations

In our current CI workflow, every code commit to
the repository triggers an automated test suit for all
supported platforms. The process can be challeng-
ing if our package depends on large language mod-
els (LLMs) because a single LLM can exhaust the
memory of our free-tier CI infrastructure. Some
of the components can be cached to reduce build
time, but they have to be loaded to the memory
in any case. This forced us to drop some LLM-
related tests and scarified the code coverage of the
library as discussed in Section 4.3.

Even we have a resource to do such tests with
the current design, it is neither economical nor sus-
tainable. An improved test utilizing a stub, mock,
or spy (proxy) test pattern that provides an off-line
“fake inference” can help this. These techniques
have been proven useful in other software test-
ing involving expensive database/API queries or
network connections. Lyra (2019) and Microsoft
(2020) provide such examples, using the Python
Standard Library’s unittest.mock. This can re-
duce a number of times an LLM is actually be-
ing loaded/called. The required inference could be
handled either by a non-free tier CI plan from the
same or different provider (which should be more
affordable now due to reduced number of calls) or
by a computer outside the cloud.

32

https://nlpforthai.com/
https://github.com/PyThaiNLP/pythainlp/issues/298
https://github.com/PyThaiNLP/pythainlp/issues/298
https://github.com/PyThaiNLP/pythainlp/graphs/contributors
https://github.com/PyThaiNLP/pythainlp/graphs/contributors

References
Rami Al-Rfou. 2015. Polyglot. Available at https:

//pypi.org/project/polyglot/.

Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and
Steven Skiena. 2015. POLYGLOT-NER: Massive
multilingual named entity recognition. In Proceed-
ings of the 2015 SIAM International Conference on
Data Mining, pages 586–594. SIAM.

Dimo Angelov. 2020. Top2Vec: Distributed represen-
tations of topics.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common Voice: A massively-
multilingual speech corpus. In Proceedings of the
Twelfth Language Resources and Evaluation Con-
ference, pages 4218–4222, Marseille, France. Euro-
pean Language Resources Association.

Wirote Aroonmanakun. 2002. Collocation and Thai
word segmentation. In Proceedings of the Fifth
Symposium on Natural Language Processing & The
Fifth Oriental COCOSDA Workshop, pages 68–75,
Pathumthani, Thailand. Sirindhorn International In-
stitute of Technology.

Wirote Aroonmanakun, Kachen Tansiri, and Pairit
Nittayanuparp. 2009. Thai National Corpus: A
progress report. In Proceedings of the 7th Workshop
on Asian Language Resources, ALR7, page 153158,
USA. Association for Computational Linguistics.

Wirote Aroonmanakun and Attapol Thamrongratta-
narit. 2018. Thai Language Toolkit. Available at
https://pypi.org/project/tltk/.

Ratchakrit Arreerard, Stephen Mander, and Scott Piao.
2022. Survey on Thai NLP language resources and
tools. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 6495–
6505, Marseille, France. European Language Re-
sources Association.

Gann Bierner, Jason Baldridge, Thomas Morton, and
Joern Kottmann. 2008. OpenNLP. Available at
https://sourceforge.net/projects/opennlp/.

Steven Bird and Edward Loper. 2004. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Prachya Boonkwan, Vorapon Luantangsrisuk, Sitthaa
Phaholphinyo, Kanyanat Kriengket, Dhanon Leenoi,
Charun Phrombut, Monthika Boriboon, Krit Ko-
sawat, and Thepchai Supnithi. 2020. The annotation
guideline of LST20 corpus.

cakimpei. 2022. Wunsen. Available at https://
github.com/cakimpei/wunsen.

Thatsanee Charoenporn, Virach Sornlertlamvanich,
Sawit Kasuriya, Chatchawarn Hansakunbuntheung,
and Hitoshi Isahara. 2004. Open collaborative de-
velopment of the Thai language resources for natural
language processing. In Proceedings of the Fourth
International Conference on Language Resources
and Evaluation (LREC’04), Lisbon, Portugal. Euro-
pean Language Resources Association (ELRA).

Paisarn Charoenpornsawat. 2003. SWATH: Smart
Word Analysis for THai. Available at http://www.
cs.cmu.edu/~paisarn/software.html.

Pattarawat Chormai, Ponrawee Prasertsom, Jin Chee-
vaprawatdomrong, and Attapol Rutherford. 2020.
Syllable-based neural Thai word segmentation. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 4619–4637,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Ananlada Chotimongkol, Kwanchiva Saykhum,
Patcharika Chootrakool, Nattanun Thatphithakkul,
and Chai Wutiwiwatchai. 2009. LOTUS-BN: A
Thai broadcast news corpus and its research appli-
cations. In 2009 Oriental-COCOSDA International
Conference on Speech Database and Assessments,
pages 44–50, Urumqi, China.

Ananlada Chotimongkol, Nattanun Thatphithakkul,
Sumonmas Purodakananda, Chai Wutiwiwatchai,
Patcharika Chootrakool, Chatchawarn Hansakun-
buntheung, Atiwong Suchato, and Panuthat Boon-
pramuk. 2010. The development of a large Thai
telephone speech corpus: LOTUS-Cell 2.0. In
2010 Oriental-COCOSDA International Conference
on Speech Database and Assessments, Kathmandu,
Nepal.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

David Eberhard, Gary Simons, and Chuck Fennig.
2023. Ethnologue: Languages of the World. Twenty-
sixth edition. SIL International.

Richard Gillam. 1999. Text boundary analysis in Java.
In Proceedings of Fifteenth International Unicode
Conference, San Jose, California, USA.

Choochart Haruechaiyasak and Sarawoot Kongyoung.
2009. TLex: Thai lexeme analyser based on the con-
ditional random fields. In Proceedings of 8th Inter-
national Symposium on Natural Language Process-
ing, Bangkok, Thailand.

Choochart Haruechaiyasak, Sarawoot Kongyoung, and
Matthew Dailey. 2008. A comparative study on

33

https://polyglot.readthedocs.io/en/latest/
https://pypi.org/project/polyglot/
https://pypi.org/project/polyglot/
https://doi.org/10.1137/1.9781611974010.66
https://doi.org/10.1137/1.9781611974010.66
http://arxiv.org/abs/2008.09470
http://arxiv.org/abs/2008.09470
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
http://pioneer.chula.ac.th/~awirote/ling/SNLP2002-0051c.pdf
http://pioneer.chula.ac.th/~awirote/ling/SNLP2002-0051c.pdf
https://dl.acm.org/doi/10.5555/1690299.1690321
https://dl.acm.org/doi/10.5555/1690299.1690321
https://pypi.org/project/tltk/
https://aclanthology.org/2022.lrec-1.697
https://aclanthology.org/2022.lrec-1.697
https://sourceforge.net/projects/opennlp/
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
http://arxiv.org/abs/2008.05055
http://arxiv.org/abs/2008.05055
https://github.com/cakimpei/wunsen
https://github.com/cakimpei/wunsen
http://www.lrec-conf.org/proceedings/lrec2004/pdf/434.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/434.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/434.pdf
http://www.cs.cmu.edu/~paisarn/software.html
http://www.cs.cmu.edu/~paisarn/software.html
http://www.cs.cmu.edu/~paisarn/software.html
http://www.cs.cmu.edu/~paisarn/software.html
https://doi.org/10.18653/v1/2020.coling-main.407
https://doi.org/10.1109/ICSDA.2009.5278377
https://doi.org/10.1109/ICSDA.2009.5278377
https://doi.org/10.1109/ICSDA.2009.5278377
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://www.ethnologue.com
http://www.ethnologue.com
https://icu-project.org/docs/papers/text_boundary_analysis_in_java/
https://www.researchgate.net/publication/265182955_TLex_Thai_Lexeme_Analyser_Based_on_the_Conditional_Random_Fields
https://www.researchgate.net/publication/265182955_TLex_Thai_Lexeme_Analyser_Based_on_the_Conditional_Random_Fields
https://doi.org/10.1109/ECTICON.2008.4600388

Thai word segmentation approaches. In 2008 5th
International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and
Information Technology, volume 1, pages 125–128.

Matthew Honnibal. 2013. A good part-of-speech tag-
ger in about 200 lines of Python.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Yuphaphann Hoonchamlong, Sathaporn Koraksawet,
Sarawuth Keawbumrung, and Krissadang Klaijinda.
1997. Thai Language Audio Resource Center.

Jeremy Howard and Sylvain Gugger. 2020. fastai:
A Layered API for Deep Learning. Information,
11(2):108.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

IBM Corporation et al. 1999. International Com-
ponents for Unicode. Available at https://icu.
unicode.org.

Sawit Kasuriya, Virach Sornlertlamvanich, Patcharika
Cotsomrong, Takatoshi Jitsuhiro, Genichiro Kikui,
and Yoshinori Sagisaka. 2003a. NECTEC-ATR
Thai speech corpus. In 2003 Oriental-COCOSDA
International Conference on Speech Database and
Assessments, pages 105–111, Singapore.

Sawit Kasuriya, Virach Sornlertlamvanich, Patcharika
Cotsomrong, Supphanat Kanokphara, and Nattanun
Thatphithakkul. 2003b. Thai speech corpus for
speech recognition. In 2003 Oriental-COCOSDA
International Conference on Speech Database and
Assessments, pages 54–61, Singapore.

Asanee Kawtrakul, Mukda Suktarachan, Patcharee
Varasai, and Hutchatai Chanlekha. 2002. A state of
the art of Thai language resources and Thai language
behavior analysis and modeling. In COLING-02:
The 3rd Workshop on Asian Language Resources
and International Standardization.

Natthawut Kertkeidkachorn, Supadaech Chanjarad-
wichai, Teera Suri, Krerksak Likitsupin, Surapol Vo-
rapatratorn, Pawanrat Hirankan, Worasa Limpanadu-
sadee, Supakit Chuetanapinyo, Kitanan Pitak-
pawatkul, Natnarong Puangsri, Nathacha Tangsiri-
rat, Konlawachara Trakulsuk, Proadpran Pun-
yabukkana, and Atiwong Suchato. 2012. The CU-
MFEC corpus for Thai and English spelling speech
recognition. In Proceedings of International Con-
ference on Speech Database and Assessments, pages
18–23.

Krit Kosawat. 2009. InterBEST 2009: Thai word seg-
mentation workshop. In Proceedings of 8th Interna-
tional Symposium on Natural Language Processing,
Bangkok, Thailand.

Krit Kosawat, Monthika Boriboon, Patcharika
Chootrakool, Ananlada Chotimongkol, Supon
Klaithin, Sarawoot Kongyoung, Kanyanut
Kriengket, Sitthaa Phaholphinyo, Sumonmas
Purodakananda, Tipraporn Thanakulwarapas, and
Chai Wutiwiwatchai. 2009. BEST 2009: Thai word
segmentation software contest. In 2009 Eighth
International Symposium on Natural Language
Processing, pages 83–88.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems (NeurIPS).

Peerat Limkonchotiwat, Wannaphong Phatthiyaphai-
bun, Raheem Sarwar, Ekapol Chuangsuwanich, and
Sarana Nutanong. 2021. Handling cross- and out-
of-domain samples in Thai word segmentation. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1003–1016, On-
line. Association for Computational Linguistics.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona Diab, Veselin Stoy-
anov, and Xian Li. 2022. Few-shot learning with
multilingual generative language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9019–
9052, Abu Dhabi, United Arab Emirates. Associa-
tion for Computational Linguistics.

Vichit Lorchirachoonkul. 1982. A Thai soundex
system. Information Processing & Management,
18(5):243–255.

Lalita Lowphansirikul, Charin Polpanumas, Nawat
Jantrakulchai, and Sarana Nutanong. 2021a.
WangchanBERTa: pretraining transformer-based
Thai language models.

Lalita Lowphansirikul, Charin Polpanumas, Attapol T.
Rutherford, and Sarana Nutanong. 2021b. A large
English–Thai parallel corpus from the web and
machine-generated text. Language Resources and
Evaluation, 56(2):477–499.

Matti Lyra. 2019. Effective mocking of unit tests for
machine learning.

Thomas J. McCabe. 1976. A complexity measure.
IEEE Transactions on Software Engineering, SE-
2(4):308–320.

Surapant Meknavin, Paisarn Charoenpornsawat, and
Boonserm Kijsirikul. 1997. Feature-based Thai
Word Segmentation. In Proceedings of the Natu-
ral Language Processing Pacific Rim Symposium,
Phuket, Thailand.

34

https://doi.org/10.1109/ECTICON.2008.4600388
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://thaiarc.tu.ac.th/
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://icu.unicode.org
https://icu.unicode.org
https://www.researchgate.net/publication/250204607_Tile_name_Thai_Speech_Corpus_for_Speech_Recognition
https://www.researchgate.net/publication/250204607_Tile_name_Thai_Speech_Corpus_for_Speech_Recognition
https://aclanthology.org/W02-1207
https://aclanthology.org/W02-1207
https://aclanthology.org/W02-1207
https://doi.org/10.1109/ICSDA.2012.6422471
https://doi.org/10.1109/ICSDA.2012.6422471
https://doi.org/10.1109/ICSDA.2012.6422471
https://thailang.nectec.or.th/downloadcenter/indexae01.html?option=com_docman&task=cat_view&gid=40&Itemid=61
https://thailang.nectec.or.th/downloadcenter/indexae01.html?option=com_docman&task=cat_view&gid=40&Itemid=61
https://doi.org/10.1109/SNLP.2009.5340941
https://doi.org/10.1109/SNLP.2009.5340941
https://doi.org/10.18653/v1/2021.findings-acl.86
https://doi.org/10.18653/v1/2021.findings-acl.86
https://aclanthology.org/2022.emnlp-main.616
https://aclanthology.org/2022.emnlp-main.616
https://doi.org/https://doi.org/10.1016/0306-4573(82)90003-6
https://doi.org/https://doi.org/10.1016/0306-4573(82)90003-6
http://arxiv.org/abs/2101.09635
http://arxiv.org/abs/2101.09635
https://doi.org/10.1007/s10579-021-09536-6
https://doi.org/10.1007/s10579-021-09536-6
https://doi.org/10.1007/s10579-021-09536-6
https://tech.comtravo.com/testing/Testing_Machine_Learning_Models_with_Unittest/
https://tech.comtravo.com/testing/Testing_Machine_Learning_Models_with_Unittest/
https://doi.org/10.1109/TSE.1976.233837
https://www.cs.cmu.edu/~paisarn/papers/old/nlprs97.pdf
https://www.cs.cmu.edu/~paisarn/papers/old/nlprs97.pdf

Microsoft. 2020. Testing data science and MLOps
code.

mmb L. 2018. symspellpy. Available at https://
github.com/mammothb/symspellpy.

National Electronics and Computer Technology Center.
2006. Thai Lexeme Tokenizer: LexTo. [online]. Re-
trieved August 8, 2023, from http://www.sansarn.
com/lexto/.

Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc Pham,
and Son Bao Pham. 2014. RDRPOSTagger: A rip-
ple down rules-based part-of-speech tagger. In Pro-
ceedings of the Demonstrations at the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 17–20, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Peter Norvig. 2007. How to write a spelling corrector.

Terry Peng and Mikhail Korobov. 2014. python-
crfsuite. Available at https://github.com/
scrapinghub/python-crfsuite.

Wannaphong Phatthiyaphaibun. 2022. Thai NER 2.0.

Wannaphong Phatthiyaphaibun and Peerat Limkon-
chotiwat. 2023. Han-Coref: Thai coreference res-
olution by PyThaiNLP.

Mikhail Plekhanov, Nora Kassner, Kashyap Popat,
Louis Martin, Simone Merello, Borislav Kozlovskii,
Frédéric A. Dreyer, and Nicola Cancedda. 2023.
Multilingual end to end entity linking.

Charin Polpanumas and Wannaphong Phatthiyaphai-
bun. 2021. thai2fit: Thai language implementation
of ULMFiT.

Charin Polpanumas, Wannaphong Phatthiyaphaibun,
Patomporn Payoungkhamdee, Peerat Limkon-
chotiwat, Lalita Lowphansirikul, Can Udom-
charoenchaikit, Titipat Achakulwisut, Ekapol
Chuangsuwanich, and Sarana Nutanong. 2023.
WangChanGLM – the multilingual instruction-
following model.

Charin Polpanumas and Phasathorn Suwansri. 2020.
Pythainlp/classification-benchmarks: v0.1-alpha.

PyCon Thailand. 2019. How PyThaiNLP’s thai2fit out-
performs Google’s BERT: State-of-the-art Thai text
classification and beyond - Charin.

Vee Satayamas. 2015. wordcutpy. Available at https:
//github.com/veer66/wordcutpy.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
treebanks, 34 models: Universal Dependency pars-
ing with multi-treebank models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113–123, Brussels, Belgium. Association for Com-
putational Linguistics.

Chakkrit Snae and Michael Brückner. 2009. Novel
phonetic name matching algorithm with a statistical
ontology for analysing names given in accordance
with Thai astrology. Issues in Informing Science
and Information Technology, 6:497–515.

Virach Sornlertlamvanich. 1993. Machine Transla-
tion, chapter Word segmentation for Thai in machine
translation system. National Electronics and Com-
puter Technology Center.

Virach Sornlertlamvanich, Tanapong Potipiti, Chai Wu-
tiwiwatchai, and Pradit Mittrapiyanuruk. 2000. The
state of the art in Thai language processing. In Pro-
ceedings of the 38th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1–2, Hong
Kong. Association for Computational Linguistics.

Virach Sornlertlamvanich, Naoto Takahashi, and Hi-
toshi Isahara. 1999. Building a Thai part-of-speech
tagged corpus (ORCHID). Journal of the Acoustical
Society of Japan (E), 20(3):189–198.

Sutee Sudprasert and Asanee Kawtrakul. 2003. Thai
word segmentation based on global and local unsu-
pervised learning. In Proceedings of the 7th Na-
tional Computer Science and Engineering Confer-
ence, pages 1–8, Chonburi, Thailand.

Thepchai Supnithi, Krit Kosawat, Monthika Boriboon,
and Virach Sornlertlamvanich. 2004. Language
sense and ambiguity in Thai. In Proceedings of the
8th Pacific Rim International Conference on Artifi-
cial Intelligence, Auckland, New Zealand.

Prayut Suwanvisat and Somboon Prasitjutrakul. 1998.
Thai-English cross-language transliterated word re-
trieval using soundex technique. In Proceesings
of the National Computer Science and Engineering
Conference, Bangkok, Thailand.

Thai Linux Working Group. 2001. LibThai.
Available at https://linux.thai.net/projects/
libthai/.

Thanaruk Theeramunkong, Virach Sornlertlamvanich,
Thanasan Tanhermhong, and Wirat Chinnan. 2000.
Character cluster based Thai information retrieval.
In Proceedings of the Fifth International Workshop
on on Information Retrieval with Asian Languages,
IRAL ’00, page 7580, New York, NY, USA. Associ-
ation for Computing Machinery.

Wannee Udompanich. 1983. String searching for Thai
alphabet using Soundex compression technique.

VISTEC-depa AI Research Institute of Thailand. 2023.
wav2vec2-large-xlsr-53-th (revision 3155938).

David Gray Widder, Sarah West, and Meredith Whit-
taker. 2023. Open (for business): Big tech, concen-
trated power, and the political economy of open AI.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

35

https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://github.com/mammothb/symspellpy
https://github.com/mammothb/symspellpy
http://www.sansarn.com/lexto/
http://www.sansarn.com/lexto/
https://doi.org/10.3115/v1/E14-2005
https://doi.org/10.3115/v1/E14-2005
http://norvig.com/spell-correct.html
https://github.com/scrapinghub/python-crfsuite
https://github.com/scrapinghub/python-crfsuite
https://doi.org/10.5281/zenodo.7761354
https://doi.org/10.5281/zenodo.7965488
https://doi.org/10.5281/zenodo.7965488
http://arxiv.org/abs/2306.08896
https://doi.org/10.5281/zenodo.4429691
https://doi.org/10.5281/zenodo.4429691
https://doi.org/10.5281/zenodo.7878101
https://doi.org/10.5281/zenodo.7878101
https://doi.org/10.5281/zenodo.3852912
https://www.youtube.com/watch?v=7ieyWlTHmdk
https://www.youtube.com/watch?v=7ieyWlTHmdk
https://www.youtube.com/watch?v=7ieyWlTHmdk
https://github.com/veer66/wordcutpy
https://github.com/veer66/wordcutpy
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.28945/3347
https://doi.org/10.28945/3347
https://doi.org/10.28945/3347
https://doi.org/10.28945/3347
https://www.virach.com/_files/ugd/cdb1d4_0fb37fd4141a44c0b57778a979ae8fa6.pdf
https://www.virach.com/_files/ugd/cdb1d4_0fb37fd4141a44c0b57778a979ae8fa6.pdf
https://doi.org/10.3115/1075218.1075296
https://doi.org/10.3115/1075218.1075296
https://doi.org/10.1250/ast.20.189
https://doi.org/10.1250/ast.20.189
https://www.researchgate.net/publication/228748013_Language_Sense_and_Ambiguity_in_Thai
https://www.researchgate.net/publication/228748013_Language_Sense_and_Ambiguity_in_Thai
https://www.cp.eng.chula.ac.th/~somchai/spj/papers/ThaiText/ncsec98-clir.pdf
https://www.cp.eng.chula.ac.th/~somchai/spj/papers/ThaiText/ncsec98-clir.pdf
https://linux.thai.net/projects/libthai/
https://linux.thai.net/projects/libthai/
https://doi.org/10.1145/355214.355225
http://cuir.car.chula.ac.th/handle/123456789/48471
http://cuir.car.chula.ac.th/handle/123456789/48471
https://doi.org/10.57967/hf/0404
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4543807
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4543807

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

David Wright. 2021. Phunspell. Available at https:
//github.com/dvwright/phunspell.

Chai Wutiwiwatchai and Sadaoki Furui. 2007. Thai
speech processing technology: A review. Speech
Communication, 49(1):8–27.

36

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/dvwright/phunspell
https://github.com/dvwright/phunspell
https://doi.org/https://doi.org/10.1016/j.specom.2006.10.004
https://doi.org/https://doi.org/10.1016/j.specom.2006.10.004

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 37–53
December 6, 2023 ©2023 Association for Computational Linguistics

Empowering Knowledge Discovery from Scientific Literature: A novel
approach to Research Artifact Analysis

Petros Stavropoulos1,2, Ioannis Lyris1, Natalia Manola3, Ioanna Grypari1,3, Haris Papageorgiou1

1Institute for Language and Speech Processing, Athena R.C.
2Department of Informatics and Telecommunications, National and Kapodistrian University of Athens

3OpenAIRE AMKE
pestavr@di.uoa.gr, {ioannis.lyris, igrypari, haris}@athenarc.gr, natalia.manola@openaire.eu

Abstract

Knowledge extraction from scientific litera-
ture is a major issue, crucial to promoting
transparency, reproducibility, and innovation
in the research community. In this work, we
present a novel approach towards the identifi-
cation, extraction and analysis of dataset and
code/software mentions within scientific liter-
ature. We introduce a comprehensive dataset,
synthetically generated by ChatGPT and metic-
ulously curated, augmented, and expanded
with real snippets of scientific text from full-
text publications in Computer Science using a
human-in-the-loop process. The dataset con-
tains snippets highlighting mentions of the
two research artifact (RA) types: dataset and
code/software, along with insightful metadata
including their Name, Version, License, URL
as well as the intended Usage and Provenance.
We also fine-tune a simple Large Language
Model (LLM) using Low-Rank Adaptation
(LoRA) to transform the Research Artifact
Analysis (RAA) into an instruction-based Ques-
tion Answering (QA) task. Ultimately, we re-
port the improvements in performance on the
test set of our dataset when compared to other
base LLM models. Our method provides a sig-
nificant step towards facilitating accurate, ef-
fective, and efficient extraction of datasets and
software from scientific papers, contributing to
the challenges of reproducibility and reusability
in scientific research.

1 Introduction

Scientific research is dynamically and rapidly
evolving, generating an overwhelming amount of
knowledge in the form of research outputs. The
vastness and the intricacies of scientific literature
makes it impossible for researchers to keep up with
all advancements in their respective fields, which
is critical to their research. Consequently, knowl-
edge discovery from scientific literature and re-
search artifact analysis (RAA) have gained signif-
icant prominence as fields. In recent years, many

new research artifact (RA) datasets have been con-
structed, with the goal of training models and cre-
ating benchmarks for the identification of a vari-
ety of RAs, both intangible (e.g. methods, tasks)
and tangible (e.g. datasets, software) (Wang et al.,
2022; Krüger and Schindler, 2020). Moreover, re-
cent efforts have been directed towards identifying
corresponding metadata and classifying those RAs
based on their functions, such as their usage and
provenance (Du et al., 2021; Schindler et al., 2021).

In this paper, our primary focus lies in introduc-
ing a novel RA dataset specifically designed for
dataset and software extraction. Our RA dataset
is constructed by leveraging ChatGPT 1 and the
full-text of scientific publications in the field of
Computer Science. It employs a human-in-the-loop
manual curation process and comprises snippets of
scientific text that encompass mentions of datasets
and software (RA mentions). Each snippet includes
a trigger keyword or keyphrase indicating the RA
mention, as well as a curated list of essential meta-
data, such as the Name, Version, License, URL,
Usage, and Provenance of the respective dataset or
software.

This RA dataset stands out from conventional
RA datasets commonly used in the academic liter-
ature, due to its unique formulation. Unlike con-
ventional approaches to RAA that focus on Named
RAs through Named Entity Recognition (NER) and
entity linking, our methodology addresses a signif-
icant oversight. Those approaches often neglect
unnamed and undocumented resources, leading to
implications for open science and reproducibility,
and rendering them out of scope. Our approach
unifies those tasks, including both named and un-
named RA mentions. Each RA mention is system-
atically mapped to a corresponding RA, along with
its associated metadata, as defined by the context of
the sentence (Fig. 1). The primary reason for this
approach is to create a dataset where all RA men-

1https://chat.openai.com/

37

https://chat.openai.com/

tions, whether explicitly named or not, are treated
with equal importance. This allows models trained
on this RA dataset to effectively identify the pres-
ence of RAs even in more complex and ambiguous
scenarios.

Additionally, we utilized the LoRA (Hu et al.,
2021) method to power the human-in-the-loop pro-
cess and fine-tune base LLM models on the con-
structed RA dataset. Employing a model trained
on this RA dataset can streamline the detection
of RAs within the body of scientific publications,
consequently improving the reproducibility of ex-
periments and fostering a comprehensive under-
standing of the research process. Furthermore, this
approach contributes to resource reusability by es-
tablishing a collection of crucial resources, acceler-
ating scientific progress, mitigating repetition, and
encouraging cross-disciplinary collaborations.

In the subsequent sections we provide detailed
insights into the methodology employed for dataset
construction (Secs. 3.1, 3.2, 3.3, 4.1). We also
discuss the training and evaluation of our LoRA
models (Secs. 3.5, 4.2), showcasing their effec-
tiveness in extracting RAs through comprehensive
benchmarking on our dataset’s test set (Sec. 6). By
comparing them to other base LLMs, we demon-
strate the feasibility of employing simpler LLM
models for successful and reliable RAA.

Our key contributions2 are as follows:

1. We created two novel datasets for RAA, con-
taining both synthetic and real RA mentions.
The construction of those RA datasets was
aimed to address issues present in other RA
datasets found in the literature, such as the
lack of unnamed RA mentions or even of all
named RA mentions in a given snippet.

2. We demonstrated the effective performance
of fine-tuned LLMs in RAA. Specifically, we
discovered that even small LLMs, like the
Flan-T5 Base model, when fine-tuned on our
RA datasets, excel at RAA, surpassing the
performance of larger, base models.

3. We conducted a comprehensive qualitative
evaluation of our novel RA datasets and the
models trained on them.

2All data and software resources can be accessed at
the following link: https://github.com/PetrosStav/
Research-Artifact-Analysis-NLP-OSS-2023-Paper.

2 Related Work

RAA has gained significant attention in recent
years. This extensive research has led to the in-
troduction of many important RA datasets related
to the disciplines of Computer Science, Biology,
Sociology and more. At the same time, important
breakthroughs have been made in the construction
of new novel machine learning models aimed to
achieve this task, taking advantage of a variety of
different technologies like Recurrent Neural Net-
works (RNNs) (Zeng and Acuna, 2020; Hou et al.,
2022; Schindler et al., 2020) and BERT-like archi-
tectures (Schindler et al., 2021; Färber et al., 2021).

The aforementioned RA datasets can be differ-
entiated into two types with respect to their for-
mulation and goal. The first type is characterized
by abstract RAs in the form of tasks, processes,
or materials like SemEval 2017 Task 10 (Augen-
stein et al., 2017), SciERC (Luan et al., 2018),
SciREX (Jain et al., 2020), the methods dataset
from (Färber et al., 2021) and SciRes (Zhao et al.,
2019). In contrast, the second type is aimed to the
identification of more strictly defined RAs, with
the Rich Context Competition dataset created by
the Coleridge Initiative3 at New York University,
NER Dataset Recognition (Heddes et al., 2021)
and DMDD (Pan et al., 2023) being characteris-
tic examples for dataset extraction and SoMeSci
(Schindler et al., 2021), Softcite (Du et al., 2021)
being characteristic examples for software extrac-
tion. Nevertheless, a mapping between those two
cases is not always possible. This divides RAA into
two tasks that are similar in concept but very dif-
ferent in practice. Furthermore, some RA datasets
further encompass the collection of RA metadata.
Two notable works that address the lack of such
RA datasets are Softcite and SoMeSci.

Our dataset differs significantly from common
standards in RA datasets through a holistic ap-
proach that prioritizes both named and unnamed
RA mentions. We annotate all RA mentions within
a snippet, effectively creating a connection between
those sharing the same name. That approach, sim-
ilar to those employed in the construction of the
Softcite and SoMeSci datasets, allows us to utilize
the information from all RA mentions for a specific
RA, providing a more comprehensive view. Con-
sidering the array of definitions for RA mention
"validity" across various RA datasets, it is essential

3https://coleridgeinitiative.org/

38

https://github.com/PetrosStav/Research-Artifact-Analysis-NLP-OSS-2023-Paper
https://github.com/PetrosStav/Research-Artifact-Analysis-NLP-OSS-2023-Paper
https://coleridgeinitiative.org/

for us to demonstrate the robustness and applicabil-
ity of our annotation schema.

Therefore, we compared our RA dataset with
five highly regarded datasets of RA mentions, in
order to highlight its novelty and differences, and
to explore how our broader scope could benefit fu-
ture applications. For example, we observed that
many of the existing RA datasets lack annotations
of unnamed RA mentions in a given snippet or even
aim only for the identification of named datasets or
software. The RA datasets we used for comparison
were Softcite and SoMeSci for software mentions,
and the Rich Context Competition dataset, NER
Dataset Recognition and DMDD for dataset men-
tions.

The exploitation of those RA datasets has been
largely demonstrated through the utilization of
RNN- and BERT-based models handling NER
tasks embodied by those datasets. In contrast, the
non-NER configuration of our RA dataset fosters
the training and deployment of alternative model
types. In our work, we use LLMs, fine-tuned with
the LoRA method, and tackle the RAA task as an
instruction-based QA task. This approach serves a
dual purpose: it enables us to evaluate those mod-
els’ performance when deployed on such tasks,
while simultaneously assessing the quality of our
newly introduced RA dataset.

3 Synthetic Dataset

In this section we describe the construction process
of the Synthetic dataset (Subsecs. 3.1, 3.2) and the
conversion of the RA mentions to question-answer
(QA) pairs (Subsec. 3.3). Next, we detail the split-
ting of the dataset into training, development, and
testing sets (Subsec. 3.4), and conclude with the
training of the LoRA model (Subsec. 3.5).

3.1 Dataset Creation
For the creation of our RA dataset, we strategically
harnessed the capabilities of ChatGPT to generate
a corpus of synthetic data imbued with mentions
of datasets and software. We formulated a prompt
(Tab. 6, App. A) that explained to ChatGPT the
notion of RAs, highlighting aspects such as their
validity, metadata, usage and provenance, along
with the task of RAA. Subsequently, we supplied
ChatGPT with positive examples that illustrated
valid RAs, as well as negative examples of invalid
RAs. Positive examples consist of snippets con-
taining valid dataset or software mentions, while
negative examples typically comprise snippets with

triggers that refer to general or encyclopedic refer-
ences (e.g. "most existing datasets"), which are out
of scope for most of the current approaches. We
then instructed ChatGPT to act as a data creator,
maintaining the structure and style of the examples.

Our dataset is meticulously structured to include
a comprehensive set of fields: Snippet, Type, Valid,
Name, Version, License, URL, Provenance, and
Usage. Within each RA mention, the snippet con-
tained one or multiple sentences, accompanied by
a trigger encapsulated within <m> and </m> tags
that also specifies the RA type (dataset or soft-
ware). The Name, Version, License and URL fields
of the RA require a text span within the snippet; in
cases where those are not present, a default value
of "N/A" is assigned. The Provenance and Usage
fields can take values "Yes" or "No" to indicate if
the RA was created or used by the authors of the
publication. It is essential to note that those values
must be supported by textual evidence in the snip-
pet. Thus, even if a RA is generally created or used
in the publication, the value is marked "Yes" only
if this fact is evident from the snippet itself. Two
characteristic examples of a valid and an invalid
RA mention instance are presented in Figs. 1 and
2 respectively.

Snippet In their study, the authors utilized the PyTorch
<m>library</m> (version 1.9.0) for deep learn-
ing experiments. PyTorch is released under the
BSD-3-Clause license. For more information, visit
https://pytorch.org/.

Type Software
Valid Yes
Name PyTorch

Version 1.9.0
License BSD-3-Clause

URL https://pytorch.org/
Provenance No

Usage Yes

Figure 1: An example of a RA mention containing all
metadata.

Snippet We leveraged the power of the Apache Spark framework for
distributed <m>data</m> processing. The code implementa-
tion is available on our project’s GitHub repository.

Type Dataset
Valid No

Figure 2: An example of an invalid RA mention.

Subsequently, our team of human curators4 gen-
erated additional examples using ChatGPT, by
specifying a range of attributes for ChatGPT to
focus on. Those included creating specific types

4The team of human curators comprises two MSc students
in Natural Language Processing (NLP) that worked on the
task.

39

of RAs such as software or datasets, using a man-
ually curated set of keywords and keyphrases for
triggers, including metadata, and indicating usage
and provenance. Additionally, the curators were
able to determine the domain of the examples, such
as Computer Vision, NLP, BioInformatics, and so
on, or even specific linguistic features like using
complex language or mentioning RAs in several
sentences. Furthermore, effort was given to gener-
ating robust negative examples, taking into account
their complexity, diversity, and linguistic function
within the snippet.

The curated dataset of synthetic RA mentions
served as the seed for generating an augmented set
of positive and negative examples through a human-
in-the-loop process, resulting in the creation of
an expanded corpus of high-quality synthetic RA
mentions.

Moreover, we made an effort to address the com-
plex challenge of capturing snippets with multiple
RA mentions that pertain to more than one RA of
the same or different type. That mirrors more ac-
curately the true complexity and nature of the task.
The trigger words were derived from a manually
curated set of keywords and keyphrases, which in-
cluded the names of the RAs present within the
snippets. Consequently, models trained on our RA
dataset are equipped to adeptly extract RAs em-
ploying various trigger detection mechanisms and
are also enabled to acquire entity linking capabili-
ties, especially in scenarios where multiple triggers
(e.g., names and keyphrases) pertain to the same
RA.

3.2 Synthetic Data Augmentation

In the following stage, we employed a T5 model,
which had been trained on the ChatGPT paraphrase
dataset (Vladimir Vorobev, 2023), to augment our
synthetic data via a paraphrasing technique. This
involved substituting the trigger word in each snip-
pet with the [MASK] token, followed by running
the model to generate five paraphrased renditions
of the snippet. Each paraphrased snippet was then
checked, to ensure the presence of a single [MASK]
token within each snippet, thereby filtering out any
spurious hallucinations and noise.

3.3 QA Pairs Construction

Following the creation of the gold synthetic dataset,
we converted all RA mentions into QA pairs for
each metadata field, transforming the RAA to an
instruction-based QA task. The questions used are

depicted in Tab. 9 (App. C), with the value of
each metadata field serving as the answer (Fig. 3).
Those QA pairs were then structured into an input-
output format suitable for the LoRA training of the
LLM, further details of which will be presented in
Sec. 3.5.

In an effort to enrich our dataset, we introduced
a "special" type of QA pairs (Fig. 4) that are gen-
erated from the unique snippets of the RA dataset,
devoid of any <m> and </m> tags, by enumerating
all the RAs contained within each snippet. The con-
struction of the QA pairs for those instances adhere
to the aforementioned methodology. The question
is consistent across all instances, as illustrated in
Tab. 9 (App. C). The answer encompasses a list of
all RAs found within the snippet, classified by their
Type and Name, or marked as "unnamed" in the
absence of a Name. Multiple RAs are separated by
the "|" symbol. Those are then subjected to a simi-
lar augmentation process, discarding paraphrased
snippets that exhibited a discrepancy in the count
of RAs compared to the original instances.

Snippet Our experiments were conducted using the data processing
software datapro. The <m>software</m> version used was
1.5. It is distributed under the GNU Lesser General Public
License.

Question What is the name of the software defined in the <m> and </m>
tags?

Answer datapro

Figure 3: An example of QA pair.

Snippet The CIFAR-10 dataset was used by the authors to
assess the effectiveness of their image classifica-
tion algorithm. This data set is freely available at
https://www.cs.toronto.edu/kriz/cifar_fra.html.

Question List all artifacts in the above snippet.
Answer dataset : CIFAR-10 | software : unnamed

Figure 4: An example of a "special" QA pair.

As detailed in Tab. 1, prior to augmentation, the
Synthetic dataset consisted of 305 unique snippets,
1616 RA mentions, and 10212 QA pairs. After the
augmentation process, these figures were expanded
to 4235 unique snippets, 5446 RA mentions, and
35475 QA pairs. More detailed statistics about the
Synthetic dataset are depicted in Tab. 7 (App. B).

3.4 Train-Dev-Test Split

Given the meticulous process employed in the cre-
ation of the Synthetic dataset, special attention was
required to split our data into training, develop-
ment and testing sets. As mentioned previously
and showcased in Tab. 1, although the dataset cre-
ation process yielded a total of 5446 RA mentions
the original count of unique snippets was 305. For

40

the process of data splitting, it is imperative to se-
lect instances from those unique snippets, rather
than the final instances. This was purposely done
to avoid the issue of knowledge leaking from the
training set to the test set.

Furthermore, it is crucial to ensure balance
among the three sets in terms of the RA types,
their validity (i.e. positive vs. negative instances),
the inclusion of each metadata field, as well as the
RA provenance and usage. To achieve this, we con-
ducted a systematic approach that considered the
distribution and characteristics of the RA mentions
within each set and across the three sets as a whole,
ensuring a comprehensive and fair representation
of the RA mentions.

3.5 LoRA Finetuning on the Synthetic Dataset

After transforming the Synthetic gold dataset to
QA pairs, we used it to fine-tune a Flan-T5 Base
model (Chung et al., 2022) using the LoRA method
(Hu et al., 2021). This model was chosen as it has
a relative good performance-to-parameter ratio and
can be used even from smaller research teams, with
limited computational resources.

We trained a LoRA model on top of the Flan-T5
Base model on the QA pairs using the Huggingface
PEFT library (Sourab Mangrulkar, 2022) for train-
ing and the Weights and Biases (W&B)5 platform
for logging, visualizations and the sweep hyperpa-
rameter tuning.

We trained our LoRA model on a single Quadro
RXT 5000 GPU for approximately 315 hours us-
ing a W&B sweep hyperparameter tuning set-
ting. We optimized for the best evaluation loss
on the development set in each run, and imple-
mented an early stopping mechanism with a pa-
tience of three epochs to ensure efficiency. We
achieved our best model with the hyperparameters
r = 16, alpha_lora = 16, lora_dropout = 0.4,
max_epochs = 5.

4 Hybrid Dataset

This section explores the creation of a Hybrid
dataset, focusing on the integration of RA men-
tions from synthetic and real snippets from scien-
tific publications (Subsec. 4.1), and fine-tuning
a LoRA model on the Hybrid dataset to enhance
generalizability and performance for the RAA task
(Subsec. 4.2).

5https://wandb.ai/site/research

4.1 Real Dataset Creation

As our Syntetic dataset was composed exclusively
of synthetic RA mentions, we sought to expand it
by incorporating gold-annotated RA mentions in
real snippets from scientific publications (GARS
dataset). This integration aimed to mitigate some
of the biases in the Synthetic dataset construction,
which originated from the repetitive and template-
driven generated language used in the RA mentions.
Such formatting is a concern as it could potentially
impede the generalization capabilities and perfor-
mance of models trained on the data.

Utilizing our best LoRA fine-tuned model on
top of Flan-T5 Base (LoRA-Sy), we developed a
tool that allows for automatic annotation of snip-
pets. The same team of human curators employed
this tool to annotate the full-text PDF files of a
small collection of scientific publications within
the Computer Science domain. Subsequently, this
data underwent meticulous curation, expansion,
and augmentation, as detailed in the previous sec-
tions. Similarly to the Synthetic dataset, the RA
mentions were then converted to QA pairs to trans-
form the RAA task into an instruction-based QA
task. By combining the Synthetic dataset with the
scientific publications dataset, we construct our Hy-
brid dataset (Tab. 1) comprising 15247 QA pairs
from 2539 RA mentions spotted in 382 unique snip-
pets, prior to augmentation and 45136 QA pairs
from 7112 RA mentions spotted in 5230 unique
snippets after the augmentation. More detailed
statistics about the Hybrid dataset are depicted in
Tab. 8 (App. B).

4.2 LoRA Finetuning on the Hybrid Dataset

We also performed fine-tuning on a LoRA model
using our Hybrid dataset. The LoRA model was
trained over a period of approximately 17 hours.
The selection of hyperparameters was consistent
with those that yielded the highest performance on
the Synthetic dataset 3.5. The decision to use those
particular settings was informed by the composi-
tion of the Hybrid dataset, which expanded upon
the Synthetic dataset by integrating the GARS data
into the training, dev, and test sets. This approach
facilitated an ablation study on the test subset of
the dataset, the findings of which will be explored
in a subsequent section.

41

https://wandb.ai/site/research

Synthetic Hybrid
Original Augmented Original Augmented

dataset software all dataset software all dataset software all dataset software all
Unique snippets 198 225 305 2051 2301 4235 258 298 382 2350 3047 5230

RA mentions 741 875 1616 2555 2891 5446 1010 1529 2539 3017 4095 7112
QA pairs 4548 5664 10212 15559 18592 35475 5921 9326 15247 18055 25504 45136

Table 1: Statistics for the Synthetic and Hybrid datasets.

5 Dataset Analysis & Comparisons

The previously introduced Synthetic and Hybrid
datasets consist of 35475 and 45136 QA pairs re-
spectively. Each QA pair revolves around a ques-
tion pertaining to a RA mention, as delineated in
Tab. 9 (App. C). Although large in quantity, they
encompass only 5446 and 7112 RA mentions re-
spectively, distinguishing them from large-scale
collections like DMDD with 449798 dataset men-
tions. However, our aim deviates from such vast
RA datasets, prioritizing quality over sheer quantity
due to the different annotation methodology.

A key characteristic of our dataset is that it is
comprised of QA pairs that have been generated
from a smaller pool of snippets. Those snippets,
containing references to RAs, have undergone var-
ious rounds of annotation and paraphrasing. This
process produces a multitude of differently phrased
snippets, each providing unique RA mentions of
the same RA while preserving the original contex-
tual information. This depth of RA mentions is
unique to our RA dataset and sets it apart from
others. To further illustrate where our dataset sits
within the existing research landscape, we offer
a comparison of our dataset’s key statistics with
those from other established RA datasets in Tab. 2.

Our manual annotation process has been exe-
cuted rigorously to ensure quality enhancements
across several aspects:

• All dataset and software mentions have been
annotated for a given snippet, regardless of
whether they are named, unnamed, or invalid.
That approach ensures comprehensive cov-
erage of all potential cases of RA mentions
within our RA dataset.

• We have strictly defined what constitutes a
negative example in our RA dataset, follow-
ing the convention presented in subsection
3.1. This approach ensures clarity by pre-
cisely defining how the snippets without any
RA mentions should be identified.

• We have meticulously curated our snippets
to highlight the diversity and complexity of
RA mentions, as outlined in previous sections.
That includes snippets with multiple RA men-

tions: (a) of the same or different type, (b) of
new, named, or unnamed RAs, and (c) of new
RAs (named or unnamed) interspersed with
already seen RAs. Those intricate patterns are
often stumbling blocks for models not prop-
erly trained to handle them. Through our pur-
poseful inclusion of such diverse and complex
RA mention patterns, we aim to train mod-
els on our RA dataset to effectively manage
a wide range of situations, thereby enhancing
their generalizability.

The emphasis on manual annotation in our RA
dataset is a result of our efforts to address the issues
we have encountered in other RA datasets. Those
issues include the following:

• In the case of named RAs an issue can be
observed in the DMDD dataset (Pan et al.,
2023), which was constructed by matching
terms found in the Paper with Code reposi-
tory6. Despite resulting in the inclusion of
valid terms, this approach fails to capture all
named datasets. An illustrative example can
be found in the sentence "We evaluate trained
translation models on wmt13 (Bojar et al.,
2013) and wmt14 (Bojar et al., 2014) for en-es
and en-fr, respectively." from the evaluation
subset of the DMDD dataset. Here, only the
"wmt14" dataset has been annotated due to
the absence of a matching term for "wmt13"
in the dataset construction.

• In terms of unnamed RAs, a significant num-
ber of RA datasets fail to acknowledge those
RA mentions or even consider them as neg-
ative examples. The latter case is a notable
characteristic of the NER Dataset Recognition
dataset (Heddes et al., 2021), where unnamed
dataset mentions are labeled as negative ex-
amples (Geen datasets), leading to differential
metric definitions in comparison to other RA
datasets. The broader issue of unnamed RAs
omission can also be observed in the Rich
Context Competition dataset, where phrases
like "our data" would not be annotated as a
RA mention. To a lesser extent, this issue is

6https://paperswithcode.com/

42

Dataset Instance Unit Number of RA Mentions Metadata Available
Ner Dataset Recognition (Heddes et al., 2021) sentence 3416 -

Rich Context Competition paper 36597 -
bioNerDS (Duck et al., 2013) paper 920 -

NLP-TDMS (Hou et al., 2019) paper 1164 -
Dataset TDM-Sci (Hou et al., 2021) sentence 612 -

mentions SciERC (Luan et al., 2018) abstract 770 -
SciREX (Jain et al., 2020) paper 10548 -
DMDD (Pan et al., 2023) paper 449798 -
Synthetic Dataset (ours) snippet 2555 URL, License, Version, Provenance, Usage
Hybrid Dataset (ours) snippet 3017 URL, License, Version, Provenance, Usage

bioNerDS (Duck et al., 2013) paper 2625 -
SoSciSoCi (Schindler et al., 2020) method section/sentence 2385 -

Softcite v.1 (Du et al., 2021) paragraph 4093 URL, Version, Developer
Software Softcite v.2 (Howison et al., 2023) paragraph 5134 URL, Version, Type, Developer
mentions CZ Software Mentions (Istrate et al., 2022) sentence 20.11M Type

SoMeSci (Schindler et al., 2021) method section/full text/sentence 3756 URL, License, Version, Citation, Extension, Type,
Provenance, Usage, Developer

Synthetic Dataset (ours) snippet 2891 URL, License, Version, Provenance, Usage
Hybrid Dataset (ours) snippet 4095 URL, License, Version, Provenance, Usage

Table 2: Comparison of dataset and software mention statistics between ours and other RA datasets.

also observed in the Softcite (Du et al., 2021)
and SoMeSci (Schindler et al., 2021) datasets,
which miss out on references to machine learn-
ing models in certain cases.

Finally, it is important to acknowledge that our
definition of a RA mention within the context of
a snippet aligns significantly with the construct
employed by the SoMeSci dataset. The SoMeSci
dataset, which is dedicated exclusively to software
mentions, classifies those mentions into four cat-
egories: Application, Plugin, Operating System,
and Programming Environment, while also anno-
tating an extensive array of metadata. In our case,
we have adopted this formalism to encompass RA
mentions, without delving further into the corre-
sponding subtypes. The metadata we have anno-
tated includes the URL, Version, License, Prove-
nance, and Usage of each RA mention.

6 Experimental Results on Test Set

We conducted a series of tests using the top-
performing versions of the aforementioned LoRA
fine-tuned models as well as the original Flan-T5
Base and XL models. Those were employed to
evaluate the quality of information included within
our Synthetic and Hybrid datasets.7 Specifically,
we computed the respective scores of those four
models on the test sets of both RA datasets, aiming
to discern the advantages of the fine-tuning process
and to perform an ablation study to investigate the
effect of fine-tuning a model using synthetic data
versus synthetic data expanded by real data.

To ensure a balanced comparison between the
original and fine-tuned models, we modified the
prompts utilized by the original models (Tab. 10,
App. C). Those adjusted prompts refrain from pre-
supposing any specific training of the models to

7Due to its substantial size, the Flan-T5 XXL model was
not incorporated in this comparison.

answer in a particular manner, and consequently,
provide more comprehensive instructions. The
F1 score measures successful identification of a
valid RA mention or presence of specific metadata
(Name, License, Version, URL). For Usage and
Provenance metadata, it denotes successful iden-
tification of the RA’s use or creation by authors.
The exact match (EM) score, applicable for Name,
License, Version, and URL metadata, determines
exact lowercase match of the metadata text from
a provided snippet, provided the model correctly
identifies the presence of that metadata. The lenient
match (LM) score checks if the model’s answer in
lowercase is within the gold truth, or vice versa.
The results achieved by the four models on both
RA datasets are outlined in Tabs. 3 and 4. More-
over, detailed evaluation results of named versus
unnamed RA mentions can be found in App. D.

The original Flan-T5 Base and XL models
achieved a high level of success in discerning the
validity of RA mentions, as well as the associated
metadata such as the License, Version, and URL.
As anticipated, superior performance was observed
on the less complicated Synthetic dataset. Further-
more, the XL model surpassed the Base model,
particularly in identifying the Name, Usage, and
Provenance. Those outcomes endorse the high se-
mantic quality of both our RA datasets and show-
case the efficacy of LLMs in the RAA task.

The significance of the LoRA fine-tuning pro-
cedure is evident in the scores presented in Tabs.
3 and 4. The fine-tuned models remarkably out-
performed their base counterparts. In addition, the
LoRA Hybrid model (LoRA-Hy) generally outper-
forms the LoRA-Sy model when evaluated on both
the Synthetic and Hybrid datasets, indicating that
the inclusion of additional real-world RA mention
instances improves those models. Similar findings
were observed in the model tests on the GARS
dataset, as shown in Tab. 5. Notably, in the GARS

43

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.841 - - 0.870 - - 0.967 - - 0.974 - -
Name 0.358 0.709 0.835 0.681 0.787 0.900 0.887 0.917 0.962 0.876 0.905 0.952

License 0.926 0.502 0.813 0.928 0.635 0.778 0.946 0.700 0.818 0.944 0.685 0.818
Version 0.677 0.620 0.816 0.942 0.687 0.865 0.975 0.620 0.626 0.979 0.755 0.767

URL 0.677 0.342 0.355 0.980 0.539 0.566 0.981 0.618 0.645 0.982 0.632 0.658
Usage 0.377 - - 0.772 - - 0.911 - - 0.914 - -

Provenance 0.537 - - 0.647 - - 0.939 - - 0.961 - -

Table 3: Experimental results on the test set of the Synthetic dataset.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.766 - - 0.822 - - 0.938 - - 0.960 - -
Name 0.375 0.613 0.771 0.602 0.698 0.830 0.832 0.820 0.907 0.852 0.840 0.911

License 0.948 0.502 0.813 0.953 0.635 0.778 0.963 0.700 0.818 0.962 0.685 0.818
Version 0.738 0.620 0.816 0.935 0.687 0.865 0.973 0.538 0.571 0.983 0.755 0.767

URL 0.723 0.330 0.352 0.968 0.495 0.527 0.973 0.538 0.571 0.982 0.571 0.604
Usage 0.286 - - 0.765 - - 0.898 - - 0.921 - -

Provenance 0.523 - - 0.650 - - 0.895 - - 0.926 - -

Table 4: Experimental results on the test set of the Hybrid dataset.

results, the License and Version do not have extrac-
tion scores, as such metadata were not present in
those particular instances.

Interestingly, despite the fine-tuned models be-
ing built on the simpler Flan-T5 Base architecture,
they significantly outperformed Flan-T5 XL model
in this particular task. This suggests that a model
with a relatively small number of parameters, such
as the base Flan-T5 model (220M parameters),
can surpass a larger LLM, like the Flan-T5 XL
model (3B parameters), given appropriate fine-
tuning. The fine-tuning procedure effectively har-
nesses the parameters of the base model to learn
task-specific information, resulting in a model that
is both precise and efficient.

7 Qualitative Analysis

In this section, we delve into an analysis of some
representative examples of our models’ predictions,
aiming to demonstrate the impact of the LoRA fine-
tuning process on the model’s understanding of
this specific task. We initially explore two typical
instances of RA mentions, the first for a dataset
and the second for a software (refer to Figs. 5 and
6, App. E), to highlight the improvements brought
about by the fine-tuning of the Flat-T5 model.

Considering the dataset mention illustrated in
Fig. 5 (App. E), it is evident that the correct an-
swer is an unnamed dataset represented by "N/A".
Both of our LoRA fine-tuned models yielded the
correct result, in contrast to the base models. More
specifically, the Flan-T5 Base model erroneously
returned "100,000 reviews", while the Flan-T5 XL
model inaccurately produced the general term "cos-
tumer reviews" as a dataset name. The same error
is observed in the software mention depicted in Fig.
6 (App. E), where both base models failed to give
correct answers. The distinction in performance

can be traced back to our fine-tuning process, as
it allowed our models to understand that not every
name-like term in the snippet necessarily represents
a specific dataset.

An examination of different scenarios reveals
that the LoRA-Hy model exhibits superior perfor-
mance to the LoRA-Sy model in more complex
cases, like the provenance and usage question in-
stances in Figs. 7 and 8 (App. E).

The main shortcoming of our fine-tuned models
is their occasional inability to extract text-spans
from the given snippet to answer questions, despite
explicitly being fine-tuned for the task. This issue
is demonstrated in Fig. 9 (App. E). In this instance,
all models provided correct responses. However,
the answers generated by the LoRA-Hy model were
not exact excerpts from the original snippet text.
Consequently, this deviation from the snippet text
was considered an error in the evaluation process.

8 Discussion & Conclusions

In this work, we have made significant steps to-
wards knowledge discovery from scholarly litera-
ture and RAA by advancing the identification and
extraction of dataset and software mentions within
scientific literature, thereby addressing pressing
challenges in reproducibility and reusability of
RAs.

More specifically, by leveraging the capabilities
of ChatGPT in conjunction with meticulous human
curation, we streamlined the extraction of dataset
and software mentions. This innovative approach
made it possible to transform RAA from a NER
task to an instruction-based QA task. Furthermore,
we investigated how LLMs could be effectively em-
ployed for this task and how the LoRA fine-tuning
method can enhance such models when trained on

44

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.375 - - 0.621 - - 0.847 - - 0.932 - -
Name 0.452 0.233 0.512 0.526 0.326 0.628 0.723 0.465 0.721 0.884 0.628 0.814

License 0.967 - - 1.000 - - 1.000 - - 1.000 - -
Version 0.811 - - 0.950 - - 0.967 - - 0.976 - -

URL 0.832 1.000 1.000 0.956 1.000 1.000 0.983 0.500 0.500 0.991 1.000 1.000
Usage 0.000 - - 0.697 - - 0.865 - - 0.945 - -

Provenance 0.341 - - 0.735 - - 0.851 - - 0.836 - -

Table 5: Experimental results on the test set of the GARS dataset.

RA datasets.
Through comprehensive examples and analy-

sis, we demonstrated the efficacy of both the RA
datasets and their associated models. Our results
not only confirm the feasibility of this specific ap-
proach to the RAA task but also indicate its poten-
tial as a powerful tool in future applications.

In future work, our RA datasets can be further
refined and expanded by including more represen-
tative snippets drawn from a broader and more
diverse assortment of scientific publications. This
will facilitate the creation of new and more gener-
alized RA datasets, helping to mitigate potential
biases and incorporate knowledge from various sci-
entific disciplines.

Limitations

In this section, we turn our attention to the limita-
tions inherent to our work. We provide a nuanced
understanding of the boundaries of our RA datasets
and methods, and we identify potential areas for
improvement in future work.

The RA datasets we developed for this work are
confined to snippets derived from scientific publi-
cations in Computer Science. As a result, models
trained on those RA datasets may struggle to ef-
fectively generalize to complex, domain-specific
scenarios in other scientific fields, such as those
found in Biomedical and Health Sciences, or Soci-
ology. Additionally, the RA datasets do not make
distinctions between closely associated RA types,
such as materials, repositories, and datasets or soft-
ware, models, and methods.

While the fine-tuned LLM models that we specif-
ically created and tested on our RA datasets yielded
commendable results in our experiments in compar-
ison to base Flan-T5 models, an evaluation against
the Flan-T5 XXL model was not possible. Such
an evaluation would have provided a significant
opportunity to assess their performance against an
even larger model.

Despite the considerable advancements in en-
riching the RA dataset with real examples drawn
from scientific publications, resulting in the Hybrid

dataset, the representation of RA mentions from sci-
entific publications is still relatively narrow. Con-
sequently, some uncommon cases of RA mentions
may be underrepresented or entirely absent within
our RA dataset. This observation emphasizes the
need for further enhancements to our RA dataset.
Future work could address this by incorporating a
more diverse selection of scientific publications.

Acknowledgements

This work was supported by research grants
from the European Union’s H2020 IntelComp
Project (https://cordis.europa.eu/project/
id/101004870), European Union’s HE PathOS
Project (https://cordis.europa.eu/project/
id/101058728) and European Union’s HE TIER2
Project (https://cordis.europa.eu/project/
id/101094817).

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum. 2017.
SemEval 2017 task 10: ScienceIE - extracting
keyphrases and relations from scientific publications.
In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 546–
555, Vancouver, Canada. Association for Computa-
tional Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Caifan Du, Johanna Cohoon, Patrice Lopez, and James
Howison. 2021. Softcite dataset: A dataset of soft-
ware mentions in biomedical and economic research
publications. Journal of the Association for Informa-
tion Science and Technology, 72(7):870–884.

Geraint Duck, Goran Nenadic, Andy Brass, David L
Robertson, and Robert Stevens. 2013. Bionerds: Ex-

45

https://cordis.europa.eu/project/id/101004870
https://cordis.europa.eu/project/id/101004870
https://cordis.europa.eu/project/id/101058728
https://cordis.europa.eu/project/id/101058728
https://cordis.europa.eu/project/id/101094817
https://cordis.europa.eu/project/id/101094817
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/https://doi.org/10.1002/asi.24454
https://doi.org/https://doi.org/10.1002/asi.24454
https://doi.org/https://doi.org/10.1002/asi.24454
https://doi.org/10.1186/1471-2105-14-194

ploring bioinformatics’ database and software use
through literature mining. BMC Bioinformatics,
14(1).

Michael Färber, Alexander Albers, and Felix Schüber.
2021. Identifying used methods and datasets in scien-
tific publications. In Proceedings of the Workshop on
Scientific Document Understanding: co-located with
35th AAAI Conference on Artificial Inteligence (AAAI
2021) ; Remote, February 9, 2021. Ed.: A. P. B. Vey-
seh, volume 2831 of CEUR Workshop Proceedings.
RWTH Aachen.

Jenny Heddes, Pim Meerdink, Miguel Pieters, and
maarten marx. 2021. The automatic detection of
dataset names in scientific articles. Data, 6:84.

Linlin Hou, Ji Zhang, Ou Wu, Ting Yu, Zhen Wang,
Zhao Li, Jianliang Gao, Yingchun Ye, and Rujing
Yao. 2022. Method and dataset entity mining in
scientific literature: A cnn + bilstm model with self-
attention. Knowledge-Based Systems, 235:107621.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2019. Identification
of tasks, datasets, evaluation metrics, and numeric
scores for scientific leaderboards construction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5203–
5213, Florence, Italy. Association for Computational
Linguistics.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2021. TDMSci: A spe-
cialized corpus for scientific literature entity tagging
of tasks datasets and metrics. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 707–714, Online. Association for Computa-
tional Linguistics.

James Howison, Patrice Lopez, Caifan Du, and Hannah
Cohoon. 2023. Softcite dataset version 2.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Ana-Maria Istrate, Donghui Li, Dario Taraborelli,
Michaela Torkar, Boris Veytsman, and Ivana
Williams. 2022. A large dataset of software men-
tions in the biomedical literature.

Sarthak Jain, Madeleine van Zuylen, Hannaneh Ha-
jishirzi, and Iz Beltagy. 2020. SciREX: A challenge
dataset for document-level information extraction. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7506–
7516, Online. Association for Computational Lin-
guistics.

Frank Krüger and David Schindler. 2020. A literature
review on methods for the extraction of usage state-
ments of software and data. Computing in Science &
Engineering, 22:26–38.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Huitong Pan, Qi Zhang, Eduard Constantin Dragut, Cor-
nelia Caragea, and Longin Jan Latecki. 2023. Dmdd:
A large-scale dataset for dataset mentions detection.
ArXiv, abs/2305.11779.

David Schindler, Felix Bensmann, Stefan Dietze, and
Frank Krüger. 2021. Somesci- a 5 star open data gold
standard knowledge graph of software mentions in
scientific articles. In Proceedings of the 30th ACM
International Conference on Information & Knowl-
edge Management, CIKM ’21, page 4574–4583, New
York, NY, USA. Association for Computing Machin-
ery.

David Schindler, Benjamin Zapilko, and Frank Krüger.
2020. Investigating software usage in the social sci-
ences: A knowledge graph approach. The Semantic
Web, 12123:271 – 286.

Lysandre Debut Younes Belkada Sayak Paul
Sourab Mangrulkar, Sylvain Gugger. 2022. Peft:
State-of-the-art parameter-efficient fine-tuning meth-
ods. https://github.com/huggingface/peft.

Maxim Kuznetsov Vladimir Vorobev. 2023. A para-
phrasing model based on chatgpt paraphrases.

Yuzhuo Wang, Chengzhi Zhang, and Kai Li. 2022. A
review on method entities in the academic literature:
extraction, evaluation, and application. Scientomet-
rics, 127:2479 – 2520.

Tong Zeng and Daniel Ernesto Acuna. 2020. Finding
datasets in publications: the syracuse university ap-
proach.

He Zhao, Zhunchen Luo, Chong Feng, Anqing Zheng,
and Xiaopeng Liu. 2019. A context-based framework
for modeling the role and function of on-line resource
citations in scientific literature. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5206–5215, Hong Kong,
China. Association for Computational Linguistics.

46

https://doi.org/10.1186/1471-2105-14-194
https://doi.org/10.1186/1471-2105-14-194
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107621
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107621
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107621
https://doi.org/10.18653/v1/P19-1513
https://doi.org/10.18653/v1/P19-1513
https://doi.org/10.18653/v1/P19-1513
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.5281/zenodo.7995564
http://arxiv.org/abs/2209.00693
http://arxiv.org/abs/2209.00693
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.1145/3459637.3482017
https://doi.org/10.1145/3459637.3482017
https://doi.org/10.1145/3459637.3482017
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/D19-1524
https://doi.org/10.18653/v1/D19-1524
https://doi.org/10.18653/v1/D19-1524

A ChatGPT Prompt

During the Synthetic dataset creation phase, the following ChatGPT prompt was employed (Tab. 6),
initiating an iterative and detailed annotation process. Starting with a small set of carefully curated
examples, we provided the prompt to ChatGPT, which generated new synthetic RA mentions with
characteristics similar to the examples. We meticulously selected certain generated instances that exhibited
specific properties, contributing to the richness and diversity of the dataset.

Furthermore, a key part of the process involved closely observing and collecting keywords and
keyphrases that ChatGPT associated with RA mentions. Gradually, we created a set of keywords
that acted as triggers for RA mentions, along with synthetic names for RA mentions.

When we gathered a sufficient collection of snippets, we leveraged the manually curated set of keywords
and keyphrases to perform exhaustive annotation of the snippets. The keywords and keyphrases were used
as triggers for RA mentions, including both named and unnamed RAs. That approach ensured a balanced
representation of RAs and prevented bias towards specific RA mentions.

You are DataCreatorGPT. Your task is to generate snippets that contain structured information about research artifacts extracted
from scientific publications. Each snippet includes a candidate research artifact highlighted by <m>and </m>tags.

For each publication snippet, you need to create the following metadata:

Artifact Type: Identify the type of research artifact specified within the <m>and </m>tags. The artifact could be a dataset,
software, method, etc.

Valid Artifact: Determine if the artifact within the <m>and </m>tags is a valid research artifact. A valid artifact is a tangible
input or output of the research publication. If the artifact is a general reference or functions as an adjective (for instance, "data"
in "data analysis tool"), it is considered invalid.

Name Extraction: Extract the name of the research artifact from the snippet. If no name is provided, mark it as "N/A".

Version Extraction: Extract the version of the research artifact from the snippet. If no version is mentioned, mark it as "N/A".

License Extraction: Extract the license of the research artifact from the snippet. If no license is indicated, mark it as "N/A".

URL Extraction: Extract the URL of the research artifact from the snippet. If no URL is provided, mark it as "N/A".

Provenance Classification: Determine whether the authors of the publication have created, generated, or introduced the research
artifact. This determination should be clearly evident from the snippet. The response should be "Yes" or "No".

Usage Classification: Determine whether the authors of the publication have used, implemented, utilized or com-
pared/benchmarked the research artifact. This determination should be clearly evident from the snippet. The response should be
"Yes" or "No".

Table 6: Prompt for ChatGPT used for the initial data creation and the human-in-the-loop process for the Synthetic
dataset.

47

B RA Dataset Statistics

The details of the Synthetic and Hybrid datasets are summarized in Tabs. 7 and 8 respectively. Both
datasets began with a specific number of unique snippets, each containing multiple mentions of datasets
and software (RA mentions). These mentions may be accompanied by particular metadata (such as Valid,
Name, Version, License, URL, Provenance, and Usage) relevant to the RA in question. Corresponding
question-answer (QA) pairs are formulated for each RA mention and metadata field, utilizing Tab. 9 (App.
C). The resulting collection of QA pairs provides a basis for fine-tuning a Large Language Model (LLM)
using the LoRA method.

Original Augmented
Train Dev Test Train Dev Test

dataset software all dataset software all dataset software all dataset software all dataset software all dataset software all
RA mentions 554 647 1201 98 123 221 89 105 194 1981 2247 4228 292 335 627 282 309 591

valid 476 584 1060 87 107 194 69 98 167 1694 2022 3716 258 287 545 211 295 506
w. name 401 468 869 78 90 168 58 82 140 1422 1614 3036 226 237 463 171 243 414

w. version 42 235 277 11 61 72 0 57 57 122 762 884 33 151 184 0 178 178
w. license 142 192 334 38 46 84 20 47 67 519 616 1135 119 128 247 79 139 218
w. URL 224 171 395 38 38 76 16 20 36 764 593 1357 95 60 155 28 48 76

w. provenance 158 142 300 35 10 45 29 28 57 586 499 1085 118 30 148 115 81 196
w. usage 296 469 765 57 88 145 38 74 112 1016 1631 2647 160 222 382 88 241 329

Unique snippets 148 176 240 25 25 32 25 24 33 1589 1796 3298 232 258 474 230 247 463
Special QA pairs - - - - - - - - - 489 616 1059 64 71 124 64 84 140

All QA pairs 3419 4193 7612 620 765 1385 509 706 1215 12147 14432 27639 1840 2057 4021 1572 2103 3815

Table 7: Statistics for the Synthetic dataset.

Original Augmented
Train Dev Test Train Dev Test

dataset software all dataset software all dataset software all dataset software all dataset software all dataset software all
RA mentions 757 1126 1883 128 222 350 125 181 306 2332 3125 5457 331 507 838 354 463 817

valid 615 951 1566 108 189 297 93 149 242 1958 2712 4670 286 439 725 258 403 661
w. name 488 769 1257 88 152 240 75 120 195 1592 2199 3791 238 352 590 194 329 523

w. version 42 235 277 11 61 72 0 57 57 122 762 884 33 151 184 0 178 178
w. license 142 201 343 38 55 93 20 47 67 519 633 1152 119 131 250 79 139 218
w. URL 225 173 398 38 38 76 16 24 40 767 601 1368 95 60 155 28 63 91

w. provenance 175 235 410 36 39 75 33 53 86 620 673 1293 119 75 194 131 138 269
w. usage 427 770 1197 77 158 235 60 115 175 1262 2208 3470 186 344 530 130 332 462

Unique snippets 194 230 298 32 34 41 32 34 43 1815 2337 4027 257 369 605 278 341 598
Special QA pairs - - - - - - - - - 575 773 1267 73 90 147 72 106 162

All QA pairs 4456 6882 11338 776 1356 2132 689 1088 1777 14082 19458 34808 2047 3141 5335 1926 2905 4993

Table 8: Statistics for the Hybrid dataset.

48

C Prompts for instruction-based QA

The transformation of the RAA task from RA mentions to an instruction-based QA task, characterized by
QA pairs, was achieved through the utilization of specific questions. These questions, as presented in
Tab. 9, were used in the training and testing of our LoRA fine-tuned models. To ensure a fair comparison
with the base Flan-T5 models during evaluation on our RA datasets’ test sets, necessary modifications
were made to these questions, as detailed in Tab. 10. The subsequent tables provide insight into this
transformation process, illustrating how each metadata field is restructured into a question, such that the
answer to that question, based on the RA mention’s snippet, corresponds to the metadata field value in the
RA mention.

In addition to the standard metadata-related questions, a "special" type of QA pair question, which is
not associated with a specific metadata field, is also included. That "special" type plays a crucial role in
the conversion of unique snippets into "special" QA pairs, which enumerate all the RAs in the snippet,
denoting their Type and Name.

Metadata Field Question
Valid Is there a valid [software/dataset] defined in the <m> and </m> tags?
Name What is the name of the [software/dataset] defined in the <m> and </m> tags?

Version What is the version of the [software/dataset] defined in the <m> and </m> tags?
License What is the license of the [software/dataset] defined in the <m> and </m> tags?

URL What is the URL of the [software/dataset] defined in the <m> and </m> tags?
Provenance Is the [software/dataset] defined in the <m> and </m> tags introduced or created by the authors of the publication in the

snippet above?
Usage Is the [software/dataset] defined in the <m> and </m> tags used or adopted by the authors of the publication in the snippet

above?
Special QA pairs List all the artifacts in the above snippet.

Table 9: Questions to convert the RA mentions to QA pairs.

Metadata Field Question
Valid Is there a valid dataset|software defined in the <m> and </m> tags? Answer only using "Yes" or "No".
Name What is the name of the [dataset/software] defined in the <m> and </m> tags? The answer must be a text span from the

Snippet. If you can’t answer the question then respond with "N/A".
Version What is the version of the [dataset/software] defined in the <m> and </m> tags? The answer must be a text span from the

Snippet. If you can’t answer the question then respond with "N/A".
License What is the license of the [dataset/software] defined in the <m> and </m> tags? The answer must be a text span from the

Snippet. If you can’t answer the question then respond with "N/A".
URL What is the URL of the [dataset/software] defined in the <m> and </m> tags? The answer must be a text span from the

Snippet. If you can’t answer the question then respond with "N/A".
Provenance Is the [dataset/software] defined in the <m> and </m> tags introduced or created by the authors of the publication in the

snippet above? Answer only using "Yes" or "No".
Usage Is the [dataset/software] defined in the <m> and </m> tags used or adopted by the authors of the publication in the snippet

above? Answer only using "Yes" or "No".
Special QA pairs List all artifacts in the above snippet. Answer with a list of artifacts in the format "artifact_type: artifact_name" separated by

"|" tokens.

Table 10: Modified questions to convert the RA mentions to QA pairs.

49

D Evaluation results of named vs unnamed RA Mentions

In this Appendix, we present a detailed overview of the evaluation results for all models across the
Synthetic, Hybrid, and GARS test sets, categorizing them by named and unnamed RA mentions. The
unnamed RA Mentions do not have "Extraction" scores for the "Name" since there is no name to predict.
Similarly, in the GARS test set tables, specific metrics pertaining to Licence, Version, and URL extraction
do not have a score. This indicates that there is no such metadata in those particular instances.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.918 - - 0.932 - - 0.994 - - 0.995 - -
Name 0.987 0.709 0.835 0.972 0.787 0.900 0.990 0.917 0.962 0.989 0.905 0.952

License 0.947 0.502 0.813 0.944 0.635 0.778 0.958 0.700 0.818 0.961 0.685 0.818
Version 0.688 0.544 0.779 0.944 0.625 0.838 0.985 0.581 0.588 0.989 0.735 0.750

URL 0.617 0.385 0.400 0.980 0.477 0.492 0.984 0.569 0.600 0.983 0.585 0.615
Usage 0.429 - - 0.811 - - 0.910 - - 0.919 - -

Provenance 0.484 - - 0.649 - - 0.941 - - 0.958 - -

Table 11: Experimental results on the named RA mentions of the Synthetic test set.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.534 - - 0.728 - - 0.915 - - 0.933 - -
Name 0.387 - - 0.773 - - 0.925 - - 0.919 - -

License 0.883 - - 0.895 - - 0.919 - - 0.907 - -
Version 0.636 1.000 1.000 0.934 1.000 1.000 0.939 0.815 0.815 0.945 0.852 0.852

URL 0.849 0.091 0.091 0.977 0.909 1.000 0.971 0.909 0.909 0.977 0.909 0.909
Usage 0.154 - - 0.597 - - 0.915 - - 0.899 - -

Provenance 0.713 - - 0.644 - - 0.937 - - 0.966 - -

Table 12: Experimental results on the unnamed RA mentions of the Synthetic test set.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.827 - - 0.879 - - 0.993 - - 0.989 - -
Name 0.977 0.613 0.771 0.949 0.698 0.830 0.968 0.820 0.907 0.975 0.840 0.911

License 0.959 0.502 0.813 0.964 0.635 0.778 0.972 0.700 0.818 0.973 0.685 0.818
Version 0.760 0.544 0.779 0.937 0.625 0.838 0.977 0.581 0.588 0.988 0.735 0.750

URL 0.693 0.362 0.388 0.983 0.438 0.463 0.979 0.487 0.525 0.985 0.525 0.562
Usage 0.340 - - 0.799 - - 0.883 - - 0.917 - -

Provenance 0.454 - - 0.700 - - 0.914 - - 0.947 - -

Table 13: Experimental results on the named RA mentions of the Hybrid dataset test set.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.580 - - 0.721 - - 0.932 - - 0.948 - -
Name 0.422 - - 0.730 - - 0.926 - - 0.930 - -

License 0.923 - - 0.930 - - 0.946 - - 0.938 - -
Version 0.663 1.000 1.000 0.928 1.000 1.000 0.962 0.815 0.815 0.966 0.852 0.852

URL 0.807 0.091 0.091 0.916 0.909 1.000 0.977 0.909 0.909 0.974 0.909 0.909
Usage 0.099 - - 0.637 - - 0.943 - - 0.933 - -

Provenance 0.720 - - 0.554 - - 0.860 - - 0.889 - -

Table 14: Experimental results on the unnamed RA mentions of the Hybrid dataset test set.

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.333 - - 0.696 - - 0.989 - - 0.989 - -
Name 0.951 0.233 0.512 0.897 0.326 0.628 0.868 0.465 0.721 0.951 0.628 0.814

License 0.951 - - 1.000 - - 1.000 - - 1.000 - -
Version 0.822 - - 0.938 - - 0.951 - - 0.964 - -

URL 0.836 1.000 1.000 1.000 1.000 1.000 0.975 0.500 0.500 1.000 1.000 1.000
Usage 0.000 - - 0.738 - - 0.812 - - 0.933 - -

Provenance 0.222 - - 0.947 - - 0.941 - - 0.947 - -

Table 15: Experimental results on the named RA mentions of the GARS test set.

50

Flan T5 base Flan T5 XL LoRA-Sy LoRA-Hy
Identification Extraction Identification Extraction Identification Extraction Identification Extraction

F1 EM LM F1 EM LM F1 EM LM F1 EM LM
Valid 0.462 - - 0.571 - - 0.919 - - 0.947 - -
Name 0.519 - - 0.667 - - 0.919 - - 0.974 - -

License 1.000 - - 1.000 - - 1.000 - - 1.000 - -
Version 0.788 - - 0.974 - - 1.000 - - 1.000 - -

URL 0.824 - - 0.857 - - 1.000 - - 0.974 - -
Usage 0.000 - - 0.583 - - 0.971 - - 0.971 - -

Provenance 0.571 - - 0.000 - - 0.615 - - 0.588 - -

Table 16: Experimental results on the unnamed RA mentions of the GARS test set.

51

E Qualitative Analysis Examples

In this Appendix, we present a collection of QA pairs, along with the results produced by both the
LoRA fine-tuned and Flan-T5 base models. The QA pairs have been thoughtfully selected to support the
qualitative analysis elaborated in Sec. 7.

Snippet We manually collected a remarkable dataset consisting of <m>customer reviews</m> from various e-commerce websites.
This extensive dataset comprises 100,000 reviews encompassing diverse product categories. Researchers can request access
to this dataset by sending an email to alex@abc.com.

Question What is the name of the dataset defined in the <m> and </m> tags?
Answer "N/A"

Flan-T5 Base "100,000 reviews"
Flan-T5 XL "customer reviews"

LoRA-Sy "N/A"
LoRA-Hy "N/A"

Figure 5: Example of a dataset type RA mention, where the LoRA fine-tuned models outperform the original
Flan-T5 models.

Snippet In their study, the authors incorporated various research artifacts. They employed the Apache Spark (v3.1.2) distributed
computing framework and the hadoop (v3.3.1) big data processing <m>platform</m>. Apache Spark, licensed under the
Apache 2.0 license, allowed efficient processing and analysis of large-scale datasets. hadoop, also released under the Apache
2.0 license, provided a robust infrastructure for distributed storage and processing. Those artifacts were instrumental in
handling and analyzing massive amounts of data in their research.

Question What is the name of the software defined in the <m> and </m> tags?
Answer "hadoop"

Flan-T5 Base "Apache Spark"
Flan-T5 XL "Apache Spark (v3.1.2) distributed computing framework and the hadoop (v3.3.1) big data processing m>platform/m>"

LoRA-Sy "hadoop"
LoRA-Hy "hadoop"

Figure 6: Example of a software type RA mention, where the LoRA fine-tuned models outperform the original
Flan-T5 models.

Snippet The first comprehensive pre-trained multilingual model for phoneme representations, also known as <m>XPhoneBERT</m>,
is presented. On the downstream TTS task, XPhoneBERT significantly enhances the strong baseline vits and confirms its
effectiveness.

Question Is the software defined in the <m> and </m> tags introduced or created by the authors of the publication in the snippet
above?

Answer "Yes"
Flan-T5 Base "No"
Flan-T5 XL "Yes"

LoRA-Sy "No"
LoRA-Hy "Yes"

Figure 7: Example of LoRA-Hy model’s success in a provenance QA pair.

Snippet To overcome the issue of accuracy, we present the <m>Sparse-Quantized Representation (SpQR)</m> approach, a new
quantization and compressed format technique that delivers near-lossless compression of LLM models across model scales,
while maintaining similar levels of compression as previous techniques.

Question Is the software defined in the <m> and </m> tags used or adopted by the authors of the publication in the snippet above?
Answer "Yes"

Flan-T5 Base "No"
Flan-T5 XL "No"

LoRA-Sy "No"
LoRA-Hy "Yes"

Figure 8: Example of LoRA-Hy model’s success in a usage QA pair.

52

Snippet To train <m>HeadlineSense</m>, our news headline classification model, we used the News Headlines Dataset, which
consists of headlines from news articles. The dataset is widely used for text classification tasks. It is released under the
Open Data Commons Attribution License (ODC-BY).

Question What is the name of the software defined in the <m> and </m> tags?
Answer "HeadlineSense"

Flan-T5 Base "HeadlineSense"
Flan-T5 XL "HeadlineSense"

LoRA-Sy "HeadlineSense"
LoRA-Hy "headline sense"

Figure 9: Example of a correct prediction of the LoRA-Hy model that was not a text-span from the snippet.

53

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 54–58
December 6, 2023 ©2023 Association for Computational Linguistics

Zelda Rose: a tool for hassle-free training of transformer models

Loïc Grobol
MoDyCo, CNRS, Université Paris Nanterre

Lattice, ENS, CNRS and Université Sorbonne Nouvelle
lgrobol@parisnanterre.fr

Abstract

Zelda Rose is a command line interface for
pretraining transformer-based models. Its pur-
pose is to enable an easy start for users in-
terested in training these ubiquitous models,
but unable or unwilling to engage with more
comprehensive — but more complex — frame-
works and the complex interactions between
libraries for managing models, datasets and
computations. Training a model requires no
code on the user’s part and produce mod-
els directly compatible with the HuggingFace
ecosystem, allowing quick and easy distribu-
tion and reuse. A particular care is given to
lowering the cost of maintainability and future-
proofing, by making the code as modular as
possible and taking advantage of third-party li-
braries to limit ad-hoc code to the strict mini-
mum.

1 Introduction

Since their advent in machine translation (Vaswani
et al., 2017) and as a mean to obtain contextual
word representations (Devlin et al., 2019), trans-
former models have become ubiquitous in Natural
Language Processing. The latter use in particular
is almost impossible to avoid to develop state-of-
the-art NLP systems, the usual workflow being a
self-supervised pretraining step using unannotated
data, followed by a fine-tuning step for a down-
stream task, either as a module in a larger neural
architecture or as an end-to-end predictor.

Using these models and fine-tuning them on
downstream tasks has been made easier by li-
braries such as AllenNLP (Gardner et al., 2018),
FairSeq (Ott et al., 2019), MaChAmp (van der
Goot et al., 2021), Trankit (Nguyen et al., 2021). . .
and most of all Transformers (Wolf et al., 2020).
However, among these, only FairSeq and Trans-
formers provide interfaces to pretrain them.

While these libraries have considerably lowered
the barrier of entry for using these models, produc-

ing new ones remains an involved process. In par-
ticular training existing models on new data is not
trivial, making it hard to develop models for new
languages or specialty domains. This difficulty is
largely due to the number of moving pieces and op-
tions required for training these models with lim-
ited resources in a reasonable time.

Zelda Rose is meant to make pretraining trans-
formers models as simple as possible, in particu-
lar for users who would benefit from being able
to train or refine them on their own specialized
domains, but who are not necessarily interested
in controlling or customizing every possible as-
pect of the training process. This include among
researchers in domains other than NLP, software
engineers in the process of porting existing NLP
tools to new languages, and, generally speaking,
consumers of transformer models as opposed to
researchers interested in improving the models
themselves. It must therefore be a small tool, with
a limited and clearly defined purpose, as easy to
use and cheap to maintain as possible.

To this end, pretraining a transformer model us-
ing Zelda Rose does not require writing any code
(although it is easy to write code to extend its
capability or customize it), but running a simple
command. The configuration is done with entirely
with configuration files and command line options.
It can use any local datasets, models and configu-
rations as well as refer to HuggingFace Hub repos-
itory. It is also transparently compatible with the
SLURM scheduler to make it easier to run on com-
puting clusters.

2 Related works

To our knowledge, only two mainstream libraries
providing interfaces for pretraining transformer
models are FairSeq (Ott et al., 2019) and Trans-
formers (Wolf et al., 2020) (via its Trainer mod-
ule). Both of these are complete frameworks,
providing model implementations, data process-

54

ing tools and training interfaces. While this al-
lows for a complete customization of the architec-
ture of the models and of the training process, it
can makes it less straightforward to train a known
model on new data or to get a precise sense of
what is happening during training, since it requires
an extensive knowledge of their often convoluted
code bases. In other words, while they are essen-
tial tools to build on, they are not necessarily the
most ergonomic for the need of all users. The tight
coupling of their model training utilities with their
library code also makes it hard to extend them, for
instance to make them compatible with new hard-
ware platforms or training techniques.

To avoid these complications, some works (such
as He et al. (2020) for DeBERTa), chose to build
projects entirely around the purpose of training a
single model, writing ad-hoc code more or less
from scratch. This obviates the need for learning
all the details of a specific framework, but is much
more involved in terms of engineering to design
the model and training code, run them and ensure
the reusability of the resulting artifacts. Overall,
this model would not be suitable for the use cases
that we target with Zelda Rose.

Between these two extremes of being com-
pletely integrated in an end-to-end framework or
to build from ad-hoc code, the choice we made
for Zelda Rose is a loose coupling with frame-
works. In practice, this means that users can train
new models by providing a configuration and a
dataset to a command line tool, which trains a
model using only high-level interfaces of third-
party libraries, each specialized in a specific as-
pect. For instance we use Pytorch-Lightning (Fal-
con and The PyTorch Lightning team, 2019) to
manage the training process, while the models im-
plementations come from Transformers, which al-
lows to benefits from all their respective innova-
tions while avoiding being restricted by their limi-
tations.

3 Design

3.1 User interface

From the point of view of a user, Zelda Rose
mainly consists of a command line interface,
which takes parameters related to the model archi-
tecture, task and training configurations and train-
ing platform. In its most basic form, it trains a
model on a masked language task using the same
hyperparameters as Liu et al. (2019):

zeldarose transformer \
--tokenizer roberta_base \
--model-config roberta_base \
--val-text dev_corpus.txt \
train_corpus.txt

The training parameters can be customized by
passing a configuration file in the TOML format.
For instance the default configuration would be

type = "mlm"

[task]
change_ratio = 0.15
mask_ratio = 0.8
switch_ratio = 0.1

[tuning]
batch_size = 64
betas = [0.9, 0.98]
epsilon = 1e-8
learning_rate = 1e-4
lr_decay_steps = 1048567
warmup_steps = 1024
weight_decay = 1e-5

The use of configuration files rather than com-
mand line flags or environment variables help
keeping track of the settings used (they can be di-
rectly redistributed with the models) for documen-
tation and reproduction. They are also easier to
version and to validate (in our case via Pydantic
(Colvin et al., 2023)).

On the other hands, parameters related to the
training platform are given as command line op-
tiuons, since they are specific to each invocation.
For instance --num-devices specifies the number
of devices (GPU, CPU cores. . .) used for a train-
ing run. Other options include the type of devices
to use, the number of nodes to use when running
in SLURM. . .

So far, the tasks implemented are masked lan-
guage modeling (inspired by BERT Devlin et al.
(2019)), replaced token detection (from ELEC-
TRA (Clark et al., 2019) and DeBERTa v3 (He
et al., 2021)) and span-masking denoising (from
mBART (Liu et al., 2020)). Not all hyper-
parameters are configurable and some opinion-
ated choices are made (for instance at this point
the gradient descent algorithm used is AdamW
(Loshchilov and Hutter, 2019)) in order to keep
the configuration space manageable, which sim-

55

plify the choice of a setting for user and reduces
the maintainability burden.

The model configurations given in input refer to
Transformers models, which can be loaded either
from a local file or from a repository on Hugging-
Face Hub1. This allow an easy reference to most
popular models. Users can also ask for the ini-
tialization of their model with already pretrained
weights for post-training (Zhuang et al., 2021),
which has been shown to significantly improve
model performances on domain-specific tasks. Fi-
nally, the outputs of Zelda Rose are Transformers-
compatible models, ready to be loaded in this li-
brary or uploaded to HuggingFace Hub for imme-
diate distribution.

3.2 Internal organization

The library is organized around two main building
blocks: tasks and datasets.

Datasets are managers for collections of sam-
ples, e.g. raw sentences or parallel sentences. They
contain the logic to load (from local files or re-
mote repositories), preprocess (including at least
tokenization, digitization and batching) and serve
batch of samples to the training modules. In or-
der to process large datasets with a limited mem-
ory footprint and enable caching, the data manage-
ment and processing parts currently use of Hug-
gingFace’s Datasets library (Lhoest et al., 2021),
wrapped in regular Pytorch and Pytorch-Lightning
objects to make this transparent to the rest of the
code and reduce the cost of changing this in future
extensions of Zelda Rose.

Tasks are abstractions for the process of —
given a model architecture and a configuration
—, providing an object (in practice a Pytorch-
Lightning training module) that implement the ac-
tual training process: generating targets from the
inputs (for self-supervised tasks), obtain parame-
ters for the optimization algorithm, run training
steps, compute losses and metrics. . . In practice,
since the models used are those implemented in
HuggingFace’s Transformers library (Wolf et al.,
2020), which handles the forward pass and the
loss computations, most tasks only have to spec-
ify target generation, optimization and monitoring-
related parts.

Finally, given a configuration, the main module
loads the appropriate task and dataset, to which it
delegates all task- and data-related aspects, while

1https://huggingface.co/models

taking care of the platform considerations, such
as how many training processes to spawn, which
devices to use and how many sample should they
each process at once, etc. according to the con-
figuration. This architecture allows for a clear
separation of concerns, making adding new tasks
and datasets quite easy. In practice, this is im-
plemented by having the main module build a
Pytorch-Lightning Trainer, which natively deals
with a large number of hardware and training
strategies and is actively maintained to follow the
state of the art, in turn allowing us to benefits from
the latest innovations at a relatively low mainte-
nance cost.

4 Challenges

The main challenge with such a library is its main-
tainability given a limited time budget. Indeed,
while the systematic reliance on third-party li-
braries rather than ad-hoc code as often as possi-
ble lets us benefit from their latest improvement
with very little engineering code a priori, it also
makes Zelda Rose dependent upon them for cor-
rectness and backward compatibility. This means
that every new release of a dependency has to be
checked with great care, as it could be introduc-
ing new bugs and it is often the case that slight
but significant behavior changes go unnoticed or
undocumented.

Undocumented behavior and implementation
details in the dependencies were also a burden for
the initial engineering effort and for subsequent ex-
tension of Zelda Rose (for instance when adding
new tasks). Indeed, for libraries of these sizes and
providing so many functionality, the documenta-
tion does not always follow the speed of bleeding
edge evolutions, and checking their source code di-
rectly is often necessary to ensure that we use their
interfaces correctly.

In other cases it was the lack of support for cer-
tain features required for the reproduction of exist-
ing work (such as embedding tying in the ELEC-
TRA and DeBERTa models) that made reaching
into private interfaces and monkey-patching neces-
sary. While the dynamic nature of these libraries
allow this, it makes part of our code much more
brittle than we would hope for and these parts have
to be checked for correctness with each new re-
lease.

This regular checking of non-regressions is
made harder by the nature of the tool. Since train-

56

https://huggingface.co/models

ing neural networks is not in general deterministic
and since bugs tend to manifest not as outright er-
rors but as degradation in performances, ensuring
that a modification did not introduce a bug can be
challenging. Indeed, it is often the case that such
a degradation would not be observed on toy ex-
amples but only on the larger scale of real world
examples. However, continuously running auto-
mated tests (in a continuous integration pipeline
for instance) at these scales is not realistic, reduc-
ing the safety provided by tests.

Moreover, the complexity of the dependencies
makes unit testing challenging, since it would of-
ten require mocking internals of these libraries.
Automated tests ran as part of the continuous in-
tegration pipeline of Zelda Rose are therefore lim-
ited to so-called smoke tests, which verify if the
tool runs, is able to train model in a variety of
configuration and produces viable output. Non-
regression tests, in contrast, are run manually, by
training a few select models in realistic conditions.
Since these are much more costly, they are only
ran before a new version of Zelda Rose is released.

5 Conclusion

Zelda Rose makes possible it to pretrain trans-
former models with very little effort, even in com-
plex environments. No custom code is needed
to train a model on new data, which should al-
low more people to participate in resource devel-
opment efforts. However, the modular design of
this tool also makes it easy to extend and to inte-
grate future developments in transformer models.

Building upon high level state-of-the-art frame-
works rather than custom engineering allows to
benefit from the latest innovations without too
much maintenance work. It is not without down-
sides as it still requires some work to ensure that
new releases of these dependencies do not intro-
duce bugs and it makes the parts of Zelda Rose
more complex to test individually. Overall, how-
ever, this design choice is still a net gain.

Planned future development in Zelda Rose will
focus on adding more tasks, which will be the oc-
casion to make the design even more modular by
allowing tasks to be external plugins. More efforts
will also be made on the instrumentation and test-
ing, to make the testing process more cumbersome
and add as many checks as possible of the repro-
ducibility of training results. Finally, since the aim
of this tool is to be useful beyond its developers,

future improvements will also in a large part be
guided by the requests of users, which we hope
will be numerous and relevant!

References
Kevin Clark, Minh-Thang Luong, Quoc V. Le, and

Christopher D. Manning. 2019. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. In Proceedings of the 8th Inter-
national Conference on Learning Representations.

Samuel Colvin, Eric Jolibois, Hasan Ramezani, Adrian
Garcia, Terrence Dorsey, and David Montague.
2023. Pydantic.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding
sharing.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-
enhanced BERT with disentangled attention. In Pro-
ceedings of the 2021 International Conference on
Learning Representations.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference

57

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21

on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, On-
line and Punta Cana, Dominican Republic. Associ-
ation for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran
Ben Veyseh, and Thien Huu Nguyen. 2021. Trankit:
A light-weight transformer-based toolkit for multi-
lingual natural language processing. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 80–90, Online. Associa-
tion for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Mas-
sive choice, ample tasks (MaChAmp): A toolkit
for multi-task learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 176–197, Online. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008, Long Beach,
California. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021.
A robustly optimized BERT pre-training approach
with post-training. In Proceedings of the 20th Chi-
nese National Conference on Computational Lin-
guistics, pages 1218–1227, Huhhot, China. Chinese
Information Processing Society of China.

58

https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 59–64
December 6, 2023 ©2023 Association for Computational Linguistics

GPT4All: An Ecosystem of Open Source Compressed Language Models

Yuvanesh Anand
Nomic AI

yuvanesh@nomic.ai

Zach Nussbaum
Nomic AI

zach@nomic.ai

Adam Treat
Nomic AI

adam@nomic.ai

Aaron Miller
Nomic AI

aaron@nomic.ai

Richard Guo
Nomic AI

richard@nomic.ai

Ben Schmidt
Nomic AI

ben@nomic.ai

GPT4All Community
Planet Earth

Brandon Duderstadt∗
Nomic AI

brandon@nomic.ai

Andriy Mulyar∗
Nomic AI

andriy@nomic.ai

Abstract

Large language models (LLMs) have recently
achieved human-level performance on a range
of professional and academic benchmarks. The
accessibility of these models has lagged behind
their performance. State-of-the-art LLMs re-
quire costly infrastructure, are only accessible
via rate-limited, geo-locked, and censored web
interfaces, and lack publicly available code and
technical reports.

In this paper, we tell the story of GPT4All, a
popular open source repository that aims to
democratize access to LLMs. We outline the
technical details of the original GPT4All model
family, as well as the evolution of the GPT4All
project from a single model into a fully fledged
open source ecosystem. It is our hope that
this paper acts as both a technical overview of
the original GPT4All models as well as a case
study on the subsequent growth of the GPT4All
open source ecosystem.

1 Introduction

On March 14 2023, OpenAI released GPT-4, a large
language model capable of achieving human level per-
formance on a variety of professional and academic
benchmarks. Despite the popularity of the release,
the GPT-4 technical report (OpenAI, 2023) contained
virtually no details regarding the architecture, hard-
ware, training compute, dataset construction, or training
method used to create the model. Moreover, users could
only access the model through the internet interface at
chat.openai.com, which was severely rate limited and
unavailable in several locales (e.g. Italy) (BBC News,
2023). Additionally, GPT-4 refused to answer a wide

∗Shared Senior Authorship

variety of queries, responding only with the now infa-
mous "As an AI Language Model, I cannot..." prefix
(Vincent, 2023). These transparency and accessibility
concerns spurred several developers to begin creating
open source large language model (LLM) alternatives.
Several grassroots efforts focused on fine tuning Meta’s
open code LLaMA model (Touvron et al., 2023; McMil-
lan, 2023), whose weights were leaked on BitTorrent
less than a week prior to the release of GPT-4 (Verge,
2023). GPT4All started as one of these variants.

In this paper, we tell the story of GPT4All. We com-
ment on the technical details of the original GPT4All
model (Anand et al., 2023), as well as the evolution of
GPT4All from a single model to an ecosystem of several
models. We remark on the impact that the project has
had on the open source community, and discuss future
directions. It is our hope that this paper acts as both a
technical overview of the original GPT4All models as
well as a case study on the subsequent growth of the
GPT4All open source ecosystem.

2 The Original GPT4All Model

2.1 Data Collection and Curation

To train the original GPT4All model, we collected
roughly one million prompt-response pairs using the
GPT-3.5-Turbo OpenAI API between March 20, 2023
and March 26th, 2023. In particular, we gathered GPT-
3.5-Turbo responses to prompts of three publicly avail-
able datasets: the unified chip2 subset of LAION OIG,
a random sub-sample of Stackoverflow Questions, and
a sub-sample of Bigscience/P3 (Sanh et al., 2021). Fol-
lowing the approach in Stanford Alpaca (Taori et al.,
2023), an open source LLaMA variant that came just be-
fore GPT4All, we focused substantial effort on dataset
curation.

The collected dataset was loaded into Atlas (Nomic,
2023)—a visual interface for exploring and tagging mas-
sive unstructured datasets —for data curation. Using At-

59

las, we identified and removed subsets of the data where
GPT-3.5-Turbo refused to respond, had malformed out-
put, or produced a very short response. This resulted in
the removal of the entire Bigscience/P3 subset of our
data, as many P3 prompts induced responses that were
simply one word. After curation, we were left with a set
of 437,605 prompt-response pairs, which we visualize
in Figure 1a.

2.2 Model Training
The original GPT4All model was a fine tuned variant
of LLaMA 7B. In order to train it more efficiently, we
froze the base weights of LLaMA, and only trained a
small set of LoRA (Hu et al., 2021) weights during the
fine tuning process. Detailed model hyper-parameters
and training code can be found in our associated code
repository1.

2.3 Model Access
We publicly released all data, training code, and model
weights for the community to build upon. Further, we
provided a 4-bit quantized version of the model, which
enabled users to run it on their own commodity hard-
ware without transferring data to a 3rd party service.

Our research and development costs were dominated
by ∼$800 in GPU spend (rented from Lambda Labs and
Paperspace) and ∼$500 in OpenAI API spend. Our final
GPT4All model could be trained in about eight hours
on a Lambda Labs DGX A100 8x 80GB for a total cost
of ∼$100.

2.4 Model Evaluation
We performed a preliminary evaluation of our model
using the human evaluation data from the Self Instruct
paper (Wang et al., 2023). We reported the ground truth
perplexity of our model against what was, to our knowl-
edge, the best openly available alpaca-lora model at the
time, provided by user chainyo on HuggingFace. Both
models had very large perplexities on a small number of
tasks, so we reported perplexities clipped to a maximum
of 100. We found that GPT4All produces stochastically
lower ground truth perplexities than alpaca-lora (Anand
et al., 2023).

3 From a Model to an Ecosystem
3.1 GPT4All-J: Repository Growth and the

implications of the LLaMA License
The GPT4All repository grew rapidly after its release,
gaining over 20000 GitHub stars in just one week, as
shown in Figure 2. This growth was supported by an
in-person hackathon hosted in New York City three days
after the model release, which attracted several hundred
participants. As the Nomic discord, the home of online
discussion about GPT4All, ballooned to over 10000
people, one thing became very clear - there was massive
demand for a model that could be used commercially.

1https://github.com/nomic-ai/gpt4all

The LLaMA model that GPT4All was based on was
licensed for research only, which severely limited the
set of domains that GPT4All could be applied in. As
a response to this, the Nomic team repeated the model
training procedure of the original GPT4All model, but
based on the already open source and commercially li-
censed GPT-J model (Wang and Komatsuzaki, 2021).
GPT4All-J also had an augmented training set, which
contained multi-turn QA examples and creative writing
such as poetry, rap, and short stories. The creative writ-
ing prompts were generated by filling in schemas such
as "Write a [CREATIVE STORY TYPE] about [NOUN]
in the style of [PERSON]." We again employed Atlas
to curate the prompt-response pairs in this data set.

Our evaluation methodology also evolved as the
project grew. In particular, we began evaluating
GPT4All models using a suite of seven reasoning
tasks that were used for evaluation of the Databricks
Dolly (Conover et al., 2023b) model, which was re-
leased on April 12, 2023. Unfortunately, GPT4All-J did
not outperform other prominent open source models on
this evaluation. As a result, we endeavoured to create a
model that did.

3.2 GPT4All-Snoozy: the Emergence of the
GPT4All Ecosystem

GPT4All-Snoozy was developed using roughly the same
procedure as the previous GPT4All models, but with a
few key modifications. First, GPT4All-Snoozy used the
LLaMA-13B base model due to its superior base metrics
when compared to GPT-J. Next, GPT4All-Snoozy incor-
porated the Dolly’s training data into its train mix. After
data curation and deduplication with Atlas, this yielded
a training set of 739,259 total prompt-response pairs.
We dubbed the model that resulted from training on this
improved dataset GPT4All-Snoozy. As shown in Figure
1, GPT4All-Snoozy had the best average score on our
evaluation benchmark of any model in the ecosystem at
the time of its release.

Concurrently with the development of GPT4All, sev-
eral organizations such as LMSys, Stability AI, BAIR,
and Databricks built and deployed open source language
models. We heard increasingly from the community that
they wanted quantized versions of these models for local
use. As we realized that organizations with ever more
resources were developing source language models, we
decided to pivot our effort away from training increas-
ingly capable models and towards providing easy access
to the plethora of models being produced by the open
source community. Practically, this meant spending our
time compressing open source models for use on com-
modity hardware, providing stable and simple high level
model APIs, and supporting a GUI for no code model
experimentation.

3.3 The Current State of GPT4All

Today, GPT4All is focused on improving the accessi-
bility of open source language models. The repository

60

https://github.com/nomic-ai/gpt4all

(a) (b) (c) (d)

Figure 1: TSNE visualizations showing the progression of the GPT4All train set. Panel (a) shows the original
uncurated data. The red arrow denotes a region of highly homogeneous prompt-response pairs. The coloring denotes
which open dataset contributed the prompt. Panel (b) shows the original GPT4All data after curation. This panel,
as well as panels (c) and (d) are 10 colored by topic, which Atlas automatically extracts. Notice that the large
homogeneous prompt-response blobs no longer appearl. Panel (c) shows the GPT4All-J dataset. The "starburst"
clusters introduced on the right side of the panel correspond to the newly added creative data. Panel (d) shows
the final GPT4All-snoozy dataset. All datasets have been released to the public, and can be interactively explored
online. In the web version of this article, you can click on a panel to be taken to its interactive visualization.

Model BoolQ PIQA HellaSwag WinoG. ARC-e ARC-c OBQA Avg.

GPT4All-J 6B v1.0* 73.4 74.8 63.4 64.7 54.9 36 40.2 58.2
GPT4All-J v1.1-breezy* 74 75.1 63.2 63.6 55.4 34.9 38.4 57.8
GPT4All-J v1.2-jazzy* 74.8 74.9 63.6 63.8 56.6 35.3 41 58.6
GPT4All-J v1.3-groovy* 73.6 74.3 63.8 63.5 57.7 35 38.8 58.1
GPT4All-J Lora 6B* 68.6 75.8 66.2 63.5 56.4 35.7 40.2 58.1
GPT4All LLaMa Lora 7B* 73.1 77.6 72.1 67.8 51.1 40.4 40.2 60.3
GPT4All 13B snoozy* 83.3 79.2 75 71.3 60.9 44.2 43.4 65.3
GPT4All Falcon 77.6 79.8 74.9 70.1 67.9 43.4 42.6 65.2
Nous-Hermes (Nous-Research, 2023b) 79.5 78.9 80 71.9 74.2 50.9 46.4 68.8
Nous-Hermes2 (Nous-Research, 2023c) 83.9 80.7 80.1 71.3 75.7 52.1 46.2 70.0
Nous-Puffin (Nous-Research, 2023d) 81.5 80.7 80.4 72.5 77.6 50.7 45.6 69.9
Dolly 6B* (Conover et al., 2023a) 68.8 77.3 67.6 63.9 62.9 38.7 41.2 60.1
Dolly 12B* (Conover et al., 2023b) 56.7 75.4 71 62.2 64.6 38.5 40.4 58.4
Alpaca 7B* (Taori et al., 2023) 73.9 77.2 73.9 66.1 59.8 43.3 43.4 62.5
Alpaca Lora 7B* (Wang, 2023) 74.3 79.3 74 68.8 56.6 43.9 42.6 62.8
GPT-J* 6.7B (Wang and Komatsuzaki, 2021) 65.4 76.2 66.2 64.1 62.2 36.6 38.2 58.4
LLama 7B* (Touvron et al., 2023) 73.1 77.4 73 66.9 52.5 41.4 42.4 61.0
LLama 13B* (Touvron et al., 2023) 68.5 79.1 76.2 70.1 60 44.6 42.2 63.0
Pythia 6.7B* (Biderman et al., 2023) 63.5 76.3 64 61.1 61.3 35.2 37.2 56.9
Pythia 12B* (Biderman et al., 2023) 67.7 76.6 67.3 63.8 63.9 34.8 38 58.9
Fastchat T5* (Zheng et al., 2023) 81.5 64.6 46.3 61.8 49.3 33.3 39.4 53.7
Fastchat Vicuña* 7B (Zheng et al., 2023) 76.6 77.2 70.7 67.3 53.5 41.2 40.8 61.0
Fastchat Vicuña 13B* (Zheng et al., 2023) 81.5 76.8 73.3 66.7 57.4 42.7 43.6 63.1
StableVicuña RLHF* (Stability-AI, 2023) 82.3 78.6 74.1 70.9 61 43.5 44.4 65.0
StableLM Tuned* (Stability-AI, 2023) 62.5 71.2 53.6 54.8 52.4 31.1 33.4 51.3
StableLM Base* (Stability-AI, 2023) 60.1 67.4 41.2 50.1 44.9 27 32 46.1
Koala 13B* (Geng et al., 2023) 76.5 77.9 72.6 68.8 54.3 41 42.8 62.0
Open Assistant Pythia 12B* 67.9 78 68.1 65 64.2 40.4 43.2 61.0
Mosaic MPT7B (MosaicML-Team, 2023) 74.8 79.3 76.3 68.6 70 42.2 42.6 64.8
Mosaic mpt-instruct (MosaicML-Team, 2023) 74.3 80.4 77.2 67.8 72.2 44.6 43 65.6
Mosaic mpt-chat (MosaicML-Team, 2023) 77.1 78.2 74.5 67.5 69.4 43.3 44.2 64.9
Wizard 7B (Xu et al., 2023) 78.4 77.2 69.9 66.5 56.8 40.5 42.6 61.7
Wizard 7B Uncensored (Xu et al., 2023) 77.7 74.2 68 65.2 53.5 38.7 41.6 59.8
Wizard 13B Uncensored (Xu et al., 2023) 78.4 75.5 72.1 69.5 57.5 40.4 44 62.5
GPT4-x-Vicuna-13b (Nous-Research, 2023a) 81.3 75 75.2 65 58.7 43.9 43.6 63.2
Falcon 7b (Almazrouei et al., 2023) 73.6 80.7 76.3 67.3 71 43.3 44.4 65.2
Falcon 7b instruct (Almazrouei et al., 2023) 70.9 78.6 69.8 66.7 67.9 42.7 41.2 62.5

text-davinci-003 88.1 83.8 83.4 75.8 83.9 63.9 51.0 75.7

Table 1: Evaluations of all language models in the GPT4All ecosystem as of August 1, 2023. Code models are not
included. OpenAI’s text-davinci-003 is included as a point of comparison. The best overall performing model in the
GPT4All ecosystem, Nous-Hermes2, achieves over 92% of the average performance of text-davinci-003. Models
marked with an asterisk were available in the ecosystem as of the release of GPT4All-Snoozy. Note that at release,
GPT4All-Snoozy had the best average performance of any model in the ecosystem. Bolded numbers indicate the
best performing model as of August 1, 2023.

61

https://atlas.nomic.ai/map/gpt4all_data_clean
https://atlas.nomic.ai/map/gpt4all_data_clean_without_p3
https://atlas.nomic.ai/map/gpt4all-j-prompts-curated
https://atlas.nomic.ai/map/gpt4all-deduped-prompt

Figure 2: Comparison of the github start growth of GPT4All, Meta’s LLaMA, and Stanford’s Alpaca. We conjecture
that GPT4All achieved and maintains faster ecosystem growth due to the focus on access, which allows more users
to meaningfully participate.

provides compressed versions of open source models
for use on commodity hardware, stable and simple high
level model APIs, and a GUI for no code model ex-
perimentation. The project continues to increase in
popularity, and as of August 1 2023, has garnered over
50000 GitHub stars and over 5000 forks.

GPT4All currently provides native support and
benchmark data for over 35 models (see Figure 1), and
includes several models co-developed with industry part-
ners such as Replit and Hugging Face. GPT4All also
provides high level model APIs in languages includ-
ing Python, Typescript, Go, C#, and Java, among oth-
ers. Furthermore, the GPT4All no code GUI currently
supports the workflows of over 50000 monthly active
users, with over 25% of users coming back to the tool
every day of the week. (Note that all GPT4All user
data is collected on an opt in basis.) GPT4All has be-
come the top language model integration in the popular
open source AI orchestration library LangChain (Chase,
2022), and powers many popular open source projects
such as PrivateGPT (imartinez, 2023), Quiver (StanGi-
rard, 2023), and MindsDB (MindsDB, 2023), among
others. GPT4All is the 3rd fastest growing GitHub
repository of all time (Leo, 2023), and is the 185th most
popular repository on the platform, by star count.

4 The Future of GPT4All

In the future, we will continue to grow GPT4All, sup-
porting it as the de facto solution for LLM accessibil-
ity. Concretely, this means continuing to compress and
distribute important open-source language models de-
veloped by the community, as well as compressing and
distributing increasingly multimodal AI models. Fur-
thermore, we will expand the set of hardware devices
that GPT4All models run on, so that GPT4All models

“just work" on any machine, whether it comes equipped
with Apple Metal silicon, NVIDIA, AMD, or other edge-
accelerated hardware. Overall, we envision a world
where anyone, anywhere, with any machine, can access
and contribute to the cutting edge of AI.

Limitations

By enabling access to large language models, the
GPT4All project also inherits many of the ethical con-
cerns associated with generative models. Principal
among these is the concern that unfiltered language
models like GPT4All enable malicious users to generate
content that could be harmful and dangerous (e.g., in-
structions on building bioweapons). While we recognize
this risk, we also acknowledge the risk of concentrating
this technology in the hands of a limited number of in-
creasingly secretive research groups. We believe that
the risk of concentrating the benefits of language model
technology in the hands of a small number of people
significantly outweighs the risk of misuse, and hence
we prefer to make the technology as widely available as
possible.

Finally, we realize the challenge in assigning credit
for large-scale open source initiatives. We make a first
attempt at fair credit assignment by explicitly includ-
ing the GPT4All open source developers as authors on
this work, but recognize that this is insufficient fully
characterize everyone involved in the GPT4All effort.
Furthermore, we acknowledge the difficulty in citing
open source works that do not necessarily have standard-
ized citations, and do our best in this paper to provide
URLs to projects whenever possible. We encourage
further research in the area of open source credit as-
signment, and hope to be able to support some of this
research ourselves in the future.

62

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-

shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Yuvanesh Anand, Zach Nussbaum, Brandon Duder-
stadt, Benjamin Schmidt, and Andriy Mulyar. 2023.
Gpt4all: Training an assistant-style chatbot with
large scale data distillation from gpt-3.5-turbo.
https://github.com/nomic-ai/gpt4all.

BBC News. 2023. Chatgpt banned in italy over privacy
concerns. BBC News.

Stella Biderman, Hailey Schoelkopf, Quentin An-
thony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Puro-
hit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal.
2023. Pythia: A suite for analyzing large language
models across training and scaling.

Harrison Chase. 2022. langchain. https://github.
com/langchain-ai/langchain.

Mike Conover, Matt Hayes, Ankit Mathur, Xiangrui
Meng, Jianwei Xie, Jun Wan, Ali Ghodsi, Patrick
Wendell, and Matei Zaharia. 2023a. Hello dolly:
Democratizing the magic of chatgpt with open mod-
els.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023b. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

imartinez. 2023. privategpt. https://github.com/
imartinez/privateGPT.

Oscar Leo. 2023. GitHub: The Fastest Growing Repos-
itories of All Time.

Robert McMillan. 2023. A meta platforms leak put
powerful ai in the hands of everyone. The Wall
Street Journal.

MindsDB. 2023. Mindsdb. https://github.com/
mindsdb/mindsdb. GitHub repository.

MosaicML-Team. 2023. Introducing mpt-7b: A new
standard for open-source, commercially usable llms.
Accessed: 2023-08-07.

Nomic. 2023. Atlas. https://atlas.nomic.ai/.

Nous-Research. 2023a. gpt4-x-vicuna-13b.
https://huggingface.co/NousResearch/
gpt4-x-vicuna-13b. Model on Hugging Face.

Nous-Research. 2023b. Nous-hermes-13b.
https://huggingface.co/NousResearch/
Nous-Hermes-13b. Model on Hugging Face.

Nous-Research. 2023c. Nous-hermes-llama-2-7b.
https://huggingface.co/NousResearch/
Nous-Hermes-llama-2-7b. Model on Hugging
Face.

Nous-Research. 2023d. Redmond-puffin-13b.
https://huggingface.co/NousResearch/
Redmond-Puffin-13B. Model on Hugging Face.

OpenAI. 2023. Gpt-4 technical report.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Ab-
heesht Sharma, Andrea Santilli, Thibault Fevry, Ja-
son Alan Fries, Ryan Teehan, Stella Biderman, Leo
Gao, Tali Bers, Thomas Wolf, and Alexander M.
Rush. 2021. Multitask prompted training enables
zero-shot task generalization.

Stability-AI. 2023. Stablelm. https://github.com/
Stability-AI/StableLM. GitHub repository.

StanGirard. 2023. quivr. https://github.com/
StanGirard/quivr. GitHub repository.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023.
Llama: Open and efficient foundation language
models.

The Verge. 2023. Meta’s powerful ai language model
has leaked online — what happens now? The Verge.

James Vincent. 2023. As an ai generated language
model: The phrase that shows how ai is polluting
the web. The Verge.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B:
A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax.

63

https://github.com/nomic-ai/gpt4all
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://github.com/imartinez/privateGPT
https://github.com/imartinez/privateGPT
https://levelup.gitconnected.com/github-the-fastest-growing-repositories-of-all-time-f9884eb79e9
https://levelup.gitconnected.com/github-the-fastest-growing-repositories-of-all-time-f9884eb79e9
https://www.wsj.com/articles/a-meta-platforms-leak-put-powerful-ai-in-the-hands-of-everyone-8b9f875a
https://www.wsj.com/articles/a-meta-platforms-leak-put-powerful-ai-in-the-hands-of-everyone-8b9f875a
https://github.com/mindsdb/mindsdb
https://github.com/mindsdb/mindsdb
https://atlas.nomic.ai/
https://atlas.nomic.ai/
https://huggingface.co/NousResearch/gpt4-x-vicuna-13b
https://huggingface.co/NousResearch/gpt4-x-vicuna-13b
https://huggingface.co/NousResearch/Nous-Hermes-13b
https://huggingface.co/NousResearch/Nous-Hermes-13b
https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
https://huggingface.co/NousResearch/Redmond-Puffin-13B
https://huggingface.co/NousResearch/Redmond-Puffin-13B
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
https://github.com/Stability-AI/StableLM
https://github.com/Stability-AI/StableLM
https://github.com/StanGirard/quivr
https://github.com/StanGirard/quivr
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/4/25/23697218/ai-generated-spam-fake-user-reviews-as-an-ai-language-model
https://www.theverge.com/2023/4/25/23697218/ai-generated-spam-fake-user-reviews-as-an-ai-language-model
https://www.theverge.com/2023/4/25/23697218/ai-generated-spam-fake-user-reviews-as-an-ai-language-model
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Eric J. Wang. 2023. alpaca-lora. https://github.
com/tloen/alpaca-lora. GitHub repository.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023. Self-instruct: Aligning lan-
guage models with self-generated instructions.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

64

https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 65–77
December 6, 2023 ©2023 Association for Computational Linguistics

Kani : A Lightweight and Highly Hackable Framework for
Building Language Model Applications

Andrew Zhu∗, Liam Dugan∗, Alyssa Hwang, Chris Callison-Burch
University of Pennsylvania

{andrz,ldugan,ahwang16,ccb}@seas.upenn.edu

Abstract

Language model applications are becoming in-
creasingly popular and complex, often includ-
ing features like tool usage and retrieval aug-
mentation. However, existing frameworks for
such applications are often opinionated, decid-
ing for developers how their prompts ought
to be formatted and imposing limitations on
customizability and reproducibility. To solve
this we present Kani: a lightweight, flexible,
and model-agnostic open-source framework for
building language model applications. Kani
helps developers implement a variety of com-
plex features by supporting the core building
blocks of chat interaction: model interfacing,
chat management, and robust function calling.
All Kani core functions are easily overridable
and well documented to empower developers
to customize functionality for their own needs.
Kani thus serves as a useful tool for researchers,
hobbyists, and industry professionals alike to
accelerate their development while retaining
interoperability and fine-grained control.

1 Introduction

We introduce Kani, an open-source1 framework
for building language model (LM) applications.
Kani takes care of the basics of chat interaction—
querying models, managing chat history, and call-
ing external functions—allowing developers to
write robust application code that is interoperable
across any underlying language model. From this
minimal base, developers can easily override the
core features to implement more complex function-
ality like retrieval, web hosting, dynamic model
routing, and tool usage tracking.

Unlike existing frameworks, Kani is lightweight
and highly hackable, allowing developers to control
their prompts, customize their models, and handle

∗Equal contribution.
1Kani is available at https://github.com/zhudotexe/

kani, free for use under the MIT license.

It’s 22 degrees
Celsius and

sunny in Tokyo
right now.

?

?

.

Chat History

...
Engine

Function Context
def get_weather(location: str)
def fahren_to_celsius(deg: int)
...

 What’s the
weather like in
Tokyo?

Kani

Figure 1: Kani is a lightweight and flexible framework
that tracks chat history, calls inference engines, and man-
ages callable functions in an un-opinionated manner—
allowing researchers and developers to implement cus-
tom functionality easily and quickly.

errors with ease. Our design philosophy is minimal-
ist implementation with maximalist documentation:
we implement a small number of universally use-
ful core features while providing more complex
application-specific examples in documentation.

Kani is appealing to a wide range of develop-
ers. Hobbyists can get started with models like
GPT-4, LLaMA v2, and Vicuna with as few as five
lines of code. Industry professionals will enjoy the
added robustness of automatic chat management
and function retrying. Finally, researchers can ap-
preciate the improved reproducibility afforded by
fine-grained control over prompting.

In this paper we provide a quick-start guide for
developing with Kani (Section 2), an overview of
our philosophy with comparisons to other frame-
works (Sections 3-4), and a detailed tutorial on how
to build more complex applications (Sections 5-8).

2 Getting Started with Kani

Let’s start by discussing the basics of installing
and querying language models with Kani. To start,
Kani requires Python 3.10+ and is installed via pip.

65

https://github.com/zhudotexe/kani
https://github.com/zhudotexe/kani

Platform Engine Extra

ChatGPT OpenAIEngine openai
GPT-4 OpenAIEngine openai
HuggingFace HuggingEngine huggingface
LLaMA v2 LlamaEngine llama
Vicuna v1.3 VicunaEngine llama
ctransformers CTransformersEngine ctransformers
LLaMA v2 LlamaCTransformersEngine ctransformers

Table 1: The list of models and engines included in Kani
with associated pip extras to add when installing. For
example, to install Kani with support for HuggingFace
Transformers, use pip install 'kani[huggingface]'.

$ pip install kani

This command will install the core Kani depen-
dencies. In order to use our pre-built engine classes
for HuggingFace or OpenAI (Table 1), you must
also include one or more “extras” with your pip
installation command.

$ pip install kani[openai]

In Figure 2 we provide a minimal example to
quickly get started with Kani in only five lines
of code. We initialize the OpenAIEngine with
our OpenAI API key, pass it into a new Kani
object, and chat with the Kani using the built-in
chat_in_terminal() function. With this, novice
and advanced developers alike are able to easily
query a variety of language models through Kani.

3 Conceptual Overview

3.1 What is the Kani object?
The main atomic unit of processing in our frame-
work is the titular Kani.2 When developing appli-
cations with Kani you will mostly be spawning and
manipulating different Kani objects. A Kani object
consists of the following three parts:

1. Inference Engine: The underlying language
model and associated framework.

2. Chat History: The state of the conversation
including system prompts.

3. Function Context: The list of available
callable functions, if any.

To initialize a Kani all you need to pass in is an
inference engine—the chat history will default to
an empty list and callable functions are optional.

2Kani (カニ) is Japanese for “crab”. *snip snip*

from kani import Kani, chat_in_terminal

from kani.engines.openai import OpenAIEngine

engine = OpenAIEngine(api_key, model="gpt-4")

ai = Kani(engine)

chat_in_terminal(ai)

Figure 2: A basic example showing how to initialize
a Kani object and chat with GPT-4 (OpenAI, 2023) in
only three lines of code.

3.2 What does a Kani object do?

When designing Kani, we wanted to implement the
minimal set of features that allowed for the largest
amount of flexibility and customization. Follow-
ing this design principle, a Kani object does the
following three things:

1. Interfaces with Models: Kani queries LMs
via inference engines, allowing developers to
swap models without editing the application.

2. Manages Chat History: Kani tracks the to-
ken counts and turns of the conversation en-
suring that models never exceed their context.

3. Exposes and Calls Functions: Kani exposes
functions to models, validates function calls,
runs code, and returns output back to the infer-
ence engine. Kani also propagates all errors
back to the model to allow for auto-retrying of
failed function calls ensuring that such calls
are robustly implemented.

This core is flexible and minimalist, allowing
for a wide array of emergent capabilities while
simultaneously optimizing for robustness and scal-
ability. For example, you can create a Kani that
calls a retrieval function to augment its chat re-
sponses, following Lewis et al. (2020), or a Kani
that dynamically routes queries to different engines.
All core functions of the Kani base class are asyn-
chronous by default, allowing for easy web hosting
and responsive applications.

3.3 Where does Kani fit in the LM Stack?

In Figure 3 we lay out our categorization of LM ap-
plication libraries into four distinct layers: Model,
Engine, Control, and Application. In this sub-
section, we will give a brief overview of what each
component of the stack accomplishes to help bet-
ter contextualize how Kani fits in to the broader
ecosystem of tools.

66

Model

Application

Control

Engine

Kani LangChain simpleaichat

LMQL Guidance

PyTorch

HuggingFace CTransformers OpenAI

(opt.)

JAX TensorFlow GGML

Figure 3: The different layers of the modern LM ap-
plication stack. Kani sits at the Application layer and
is simpler and more flexible than the competing frame-
works. Additionally, Kani supports the usage of any
lower level control or engine library, allowing develop-
ers to use their favorite frameworks alongside Kani.

Model Layer. In this layer, LM libraries assist
with low-level procedures like matrix operations
and hardware acceleration. Examples include Py-
Torch (Paszke et al., 2019), TensorFlow (Abadi
et al., 2016), and JAX (Bradbury et al., 2018). Kani
is agnostic to the underlying model implementation
so all Model libraries are compatible.

Engine Layer. Libraries like HuggingFace (Wolf
et al., 2020) and OpenAI (OpenAI, 2022) in this
layer manage elements of model inference such as
sampling strategies and tokenization. Kani is inter-
operable across any Engine library by extending
the BaseEngine class (see Section 7). In an era
characterized by an ever-changing state of the art,
the ability to easily swap Engines without changing
the application code is invaluable.

Control Layer. Libraries in this optional layer
handle complex control logic like dynamic prompt
branching and tabular data prediction. Control li-
braries include LMQL (Beurer-Kellner et al., 2023)
and Guidance (Lundberg et al., 2023). Kani sup-
ports these libraries and can be configured to dy-
namically route queries on its own (see Section
8.1), allowing for more robust inference.

Application Layer. In the final layer, LM li-
braries provide the highest level of functionality by
managing chat history, compiling prompts, creating
function contexts, and handling errors. Examples
of Application libraries include LangChain (Chase
et al., 2022), simpleaichat (Woolf et al., 2023), and,
of course, Kani. Kani provides a more flexible,
interoperable, and streamlined experience to help
any developer build LM applications.

Kani simpleaichat LangChain

Size (in MB) 13 26 156
Dependencies 2 8 12

Lightweight
Chat Management
Function Retry
Model-Agnostic
Un-opinionated
Extensive Docs

Table 2: A feature comparison between Kani and com-
peting frameworks. Kani is the only package that in-
cludes function retrying and chat management while
still being lightweight and un-opinionated.

4 Framework Comparison

In this section, we compare Kani with simpleaichat
(Woolf et al., 2023) and LangChain (Chase et al.,
2022) to highlight Kani’s strengths (see Table 2).

Lightweight. Kani is minimalist in both function-
ality and footprint: we implement essential features
with fewer dependencies and less library-specific
tooling while accomplishing more (see Table 2).
Paired with our detailed documentation, Kani’s
lean and efficient core of features allows develop-
ers to start easily and grow rapidly.

Chat History Management. Unlike our contem-
poraries, Kani automatically tracks token counts
and ensures that the maximum context length is
never exceeded—letting developers focus on more
exciting parts of their applications. Kani also lets
developers easily customize this behavior by over-
riding Kani.get_prompt() (see Section 7.1).

Robust Function Calling. In contrast to other
frameworks, Kani guarantees that function calls
are valid by the time they reach developers’ Python
code. If a model calls a function incorrectly, Kani
automatically provides feedback to the model and
allows it to try again or follows developers’ custom
error handling (see Sections 6.4 and 7.3).

Model-Agnostic. Kani provides a straightfor-
ward interface to use and interchange any model.
Developers can easily swap models without alter-
ing their source code, simplifying the process of
switching models as newer ones are released.

Un-opinionated Prompting. Unlike our con-
temporaries, Kani does not modify developers’
prompts under the hood (see Figure 4). We instead
give developers full control to override and con-

67

"Hello GPT!"
In

pu
t

Co
de

Pr
om

pt

ai = Kani(OpenAIEngine())
await ai.chat_round("Hello GPT!")

ai = AIChat(console=False)
ai("Hello GPT!")

[{"role": "system", "content":

chat = ChatOpenAI()
ai = ConversationChain(llm=chat)
ai.run("Hello GPT!")

Li
br

ar
y

[{"role": "user", "content": Hello GPT!}] [{"role": "user", "content":

The following is a friendly
conversation between a human and an
AI. The AI is talkative and
provides lots of specific details
from its context. If the AI does
not know the answer to a question,
it truthfully says it does not know.
Current conversation:
Human: Hello GPT!
AI:}]

{"role": "user", "content":

Hello GPT!}]

You must follow ALL these
rules in all responses:
- You are the following

character and should ALWAYS
act as them: ChatGPT

- NEVER speak in a formal tone.
- Concisely introduce yourself

first in character.},

Hello GPT!

LangChainsimpleaichatKani (ours)

Figure 4: A comparison of prompting behavior between Kani and other competing frameworks. Kani does not edit
developers’ prompts under the hood in unexpected ways and allows for full control over what is passed to the model.

struct prompts themselves, leading to more robust,
transparent, and reproducible source code.

Extensive Documentation. Kani provides thor-
ough and up-to-date documentation3 on core li-
brary features with a particular focus on customiz-
ability. Our docs go beyond basic descriptions of
features by including numerous examples of com-
plex applications and guides on how to override
and customize default behaviors.

5 Developing Applications with Kani

Now that we understand Kani’s place in the broader
ecosystem of tools, we will dive deeper into exactly
how to develop LM applications with Kani.

5.1 The Chat History

Kani interacts with the user through ChatMessage
objects, which are tracked in the chat history:

>>> chat_in_terminal(ai, rounds=1)

USER: Hello Kani!

AI: Hello! How can I help?

>>> ai.chat_history

[ChatMessage(role=ChatRole.USER,

content="Hello Kani!"),

ChatMessage(role=ChatRole.ASSISTANT,

content="Hello! How can I help?")]

Following the OpenAI convention, each mes-
sage contains the role (system, assistant, user, or

3https://kani.readthedocs.io/

function) and content of the message.4 Kani will
pass in as much of this chat history as the engine’s
context window can hold as a default, which can
be easily overridden (see Section 7). The chat his-
tory can also be saved or loaded in JSON format
with Kani.save() and Kani.load() for ultimate
control over the conversation context.

5.2 Prompting

Kani queries the underlying language model by
providing a prompt, which is made of four parts:

1. System Prompt (optional): Content specifi-
cally for the system role that typically defines
high-level instructions for model responses.

2. Persistent Messages (optional): Content that
always appears at the top of the context win-
dow and will never be truncated.

3. Chat History: The most recent messages that
have not exceeded the context length.

4. User Message: The current user input.

The bulk of chat application interactions are a
combination of these four components. For exam-
ple, the system prompt can define a chatbot persona
and the persistent messages can include a set of
few-shot examples in the context (see Figure 5).

A system prompt and list of persistent mes-
sages can be passed into the Kani constructor
at initialization: Kani(engine, system='...',
always_included_messages=[...]). You can

4Optionally, a user message can also contain a name (for
multi-user conversations), and an assistant message can con-
tain a function_call (discussed in Section 6).

68

https://kani.readthedocs.io/

shots = [ChatMessage.user("thank you"),

ChatMessage.assistant("arigato"),

ChatMessage.user("good morning"),

ChatMessage.assistant("ohayo")]

ai = Kani(engine, always_included_messages=shots)

chat_in_terminal(ai)

USER: crab

AI: kani

Figure 5: A basic example showing how to initialize a
Kani with a few-shot prompt (Brown et al., 2020). We
can see that the Kani obeys the pattern and continues to
translate English to Japanese in the chat session despite
never being explicitly prompted to do so.

also define custom prompt behavior by overriding
Kani.get_prompt() (see Section 7.1).

5.3 Writing a Kani Application

So far we have interacted with Kani exclusively
through chat_in_terminal(). While this func-
tion is useful for testing, when building applica-
tions you may want to intercept the model output
for logging, content filtering, or any other operation
before serving it to the user. This can be done with
Kani.chat_round()5, which executes one turn of
the conversation and returns a ChatMessage from
the system or assistant. We can then complete ad-
ditional tasks and return the finalized response to
the user, as demonstrated in Figure 6.

6 Function Calling

Until this point, Kani objects had no abilities be-
yond text generation. Function calling (or “tool
usage”) makes Kani objects even more powerful as
intelligent assistants.

6.1 What is Function Calling?

Function calling is the process of a model au-
tonomously deciding to call a set of developer-
defined functions. Models that have been fine-
tuned to support function calling typically allow
developers to provide function headers and doc-
strings in the prompt. When appropriate, the model
will indicate that a certain function should be run
with the given parameters in a JSON request. The
developer then needs to receive this request, run

5Kani.chat_round() is an asynchronous method. This
means that applications do not have to wait on it to finish
and can instead perform other tasks while responses are being
generated. To call these functions you must await them from
an asynchronous context such as asyncio.run().

def is_toxic(message):

... Run toxicity detection

async def chat_with_toxicity_filter(ai):

while True:

user_message = input("USER: ")

message = await ai.chat_round(user_message)

if is_toxic(message.content):

message.content = "<Removed>"

print("AI:", message.content)

ai = Kani(OpenAIEngine(api_key, model="gpt-4"))

asyncio.run(chat_with_toxicity_filter(ai))

Figure 6: An example showing how to use Kani with
additional output parsing. We query the engine using the
Kani.chat_round() function and filter out toxic content.

the specified function with their own resources, and
return the output back to the model. Without Kani,
developers usually need to define and maintain their
own logic to handle these requests.

Giving language models access to callable func-
tions allows them to hook into various tools, like
sending text messages, browsing the web, or creat-
ing a calendar event. Kani provides easy ways to
document functions and handle errors, which let de-
velopers focus on writing full-featured applications
without the fuss of tedious boilerplate.

6.2 Function Calling with Kani

There are two ways to create a Kani with func-
tion calling capabilities. One way is to load them
statically by making a subclass of the Kani base
class and writing your functions as class methods
with the @ai_function() decorator (see Figure 7).
The other way to incorporate function calling is
to load the functions dynamically by passing them
in a list to the Kani constructor when instantiat-
ing a Kani base class or subclass (see Appendix
D). Querying a function-calling-enabled Kani is
similar to what we have previously seen, except
that Kani.full_round() should be used instead
of Kani.chat_round().6

6.3 Documenting a Function

Kani functions must be documented with native
Python type annotations7 and docstrings (triple-
quoted strings immediately following a function

6https://kani.readthedocs.io/en/latest/api_
reference.html#kani.Kani.full_round

7We support primitive, compound, and enum Python types.

69

https://kani.readthedocs.io/en/latest/api_reference.html#kani.Kani.full_round
https://kani.readthedocs.io/en/latest/api_reference.html#kani.Kani.full_round

class Unit(enum.Enum):

FAHRENHEIT = "fahrenheit"

CELSIUS = "celsius"

class WeatherKani(Kani):

@ai_function()

def get_weather(self, loc: Annotated[str,

AIParam(desc="The desired city")], unit: Unit):

"""Get the weather in a given location."""

... Query some weather API

return weather

chat_in_terminal(WeatherKani(engine))

USER: What's the weather in San Francisco?

AI: Thinking (get_weather)...

AI: It's currently 72F in San Francisco.

Figure 7: An example showing how to create a sub-
class of the base Kani and expose a function with
@ai_function. Functions are given type annotations,
triple-quoted docstrings, and AIParam descriptions to
indicate to the model how they should be used.

definition). You can optionally describe parameters
even further by providing an AIParam annotation.

Proper function documentation not only helps
language models use functions but also allows Kani
to validate that a function is being called properly.
For functions with proper type annotations, Kani
guarantees that all parameters are of the correct
type before they reach your code. This feature is
unique to Kani and allows for considerably more
robust function calling.

6.4 Retry & Model Feedback

When a function call returns an error, Kani will
raise one of the following exception types:

• NoSuchFunction: The requested function
was hallucinated and does not exist.

• WrappedCallException: The requested
function raised an exception during execution.

• TypeError: The function exists, but the
model hallucinated parameters that do not.

• ValidationError: The parameter names exist,
but the model got the data types wrong.

If the model calls a function incorrectly, Kani
will give it feedback by adding the error mes-
sage to the chat history. This gives the model a
chance to correct itself by retrying the call with
new arguments or another function. Developers
can customize the retry behavior or error messages

class AmnesiaKani(Kani):

async def get_prompt(self):

return self.always_included_messages

+ self.chat_history[-2:]

chat_in_terminal(AmnesiaKani(engine))

USER: Hi kani! My name is Andrew.

AI: Hello Andrew! How can I assist you today?

USER: What does "kani" mean in Japanese?

AI: "Kani" in Japanese means "Crab".

USER: What is my name?

AI: As an AI, I don't have access to that data.

Figure 8: A example showing how to customize the
default get_prompt() function to only include the most
recent two messages in the model prompt.

with the handle_function_call_exception()
method (see Section 7.3). By anticipating common
errors and automatically retrying function calls,
Kani helps developers build more robust applica-
tions without the extra effort.

7 Customization

Kani is built on the philosophy that the developer
should be in control of every aspect of an applica-
tion. To accomplish this, Kani allows you to over-
ride and customize virtually all default behaviors
of the library code. In this section we will briefly
go over some common customizations developers
may want to make.

7.1 Customizing the Prompt

Kani allows developers to control exactly what is
being exposed to the language model by customiz-
ing the prompt builder. This can best be done by
overriding the Kani.get_prompt() function.

In Figure 8 we show how you can customize
the Kani.get_prompt() function to include only
the most recent two messages, but this is just the
tip of the iceberg. With custom prompt builders,
developers can implement anything from dynamic
prompt templating to fine-grained LMQL-style con-
trol prompts (see Appendix B).

7.2 Implementing a Custom Engine

Kani interacts with language models through En-
gines. While Kani comes pre-packaged with a few
starter engines, developers are encouraged to im-
plement their own custom engines to adapt new
language models or inference libraries for use with

70

class CustomExceptionKani(Kani):

async def handle_function_call_exception(

self, call, err, attempt):

self.chat_history.append(ChatMessage.system(

"The call encountered an error. Relay"

f"it to the user sarcastically: {err}"))

return attempt < self.retry_attempts

@ai_function()

def get_time(self):

"""Get the current time."""

raise RuntimeError("The API is offline")

chat_in_terminal(CustomExceptionKani(engine))

USER: What time is it?

AI: Thinking (get_time)...

AI: Well, it seems like our handy-dandy time

API decided to take a coffee break...

Figure 9: A example showing how to customize the
Kani.handle_function_call_exception() function to
return errors to the user in a sarcastic manner.

Kani. To create an engine, you must subclass the
BaseEngine class. A new engine must implement:

1. BaseEngine.message_len(): Takes as in-
put a ChatMessage and returns the token
length of the message.

2. BaseEngine.predict(): Takes in a list of
ChatMessage and returns a new Completion.

3. BaseEngine.max_context_size: Specifies
the model’s maximum token context length.

Optionally, you can also choose to imple-
ment BaseEngine.close() to clean up resources
or BaseEngine.function_token_reserve() if
your engine needs to reserve some tokens for func-
tions. Kani also comes with a few extra base classes
and utilities to help you quickly build engines for
models on HuggingFace (Wolf et al., 2020) (See
Appendix E) or with an available HTTP API.8

7.3 Custom Error Handling
Kani calls handle_function_call_exception()
whenever it encounters an error from a function.
In Figure 9, we provide an example of overriding
this function to tell our model to return function
errors to the user in a sarcastic tone. While this
is just a fun example, custom error messages can

8Built an engine for a popular model Kani doesn’t sup-
port yet? Kani is open-source and greatly appreciates PRs
with engine implementations for the latest models—see the
contribution page in our documentation.

class KaniWithSummary(Kani):

@ai_function()

async def summarize_conversation(self):

"""Get the summary of the conversation."""

long_context_engine = OpenAIEngine(api_key,

model="gpt-4-32k")

sub_kani = Kani(long_context_engine,

chat_history=self.chat_history[:-2])

summary = await sub_kani.chat_round(

"Please summarize the conversation so far.")

return summary.content

chat_in_terminal(KaniWithSummary(engine))

USER: Tell me about trains.

AI: Trains are modes of long-distance transport

[Multiple turns of conversation...]

USER: Summarize the conversation.

AI: Thinking (summarize_conversation)...

AI: Our chat began with a general overview

about trains and how railway systems work...

Figure 10: A example showing how to use sub-kani
spawning to dynamically resize the context window of
the model depending on a user query. Note that the base
"gpt-4" kani spawns a "gpt-4-32k" sub-kani in order to
capture the full conversation for summarization.

and often do serve a more utilitarian purpose by
helping models retry functions more effectively.

8 Advanced Usage

In this section, we’ll look at some more advanced
examples. For each of these use cases, we provide
the full implementation in the GitHub repository.9

8.1 Sub-Kanis
When used in conjunction with function call-
ing, Kani can choose to spawn “sub-Kani”—self-
contained “agents” capable of performing their own
tasks then reporting to the parent with their results.

For example, you might have the parent Kani
use a cheaper, faster model with a smaller context
length. If you need it to perform a task that requires
more context, you can spawn a sub-Kani using a
more expensive, slower model with a larger context.
In Figure 10, we show how you can spawn a sub-
Kani inside a callable function and copy the chat
history to accomplish this.

Of course, the sub-Kani you spawn doesn’t have
to be a vanilla Kani—you could imagine having
multiple different Kani types with different sets of

9https://github.com/zhudotexe/kani/tree/main/
examples

71

https://kani.readthedocs.io/en/latest/contributing.html
https://github.com/zhudotexe/kani/tree/main/examples
https://github.com/zhudotexe/kani/tree/main/examples

class WikipediaKani(Kani):

@ai_function()

async def wikipedia(self, title: Annotated[

str, AIParam(desc='The article title')]):

"""Get information from Wikipedia."""

if page := await wikipedia_client.get(title):

return page

return f"Page {title!r} does not exist"

@ai_function()

async def search(self, query: str):

"""Find article titles given a query."""

titles = await wikipedia_client.search(query)

return json.dumps(titles)

chat_in_terminal(WikipediaKani(engine))

USER: Tell me about the Tokyo Yamanote line.

AI: Thinking (search)...

AI: Thinking (wikipedia)...

AI: The Yamanote is a loop service in Tokyo...

Figure 11: A example showing how to make a retrieval
agent in Kani using custom AI function declarations.
The WikipediaKani exposes the two functions (search()
and wikipedia()) to the model which then calls both in
order to retrieve the page for generation.

functions or engines, each capable of performing
their own specialized tasks.

8.2 Retrieval

Language models can be augmented with an exter-
nal factual database that they can retrieve informa-
tion from, allowing them to access more relevant
and up-to-date information without having to re-
train on more recent events.

In Figure 11, we demonstrate how Kani’s func-
tion calling can be used to retrieve information
from a data source like Wikipedia. Since retrieved
articles might be longer than the model’s maxi-
mum context window, you may want to combine
this with the previous summarization example for
maximum efficacy.

8.3 Hosting a Kani Online

What if you want to host a web service to allow
users to chat with a Kani online? In Figure 12, we
show how you can host and connect to a Kani on a
webserver using a WebSocket connection.

We use FastAPI10 to run this webserver. To
connect to our server, we can use any client that

10https://fastapi.tiangolo.com/

engine = OpenAIEngine(api_key, model="gpt-4")

app = FastAPI()

@app.websocket("/chat")

async def kani_chat(websocket: WebSocket):

await websocket.accept()

ai = Kani(engine)

while True:

data = await websocket.receive_text()

resp = await ai.chat_round(data)

await websocket.send_text(resp.content)

Figure 12: A example showing how to host and query
Kani on the web using FastAPI and WebSockets.

supports WebSockets, like Insomnia.11 Web frame-
works like FastAPI and Flask 2 allow route meth-
ods to be asynchronous, meaning you can await a
Kani method from within your route method with-
out needing to call asyncio.run().

9 Conclusion

In this paper we presented Kani, a lightweight
and highly customizable framework for building
chat applications. At its core, Kani lets developers
use the same application code across all language
model backends and robustly implements conve-
nient quality-of-life features like chat history man-
agement, function validation, and error handling.

We believe that the design of our tools is as
important as the tools themselves. Well-designed
tools impose far less friction when using them, free-
ing up developers’ hands from fighting bugs and
racking up tech debt. This is especially important
now that the LLM landscape is so turbulent with
new and improved models being released more of-
ten than ever. Kani offloads the burden of tedious
language model management without locking de-
velopers into onerous default paradigms, giving
developers back control over their applications—
hopefully making the landscape a bit less turbulent.

Limitations

One limitation of the Kani framework is that not
all models are natively chat models. Given our
design decision to maintain the internal state as
a chat, with such attributes as roles and system
prompts present, implementing interfaces for tradi-
tional completion-based language models is more

11https://insomnia.rest/

72

https://fastapi.tiangolo.com/
https://insomnia.rest/

difficult than it otherwise could have been with a
different internal memory organization scheme.

Another limitation of our work is the lack of na-
tive function calling support in all models, making
our defining features around robust function calling
irrelevant for such models (e.g. LLaMA). However,
the customizable nature of Kani allows developers
who want such a feature to simply create a new
Engine class and implement custom output parsing
logic to recognize and route function calls them-
selves. Kani thus gives developers maximum flexi-
bility in the creation of their applications.

Acknowledgments

We would like to thank the members of the lab of
Chris Callison-Burch for their testing and detailed
feedback on the contents of both this paper and the
Kani repository. In addition, we’d like to thank
Henry Zhu (no relation to the first author) for his
early and enthusiastic support of the project.

This research is based upon work supported in
part by the Air Force Research Laboratory (contract
FA8750-23-C-0507), the IARPA HIATUS Program
(contract 2022-22072200005), and the NSF (Award
1928631). Approved for Public Release, Distribu-
tion Unlimited. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
IARPA, NSF, or the U.S. Government.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: A System for Large-Scale Machine Learn-
ing. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation
(OSDI ’16), pages 265–283, USA. USENIX Associa-
tion.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting Is Programming: A Query
Language for Large Language Models. Proceed-
ings of the ACM on Programming Languages,
7(PLDI):1946–1969.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao

Zhang. 2018. JAX: Composable Transformations
of Python+NumPy Programs.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Harrison Chase, Bagatur, Davis Chase, Zander Chase,
Leonid Gandeline, Eugene Yurtsev, and Nuno Cam-
pos. 2022. LangChain.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Proceedings of the 34th
International Conference on Neural Information Pro-
cessing Systems (NeurIPS ’20), Red Hook, NY, USA.
Curran Associates Inc.

Scott Lundberg, Marco Tulio Ribeiro, and Contributors.
2023. Guidance.

OpenAI. 2022. ChatGPT: Optimizing Language Mod-
els for Dialogue.

OpenAI. 2023. GPT-4 Technical Report.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative-Style, High-Performance Deep Learn-
ing Library. In Proceedings of the 33rd International
Conference on Neural Information Processing Sys-
tems (NeurIPS ’19), volume 32. Curran Associates,
Inc.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

73

https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
http://github.com/google/jax
http://github.com/google/jax
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/hwchase17/langchain
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://github.com/microsoft/guidance
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. LLaMa 2: Open Foundation and
Fine-Tuned Chat Models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Max Woolf, Nadav Timor, Agustin Bacigalup, Zeit der
Forschung, Víctor Navarro Aránguiz, Ikko Eltociear
Ashimine, and Arne Neumann. 2023. simpleaichat.

A Size Measurement

This section describes how we measured the num-
ber of dependencies of a library and its size in the
framework comparison table (Table 2). We de-
fine a library’s dependency count as the number
of top-level dependencies that are installed when
installing the library from pip without any extras.
We measure the size of a library by installing it in
a fresh Python virtual environment, running a com-
mand to measure the size of installed packages, and
removing the size of the pip and setuptools pack-
ages (packaging utilities included in every Python
environment). Specifically, we used the following
shell commands:

python3.10 -m venv venv

source venv/bin/activate

pip install {kani|simpleaichat|langchain}

du -h venv/lib/python3.10/site-packages

B Dynamic Prompt Templating

Below is an example of dynamically customizing
a system prompt to include the phrase “Always
act like <persona>” if a user types a chat message

containing the phrase “act like.” This is a flexi-
ble alternative to hard-coding persona logic as is
common in other repositories.

class PersonaKani(Kani):

def get_persona_prompt(self):

if self.persona:

return ChatMessage.system(

f"Always act like {self.persona}.")

async def get_prompt(self):

prev = self.chat_history[-1].content

if match := re.search(r"act like (.+)", prev):

self.persona = match[1]

return [self.get_persona_prompt()] +

await super().get_prompt()

C Tracking Function Calls

Below we show an example of overriding the de-
fault do_function_call() method to additionally
keep track of how many times a model called a
function and how often it was successful.

class TrackCallsKani(Kani):

def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

self.successful_calls = collections.Counter()

self.failed_calls = collections.Counter()

async def do_function_call(self, call):

try:

res = await super().do_function_call(call)

self.successful_calls[call.name] += 1

return res

except FunctionCallException:

self.failed_calls[call.name] += 1

raise

@ai_function()

def get_time(self):

"""Get the current time."""

raise RuntimeError("The time API is offline")

@ai_function()

def get_date_and_time(self):

"""Get the current day and time."""

return str(datetime.datetime.now())

After chatting with our Kani, we can print out the
new successful_calls and failed_calls vari-
ables to recover statistics on how well our models
are calling our custom AI functions.

>>> chat_in_terminal(TrackCallsKani(engine))

USER: What time is it?

74

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/minimaxir/simpleaichat

AI: Thinking (get_time)...

AI: Thinking (get_date_and_time)...

AI: The current time is 22:42.

>>> ai.successful_calls

Counter({'get_date_and_time': 1})

>>> ai.failed_calls

Counter({'get_time': 1})

This behavior is particularly useful for re-
searchers studying language model tool usage and
similar customizations can be easily made to other
core functions to add more tracking.

D Dynamic Function Loading

Rather than statically defining the list of functions
a Kani can use in a class, you can also pass a list of
functions to the Kani constructor when you initial-
ize a Kani. To do this we need to use the special
Kani.AIFunction class (which is similar to the
traditional @ai_function decorator).

def my_cool_function(foo: str,

bar: Annotated[int, AIParam(desc="Cool int")]):

"""Do some cool things."""

engine = OpenAIEngine(api_key, model="gpt-4")

functions = [AIFunction(my_cool_function)]

ai = Kani(engine, functions=functions)

This is particularly useful when spawning sub-
Kani, as such agents can be dynamically given only
a particular subset of the functions defined in the
parent to help increase function call accuracy.

E Example Engine Implementations

In this section, we include the HuggingFace (Wolf
et al., 2020) and LLaMA v2 (Touvron et al., 2023)
engine implementations to demonstrate how a de-
veloper might implement new engines. The Hug-
gingFace engine acts as a base engine class that
implements common logic for all HuggingFace
models, while the LLaMA v2 engine extends the
base HuggingFace class with the model-specific
prompt and delimiting tokens.

75

class HuggingEngine(BaseEngine, abc.ABC):

def __init__(

self,

model_id: str,

max_context_size: int,

device: str | None = None,

tokenizer_kwargs: dict = {},

model_load_kwargs: dict = {},

**hyperparams,

):

self.model_id = model_id

self.max_context_size = max_context_size

self.tokenizer = AutoTokenizer.from_pretrained(model_id, **tokenizer_kwargs)

self.model = AutoModelForCausalLM.from_pretrained(model_id, **model_load_kwargs)

self.hyperparams = hyperparams

if device is None:

device = "cuda" if torch.has_cuda else "cpu"

self.device = device

if self.model.device.type != self.device:

self.model.to(device)

@abc.abstractmethod

def build_prompt(

self, messages: list[ChatMessage], functions: list[AIFunction] | None = None

) -> str | torch.Tensor:

"""Given the list of messages from kani, build either a single string

representing the prompt for the model, or build the token tensor."""

raise NotImplementedError

async def predict(

self, messages: list[ChatMessage], functions: list[AIFunction] | None = None, **hyperparams

) -> Completion:

"""Given the current context of messages and available functions, get the next

predicted chat message from the LM."""

prompt = self.build_prompt(messages, functions)

if isinstance(prompt, str):

tokenized = self.tokenizer(prompt, return_tensors="pt", return_length=True)

input_len = int(tokenized.length)

input_toks = tokenized.input_ids

elif isinstance(prompt, torch.Tensor):

input_toks = prompt

input_len = len(input_toks[0])

else:

raise TypeError("build_prompt should either return a str or a Tensor.")

move the input tensor to the right device

if input_toks.device.type != self.device:

input_toks = input_toks.to(self.device)

set up hyperparams for HF decode

hyperparams = {**self.hyperparams, **hyperparams}

run it through the model

output = self.model.generate(input_toks, **hyperparams)

decode to tokens

the completion shouldn't include the prompt or stop token

content = self.tokenizer.decode(output[0][input_len:-1]).strip()

return Completion(ChatMessage.assistant(content), prompt_tokens=input_len,

completion_tokens=len(output[0]) - (input_len + 1))

76

class LlamaEngine(HuggingEngine):

def __init__(self, model_id: str = "meta-llama/Llama-2-7b-chat-hf", *args, **kwargs):

kwargs.setdefault("max_context_size", 4096) # LLaMA has 4096 token window

super().__init__(model_id, *args, **kwargs)

def build_prompt(self, messages: list[ChatMessage], functions: list[AIFunction] | None = None):

tokens = []

prompt_buf = [] # parts of the user-assistant pair

for message in messages:

if message.role == ChatRole.USER:

prompt_buf.append(f"{B_INST} {message.content} {E_INST}")

elif message.role == ChatRole.ASSISTANT:

prompt_buf.append(f" {message.content} ")

turn the current round into tokens

prompt_round = "".join(prompt_buf)

if we see a " {E_INST}{B_INST} " we should replace it with empty string

(it happens immediately after a system + user message)

prompt_round.replace(f" {E_INST}{B_INST} ", "")

tokens.extend(self.tokenizer(prompt_round))

tokenizer adds the BOS token but not the EOS token

tokens.append(eos_token_id)

prompt_buf.clear()

else:

prompt_buf.append(f"{B_INST} {B_SYS}{message.content}{E_SYS} {E_INST}")

flush rest of prompt buffer (probably a user message) into tokens

if prompt_buf:

tokens.extend(self.tokenizer("".join(prompt_buf)))

return torch.tensor([tokens], device=self.device)

def message_len(self, message: ChatMessage) -> int:

if message.role == ChatRole.USER:

<s> [INST] {} [/INST] -> 7

return self.tokenizer(message.content, return_length=True).length[0] + 7

elif message.role == ChatRole.ASSISTANT:

{} </s> -> 2

return self.tokenizer(f" {message.content} ", return_length=True).length[0] + 2

<s> [INST] <<SYS>>\n{}\n<</SYS>>\n\n [/INST] -> 20

return self.tokenizer(message.content, return_length=True).length[0] + 20

77

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 78–82
December 6, 2023 ©2023 Association for Computational Linguistics

Beyond the Repo: A Case Study on Open Source Integration with GECToR

Sanjna Kashyap Zhaoyang Xie Kenneth Steimel Nitin Madnani
Educational Testing Service

Princeton, NJ, USA
skashyap@ets.org zxie@etscanada.ca ksteimel@ets.org nmadnani@ets.org

Abstract

We present a case study describing our efforts
to integrate the open source GECToR code and
models into our production NLP pipeline that
powers many of Educational Testing Service’s
products and prototypes. The paper’s contribu-
tions includes a discussion of the issues we en-
countered during integration and our solutions,
the overarching lessons we learned about inte-
grating open source projects, and, last but not
least, the open source contributions we made
as part of the journey.

1 Introduction

GECToR (Grammatical Error Correction Tag, not
Rewrite)1 is a set of deep learning models devel-
oped by Grammarly for the task of Grammatical Er-
ror Correction or GEC (Omelianchuk et al., 2020).
GECToR achieves state-of-the-art results for the
GEC task and its inference speed is up to 10 times
as fast as that of equivalent Transformer-based
sequence-to-sequence (seq2seq) GEC systems.

The most commonly proposed systems for the
GEC task leverage seq2seq Neural Machine Trans-
lation (NMT) models to "translate" from errorful
text to corrected text. However, such systems gener-
ally suffer from slow inference and require a large
amount of data. To deal with these issues, GECToR
simplified the task from sequence generation to se-
quence tagging. To train this tagging system, GEC-
ToR utilizes three training stages: pre-training on
synthetic data, fine-tuning on parallel datasets that
contain both errorful and corrected texts, and fur-
ther fine-tuning on a combination of high-quality,
parallel datasets containing both errorful/corrected
as well as error-free texts. However, one of the
largest benefits of GECToR to the NLP community
is that it was open sourced under a commercially-
unrestricted Apache 2.0 license.

1https://github.com/grammarly/gector

2 Requirements

Educational Testing Service (ETS) has developed
a pipeline that uses a service-based architecture
to combine multiple NLP services into scalable
and robust backend applications (Madnani et al.,
2018). These applications are used to evaluate the
speaking and writing proficiency of students’ writ-
ten essays or spoken responses and provide both
automatic scores as well as actionable feedback.
Specifically, our pipeline provides descriptive feed-
back on multiple dimensions such as the student’s
grammar, mechanics, vocabulary, text complexity,
style, organization, among others. Our pipeline is
used for various high-stakes assessments, e.g., the
Analytical Writing section from GRE (Graduate
Record Examinations)2 and the Independent and
Integrated Writing prompts from TOEFL iBT (Test
of English as a Foreign Language Internet-Based
Test).3

Our pipeline has two main requirements: (1) ev-
ery NLP service should return its results in less than
a few seconds to enable near real-time feedback
and (2) all models used in services should be opti-
mized for precision over recall to minimize unfair
penalization of students. After a careful evalua-
tion of GECToR’s GEC performance and inference
speed, we felt comfortable in replacing our existing
GEC system with GECToR.

GECToR provides three already trained English
GEC models based on BERT, RoBERTa, and XL-
NET. It also has scripts for training and inference.
Since our pipeline is English-only for now, the ex-
isting GEC models perfectly fit our needs. There-
fore, our integration efforts focus entirely on the
inference side.

2https://www.ets.org/gre.html
3https://www.ets.org/toefl.html

78

https://github.com/grammarly/gector
https://www.ets.org/gre.html
https://www.ets.org/toefl.html

3 Related Work

Adopting open source software in commercial envi-
ronments has been a topic of much interest. There
are several barriers to open source use: lack of
knowledge, inability to incorporate it into existing
legacy systems, too many forks created by different
groups, technological immaturity, et cetera (Nagy
et al., 2010). One formal approach that can be used
to assess an open source project before putting it
into production is the Open Source Maturity Model
(OSMM) which assesses factors like the product,
support, training, documentation, product integra-
tion and professional services, and gives them a
weighted score. However, this model is only a first
step in identifying which projects are worth a more
in-depth evaluation (Golden, 2005). In this pa-
per, we hope to provide a detailed case study with
illustrative, concrete steps for using open source
projects.

There are major forks and re-implementations of
the original GECToR project available on GitHub.
fast-gector4 claims to be a faster and simpler imple-
mentation of the original project leveraging AMP5

and DeepSpeed (Rasley et al., 2020). However, we
were unable to reproduce the same results as the
original model in our experiments with fast-gector.
gector-large (Tarnavskyi et al., 2022) focuses on
improving GECToR by upgrading the Transformer
encoders, and using an ensemble model for span-
level edits. According to the paper, while the larger
encoders do yield better performance, they do so
at the cost of speed with inference being 2.3-2.5x
slower.

4 Integration

In this section, we discuss the challenges we faced
when integrating GECToR into our pipeline and
our solutions.

4.1 Issues

Before we delve into the integration issues, we
want to impress upon the reader that the existence
of such issues should not detract from or minimize
the usefulness of GECToR (or other open source
software) to the NLP community. However, we
feel that an honest discussion of such real-world
issues can provide both the authors and users of
such software with useful, actionable information.

4https://github.com/cofe-ai/fast-gector
5https://developer.nvidia.com/

automatic-mixed-precision

GECToR was open sourced as part of a research
publication and aligns well with the needs of the
academic community. However, as we attempted to
adapt it for use in a commercial NLP pipeline, we
felt that some critical requirements were not fully
addressed in its original design. This mismatch be-
tween the original authors’ intended use and users
seeking to productionize it led to challenges in uti-
lizing GECToR effectively in its original form.

The system was not under active development,
which posed challenges for commercial adoption.
The dynamic nature of commercial environments
needs ongoing development and maintenance to
keep pace with rapidly evolving requirements and
security issues. A specific challenge in adopting
GECToR for our purposes was that it used sig-
nificantly older versions of Python, PyTorch, and
AllenNLP (Gardner et al., 2018). Its reliance on
these outdated dependencies prevented seamless
integration into our existing environments and lim-
ited access to the latest features and optimizations.

GECToR was also not packaged for easy instal-
lation, further complicating its integration into ex-
isting environments. The library could only be
used by cloning the repository, downloading the
model, and running some scripts created by the
authors. Packaging GECToR and streamlining its
installation process would be vital to ensure smooth
continuous integration and deployment.

GECToR was designed to leverage AllenNLP, a
powerful NLP library. However, its usage did not
fully exploit the capabilities that AllenNLP offered,
namely its high-level abstractions and API, leading
to potentially sub-optimal performance. Properly
utilizing AllenNLP would significantly enhance the
library’s overall effectiveness and result in more
standardized and maintainable code.

4.2 Solutions

To address the issues we identified with GECToR in
the previous section, we undertook several mitiga-
tion strategies. These efforts focused on enhancing
its functionality, compatibility, and maintainabil-
ity while still preserving the overall integrity of
the original codebase. To implement these strate-
gies, we forked GECToR on GitHub6 and added
the following improvements to our fork.

6https://github.com/EducationalTestingService/
gector

79

https://github.com/cofe-ai/fast-gector
https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
https://github.com/EducationalTestingService/gector
https://github.com/EducationalTestingService/gector

4.2.1 Regression & unit tests
To ensure that any modifications or updates made
by us do not lead to differences in predictions made
by the existing models, the very first thing we did
in our fork was to implement a comprehensive test
suite comprising of a total of 95 tests (37 unit tests
as well as 58 regression tests). We decided that a
good way to get started was to test each AllenNLP
component separately, e.g., the tokenizer, the token
indexer, the embedder etc. This gave us not only
a clear structure to follow but also a reasonable
granularity for the test cases.

The test suite not only helps in verifying the
correctness of the system but also acts as a safety
net to prevent potential differences in the future.
We also added a continuous integration plan using
Github Actions to automatically run the complete
test suite for any changes made to the codebase.

4.2.2 Updated dependencies
One of the critical steps in making GECToR suit-
able for production was to update its dependencies
to modern, supported versions. We carefully up-
dated the library to work seamlessly with the latest
versions of Python (3.7 only → 3.8 through 3.10),
PyTorch (1.10.0 → 1.12.1), AllenNLP (0.8.4 →
2.10.0), and many other dependencies. By doing so,
we ensured compatibility with more modern infras-
tructure and took advantage of the latest advance-
ments in frameworks and tools. This allows the
installation of GECToR in existing CI and deploy-
ment environments via package managers such as
conda,7 and minimizes dependency conflicts. Our
regression tests ensured that there were no changes
to the output as a result of our updating the package
versions.

4.2.3 True AllenNLP-ification
We followed AllenNLP’s recommended abstrac-
tions and guidelines to re-architect our fork of GEC-
ToR, enabling a more streamlined integration with
AllenNLP. The architecture adopted was largely
influenced by the design and modules of AllenNLP.
Utilities for training and inference were already
provided by AllenNLP so our changes largely re-
shaped the existing GECToR codebase to function
as an extension of AllenNLP. Specifically:

1. To facilitate better configurability and ease of
use, we registered GECToR modules with the
AllenNLP framework: each file in our fork

7https://docs.conda.io/en/latest/

contains one type of AllenNLP component
like tokenizers, token indexers, models, pre-
dictors, and dataset readers. The registration
allowed model architecture, tokenizer settings
and preprocessing options to be referenced
and contained in a single jsonnnet file used
for both training and inference.

2. Users can now access GECToR directly
through AllenNLP-supported configuration
files, enhancing its usability.

3. GECToR models can now be bundled into an
AllenNLP model archive for easy distribution
and inference.

Since we completed this work on GECToR, Al-
lenNLP has been archived and is no longer being
maintained. We discuss the implications of this in
§5.4.

4.2.4 Packaging & easy installation
We architected our GECToR fork to better support
packaging, created a conda recipe, and deployed
a publicly-available package on our public conda
channel.8 This makes the installation of GECToR
significantly easier and reproducible (Arvan et al.,
2022), unlike installing from the Github source
repository every time since it is challenging to keep
track of any changes made to the code since the
last installation from source. We also packaged the
GECToR RoBERTa model for easy installation via
conda.9

By implementing rigorous testing, updating de-
pendencies, aligning with AllenNLP guidelines,
and creating easily installable packages, we were
able to successfully mitigate the challenges asso-
ciated with productionizing the original version of
GECToR. We argue that these efforts have trans-
formed GECToR into a more robust and adaptable
library for grammatical error correction, suitable
for use in any production Python environment.

5 Lessons learned

While bolstering GECToR, we learned a few gen-
eral lessons about open source development and
integration that we would like to share.

5.1 Projects should explicitly state a purpose.
In our opinion, open source authors should explic-
itly state the purpose of their projects. Document-

8https://anaconda.org/ets/gector
9https://anaconda.org/ets/gector-roberta

80

https://docs.conda.io/en/latest/
https://anaconda.org/ets/gector
https://anaconda.org/ets/gector-roberta

ing whether the codebase is intended solely for
research purposes or whether it is ready for pro-
duction can help potential users easily estimate
the level of effort required for integration. We
hope our message is clear. Open source research
projects like GECToR are invaluable for the com-
munity. However, the level of involvement required
to productionize research codebases can vary sig-
nificantly.

5.2 Estimation of effort is hard but necessary.

It is crucial to perform a careful analysis of the ef-
fort involved in integrating an open source project
into a production codebase. Most popular open
source projects are under active development and
are used by a large number of users and organiza-
tions. Such projects are usually created or main-
tained by commercial organizations with dedicated
teams working on them. Any issues or feature re-
quests have a higher chance of being addressed and
implemented respectively.

However, sometimes a smaller project or one
open sourced as part of a research publication
might be more suitable for your needs. In such
cases, you must do your best to examine the code-
base and develop a reasonable estimate for the in-
tegration effort. It is essential to carefully test the
project and develop a plan to gauge whether the
level of work as indicated by the resulting estimate
can be offset by the value provided to your own
product or project.

5.3 Test, test, test!

Many open source projects do not implement any
form of testing since it’s not perceived to be neces-
sary for research projects. However, in our opinion,
a good testing setup is critical irrespective of the
eventual use case since it assures users that the
code actually behaves as expected. This may seem
like a large cost to take on upfront, but can sig-
nificantly reduce technical debt in the future. We
strongly recommend that everyone who contributes
to open source consider adding unit/regression test-
ing along with a CI plan which can help identify
bugs and failures as and when they happen, re-
gardless of whether their project is meant only for
experimental purposes.

5.4 Always have a contingency plan.

One of the primary concerns with open source
projects is the risk of abandonment by their original

authors. While many projects have active maintain-
ers and thriving communities, there have been in-
stances where developers discontinue support and
maintenance. The case of AllenNLP10 serves as
an example of how a once prominent open source
library can become stagnant or archived due to
shifting priorities or organizational changes.

This can have serious consequences for those
who have integrated such projects into their pro-
duction environment since bugs and security vul-
nerabilities will likely go unaddressed in the future.
Therefore, it is important to be prepared for such
scenarios and have a well-defined strategy in place
for either taking on the entire maintenance of the
library or transitioning to an alternate solution.

6 Future Work

In the future, we plan to take our own advice from
§5.4 and transition our fork of GECToR away from
AllenNLP. We plan to replicate the functionality
we need by using actively maintained open source
projects from Huggingface such as Transformers
(Wolf et al., 2020), Datasets (Lhoest et al., 2021),
and Accelerate11 directly.

7 Conclusion

We presented a case study on integrating an open
source project into a commercial, production NLP
pipeline. While we consider the primary contribu-
tions of this paper to be a clear and concise descrip-
tion of the issues we faced (and solved) as well as
the larger lessons we learned, we also hope that
the NLP community will benefit from our fork of
GECToR that is actively maintained, more modern,
more robustly tested, and easier to use for infer-
ence.

References
Mohammad Arvan, Luís Pina, and Natalie Parde. 2022.

Reproducibility in computational linguistics: Is
source code enough? In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2350–2361, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.

10https://github.com/allenai/allennlp
11https://huggingface.co/docs/accelerate/index

81

https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.18653/v1/2022.emnlp-main.150
https://github.com/allenai/allennlp
https://huggingface.co/docs/accelerate/index

AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

B. Golden. 2005. Succeeding with Open Source.
Addison-Wesley information technology series.
Addison-Wesley.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sasko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clement Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, François Lagu-
nas, Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A Community Library for Natural Lan-
guage Processing. CoRR, abs/2109.02846.

Nitin Madnani, Aoife Cahill, Daniel Blanchard,
Slava Andreyev, Diane Napolitano, Binod Gyawali,
Michael Heilman, Chong Min Lee, Chee Wee Leong,
Matthew Mulholland, and Brian Riordan. 2018. A
Robust Microservice Architecture for Scaling Auto-
mated Scoring Applications. ETS Research Report
Series, 2018(1).

Del Nagy, Areej M. Yassin, and Anol Bhattacher-
jee. 2010. Organizational adoption of open source
software: Barriers and remedies. Commun. ACM,
53(3):148–151.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr" Skurzhanskyi. 2020.
GECToR – Grammatical Error Correction: Tag, Not
Rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170. Association for Com-
putational Linguistics.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge
distilling of large sequence taggers for grammatical
error correction. In Accepted for publication at 60th
Annual Meeting of the Association for Computational
Linguistics (ACL 2022), Dublin, Ireland.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing.

82

https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://books.google.com/books?id=S4d9SzBjGIgC
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1002/ets2.12202
https://doi.org/10.1145/1666420.1666457
https://doi.org/10.1145/1666420.1666457
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/2020.bea-1.16
https://arxiv.org/pdf/2203.13064.pdf
https://arxiv.org/pdf/2203.13064.pdf
https://arxiv.org/pdf/2203.13064.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 83–94
December 6, 2023 ©2023 Association for Computational Linguistics

Two Decades of the ACL Anthology:
Development, Impact, and Open Challenges

Marcel Bollmann
Linköping University

marcel.bollmann@liu.se

Nathan Schneider
Georgetown University

nathan.schneider@georgetown.edu

Arne Köhn
New Work SE

arne.koehn@new-work.se

Matt Post
Microsoft

mattpost@microsoft.com

Abstract

The ACL Anthology is a prime resource for re-
search papers within computational linguistics
and natural language processing, while continu-
ing to be an open-source and community-driven
project. Since Gildea et al. (2018) reported on
its state and planned directions, the Anthology
has seen major technical changes. We discuss
what led to these changes and how they im-
pact long-term maintainability and community
engagement, describe which open-source data
and software tools the Anthology currently pro-
vides, and provide a survey of literature that
has used the Anthology as a main data source.

1 Introduction

The ACL Anthology1 is a repository for scientific
contributions within computational linguistics and
natural language processing maintained by the As-
sociation for Computational Linguistics (ACL). It
currently hosts over 88k papers from from relevant
conferences and journals within the field, including
both ACL-sponsored and non-ACL venues, nearly
400 in total, a growth of almost 70% since 2019
(see Figure 1). It also includes many related materi-
als such as software, posters, slides, and recordings
of talks. All papers and materials are open-access,
provided to the world without barrier under various
open licenses.2

Development of the ACL Anthology takes place
in a public repository,3 which contains (i) meta-
data for all items in the Anthology, in XML and
YAML formats; (ii) code for accessing and trans-
forming this metadata, in form of a Python library

1https://aclanthology.org/
2ACL materials ingested since 2016 are CC BY 4.0;

https://creativecommons.org/licenses/by/4.0/
3https://github.com/acl-org/acl-anthology/

2019 2020 2021 2022 2023
0

20000

40000

60000

80000

0

100

200

300

400
papers
venues

Figure 1: Growth of the ACL Anthology since 2019
as measured by the number of papers (left y-axis) and
venues (right y-axis).

and scripts; and (iii) code and templates for gen-
erating the ACL Anthology website. All code is
made available under the permissive Apache-2.0
license.4 Development has been almost entirely
volunteer-driven, though since 2021 the ACL has
funded assistants who have contributed to inges-
tions at the rate of about 20 hours a month.

In this paper, we first describe the metadata cur-
rently provided by the ACL Anthology and efforts
to improve it (§2); the technical framework and de-
velopment of the website (§3); as well as a Python
library for accessing data from the Anthology (§4).
We then look at the impact the ACL Anthology
has had on other open-source software projects and
provide a survey of known datasets and studies that
rely on the Anthology as a main data source (§5).
Finally, we discuss lessons and challenges (§6) as
well as future directions that we would like to see
realized for the Anthology (§7), for which we rely
on help from the community.

4https://opensource.org/license/apache-2-0/

83

https://aclanthology.org/
https://creativecommons.org/licenses/by/4.0/
https://github.com/acl-org/acl-anthology/
https://opensource.org/license/apache-2-0/

<paper id="2">
<title>Towards a Computational History of the <fixed-case>ACL</fixed-case>: 1980-2008</title>
<author><first>Ashton</first><last>Anderson</last></author>
<author><first>Dan</first><last>Jurafsky</last></author>
<author><first>Daniel A.</first><last>McFarland</last></author>
<pages>13–21</pages>
<url hash="0fe03143">W12-3202</url>
<bibkey>anderson-etal-2012-towards</bibkey>

</paper>

Figure 2: XML metadata for the paper by Anderson et al. (2012) as stored in the ACL Anthology repository.

2 Publication Metadata

At the core of the Anthology repository is the meta-
data on the publications it hosts. Here, we describe
the different kinds of data provided by the Anthol-
ogy, which efforts we have taken to enrich this data
and ensure correctness, and how new materials are
added to the Anthology.

2.1 Organization

At a high level, the papers in the Anthology are
organized into collections of volumes. A volume
is a set of related papers that would traditionally
have been bound and published as a physical book.
A collection is a group of volumes that were pub-
lished at the same time under the same venue. Each
collection is saved to a file in the data directory,
e.g., data/xml/2022.acl.xml for ACL main pro-
ceedings volumes from 2022.

Each volume in a collection has a list of meta-
data, including its book title and its list of editors,
which are typically the program chairs of a confer-
ence. It also notes the month, year, and address of
the event of the event where the associated event
was presented.5 Volumes also identify their associ-
ated venues, and can be linked to multiple venues
to denote joint events (cf. §2.5).

2.2 Paper Metadata

For all papers hosted on the Anthology, correspond-
ing metadata can be found in the data/xml/ folder
of the repository. Figure 2 gives an example for the
metadata of a single paper; it will contain, at a min-
imum, the title and bibkey (i.e., the bibliographic
key as found in the official BIBTEX export6) of the
paper. Authors of a paper are stored with first and
last name components clearly marked up so as to
aid in formatting them correctly in bibliographic in-

5These fields were originally intended to note the date of
publication and the publisher address, but have morphed in
purpose over the years.

6https://aclanthology.org/anthology.bib.gz

Language Est. Count

French 2195
Chinese 716
Portuguese 68
Swedish 34
Norwegian 33
Danish 32
German 7

Table 1: Estimated counts of non-English papers.

formation. All files hosted on the Anthology server,
such as a paper’s PDF, will also have a hash at-
tribute in the metadata, which is a simple CRC-32
checksum that can be used to verify any files down-
loaded from the Anthology. The full set of tags and
attributes in the XML metadata is documented in
the form of a RELAX NG schema (Clark, 2002).7

Paper metadata stored this way can be pro-
cessed with any XML processing software or li-
brary. As the Anthology website is built from these
XML files, the data is guaranteed to be identical to
what users see online. GitHub CI checks automat-
ically validate the XML files against the schema,
ensuring that they always conform to the tags and
attributes defined there.

Languages At the time of this writing, the An-
thology contains 85,324 papers with a <title> tag.
The majority of these are written in English, but
a few other languages are also represented. Such
papers can be annotated with a <language> tag.
As this tag is not yet systematically applied, we
rely on heuristics to obtain estimated counts of
non-English papers, shown in Table 1. The major
venues for these papers are the JEP, RECITAL,
TAL, and TALN venues (French), and the RO-
CLING, IJCLCLP, and CCL venues (Chinese).

Data Types Whereas older versions of the An-
thology hosted only PDFs of papers/volumes and

7https://github.com/acl-org/acl-anthology/
blob/master/data/xml/schema.rnc

84

https://github.com/acl-org/acl-anthology/blob/master/data/xml/2023.acl.xml
https://github.com/acl-org/acl-anthology/blob/master/data/xml/
https://aclanthology.org/anthology.bib.gz
https://github.com/acl-org/acl-anthology/blob/master/data/xml/schema.rnc
https://github.com/acl-org/acl-anthology/blob/master/data/xml/schema.rnc

their metadata, papers now support richer supple-
mentary content, including slides, video, software,
and data downloads. In case the paper itself needs
to be corrected subsequent to publication, there is
support for adding revisions of or errata for the orig-
inal paper, as well as for retractions and removals.

Fixed-casing in Titles One of the most important
parts of the site is its BIBTEX export functionality.
In the paper metadata input by authors upon sub-
mission and provided by publication venues to the
Anthology for ingestion, many paper titles typi-
cally feature title casing—that is, capitalization of
all content words. However, ACL bibliography
style files call for sentence casing, in which only
proper names (words that would be customarily
capitalized even outside of a title) are capitalized,
along with the beginning of the title. In order to
avoid sloppy lowercasing of languages and other
proper names, it is necessary to detect which letters
in the original title should have their original casing
protected in BIBTEX entries, and which should be
subject to alteration by the stylesheet. The Anthol-
ogy codebase implements a set of heuristics based
on wordlists to determine which characters should
be flagged as fixed-case per English spelling con-
ventions.8 Approximately 45% of titles in the data
contain at least one fixed-case designation.

The current heuristics were implemented in
2020, informed by reviewing the data in the Anthol-
ogy at the time, and the wordlists are updated from
time to time as new proper names are encountered.
The main components of the heuristics are:

• The truelist, a set of 13k words and phrases
that should have fixed capitals. The list was
seeded with words commonly capitalized in
abstracts, and augmented from gazetteers of
names of languages and geopolitical entities,
as well as manual additions. Salient entries
that are not languages or places include “ACL
Anthology”, “Abstract Meaning Representa-
tion”, “Carnegie”, “Chinese Discourse Tree-
bank”, “Viterbi”, and “Wizard of Oz”.

• Lists of several adjectives and nouns com-
monly occurring as part of names whose
capitalization should match the rest of the
name. These are mostly geographic terms
like “North”, place descriptors like “Univer-

8https://github.com/acl-org/acl-anthology/
tree/master/bin/fixedcase

sity” and “Island”, and “Ancient” and “Mod-
ern” (common modifiers in language names).

• General spelling rules, the most important of
which are: (i) Any word with a capital letter
in a non-initial position (e.g., “TextTiling”,
“QA”) is marked as fixed-case. (ii) Any tok-
enized word consisting of a single uppercase
letter other than “A”, “K” or “N”, or a single
uppercase letter plus “.”, is also fixed-case.

These rules are applied at ingestion time and
marked with <fixed-case> tags in the XML.
Skimming through the XML titles in recent pro-
ceedings, we find that errors are rare.9 There are
thus no plans to incorporate more sophisticated
named entity recognition software.

2.3 Author Metadata

The Anthology website also provides author pages,
which compile all items authored (or edited) by a
given person. In contrast to paper metadata, infor-
mation about authors is only indirectly stored in the
XML, in the form of names attached to paper en-
tries. This poses two challenges: (i) names need to
be mapped to identities—this involves both merg-
ing, as the same person can have published under
different names, and disambiguation, as different
people can have the same name; and (ii) person
identities need to be indexed in order to provide a
mapping from people to their papers.

Name Merging and Disambiguation There are
two forms of name ambiguity: (i) individual
authors may publish papers under different vari-
ants of their name, and (ii) a particular name
variant may be used by more than one person.
To resolve (i), we compile a YAML metadata
file (data/yaml/name_variants.yaml) to col-
lapse known variants under a canonical represen-
tation, which is used for the author’s page on the
website. Additionally, we merge names automat-
ically if they only differ in diacritics (e.g., José
vs. Jose), as we find that in practice they almost
always refer to the same person. To address (ii),
or false positives from the merge heuristic, an ID
can be assigned to create an author identity. This
ID can then be used in a paper’s <author> tag to
link it to that identity. Figure 3 contains examples.

9In the ACL 2023 proceedings, an example of a false
positive is the English word “Even”, which is also the name
of a language. A false negative is “New Yorker”.

85

https://github.com/acl-org/acl-anthology/tree/master/bin/fixedcase
https://github.com/acl-org/acl-anthology/tree/master/bin/fixedcase
https://github.com/acl-org/acl-anthology/blob/master/data/yaml/name_variants.yaml

- canonical: {first: James H., last: Martin}
variants:
- {first: James, last: Martin}

- canonical: {first: Yang, last: Liu}
comment: Edinburgh
id: yang-liu-edinburgh

- canonical: {first: Yang, last: Liu}
comment: 刘扬; Ph.D Purdue; ICSI, \

Dallas, Facebook, Liulishuo, Amazon
id: yang-liu-icsi

Figure 3: Example of YAML metadata for merging mul-
tiple surface forms of a name under a single canonical
representation (James H. Martin), and for identifying a
person with an ambiguous name (Yang Liu).

We typically use the Ph.D. institution as the disam-
biguator in the ID, but plan to move to an ORCID
representation.

Author Indexing Finding metadata for a specific
paper in the XML files is easy: for example, given a
paper with the Anthology ID “2020.acl-main.699,”
its metadata will be located in the 2020.acl.xml
file under a <volume> with ID “main” and a
<paper> with ID “699.” This XML block could be
retrieved with a single XPath expression. However,
to find all papers authored by a given person, it is
necessary to parse all XML files and look for in-
stances of their name plus respective variants. This
motivates the need for building an index that maps
people to their (co-)authored papers. To avoid data
redundancy, we do not store such an index in the
repository directly, but rather compute it dynam-
ically through a Python library specifically made
for the Anthology, which we describe in §4.

2.4 Event Metadata

An event is a set of otherwise unrelated Anthology
volumes that were presented together at a confer-
ence. Events are inferred from collections: each
non-journal collection is assumed to have been pre-
sented in the real world. Additionally, an <event>
block in a collection’s XML file allows to note
other volumes that were associated with that event
(e.g., colocated workshop volumes).

Until 2023, events had no explicit representation.
The Anthology now has the ability to represent
event metadata and link to materials related to it,
such as the conference handbook and videos from
plenary talks and meetings. Importantly, we will
also be able to generate citations for these materials.
Completion of this work is planned for this year.

2.5 Venue and SIG Metadata

Every volume is linked to a venue using a <venue>
tag in the volume’s metadata. Every venue has
its own file under data/yaml/venues listing key
information about that venue, including its name
(e.g., “Conference on Machine Translation”), its
acronym (“WMT”), and tags determining whether
it belongs to ACL and whether it is displayed on
the main page. A URL-friendly “slug” contain-
ing only lowercased, alphanumeric characters is
constructed from the venue acronym. Similarly,
workshop volumes can be associated with an ACL
Special Interest Group (SIG). Information on these
can be found under data/yaml/sigs. Each SIG
file lists all the volumes associated with that SIG.

2.6 Ingestion of New Materials

Ingestion refers to the process of importing new
materials in the Anthology. A single ingestion typ-
ically includes the main volumes of a conference
(e.g., ACL long and short papers, tutorials, system
demonstrations, and its student research workshop)
together with its colocated workshops. Publication
chairs compile the proceedings in a single, format-
ted directory and submit them to the Anthology,
where they will be assembled in a branch of the
GitHub repository and submitted as a pull request
for review by the Anthology team.

As of 2022, the preferred ingestion format is
ACLPUB2,10 a modernization of ACLPUB.11 The
Anthology has also developed scripts for a number
of other ingestion formats, including for the TACL
and CL journals, for the MT Archive, and for a
generic TSV format. These scripts can be found
under bin/ingest_*.py.

3 Website

Most users interact with the ACL Anthology
through its website. Here, we describe how the
website is built, the technical developments it has
seen in recent years, and new features we have
introduced for the community.

3.1 Static Rewrite

The Anthology website underwent a major rewrite
in early 2019, switching from a dynamic to a fully
static site. Gildea et al. (2018) describe the tech-
nical framework of the Anthology prior to this

10https://github.com/rycolab/aclpub2
11https://github.com/acl-org/ACLPUB

86

https://github.com/acl-org/acl-anthology/blob/master/data/yaml/venues/
https://github.com/acl-org/acl-anthology/blob/master/data/yaml/sigs/
https://github.com/search?q=repo%3Aacl-org%2Facl-anthology+path%3Abin%2Fingest_*.py&type=code
https://github.com/rycolab/aclpub2
https://github.com/acl-org/ACLPUB

XML paper data
YAML metadata

D

data/

Preprocessing

3

bin/

Generated
files

õ

build/

Hugo static
site generator

hugo/

Static HTML

D

Web server
á

Figure 4: Simplified illustration of the ACL Anthology build pipeline, with the folders where relevant files can be
found in the official repository (at https://github.com/acl-org/acl-anthology/).

rewrite, which consisted of a Ruby on Rails ap-
plication powered by a PostgreSQL database and
the Apache Solr search platform. New data could
be added to the Anthology via an intermediate
XML format containing all bibliographic metadata
for proceedings volumes and the contained papers.
These XML files had to be ingested into the Post-
greSQL database and indexed by the Solr engine.

This new static site generation approach is illus-
trated in Figure 4. The XML files with the bib-
liographic metadata (cf. §2.2) now constitute the
primary data source for the Anthology; there is
no derived database. Some additional metadata,
e.g. for publication venues (cf. §2.5) and for disam-
biguating author names (cf. §2.3), is also stored in
YAML files. For building the website, the data files
are first processed by a number of Python scripts
using an internal Python library (described in §4),
which generate page stubs for the site generator and
convert the bibliographic data to a number of ex-
port formats (e.g. BIBTEX). Afterwards, the website
is built using the site generator Hugo,12 resulting
in entirely static HTML files. A CI/CD pipeline on
GitHub automatically builds and uploads these to
the production web server. To provide search func-
tionality, the website embeds a custom search using
Google’s Programmable Search Engine (PSE).13

Notably, the PDF files of the papers, as well as
any supplementary material, are not part of the
repository or the build pipeline as they constitute
an enormous volume of data;14 they are currently
copied over manually to the web server.

Advantages Using a static website offers many
performance benefits. Since there is no database
backend that needs to be queried, the user experi-
ence when browsing the website is considerably
faster. Building the website locally is also faster:
with the former approach, seeding the database

12https://gohugo.io/
13https://programmablesearchengine.google.com/
1486,819 files consuming 87 GB.

would take “at least 30 minutes,”15 while a full
build of the static website takes around nine min-
utes on a modern laptop.16 Most of this speed
comes from using Hugo as the site generator, which
takes 133 seconds to generate 165k HTML pages
(i.e., ≈0.8 ms per page).

The complexity of running the Anthology is also
greatly reduced, which both makes maintenance
easier (the production system only needs a web
server and no other software) and lowers the bar-
rier of entry, as potential contributors do not need to
set up any services to test their contributions. The
complete Anthology can be built and served with
a single make call, provided that Python and Hugo
are installed on the system. Generating a static
website means that it is trivial to serve copies of the
Anthology, which is extensively used in the contin-
uous integration (CI) pipeline; every pull request is
rendered to a preview website and the effect on the
production system can be easily checked.

Search Functionality Providing search function-
ality on the website is difficult in our simplified
static setting.17 Google’s PSE provides search
within both HTML pages and PDF files, but also
comes with a number of drawbacks: (i) customiza-
tion options are limited; e.g., there is no way to
display a paper’s landing page and its PDF as a
single item in the search results, even though they
logically belong together; (ii) no immediate control
over the indexing of new or changed items, leading
to delays of updates being reflected in the search;
(iii) region-blocking of Google Search making the
search unusable for affected users, e.g. in China.
Addressing these issues is challenging and most
likely requires either (i) re-introducing a dynamic

15cf. https://github.com/acl-org/acl-anthology/
blob/4a751ac/README.md?plain=1#L58; also note that at
this point in time, the Anthology had less than half the number
of papers it has now.

16Tested on AMD Ryzen 7 Pro 5850U, 12 GB RAM, with
Python 3.11.4 and Hugo v0.115.3.

17For further discussion, also see https://github.com/
acl-org/acl-anthology/issues/165.

87

https://github.com/acl-org/acl-anthology/
https://gohugo.io/
https://programmablesearchengine.google.com/
https://github.com/acl-org/acl-anthology/blob/4a751ac/README.md?plain=1#L58
https://github.com/acl-org/acl-anthology/blob/4a751ac/README.md?plain=1#L58
https://github.com/acl-org/acl-anthology/issues/165
https://github.com/acl-org/acl-anthology/issues/165

server component to host our own search platform,
which comes with an increased maintenance bur-
den; or (ii) using a commercial search-as-a-service
platform, which comes with a financial cost.

3.2 Features

Citation Export Formats Each paper’s page pro-
vides a number of user-friendly citation formats be-
yond BIBTEX, including Markdown and EndNote.
These are available for download or for one-click
copying. We also provide preformatted long and
informal textual citation formats.

GitHub Issue Tracker Corrections to the meta-
data can be requested by anyone by opening a
Github issue. We make extensive use of issue tem-
plates to facilitate opening and handling a range of
common corrections and suggestions from users.

Zotero Integration Zotero18 is a popular open
source reference manager that allows users to im-
port scholarly content and metadata as they browse
the web. Content from the Anthology is easily
imported into Zotero, with metadata parsed from
BIBTEX files.19

Papers With Code Integration Papers With
Code (PWC)20 is a website that links papers to
related datasets and code repositories. For papers
in the ACL Anthology, data is fetched from PWC
through an API and automatically merged into the
Anthology metadata; dataset and code links pro-
vided by PWC are subsequently displayed on the
Anthology website.

Paper Awards The Anthology marks papers that
have received awards from their respective confer-
ences. A page compiling all awarded papers does
currently not exist, but could be a future addition.

4 Python Library

Building the Anthology website requires trans-
forming all the metadata described above into a
format suitable for generating the HTML pages
using Hugo. To do this, we rely on a custom-
built Python library that is currently found in the
bin/anthology/ folder of the repository. Be-
sides wrapping access to the XML and YAML
data files, the Python library (i) implements author

18https://www.zotero.org/
19Implemented by Guy Aglionby: https://github.com/

zotero/translators/blob/master/ACLWeb.js
20https://paperswithcode.com/

indexing and name disambiguation functionality
(cf. §2.3); (ii) converts markup found in paper ti-
tles and abstracts into appropriate representations
for HTML or LATEX; (iii) converts a limited subset
of LATEX expressions in paper titles and abstracts
into appropriate Unicode and/or HTML representa-
tions; (iv) generates bibliographic information (e.g.
BIBTEX entries).

4.1 Adoption of the Library

Like the other parts of the repository, the library is
open-source and free to use for anyone wanting to
access the Anthology data. As with the metadata
files, the library is used to build the ACL Anthology
website, so re-using it is guaranteed to provide data
identical to that on the website. In practice, how-
ever, we see some obstacles for a wider adoption of
this library (e.g. for projects such as those surveyed
in §5.3). One is a lack of proper documentation;
while Python scripts found in the repository’s bin/
folder can serve as concrete examples for how the
library is used, individual functions are often un-
documented. This has consequences not just for
third-party adoption, but also for maintainability
(cf. §6). Another is the partly unintuitive interface
of the library; when it was first built in 2019, the
top priority was to recreate the exact functional-
ity of the Ruby application that existed at the time
(cf. §3.1), and as such, it is mainly geared towards
the needs of building the Anthology website. For
these reasons, we are in the process of reimple-
menting this library.

4.2 PyPI Package

Based on the challenges touched upon above
(and further discussed in §6), we have begun re-
implementing the Python library in a way that
(i) is user-friendlier and better documented, and
(ii) easily installable (e.g. via pip). A fully us-
able version of this package is already available
on PyPI, the main Python package repository, as
acl-anthology-py.21 Figure 5 shows some ex-
amples of how this library might be used. We are
currently working on making this library feature-
complete with respect to the functionality needed to
replace the old library in the website’s build chain
(cf. §3.1), but the current version of the library al-
ready comes with full API documentation as well
as a user guide.22 Furthermore, it is implemented

21https://pypi.org/project/acl-anthology-py/
22Please refer to the PyPI page for the latest link.

88

https://github.com/acl-org/acl-anthology/blob/master/bin/anthology/
https://www.zotero.org/
https://github.com/zotero/translators/blob/master/ACLWeb.js
https://github.com/zotero/translators/blob/master/ACLWeb.js
https://paperswithcode.com/
https://github.com/acl-org/acl-anthology/blob/master/bin/
https://pypi.org/project/acl-anthology-py/

Instantiate the Anthology, automatically fetching data from the official repository
from acl_anthology import Anthology
anthology = Anthology.from_repo()

Find all papers with "ACL Anthology" in the title, and print their bibkey
for paper in anthology.papers():

if "ACL Anthology" in str(paper.title):
print(paper.bibkey)

Find all people named "Dan Klein", and pick the first one (-- as of now, there's only one)
person = anthology.find_people("Klein, Dan")[0]

Get a list of URLs to all paper PDFs by a given person
urls = [paper.pdf.url for paper in person.papers()]

Generate the BibTeX entry of a paper based on its Anthology ID
bibtex = anthology.get("2020.acl-main.699").to_bibtex()

Figure 5: Examples illustrating the usage of the acl-anthology-py Python library. Please refer to the latest API
documentation for the most up-to-date information.

using many “best practices” of software develop-
ment, including a high test coverage (>90%) and
automated CI checks that enforce coding style con-
ventions and type hints.

We hope that this redesigned library will make
the ACL Anthology easier to maintain and thus
more future-proof. Releasing the library on PyPI
should also greatly increase discoverability and,
consequently, adoption in related work that wants
to access Anthology data.

5 Impact of the ACL Anthology

A lot of research has built on data from the ACL An-
thology over the years, but even the technical in-
frastructure has had impact on other open-source
projects. Here, we try to provide an extensive sur-
vey of software, datasets, and scientific studies that
directly rely on data or code from the Anthology.

5.1 On Open-Source Software
Being open-source and easy to use made it possi-
ble for other publication repositories to re-use the
ACL Anthology infrastructure. At least three such
projects currently exist: (i) the SemDial workshop
series,23 which publishes its proceedings dating
back to 2004; (ii) the IR Anthology,24 which cur-
rently collects ≈63k papers from information re-
trieval venues (Potthast et al., 2021); and (iii) the
Global Water Futures archive,25 which hosts 1.2k
publications from their project on addressing water
threats. The last project in particular highlights that

23http://semdial.org/anthology/venues/semdial/
24https://ir.webis.de/anthology/
25https://gwf-uwaterloo.github.io/

gwf-publications/

the codebase of the ACL Anthology has even found
adoption outside of computer science domains.

5.2 On Corpora and Datasets

The ACL Anthology Reference Corpus (ACL ARC;
Bird et al., 2008) was one of the first efforts to
build on the ACL Anthology for academic research,
providing the extracted full-text and metadata for
11k papers up to February 2007. The ACL Anthol-
ogy Network Corpus (AAN; Radev et al., 2009)
expands on this by providing citation and collabo-
ration networks. Schäfer et al. (2011) introduce
the ACL Anthology Searchbench, which Weitz
and Schäfer (2012) build on to provide a “citation
browser.” Singh et al. (2018) present CL Scholar,
an ACL Anthology “knowledge graph miner.” Un-
fortunately, as of now, most of these initiatives ap-
pear to be abandoned and/or unavailable; the ANN
is still accessible through the broader “All About
NLP” project (also AAN; Fabbri et al., 2018).

More recently, the NLP4NLP corpus (Mariani
et al., 2019a) incorporates data from the ACL An-
thology as part of a dataset of articles in “speech
and natural language processing over a period
of 50 years (1965–2015),” which Mariani et al.
(2022) extend to cover publications until 2020.
The NLP Scholar project combines data from the
ACL Anthology and Google Scholar in a new
dataset (Mohammad, 2020b) and an associated vi-
sual exploration tool (Mohammad, 2020c). NLPEx-
plorer (Parmar et al., 2020) offers a curated dataset
and web portal26 with annotations including manu-
ally curated topic classification. Finally, the ACL

26http://nlpexplorer.org/

89

https://pypi.org/project/acl-anthology-py/
http://semdial.org/anthology/venues/semdial/
https://ir.webis.de/anthology/
https://gwf-uwaterloo.github.io/gwf-publications/
https://gwf-uwaterloo.github.io/gwf-publications/
http://nlpexplorer.org/

OCL corpus (Rohatgi et al., 2023) provides auto-
matically extracted text for ACL Anthology papers
currently up to September 2022.

Several other annotated datasets based on sub-
sets of the Anthology exist: Schäfer et al. (2012)
present a small corpus of 266 papers annotated with
coreference; QasemiZadeh and Schumann (2016)
introduce a dataset for terminology extraction and
classification; Gábor et al. (2016) add semantic
annotation such as entity tagging and relations,
which was subsequently used in a SemEval shared
task (Gábor et al., 2018); Iwatsuki et al. (2020)
build a dataset with formulaic expressions and their
communicative functions; van Dongen et al. (2020)
add citation information; Hao et al. (2020) intro-
duce a corpus annotated with “future work sen-
tences”; and Hou et al. (2021) present a corpus
for entity tagging of tasks, datasets, and evaluation
metrics in 30k ACL Anthology papers.

5.3 On Academic Research

The ACL Anthology has frequently been used for
scholarly literature analysis within the NLP do-
main, such as citation analysis. As the Anthol-
ogy does not provide any data on citations, such
studies require either data mining of the PDFs, a
combination with data from external sources such
as Google Scholar or Semantic Scholar,27 or the
use of a dataset that already provides this, like
NLP Scholar (Mohammad, 2020b). Despite this
necessary extra step, studies have focused on the
ACL Anthology to analyze incoming citations (Mo-
hammad, 2020a), outgoing citations (Bollmann and
Elliott, 2020; Singh et al., 2023), or geographic ci-
tation gaps (Rungta et al., 2022).Van Dongen et al.
(2020) present a model for citation count prediction.
Guo et al. (2020) provide a Java API for extracting
citation context from academic literature, trained
on an annotated dataset based on the Anthology.

Beyond citation analysis, studies have used
the Anthology to analyze the gender distribution
among authors (Vogel and Jurafsky, 2012), to an-
alyze the influence of industry on academic re-
search (Abdalla et al., 2023), and to track the evo-
lution of research topics and domains over time
(Anderson et al., 2012; Omodei et al., 2014; Schu-
mann, 2016; Mariani et al., 2019b; Schopf et al.,
2023). Joshi et al. (2020) combine data from the
Anthology and the Semantic Scholar API to ana-
lyze linguistic diversity in NLP research. Fortuna

27https://www.semanticscholar.org/

et al. (2021) analyze 50k Anthology papers to find
instances of “NLP for Social Good.”

Data from the ACL Anthology has also been
used to build and evaluate models for a vari-
ety of tasks, such as relation extraction (Schäfer
et al., 2008), scientific term mining (Jin et al.,
2013), name disambiguation and topic model-
ing (King et al., 2014), semantic labeling (Schu-
mann and Martínez Alonso, 2018), building search
systems (Yoneda et al., 2017; Ding et al., 2020),
and analyzing document similarity (Ostendorff
et al., 2020).

6 Lessons & Challenges

Impact of Open Development All development –
including changes to the data – happening in public
is highly beneficial. By far the most common con-
tributions by non-project members are metadata
corrections such as name changes and typos. Some
of these come directly as pull requests (≈1k so far),
which can often be merged within a day and reduce
the workload of the Anthology volunteers; others
come as (pre-formatted) GitHub issues (also ≈1k
so far), which are then automatically linked to pull
requests that are merged monthly.

As everyone can build the Anthology themselves,
we occasionally get feedback or suggestions regard-
ing the robustness of the infrastructure on different
systems, but overall contributions to the code parts
of the project are rare. One notable exception is
the integration with Papers With Code (PWC): this
functionality was suggested and in large parts con-
tributed by the team behind PWC.

Discoverability and Usability of Open-Source
Data and Software There is a discrepancy be-
tween the data and tools that the ACL Anthology
directly and openly provides and what researchers
use in practice. While not all the studies mentioned
in §5.3 are explicit about how they obtain data from
the Anthology, we do find instances of using web-
scraping tools on the Anthology website or using
the BIBTEX export as the primary data source. In
both situations, we would expect that using the
XML metadata (cf. §2.2) and/or the Python library
(cf. §4) would be a faster and potentially easier28

way to obtain the same results. The fact that several
studies build their own solutions for this points to a
problem of discoverability or usability of the data

28For example, the BIBTEX export contains TEX-encoded
characters such as \"{a} for the letter ä, while the XML
contains Unicode strings.

90

https://www.semanticscholar.org/

and tools we provide; i.e., people are either not
aware that these data and tools exist, or they find
them too hard to use (e.g. due to lack of documen-
tation).

Encouraging Contributions All of the features
the ACL Anthology has today are the result of
volunteer effort, yet we rarely see new volunteers
contributing features to the code. Potentially, one
factor in this is (again) the lack of documentation:
while there is some information distributed across
a GitHub Wiki, code-internal comments, and even
the ACL Anthology website,29 it is neither very
accessible nor complete. Such “documentation
debt” is known to cause problems for maintain-
ability (e.g., Rios et al., 2020), and is likely to pose
a hurdle for potential new contributors as well.

7 Ongoing and Future Work

Automatic Name Disambiguation An increas-
ing problem with the growth of the field is author
name disambiguation. As described in §2.3, our
XML format supports maintaining separate identi-
ties for authors with the same name, but currently
these names have to be manually disambiguated
at ingestion time. Ingestion input materials often
include disambiguating information such as OR-
CIDs, author affiliation, and so on, but we cannot
depend on their presence. A great project (likely
publishable) would be to build an automated dis-
ambiguation process based on metadata, context
(such as co-author lists), and paper content itself.

Incomplete Venue/SIG Information Prior to the
new Anthology ID format introduced in 2020, all
workshop venues were grouped together under a
common W prefix, without more specific venue in-
formation. Many of these have been manually
linked to venues (e.g., all early WMT volumes),
but the information is incomplete. These could
similarly be linked to SIGs.

Abstracts for Older Papers Since around 2016,
papers start systematically including abstracts in
the metadata, but most older papers do not have
them. Some datasets (e.g., Rohatgi et al., 2023)
provide text extracted automatically from the PDFs,
potentially enabling us to add abstracts for older
papers too. However, some form of quality check
of the extracted text appears necessary to maintain
a high level of quality of our metadata.

29https://aclanthology.org/info/

Copyright The copyright situation with Anthol-
ogy data has operated under the best efforts of non-
expert volunteers, largely from academia. However,
the licensing information is imperfect. The ACL
owns the copyright to most papers submitted to
ACL venues, but there are exceptions where the
ACL was only granted a license, such as for pa-
pers published by Canadian and British academics,
for whom copyright belongs to the English Crown.
The ideal situation would be to incorporate this
information in paper-level metadata.

Incomplete Older Volumes Many early volumes
are missing, and it is not always even known which
ones they are.

Front Page Redesign The front page of the An-
thology is showing its age, and could use reworking
from a graphic designer and/or front-end developer.

8 Conclusion

The ACL Anthology has grown into an invaluable
resource for the CL/NLP community. Volunteer
contributions are responsible for virtually all of the
improvements of the metadata (§2), the Anthology
website (§3), and the provided Python library (§4).
The survey in §5 highlights the utility and impor-
tance of this resource for academic research. To
address the ongoing challenges (§6) and future di-
rections (§7), we continue to rely on help from
the community. We encourage anyone who is in-
terested in contributing to the ACL Anthology to
explore our GitHub repository.30

Acknowledgements

We would like to thank everyone who has con-
tributed to the ACL Anthology over the years,31

and thereby helped to make it into what it is today.

Limitations

The literature survey in §5 was performed by
searching for papers with “ACL Anthology” in the
title or abstract, as well as inspecting references
in and citations of these papers. It is conceivable
that there is more relevant work that we missed.
Likewise, there may be more open-source projects
based off the Anthology that we are not aware of.

30https://github.com/acl-org/acl-anthology/
31An imperfect overview of contributors can be derived

from: https://github.com/acl-org/acl-anthology/
graphs/contributors

91

https://aclanthology.org/info/
https://github.com/acl-org/acl-anthology/
https://github.com/acl-org/acl-anthology/graphs/contributors
https://github.com/acl-org/acl-anthology/graphs/contributors

References
Mohamed Abdalla, Jan Philip Wahle, Terry Lima Ruas,

Aurélie Névéol, Fanny Ducel, Saif Mohammad, and
Karen Fort. 2023. The elephant in the room: Ana-
lyzing the presence of big tech in natural language
processing research. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13141–
13160, Toronto, Canada. Association for Computa-
tional Linguistics.

Ashton Anderson, Dan Jurafsky, and Daniel A. Mc-
Farland. 2012. Towards a computational history of
the ACL: 1980–2008. In Proceedings of the ACL-
2012 Special Workshop on Rediscovering 50 Years of
Discoveries, pages 13–21, Jeju Island, Korea. Asso-
ciation for Computational Linguistics.

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,
Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir Radev, and Yee Fan Tan. 2008.
The ACL Anthology reference corpus: A reference
dataset for bibliographic research in computational
linguistics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Marcel Bollmann and Desmond Elliott. 2020. On for-
getting to cite older papers: An analysis of the ACL
Anthology. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7819–7827, Online. Association for Computa-
tional Linguistics.

James Clark. 2002. RELAX NG compact syntax. Com-
mittee specification, The Organization for the Ad-
vancement of Structured Information Standards [OA-
SIS].

Shane Ding, Edwin Zhang, and Jimmy Lin. 2020. Cy-
dex: Neural search infrastructure for the scholarly
literature. In Proceedings of the First Workshop on
Scholarly Document Processing, pages 168–173, On-
line. Association for Computational Linguistics.

Alexander Fabbri, Irene Li, Prawat Trairatvorakul, Yi-
jiao He, Weitai Ting, Robert Tung, Caitlin Wester-
field, and Dragomir Radev. 2018. TutorialBank: A
manually-collected corpus for prerequisite chains,
survey extraction and resource recommendation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 611–620, Melbourne, Australia.
Association for Computational Linguistics.

Paula Fortuna, Laura Pérez-Mayos, Ahmed AbuRa’ed,
Juan Soler-Company, and Leo Wanner. 2021. Car-
tography of natural language processing for social
good (NLP4SG): Searching for definitions, statistics
and white spots. In Proceedings of the 1st Workshop
on NLP for Positive Impact, pages 19–26, Online.
Association for Computational Linguistics.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haïfa Zargayouna,
and Thierry Charnois. 2018. SemEval-2018 task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of the 12th Inter-
national Workshop on Semantic Evaluation, pages
679–688, New Orleans, Louisiana. Association for
Computational Linguistics.

Kata Gábor, Haïfa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Semantic
annotation of the ACL Anthology corpus for the auto-
matic analysis of scientific literature. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3694–
3701, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Daniel Gildea, Min-Yen Kan, Nitin Madnani, Christoph
Teichmann, and Martín Villalba. 2018. The ACL
Anthology: Current state and future directions. In
Proceedings of Workshop for NLP Open Source Soft-
ware (NLP-OSS), pages 23–28, Melbourne, Australia.
Association for Computational Linguistics.

Chenrui Guo, Haoran Cui, Li Zhang, Jiamin Wang, Wei
Lu, and Jian Wu. 2020. SmartCiteCon: Implicit
citation context extraction from academic literature
using supervised learning. In Proceedings of the 8th
International Workshop on Mining Scientific Publi-
cations, pages 21–26, Wuhan, China. Association for
Computational Linguistics.

Wenke Hao, Zhicheng Li, Yuchen Qian, Yuzhuo Wang,
and Chengzhi Zhang. 2020. The acl fws-rc: A dataset
for recognition and classification of sentence about
future works. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries in 2020, JCDL ’20,
page 261–269, New York, NY, USA. Association for
Computing Machinery.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2021. TDMSci: A spe-
cialized corpus for scientific literature entity tagging
of tasks datasets and metrics. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 707–714, Online. Association for Computa-
tional Linguistics.

Kenichi Iwatsuki, Florian Boudin, and Akiko Aizawa.
2020. An evaluation dataset for identifying com-
municative functions of sentences in English schol-
arly papers. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 1712–
1720, Marseille, France. European Language Re-
sources Association.

Yiping Jin, Min-Yen Kan, Jun-Ping Ng, and Xiangnan
He. 2013. Mining scientific terms and their defini-
tions: A study of the ACL Anthology. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 780–790,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

92

https://aclanthology.org/2023.acl-long.734
https://aclanthology.org/2023.acl-long.734
https://aclanthology.org/2023.acl-long.734
https://aclanthology.org/W12-3202
https://aclanthology.org/W12-3202
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.699
https://doi.org/10.18653/v1/2020.acl-main.699
https://doi.org/10.18653/v1/2020.acl-main.699
https://relaxng.org/compact.html
https://doi.org/10.18653/v1/2020.sdp-1.19
https://doi.org/10.18653/v1/2020.sdp-1.19
https://doi.org/10.18653/v1/2020.sdp-1.19
https://doi.org/10.18653/v1/P18-1057
https://doi.org/10.18653/v1/P18-1057
https://doi.org/10.18653/v1/P18-1057
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.3
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.3
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.3
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.3
https://doi.org/10.18653/v1/S18-1111
https://doi.org/10.18653/v1/S18-1111
https://doi.org/10.18653/v1/S18-1111
https://aclanthology.org/L16-1586
https://aclanthology.org/L16-1586
https://aclanthology.org/L16-1586
https://doi.org/10.18653/v1/W18-2504
https://doi.org/10.18653/v1/W18-2504
https://aclanthology.org/2020.wosp-1.3
https://aclanthology.org/2020.wosp-1.3
https://aclanthology.org/2020.wosp-1.3
https://doi.org/10.1145/3383583.3398526
https://doi.org/10.1145/3383583.3398526
https://doi.org/10.1145/3383583.3398526
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.18653/v1/2021.eacl-main.59
https://aclanthology.org/2020.lrec-1.212
https://aclanthology.org/2020.lrec-1.212
https://aclanthology.org/2020.lrec-1.212
https://aclanthology.org/D13-1073
https://aclanthology.org/D13-1073

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Ben King, Rahul Jha, and Dragomir R. Radev. 2014.
Heterogeneous networks and their applications: Sci-
entometrics, name disambiguation, and topic mod-
eling. Transactions of the Association for Computa-
tional Linguistics, 2:1–14.

Joseph Mariani, Gil Francopoulo, and Patrick Paroubek.
2019a. The NLP4NLP corpus (I): 50 years of publi-
cation, collaboration and citation in speech and lan-
guage processing. Frontiers in Research Metrics and
Analytics, 3.

Joseph Mariani, Gil Francopoulo, Patrick Paroubek, and
Frédéric Vernier. 2019b. The NLP4NLP corpus (II):
50 years of research in speech and language process-
ing. Frontiers in Research Metrics and Analytics,
3.

Joseph Mariani, Gil Francopoulo, Patrick Paroubek,
and Frédéric Vernier. 2022. NLP4NLP+5: The deep
(r)evolution in speech and language processing. Fron-
tiers in Research Metrics and Analytics, 7.

Saif M. Mohammad. 2020a. Examining citations of nat-
ural language processing literature. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5199–5209, On-
line. Association for Computational Linguistics.

Saif M. Mohammad. 2020b. NLP scholar: A dataset for
examining the state of NLP research. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 868–877, Marseille, France. Euro-
pean Language Resources Association.

Saif M. Mohammad. 2020c. NLP scholar: An interac-
tive visual explorer for natural language processing
literature. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 232–255, Online. As-
sociation for Computational Linguistics.

Elisa Omodei, Jean-Philippe Cointet, and Thierry
Poibeau. 2014. Mapping the natural language pro-
cessing domain: Experiments using the ACL An-
thology. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 2972–2978, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Malte Ostendorff, Terry Ruas, Till Blume, Bela Gipp,
and Georg Rehm. 2020. Aspect-based document sim-
ilarity for research papers. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6194–6206, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Monarch Parmar, Naman Jain, Pranjali Jain, P Jayakr-
ishna Sahit, Soham Pachpande, Shruti Singh, and
Mayank Singh. 2020. NLPExplorer: Exploring the
universe of NLP papers. In Advances in Information
Retrieval, pages 476–480, Cham. Springer Interna-
tional Publishing.

Martin Potthast, Sebastian Günther, Janek Bevendorff,
Jan Philipp Bittner, Alexander Bondarenko, Maik
Fröbe, Christian Kahmann, Andreas Niekler, Michael
Völske, Benno Stein, and Matthias Hagen. 2021. The
Information Retrieval Anthology. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’21, page 2550–2555, New York, NY, USA.
Association for Computing Machinery.

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The ACL RD-TEC 2.0: A language resource
for evaluating term extraction and entity recognition
methods. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1862–1868, Portorož, Slovenia.
European Language Resources Association (ELRA).

Dragomir R. Radev, Pradeep Muthukrishnan, and Va-
hed Qazvinian. 2009. The ACL Anthology network
corpus. In Proceedings of the 2009 Workshop on Text
and Citation Analysis for Scholarly Digital Libraries
(NLPIR4DL), pages 54–61, Suntec City, Singapore.
Association for Computational Linguistics.

Nicolli Rios, Leonardo Mendes, Cristina Cerdeiral, Ana
Patrícia F. Magalhães, Boris Perez, Darío Correal,
Hernán Astudillo, Carolyn Seaman, Clemente Izuri-
eta, Gleison Santos, and Rodrigo Oliveira Spínola.
2020. Hearing the voice of software practitioners on
causes, effects, and practices to deal with documenta-
tion debt. In Requirements Engineering: Foundation
for Software Quality, pages 55–70, Cham. Springer
International Publishing.

Shaurya Rohatgi, Yanxia Qin, Benjamin Aw, Niranjana
Unnithan, and Min-Yen Kan. 2023. The ACL OCL
corpus: advancing open science in computational
linguistics. arXiv:2305.14996.

Mukund Rungta, Janvijay Singh, Saif M. Mohammad,
and Diyi Yang. 2022. Geographic citation gaps in
NLP research. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1371–1383, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Ulrich Schäfer, Bernd Kiefer, Christian Spurk, Jörg
Steffen, and Rui Wang. 2011. The ACL Anthology
searchbench. In Proceedings of the ACL-HLT 2011
System Demonstrations, pages 7–13, Portland, Ore-
gon. Association for Computational Linguistics.

Ulrich Schäfer, Christian Spurk, and Jörg Steffen. 2012.
A fully coreference-annotated corpus of scholarly
papers from the ACL Anthology. In Proceedings of
COLING 2012: Posters, pages 1059–1070, Mumbai,
India. The COLING 2012 Organizing Committee.

93

https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.1162/tacl_a_00161
https://doi.org/10.1162/tacl_a_00161
https://doi.org/10.1162/tacl_a_00161
https://doi.org/10.3389/frma.2018.00036
https://doi.org/10.3389/frma.2018.00036
https://doi.org/10.3389/frma.2018.00036
https://doi.org/10.3389/frma.2018.00037
https://doi.org/10.3389/frma.2018.00037
https://doi.org/10.3389/frma.2018.00037
https://doi.org/10.3389/frma.2022.863126
https://doi.org/10.3389/frma.2022.863126
https://doi.org/10.18653/v1/2020.acl-main.464
https://doi.org/10.18653/v1/2020.acl-main.464
https://aclanthology.org/2020.lrec-1.109
https://aclanthology.org/2020.lrec-1.109
https://doi.org/10.18653/v1/2020.acl-demos.27
https://doi.org/10.18653/v1/2020.acl-demos.27
https://doi.org/10.18653/v1/2020.acl-demos.27
http://www.lrec-conf.org/proceedings/lrec2014/pdf/643_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/643_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/643_Paper.pdf
https://doi.org/10.18653/v1/2020.coling-main.545
https://doi.org/10.18653/v1/2020.coling-main.545
https://doi.org/10.1007/978-3-030-45442-5_61
https://doi.org/10.1007/978-3-030-45442-5_61
https://doi.org/10.1145/3404835.3462798
https://doi.org/10.1145/3404835.3462798
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/W09-3607
https://aclanthology.org/W09-3607
https://doi.org/10.1007/978-3-030-44429-7_4
https://doi.org/10.1007/978-3-030-44429-7_4
https://doi.org/10.1007/978-3-030-44429-7_4
http://arxiv.org/abs/2305.14996
http://arxiv.org/abs/2305.14996
http://arxiv.org/abs/2305.14996
https://aclanthology.org/2022.emnlp-main.89
https://aclanthology.org/2022.emnlp-main.89
https://aclanthology.org/P11-4002
https://aclanthology.org/P11-4002
https://aclanthology.org/C12-2103
https://aclanthology.org/C12-2103

Ulrich Schäfer, Hans Uszkoreit, Christian Federmann,
Torsten Marek, and Yajing Zhang. 2008. Extract-
ing and querying relations in scientific papers on
language technology. In Proceedings of the Sixth In-
ternational Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco. Euro-
pean Language Resources Association (ELRA).

Tim Schopf, Karim Arabi, and Florian Matthes. 2023.
Exploring the landscape of natural language process-
ing research. arXiv:2307.10652.

Anne-Kathrin Schumann. 2016. Brave new world: Un-
covering topical dynamics in the ACL Anthology
reference corpus using term life cycle information.
In Proceedings of the 10th SIGHUM Workshop on
Language Technology for Cultural Heritage, Social
Sciences, and Humanities, pages 1–11, Berlin, Ger-
many. Association for Computational Linguistics.

Anne-Kathrin Schumann and Héctor Martínez Alonso.
2018. Automatic annotation of semantic term types
in the complete ACL Anthology reference corpus.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Janvijay Singh, Mukund Rungta, Diyi Yang, and Saif
Mohammad. 2023. Forgotten knowledge: Examin-
ing the citational amnesia in NLP. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6192–6208, Toronto, Canada. Association for
Computational Linguistics.

Mayank Singh, Pradeep Dogga, Sohan Patro, Dhiraj
Barnwal, Ritam Dutt, Rajarshi Haldar, Pawan Goyal,
and Animesh Mukherjee. 2018. CL scholar: The
ACL Anthology knowledge graph miner. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Demonstrations, pages 16–20, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas van Dongen, Gideon Maillette de Buy Wen-
niger, and Lambert Schomaker. 2020. SChuBERT:
Scholarly document chunks with BERT-encoding
boost citation count prediction. In Proceedings of the
First Workshop on Scholarly Document Processing,
pages 148–157, Online. Association for Computa-
tional Linguistics.

Adam Vogel and Dan Jurafsky. 2012. He said, she said:
Gender in the ACL Anthology. In Proceedings of
the ACL-2012 Special Workshop on Rediscovering
50 Years of Discoveries, pages 33–41, Jeju Island,
Korea. Association for Computational Linguistics.

Benjamin Weitz and Ulrich Schäfer. 2012. A graph-
ical citation browser for the ACL Anthology. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 1718–1722, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Takuma Yoneda, Koki Mori, Makoto Miwa, and Yutaka
Sasaki. 2017. Bib2vec: Embedding-based search sys-
tem for bibliographic information. In Proceedings
of the Software Demonstrations of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 112–115, Valencia,
Spain. Association for Computational Linguistics.

94

http://www.lrec-conf.org/proceedings/lrec2008/pdf/773_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/773_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/773_paper.pdf
http://arxiv.org/abs/2307.10652
http://arxiv.org/abs/2307.10652
https://doi.org/10.18653/v1/W16-2101
https://doi.org/10.18653/v1/W16-2101
https://doi.org/10.18653/v1/W16-2101
https://aclanthology.org/L18-1586
https://aclanthology.org/L18-1586
https://aclanthology.org/2023.acl-long.341
https://aclanthology.org/2023.acl-long.341
https://doi.org/10.18653/v1/N18-5004
https://doi.org/10.18653/v1/N18-5004
https://doi.org/10.18653/v1/2020.sdp-1.17
https://doi.org/10.18653/v1/2020.sdp-1.17
https://doi.org/10.18653/v1/2020.sdp-1.17
https://aclanthology.org/W12-3204
https://aclanthology.org/W12-3204
http://www.lrec-conf.org/proceedings/lrec2012/pdf/805_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/805_Paper.pdf
https://aclanthology.org/E17-3028
https://aclanthology.org/E17-3028

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 95–101
December 6, 2023 ©2023 Association for Computational Linguistics

nanoT5: A PyTorch Framework for Pre-training and Fine-tuning
T5-style Models with Limited Resources

Piotr Nawrot
University of Edinburgh

https://github.com/PiotrNawrot/nanoT5

Abstract
State-of-the-art language models like T5 have
revolutionized the NLP landscape, but their
computational demands hinder a large por-
tion of the research community. To address
this challenge, we present nanoT5, a specially-
optimized PyTorch framework for efficient pre-
training and fine-tuning of T5 models. Drawing
on insights from optimizer differences and pri-
oritizing efficiency, nanoT5 allows a T5-Base
model to be pre-trained on a single GPU in
just 16 hours, without any loss in performance.
With the introduction of this open-source frame-
work, we hope to widen the accessibility to
language modelling research and cater to the
community’s demand for more user-friendly
T5 (Encoder-Decoder) implementations. We
make our contributions, including configura-
tions, codebase, pre-training insights, and pre-
trained models, available to the public.

1 Introduction

The transformative power of large pre-trained lan-
guage models such as GPT-3 (Brown et al., 2020),
T5 (Raffel et al., 2019), and PaLM (Chowdhery
et al., 2022) is undeniable. However, their massive
computational requirements remain a barrier for
many researchers. Notably, models like T5 require
extensive datasets and significant computational
resources for their pre-training (Raffel et al., 2019).
Furthermore, many open-source implementations
lean heavily on TPU accelerators (Shazeer, 2020),
which are not as available to the academic commu-
nity as GPUs.

Recognizing this gap, we introduce nanoT5, a
resource-efficient, open-source PyTorch framework
designed for the pre-training and fine-tuning of T5
models. Inspired by pioneering efforts such as
nanoGPT (Karpathy, 2021) and Cramming (Geip-
ing and Goldstein, 2022), nanoT5 uniquely con-
centrates on enhancing the training pipeline specif-
ically for T5 encoder-decoder models. Our frame-
work includes optimized configurations and scripts,

enabling researchers to pre-train a T5-Base model
with 248M parameters on a single GPU in just 16
hours. Every facet, from data preprocessing and
model architecture to the learning rate schedule,
has been tuned for both efficiency and adaptabil-
ity. With nanoT5, users can seamlessly initiate
model pre-training within minutes of accessing our
GitHub repository.

This paper underscores two main innovations:
First, we delve into the nuances between the Adam
and Adafactor optimizer performances as detailed
in (Havinga), suggesting a version of AdamW
(Loshchilov and Hutter, 2017), augmented with
matrix-wise learning rate scaling based on root
mean square. This variant showcases better speed
and robustness compared to the default Adafactor
(Shazeer and Stern, 2018). Second, we demon-
strate that T5 models trained with nanoT5, housing
around 250M parameters, can achieve performance
akin to the publicly-available checkpoints while
requiring 150x less pre-training data.

Our primary motivation stems from the grow-
ing demand for reproducible and tuned baselines
(Kaddour et al., 2023), enabling fast and small-
scale hypothesis validation in the evolving realm
of large pre-trained Transformers. With nanoT5,
we address a gap highlighted by community re-
quests 123, providing an approachable platform
for working with T5 (Encoder-Decoder) archi-
tecture. To our understanding, nanoT5 pioneers
the effort to reproduce T5 v1.1 pre-training us-
ing PyTorch, deviating from prior Jax/Flax im-
plementations. We invite the community to ex-
plore our training configurations, codebase, and
pre-trained models, all of which are available at
https://github.com/PiotrNawrot/nanoT5.

1https://github.com/google-research/text-to-text-transfer-transformer/issues/172

2https://github.com/huggingface/transformers/issues/18030

3https://github.com/huggingface/transformers/issues/5079

95

https://github.com/PiotrNawrot/nanoT5
https://github.com/PiotrNawrot/nanoT5

2 Related Work

The landscape of open-source repositories tailored
for efficient pre-training of Transformer language
models is vast. Notably, nanoGPT (Karpathy,
2021) sheds light on decoder-only models, while
Cramming (Geiping and Goldstein, 2022) homes
in on the optimal pre-training of the encoder-only
BERT architecture (Devlin et al., 2019). Contrast-
ingly, with nanoT5, we sought to bridge the exist-
ing gap by providing a standalone research tem-
plate tailored for the T5-style (Encoder-Decoder)
models.

To expedite the training process of nanoT5 we
incorporated various optimizations. These encom-
pass mixed precision training (Micikevicius et al.,
2017), compiled runtimes (Narang et al., 2021),
and more. Additionally, we delved into the po-
tential of efficient training methodologies such as
recent optimizers (Chen et al., 2023; Liu et al.,
2023), and fast attention mechanism (Dao et al.,
2022), which are elaborated further in Section 4.3.
It’s crucial to note that while we evaluated various
efficient algorithms, we consciously opted against
those, such as (Nawrot et al., 2022; Shazeer et al.,
2017), that would modify the core model structure.
Instead, our intent with nanoT5 was to cultivate
a straightforward baseline for further research en-
deavors. The standout contribution of our work in
terms of efficient training algorithms is the AdamW
variant, with the RMS matrix scaling, which im-
proves T5 pre-training convergence.

3 Methodology

Our validation strategy seeks to replicate the T5-
base pre-training outcomes detailed in (Shazeer,
2020) and the fine-tuning results of Tk-Instruct on
the Super Natural-Instructions (SNI) meta-dataset
(Wang et al., 2022).

3.1 Training pipeline

We’ve devised a comprehensive training pipeline
prioritizing efficient data management, low-level
optimizations, and coding simplicity, all while pre-
serving the core model and training logic:

• Dataset Handling: Given the extensive vol-
ume of the C4 dataset, which exceeds 300GB,
our repository implements concurrent data
downloading with model training. This op-
timization speeds up the commencement of
T5 model pre-training to a few minutes.

• Exposure and Simplicity: Our methodology
aims to strike a balance between adaptability
and abstraction. With tools such as the Hug-
gingFace Accelerator (Sylvain Gugger, 2022),
we abstract tasks like checkpoint management
and tensor operations. Experiment tracking is
realized via neptune.ai (Neptune team, 2019),
and we’ve employed hydra (Yadan, 2019) for
coordinated hyperparameter handling.

• Efficiency: We’ve leveraged the optimiza-
tions of PyTorch 2.0 (Paszke et al., 2019),
and employed mixed-precision training in line
with established optimization guidelines 45.

• Flexibility: Our repository is designed with
adaptability in mind, offering support for
multi-GPU training, gradient accumulation,
and gradient checkpointing. This ensures
users can reproduce our results on a variety of
GPUs beyond the A100 and can experiment
with configurations larger than the T5-base
size emphasized in this study. Additionally,
we provide support for both CPUs and Ap-
ple’s ARM M1 chips.

3.2 Pre-training

Our experiments strictly follow the T5-v1.1-base
training configuration (Shazeer, 2020), where the
model itself comprises of roughly 248M parame-
ters. The C4 dataset (Raffel et al., 2019), sourced
directly from Huggingface, undergoes tokeniza-
tion via the Wordpiece tokenizer (Schuster and
Nakajima, 2012), with the original model’s vocab-
ulary. During pre-processing, 15% of input data
is masked using sentinel tokens, setting the neural
network’s target as the prediction of these tokens,
leveraging its decoder. Consistent with the origi-
nal study, we’ve set the batch size at 128 examples,
with inputs of 512 tokens and outputs of 114 tokens.
Optimization is facilitated through the Adafactor
optimizer (Shazeer and Stern, 2018), combined
with the Inverse-Square-Root (ISR) learning rate
schedule. The model is trained for 216 steps. For
more details please refer to the original work.

3.3 Fine-tuning

Our fine-tuning employs the Super Natural-
Instructions (SNI) meta-dataset (Wang et al., 2022),
which has been previously used for fine-tuning

4https://huggingface.co/docs/transformers/perf_train_gpu_one

5https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

96

Figure 1: Downstream performance of models across
various pre-training durations, including existing T5-
base variants accessible through Huggingface Hub.

models like FlanT5 (Chung et al., 2022), BLOOM
(Scao et al., 2022), and Tk-Instruct (Wang et al.,
2022). To assess the correctness of our fine-tuning
setup, and the efficiency of our pre-training, we
decided to reproduce the Tk-Instruct methodology.

3.4 Reproducibility
Ensuring that our work can be reliably replicated is
a core focus of our methodology. To facilitate this,
we have taken the following measures:

• Model Weights: We make the model’s
weights available on the HuggingFace Hub.
These can be downloaded and used for fine-
tuning on the SNI dataset with nanoT5.

• Loss Curves: We openly share both the pre-
training and fine-tuning loss curves to provide
insight into the model’s learning dynamics.

• Hyperparameters: All hyperparameters used
in our experiments have been released.

• Environment and Hardware: In our reposi-
tory we offer comprehensive instructions on
how to recreate our environment, including de-
tailed information about our hardware. This
encompasses specifications of our CPU and
GPU, as well as the relevant driver versions.

• Statistical Robustness: To ensure the validity
of our results, each experiment was conducted
three times with different random seeds.

4 Results

4.1 Reproducing Pre-Training
By following the original experimental setup
described above, we achieved a negative log-
likelihood of 1.995 on the held-out set, which is
slightly inferior to the reference.

Figure 2: Training loss curves contrasting different opti-
mizers and learning rate schedules.

In exploring alternative optimization methods,
we tested the AdamW optimizer as a potential
replacement for the original Adafactor. While
AdamW theoretically promises greater training sta-
bility by directly estimating the second moment
of the gradients (as opposed to Adafactor’s low-
rank approximation), our training with AdamW
diverged. This behavior mirrors findings from a
study on T5 pre-training (Havinga). Upon further
investigation, we identified that matrix-wise learn-
ing rate (LR) scaling using its root mean square
(RMS) 6 was the crucial element ensuring Adafac-
tor’s convergence. After augmenting AdamW with
this extra LR scaling, which we will refer to as
RMS scaling, it not only converged but also exhib-
ited improved stability during pre-training and op-
erated slightly faster, thanks to the direct retrieval
of the second moment from memory instead of
approximating it.

Nonetheless, when combined with the Inverse-
Square-Root LR schedule, AdamW’s performance
was still outpaced by Adafactor. By replacing
the ISR schedule with a Cosine LR Schedule,
we achieved a superior negative log-likelihood of
1.953 on the held-out set, significantly surpassing
Adafactor with the ISR schedule. The specific re-
sults of these experiments can be found in Table
2. A comparison of the training loss curves using
different optimizers (Adafactor vs. AdamW) and
schedules (ISR vs. Cosine) is provided in Figure 2.

4.2 Fine-Tuning Performance Across
Different Pre-Training Durations

Our fine-tuning configuration strictly aligns with
that of Tk-Instruct. However, there remains some
ambiguity regarding whether Tk-Instruct was ini-
tialized from a regular checkpoint (google/t5-v1_1-
base) or from a version specifically tailored for Lan-

6For more details please refer to (Shazeer and Stern, 2018), Section 8, titled "Relative Step Size"

97

Mixed Precision Torch 2.0 compile Grad Acc Time per 1 Pre-training step Total Pre-training time
FP32 No 2 ∼4.10s ∼74.6h
TF32 No 2 ∼1.39s ∼25.3h
BF16 No 2 ∼1.30s ∼23.7h
TF32 Yes 2 ∼0.95s ∼17.3h
BF16 Yes 1 ∼0.56s ∼10.2h

Table 1: Efficiency metrics across various configuration settings during pre-training, with the "Total Pre-training
Time" column referencing 216 steps following the default config.

Inverse-Square-Root Cosine
Adafactor 1.995 1.993
AdamW 2.040 1.953

Table 2: Comparison of negative log-likelihood scores
on the held-out set of C4 using different optimization
methods and learning rate schedules.

guage Modelling (google/t5-base-lm-adapt). To
cover all bases, we evaluated both, and success-
fully reproduced the original results.

Figure 1 presents a performance comparison of
the model we trained in various time increments
(ranging from 4 to 24 hours) against the original T5-
base-v1.1 model weights from Huggingface Hub
and its language modeling-adapted version. No-
tably, our model, trained for 16 hours on a single
GPU, lagged by only 0.2 RougeL on average com-
pared to the original T5-base-v1.1. This is an im-
pressive result given the vast disparity in training
data (the T5 paper indicates training on approxi-
mately 150x more data than we did). The language
modeling-adapted checkpoint outperformed both
the original T5-base-v1.1 model and ours, but this
language modeling model adaptation extends be-
yond the scope of this study. A single fine-tuning
step in our setup took approximately 0.18s, culmi-
nating in roughly an hour for the entire fine-tuning
process.

4.3 Efficiency Statistics
Table 1 showcases the efficiency metrics from our
pre-training experiments. It details the time taken
for a single pre-training step and the overall pre-
training time based on our default configuration
desribed in Section 3.2. A noteworthy observation
is that, because of the large batch size (128) used
for pre-training, for numerical precisions other than
BF16 we need to increase the number of gradient
accumulation steps from 1 to 2.

Attempts at Boosting Efficiency In our pursuit
of efficiency, we experimented with various strate-

gies, albeit with limited success:

• Optimization Algorithms: We assessed the
performance of recent optimizers like Lion
(Chen et al., 2023) and Sophia (Liu et al.,
2023). However, neither outperformed the
AdamW with RMS scaling.

• Positional Embeddings: We tried replacing
T5’s learned relative positional embeddings
with ALiBi (Press et al., 2021). Although
such a switch had the potential to reduce the
number of parameters, leading to faster train-
ing and inference rates, and paving the way
for integrating Flash Attention (Dao et al.,
2022) (currently limited to non-parametric
bias), our trials revealed that training with AL-
iBi was more volatile and yielded suboptimal
pre-training loss.

• FP16 Precision: Unfortunately, all our at-
tempts using FP16 precision consistently di-
verged.

5 Conclusions

In this study, we demonstrated the feasibility of
pre-training a substantial model like T5 under re-
source constraints, specifically using a single A100
GPU within a 24-hour timeframe. Through selec-
tion of optimization methods and configurations,
we achieved results comparable to large-scale train-
ing settings. Our intention in sharing the codebase,
configurations, and training logs is to bridge the
gap between research accessibility and computa-
tional resource limitations in the NLP domain. We
invite and welcome community suggestions to fur-
ther refine and enhance our approach.

Moving forward, we aim to enrich our code-
base by incorporating additional training objectives,
such as those suggested by (Tworkowski et al.,
2023; Tay et al., 2022), in hopes of further opti-
mizing the training pipeline.

98

Acknowledgements

This work was supported by the UKRI Centre for
Doctoral Training in Natural Language Processing,
funded by the UKRI (grant EP/S022481/1) and
the University of Edinburgh, School of Informatics
and School of Philosophy, Psychology & Language
Sciences.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. 2023. Symbolic discovery of optimization algo-
rithms. ArXiv, abs/2302.06675.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao,
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinod-
kumar Prabhakaran, Emily Reif, Nan Du, Benton C.
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier García,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Díaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. ArXiv, abs/2204.02311.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M.
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,

Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher R’e. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
ArXiv, abs/2205.14135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Jonas Geiping and Tom Goldstein. 2022. Cramming:
Training a language model on a single gpu in one day.
ArXiv, abs/2212.14034.

Yeb Havinga. Pre-training dutch t5 models.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale
Minervini, and Matt J. Kusner. 2023. No train
no gain: Revisiting efficient training algorithms
for transformer-based language models. ArXiv,
abs/2307.06440.

Andrej Karpathy. 2021. nanogpt. https://github.
com/karpathy/nanoGPT. GitHub repository.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy
Liang, and Tengyu Ma. 2023. Sophia: A scal-
able stochastic second-order optimizer for language
model pre-training. ArXiv, abs/2305.14342.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Frederick Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed preci-
sion training. ArXiv, abs/1710.03740.

Sharan Narang, Hyung Won Chung, Yi Tay, William
Fedus, Thibault Févry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam M. Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Marcus,
Adam Roberts, and Colin Raffel. 2021. Do trans-
former modifications transfer across implementations
and applications? ArXiv, abs/2102.11972.

Piotr Nawrot, Jan Chorowski, Adrian La’ncucki, and
E. Ponti. 2022. Efficient transformers with dynamic
token pooling. In Annual Meeting of the Association
for Computational Linguistics.

Neptune team. 2019. neptune.ai.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

99

https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:256846990
https://api.semanticscholar.org/CorpusID:256846990
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:255185900
https://api.semanticscholar.org/CorpusID:255185900
https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models
https://api.semanticscholar.org/CorpusID:259847436
https://api.semanticscholar.org/CorpusID:259847436
https://api.semanticscholar.org/CorpusID:259847436
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:258841030
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:3297437
https://api.semanticscholar.org/CorpusID:3297437
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:232035936
https://api.semanticscholar.org/CorpusID:253581399
https://api.semanticscholar.org/CorpusID:253581399
https://neptune.ai/

Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021. Train
short, test long: Attention with linear biases enables
input length extrapolation. ArXiv, abs/2108.12409.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Teven Le Scao, Angela Fan, Christopher Akiki,
Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hesslow,
Roman Castagn’e, Alexandra Sasha Luccioni, Franc-
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Rose Biderman, Albert Web-
son, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoît Sagot, Niklas Muennighoff, Albert Villanova
del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu
Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz
Suarez, Victor Sanh, Hugo Laurenccon, Yacine Jer-
nite, Julien Launay, Margaret Mitchell, Colin Raf-
fel, Aaron Gokaslan, Adi Simhi, Aitor Soroa Etx-
abe, Alham Fikri Aji, Amit Alfassy, Anna Rogers,
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris C. Emezue, Christopher Klamm, Colin Leong,
Daniel Alexander van Strien, David Ifeoluwa Ade-
lani, Dragomir R. Radev, Eduardo Gonz’alez Pon-
ferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar
Natan, Francesco De Toni, Gérard Dupont, Germán
Kruszewski, Giada Pistilli, Hady ElSahar, Hamza
Benyamina, Hieu Trung Tran, Ian Yu, Idris Abdul-
mumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier
de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu,
Jonathan Chang, Jorg Frohberg, Josephine L. To-
bing, Joydeep Bhattacharjee, Khalid Almubarak,
Kimbo Chen, Kyle Lo, Leandro von Werra, Leon
Weber, Long Phan, Loubna Ben Allal, Ludovic Tan-
guy, Manan Dey, Manuel Romero Muñoz, Maraim
Masoud, Mar’ia Grandury, Mario vSavsko, Max
Huang, Maximin Coavoux, Mayank Singh, Mike
Tian-Jian Jiang, Minh Chien Vu, Mohammad Ali
Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora
Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar
Espejel, Ona de Gibert, Paulo Villegas, Peter Hen-
derson, Pierre Colombo, Priscilla Amuok, Quentin
Lhoest, Rheza Harliman, Rishi Bommasani, Roberto
L’opez, Rui Ribeiro, Salomey Osei, Sampo Pyysalo,
Sebastian Nagel, Shamik Bose, Shamsuddeen Has-
san Muhammad, Shanya Sharma, S. Longpre, So-
maieh Nikpoor, Stanislav Silberberg, Suhas Pai, Syd-
ney Zink, Tiago Timponi Torrent, Timo Schick, Tris-
tan Thrush, Valentin Danchev, Vassilina Nikoulina,
Veronika Laippala, Violette Lepercq, Vrinda Prabhu,
Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin
Heinzerling, Chenglei Si, Elizabeth Salesky, Sab-
rina J. Mielke, Wilson Y. Lee, Abheesht Sharma, An-
drea Santilli, Antoine Chaffin, Arnaud Stiegler, Deba-

jyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-
hal V. Nayak, Ryan Teehan, Samuel Albanie, Sheng
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Févry, Trishala Neeraj, Ur-
mish Thakker, Vikas Raunak, Xiang Tang, Zheng Xin
Yong, Zhiqing Sun, Shaked Brody, Y Uri, Hadar
Tojarieh, Adam Roberts, Hyung Won Chung, Jae-
sung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre Franc-
cois Lavall’ee, Rémi Lacroix, Samyam Rajbhan-
dari, Sanchit Gandhi, Shaden Smith, Stéphane Re-
quena, Suraj Patil, Tim Dettmers, Ahmed Baruwa,
Amanpreet Singh, Anastasia Cheveleva, Anne-Laure
Ligozat, Arjun Subramonian, Aur’elie N’ev’eol,
Charles Lovering, Daniel H Garrette, Deepak R.
Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Eka-
terina Voloshina, Eli Bogdanov, Genta Indra Winata,
Hailey Schoelkopf, Jan-Christoph Kalo, Jekate-
rina Novikova, Jessica Zosa Forde, Xiangru Tang,
Jungo Kasai, Ken Kawamura, Liam Hazan, Ma-
rine Carpuat, Miruna Clinciu, Najoung Kim, New-
ton Cheng, Oleg Serikov, Omer Antverg, Oskar
van der Wal, Rui Zhang, Ruochen Zhang, Sebastian
Gehrmann, S. Osher Pais, Tatiana Shavrina, Thomas
Scialom, Tian Yun, Tomasz Limisiewicz, Verena
Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada
Pruksachatkun, Yonatan Belinkov, Zachary Bam-
berger, Zdenvek Kasner, Alice Rueda, Amanda Pes-
tana, Amir Feizpour, Ammar Khan, Amy Faranak,
Ananda Santa Rosa Santos, Anthony Hevia, Antig-
ona Unldreaj, Arash Aghagol, Arezoo Abdollahi,
Aycha Tammour, Azadeh HajiHosseini, Bahareh
Behroozi, Benjamin Olusola Ajibade, Bharat Kumar
Saxena, Carlos Muñoz Ferrandis, Danish Contrac-
tor, David M. Lansky, Davis David, Douwe Kiela,
Duong Anh Nguyen, Edward Tan, Emily Baylor, Ez-
inwanne Ozoani, Fatim T Mirza, Frankline Onon-
iwu, Habib Rezanejad, H.A. Jones, Indrani Bhat-
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne-
jadgholi, Jan Passmore, Joshua Seltzer, Julio Bonis
Sanz, Karen Fort, Lívia Macedo Dutra, Mairon Sama-
gaio, Maraim Elbadri, Margot Mieskes, Marissa Ger-
chick, Martha Akinlolu, Michael McKenna, Mike
Qiu, M. K. K. Ghauri, Mykola Burynok, Nafis
Abrar, Nazneen Rajani, Nour Elkott, Nourhan Fahmy,
Olanrewaju Samuel, Ran An, R. P. Kromann, Ryan
Hao, Samira Alizadeh, Sarmad Shubber, Silas L.
Wang, Sourav Roy, Sylvain Viguier, Thanh-Cong
Le, Tobi Oyebade, Trieu Nguyen Hai Le, Yoyo Yang,
Zachary Kyle Nguyen, Abhinav Ramesh Kashyap,
Alfredo Palasciano, Alison Callahan, Anima Shukla,
Antonio Miranda-Escalada, Ayush Kumar Singh,
Benjamin Beilharz, Bo Wang, Caio Matheus Fon-
seca de Brito, Chenxi Zhou, Chirag Jain, Chuxin
Xu, Clémentine Fourrier, Daniel Le’on Perin’an,
Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio

100

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007

Barth, Florian Fuhrimann, Gabriel Altay, Giyased-
din Bayrak, Gully A. Burns, Helena U. Vrabec,
Iman I.B. Bello, Isha Dash, Ji Soo Kang, John
Giorgi, Jonas Golde, Jose David Posada, Karthi
Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pàmies, María Andrea Castillo, Mar-
ianna Nezhurina, Mario Sanger, Matthias Samwald,
Michael Cullan, Michael Weinberg, M Wolf, Mina
Mihaljcic, Minna Liu, Moritz Freidank, Myung-
sun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale
Fung, Patricia Haller, R. Chandrasekhar, R. Eisen-
berg, Robert Martin, Rodrigo L. Canalli, Rosaline
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda,
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki-
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku-
mar, Stefan Schweter, Sushil Pratap Bharati, T. A.
Laud, Th’eo Gigant, Tomoya Kainuma, Wojciech
Kusa, Yanis Labrak, Yashasvi Bajaj, Y. Venkatra-
man, Yifan Xu, Ying Xu, Yun chao Xu, Zhee Xao
Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes
Belkada, and Thomas Wolf. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
ArXiv, abs/2211.05100.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and Korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149–5152.

Noam M. Shazeer. 2020. Glu variants improve trans-
former. ArXiv, abs/2002.05202.

Noam M. Shazeer, Azalia Mirhoseini, Krzysztof
Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hin-
ton, and Jeff Dean. 2017. Outrageously large neu-
ral networks: The sparsely-gated mixture-of-experts
layer. ArXiv, abs/1701.06538.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Thomas Wolf Philipp Schmid Zachary Mueller Sourab
Mangrulkar Marc Sun Benjamin Bossan Syl-
vain Gugger, Lysandre Debut. 2022. Acceler-
ate: Training and inference at scale made sim-
ple, efficient and adaptable. https://github.com/
huggingface/accelerate.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier García,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara
Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny
Zhou, Neil Houlsby, and Donald Metzler. 2022. Ul2:
Unifying language learning paradigms. In Interna-
tional Conference on Learning Representations.

Szymon Tworkowski, Konrad Staniszewski, Mikolaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Milo’s. 2023. Focused transformer: Contrastive train-
ing for context scaling. ArXiv, abs/2307.03170.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,

Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, M. Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur
Sampat, Savan Doshi, Siddharth Deepak Mishra, Su-
jan Reddy, Sumanta Patro, Tanay Dixit, Xudong
Shen, Chitta Baral, Yejin Choi, Noah A. Smith,
Hanna Hajishirzi, and Daniel Khashabi. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on
Empirical Methods in Natural Language Processing.

Omry Yadan. 2019. Hydra - a framework for elegantly
configuring complex applications. Github.

101

https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://api.semanticscholar.org/CorpusID:211096588
https://api.semanticscholar.org/CorpusID:211096588
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:12462234
https://api.semanticscholar.org/CorpusID:4786918
https://api.semanticscholar.org/CorpusID:4786918
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://api.semanticscholar.org/CorpusID:252780443
https://api.semanticscholar.org/CorpusID:252780443
https://api.semanticscholar.org/CorpusID:259360592
https://api.semanticscholar.org/CorpusID:259360592
https://api.semanticscholar.org/CorpusID:253098274
https://api.semanticscholar.org/CorpusID:253098274
https://api.semanticscholar.org/CorpusID:253098274
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 102–109
December 6, 2023 ©2023 Association for Computational Linguistics

AWARE-TEXT: An Android Package for Mobile Phone Based Text
Collection and On-Device Processing

Salvatore Giorgi1,2,∗, Garrick Sherman1,∗, Douglas Bellew1,
Sharath Chandra Guntuku2, Lyle Ungar2 and Brenda Curtis1
1National Institute on Drug Abuse, 2University of Pennsylvania

{sal.giorgi, garrick.sherman, doug.bellew, brenda.curtis}@nih.gov
{sharathg, ungar}@cis.upenn.edu

Abstract

We present the AWARE-TEXT package, an
open-source software package for collecting
textual data on Android mobile devices. This
package allows for collecting short message
service (SMS or text messages) and character-
level keystrokes. In addition to collecting
this raw data, AWARE-TEXT is designed for
on device lexicon processing, which allows
one to collect standard textual-based measures
(e.g., sentiment, emotions, and topics) with-
out collecting the underlying raw textual data.
This is especially important in the case of mo-
bile phones, which can contain sensitive and
identifying information. Thus, the AWARE-
TEXT package allows for privacy protection
while simultaneously collecting textual infor-
mation at multiple levels of granularity: person
(lifetime history of SMS), conversation (both
sides of SMS conversations and group chats),
message (single SMS), and character (individ-
ual keystrokes entered across applications). Fi-
nally, the unique processing environment of
mobile devices opens up several methodologi-
cal and privacy issues, which we discuss.

1 Introduction

Unlike traditional NLP tasks (e.g., machine transla-
tion or question answering), NLP in the context
of psychological, social, and health sciences is
aimed at understanding how textual data can char-
acterize people. This includes stance or sarcasm
at document-level (Lynn et al., 2019), state-level
tasks, such as emotion prediction (Mohammad,
2016), trait-level tasks, such as personality pre-
diction (Park et al., 2015) or mental health appli-
cations (De Choudhury and De, 2014), or even
population-level tasks, for example, monitoring
the opioid epidemic via social media data (Giorgi
et al., 2023). Similarly, keystroke data (or typ-
ing dynamics, i.e., a succession of individual de-
pressions on a keyboard) has been used to predict

∗ Authors contributed equally.

AWARE
Database

Mobile Client Remote Server

SMS
Database

AWARE-Text

AWARE
Server

Temp
Database

SMS Plugin

Keyboard Plugin

Lexical Measures

Lexical Measures

HTTPS

PII
Cleaning

Figure 1: Data flow diagram. Data stored and collected
on a mobile client is sent through AWARE-TEXT which
then processes the textual data and transmits raw (i.e.,
raw SMS or keystrokes) and lexical data to a remote
sever via a secure, encrypted connection. Privacy pre-
serving methods are shown in red.

emotions (Epp et al., 2011) and cognition (Brizan
et al., 2015). Historically, human-generated textual
data for such social science-oriented tasks is col-
lected from social media (e.g., Facebook, Reddit, or
Twitter), open-ended survey questions (Kjell et al.,
2022), or interviews (Son et al., 2023). However,
more recently, short message service (SMS or text
messaging) has received attention as a viable data
source (Liu et al., 2023; Meyerhoff et al., 2023;
Benoit et al., 2020; Nook et al., 2021; Stamatis
et al., 2022a,b; Tlachac and Rundensteiner, 2020;
Tlachac et al., 2022; Ameer et al., 2022). SMS,
and, more generally, mobile phone-based data, is
important for Just-in-Time Adaptive Interventions
(JITAIs), which can be used to deliver personal-
ized support and interventions in response to a per-
son’s changing physical and mental health (Nahum-
Shani et al., 2018).

AWARE-TEXT1 is an Android mobile phone
application (or “app”) built to collect passive mo-
bile data (e.g., GPS locations and accelerometer
data) with particular emphasis on textual2 data

1https://github.com/TTRUCurtis/aware-text
2To disambiguate text messages (or SMS) from text data

(data in the form of written text), we use the term textual data

102

such as SMS and keystrokes. This app allows re-
searchers to collect raw textual data, both historical
data and prospective data in real time, as well as
lexical-based measures calculated on the device.
On-device processing of lexical-based measures,
such as sentiment or topics, inherently preserves
privacy: summary scores (e.g., sentiment) are trans-
mitted to a remote server and the underlying raw
data, which can be highly sensitive and contain
personally identifiable information (PII), does not
need to leave the mobile device.

In summary, AWARE-TEXT focuses on two
types of textual data (SMS data and keyboard input)
across four levels of granularity (person, conversa-
tion, message, and character). Across all data types
and levels AWARE-TEXT offers the ability to col-
lect raw data as well as lexical measures, which
inherently preserve privacy, as shown in Figure 2.
This package offers researchers the ability to col-
lect fine-grained textual data which can be used to
gain insight into tasks across natural language pro-
cessing, psychology, computational social sciences,
and psycho-linguistics.

2 Overall System Design

The AWARE-TEXT package is an extension of
the AWARE mobile sensing framework, an open-
source package developed to passively collect mo-
bile phone sensor data, such as accelerometer, gy-
roscope, and GPS data (Ferreira et al., 2015). This
extension consists of two on-device plugins (to col-
lect SMS data and process lexical measures) and a
series of post-processing scripts for data aggrega-
tion and cleaning. Thus, AWARE-TEXT is able to
collect everything AWARE is able to collect, plus
additional textual data. While the AWARE frame-
work is available for both iOS and Android devices,
the AWARE-TEXT package is only available on
Android devices due to iOS restrictions on access
to raw SMS and keyboard data.

The high-level features of AWARE-TEXT are
shown in Figure 1. Here we see that AWARE-
TEXT pulls data from both the mobile device’s
keyboard and local SMS database (described be-
low). Both data types are then optionally processed
into lexical measures, after which the raw and pro-
cessed lexical data are stored in a temporary local
database. This data is transferred (via a secure
HTTPS connection) to a remote server and stored
in a final database. AWARE-TEXT is designed to

when referring to data in text form.

Oh my god! I had such a hard
day at work :(

Join me for Happy Hour?

Oh man, I’m so sorry! Do you
want to talk?

YES! I could use a drink.

Positive emotions: 0.56
Negative emotions: 5.20
Stress: 1.07

Positive emotions: 0.38
Negative emotions: 1.66
Stress: 2.21

Positive emotions: 1.04
Negative emotions: 0.14
Stress: 0.47

Positive emotions: -4.56
Negative emotions: 2.13
Stress: 1.01

Figure 2: AWARE-TEXT has anonymized both people
in the conversation and the exact text written within each
utterance, while preserving the conversation structure.

optimally transfer data whenever wifi connections
are available to minimize the amount of cellular
data the application uses. The temporary database
is then cleared so as not to duplicate data.

3 Data Types

AWARE-TEXT collects two types of raw text data:
SMS and keystrokes. While the keystroke data
is available in the original AWARE implementa-
tion, the keystrokes lexical processing is novel to
AWARE-TEXT, as is the SMS collection.

3.1 SMS
SMS data includes traditional SMS and more recent
types of messaging, including MMS (Multimedia
Messaging Service) and RCS (Rich Communica-
tion Services). This includes group messages (text
messages between three or more people) and reac-
tions to messages, such as emojis. Each message is
timestamped to indicate the time sent or received.
We note that only textual data is collected, and no
images or audio files are stored. Finally, informa-
tion on who is on the opposite end of the received
or sent SMS is stored via a hashed identifier. This
is done in such as way that hashes are consistent
across communications, which enables one to re-
construct conversations or identify SMS messages
sent to a particular (non-identifiable) person.

SMS collection can occur retrospectively (the
complete history of SMS stored on the mobile
device) and prospectively (all SMS messages ex-
changed while AWARE-TEXT is running). Ad-
ditionally, SMS is collected from both the person
running AWARE-TEXT on their device (i.e., sent
messages) as well as from others (i.e., all received
messages). Data collection is fully configurable,
and all combinations of retrospective/prospective
and sent/received are available.

103

3.2 Keystrokes

Keystrokes are single depressions of a key on a key-
board and include non-standard characters such as
deletions and auto-completes, along with informa-
tion on the time between each key press. Keystroke
data is collected per application. This allows one
to measure typing dynamics in applications such
as Facebook Messenger or the local web browser.
For example (as seen in Table 1), if a user searched
“Taylor Swift‘”, while misspelling the name, then
AWARE-TEXT would collect rows for each of “T”,
“Ta”, “Tai”, “Ta” (i.e., a deletion occurred), “Tay”,
etc. No passwords are collected via AWARE-
TEXT. Finally, we note that when applying lexical
measures to the keystroke data, we only consider
the complete keyboard input for a single typing ses-
sion (for example, input to a search engine) instead
of running lexica across each character.

4 Levels of Data Collection

AWARE-TEXT has been designed to enable anal-
ysis of textual data at various levels of granular-
ity: person, conversation, messages, and characters.
This is true of both raw data and lexical measures.
This flexibility is enabled by collecting data at a
low level and preserving summary statistics that
may be aggregated to higher levels of analysis.

Person-level data is available by aggregating raw
text (SMS or keystrokes) or lexical measures across
a person’s individual inputs (for example, their
lifetime SMS history). Conversations can be con-
structed by combining SMS data between pairs and
groups of people. This can include SMS from non-
consenting individuals (see Ethical considerations
below). Message data (raw or lexical) is obtained
by single SMS or complete keyboard input and
is the most basic unit available for lexical mea-
sures. Finally, raw character-level data is obtained
through keystroke inputs.

5 Privacy Preserving Lexical Measures

Running lexical measures on the device allows re-
searchers the ability to collect data across each
SMS or keystroke without necessitating the col-
lection of the underlying raw data. This raw data
could include sensitive information (e.g., revealing
search histories or SMS with PII) and data from
non-consenting individuals (e.g., SMS from peo-
ple communicating with the study participant). As
shown in Figure 2, the lexical measures can be

Device
ID

Timestamp
Application

Name
Before
Text

After
Text

1 08/06/2023 12:46:56 Chrome T
1 08/06/2023 12:46:57 Chrome T Ta
1 08/06/2023 12:46:58 Chrome Ta Tai
1 08/06/2023 12:46:58 Chrome Tai Ta
1 08/06/2023 12:46:59 Chrome Ta Tay
2 08/12/2023 07:02:23 Instagram p
2 08/12/2023 07:02:23 Instagram p pi
2 08/12/2023 07:02:23 Instagram pi piz
2 08/12/2023 07:02:24 Instagram piz pizza

Table 1: Example keystroke data. Each row contains a
single depression of a key on the keyboard and includes
both the current text and the previous text, allowing one
to easily identify deletions and autocompletes.

applied to both ends of the conversation, thus ob-
fuscating both the exact people in the conversation
and their exact utterances while still preserving
both the overall conversation and individual turns
within the conversation. While mobile phones can
collect data in multiple languages, this tokenizer
is designed for English text, and thus would need
to be replaced for on-device processing of non-
English languages.

Preprocessing Applications on the Android OS
are Java and, more recently, Kotlin based. There-
fore, we use a Java-based tokenizer from the
Natural Language Processing for JVM languages
(NLP4J) project3 developed by EmoryNLP. While
this tokenizer is not designed for noisy user-
generated textual data such as SMS, several key
features make it useful for this setting, such as
emoji recognition.

Lexical Data Table 2 shows a sample of the SMS
lexical data. Here we see both the Device ID (the
mobile device running AWARE-TEXT) and the
Contact ID as numeric or hashed identifiers, thus
removing any identifying information. Total Words
and Lexicon Words are, respectively, defined as the
total number of words in the message and the num-
ber of words in the intersection between the mes-
sage and the lexicon. This allows one to normalize
the lexicon score in various ways. Additionally,
this allows one to aggregate scores across levels.
For example, one could aggregate the stress scores
across messages in a given day, normalized using
the Total Words, to produce a daily stress score.
Similarly, this can be done across people, conver-
sations, or applications (via keystroke data).

3https://emorynlp.github.io/nlp4j/

104

Device
ID

Lexicon
Category

Total
Words

Lexicon
Words

Score
Contact

ID
Type Timestamp

1 stress 11 5 17.0798 9f27e sent 08/06/2023 12:46:56
1 happiness 11 7 1.17805 9f27e sent 08/06/2023 12:46:56
1 stress 4 1 0.382509 c3d17 received 08/07/2023 17:52:01
1 happiness 4 3 0.585531 c3d17 received 08/07/2023 17:52:01
2 loneliness 25 20 -45.5145 73e48;ca96d sent 08/07/2023 01:43:12
2 life satisfaction 25 6 0.0454235 73e48;ca96d sent 08/07/2023 01:43:12

Table 2: Example of lexical measures across the SMS data. Lexical measures include stress, happiness, loneliness,
and life satisfaction. The person on the other end of the conversation is consistently hashed (e.g., 9f27e) in order to
preserve conversations. Group messages include a list of all recipients. Total and Lexicon Words allow for different
types of normalization, as well as the aggregation of category scores across time and people.

Post-processing Given the sensitive nature of
the raw keystroke features, we include a post-
processing script that can be automatically run on
the remote AWARE server (Figure 1) to remove po-
tentially identifying information. This script uses
spaCy’s Named Entity Recognizer and regular ex-
pressions4 to remove mentions of names, numbers,
places, etc. The explicit mentions are replaced
with their respective category names (e.g., “Taylor
Swift” is replaced with {NAME}), and the cate-
gory names are backpropagated through the data to
the first keypress in the explicit mention.

Data Aggregation The lexical data can be fur-
ther post-processed using the open-source RAPIDS
package (Vega et al., 2021). This package is used
to process raw mobile sensing data in order to ex-
tract behavioral features. In particular, RAPIDS is
designed to work with the AWARE and AWARE-
TEXT apps. This package can be used to aggregate
lexical measures across time, people, and appli-
cations and combinations of each. For example,
RAPIDS can aggregate lexical measures across
hours, days, or even applications and days together.

Prepackaged Lexical Measures AWARE-
TEXT comes prepackaged with state-of-the-art
lexica for measuring psychological well-being
from textual data (see original publications for
details): happiness (Giorgi et al., 2021), life satis-
faction (Jaidka et al., 2020), loneliness (Guntuku
et al., 2019b), politeness (Li et al., 2020), and
stress (Guntuku et al., 2019a).

Extending the Lexical Measures The prepack-
aged lexical measures in AWARE-TEXT can be
easily extended to include any measure that can
be decomposed into a category with weighted

4https://github.com/madisonmay/CommonRegex

words (note that weights can be trivially set to
one for all words). For example, this can include
Latent Dirichlet Allocation (LDA) topics, where
weights are conditional probabilities estimated
through the LDA process. This can also include
other popular lexical measures such as LIWC (Pen-
nebaker et al., 2001), the NRC Emotion/Valence-
Arousal-Dominance/Sentiment lexica (Mohammad
and Kiritchenko, 2015; Mohammad, 2018), and
ANEW (Warriner et al., 2013).

6 Methodological Considerations

Running on-device computation opens up method-
ological and computational issues. First, while
many NLP tools exist in Java, such as the Stanford
CoreNLP toolkit (Manning et al., 2014), most mod-
ern libraries are written in Python, making them in-
accessible in an Android environment. Thus, many
new technologies, such as contextual embeddings,
are unavailable for on-device processing. Second,
one must consider the person using the device. For
example, high computation can quickly drain the
phone’s battery or slow down other applications.
Similarly, transferring large amounts of data to a re-

Facebook SMS
Age .68 .45∗

Gender† .91 .80∗

Depression .36 .29
Life Satis. .21 .14
Stress .21 .18

Table 3: Product moment correlations (or † accuracy)
between language estimates and self-reports across both
platforms reported in Liu et al. (2023). ∗ significant
difference in bootstrapping test between the SMS and
Facebook correlations.

105

Open Source SMS Keystrokes On-device Lexical Processing

AWARE-TEXT ✓ ✓ ✓ ✓

AWARE (Ferreira et al., 2015) ✓ ✓

Beiwe (Onnela et al., 2021) ✓ ✓

EARS (Lind et al., 2018) ✓ ✓

Passive Data Kit (Audacious Software, 2018) ✓ ✓

m-Path (Mestdagh et al., 2023) ✓

mindLAMP (Torous et al., 2019) ✓ ✓

Table 4: Comparison of recent mobile sensing platforms in their textual data collecting capabilities. AWARE-
TEXT is the only open-source app which collects multiple types of data while offering on-device processing.

mote server can quickly increase data usage and the
user’s mobile phone bill. These issues can cause
participants to uninstall AWARE-TEXT which can
lead to low study completion rates. Thus, algo-
rithms should reduce run-time and throughput.

7 Case Study

To date, one study has used the AWARE-TEXT app
with a sample of 120 participants who installed
AWARE-TEXT, answered a series of self-reports,
and shared Facebook language data. This study
compared preexisting social media-based lexical
models in their ability to predict self-reports when
applied to out-of-domain textual data (Liu et al.,
2023). It applied five models trained from Face-
book language to predict self-reported age, gender,
depression, life satisfaction, and stress. Each model
was separately applied to SMS and Facebook posts,
and the resulting model predictions were compared
to self-reports. We report their findings in Table 3.
The results from this study show that for three out
of five models, the SMS-based predictions did not
statistically differ from the Facebook-based pre-
dictions, indicating that SMS is a potential data
source for investigating social-psychological traits
of people. This paper represents a preliminary anal-
ysis, and further investigation is needed into the
strengths and weaknesses of SMS data.

8 Comparison of Mobile Text Apps

There are several apps which allow for either SMS
retrieval or keystroke logging. SMS retrieval apps
are typically designed for personal use, such as
data backups and phone transfers, such as SMS
Backup & Restore5, or legal discovery, such as
Logikcull6. Finally, there are also apps used for

5https://www.synctech.com.au/sms-backup-restore/
6https://www.logikcull.com/

survey collection via SMS, such as ODK7. These
apps send questions and receive answers via SMS,
and data collection is typically limited to retrieving
the survey question responses. Keylogging apps are
typically designed for the purpose of monitoring,
such as Kidlogger8 which allows parents to monitor
their children’s phone activity. Thus, most apps
which collect this data are not used for general data
collection and research purposes.

Apps which collect SMS or keystroke data that
are designed for research purposes are typically in
the domain of mobile phone–based sensing soft-
ware. There are several popular apps in this domain
which have been used for social scientific research.
In Table 4, we summarize the textual data collect-
ing capabilities of several apps (those updated since
20189). We note that AWARE-TEXT is the only
open-source app which collects multiple types of
text data while offering on-device processing.

9 Conclusions

AWARE-TEXT is a novel data collection applica-
tion for Android mobile phones designed to capture
textual data through SMS and keystrokes. This ap-
plication allows researchers to collect data from
consenting participants at multiple levels of granu-
larity (person, conversation, message, and charac-
ter) with the additional ability to collect both raw
and aggregate lexical measures which preserve pri-
vacy. Over 85% of Americans own smartphones,
and a growing number identify as smartphone de-
pendent (i.e., smartphone serves as their primary
means of online access). Thus, mobile phones offer
a rich data source, which can be used as a lens into
the daily lives of large sections of the population.

7https://odk.org/
8https://kidlogger.net/
9https://w.wiki/7qPn

106

Ethical Considerations

While AWARE-TEXT allows one to collect
anonymized data (in the form of lexical based mea-
sures) and offers post-processing cleaning scripts, it
does offer the ability to collect raw data. Raw SMS
and keystroke data can contain highly sensitive and
identifying information, such as names and social
security numbers. Similarly, passwords (while not
collected in the keystroke data) can be found in
SMS data. It also offers the ability to collect data
from non-consenting individuals in the form of re-
ceived SMS. While no identifying information is
explicitly collected from these individuals (e.g., all
mobile phone numbers are hashed), the SMS data
may contain sensitive information. Working with
such data therefore requires a high level of care.

Collecting SMS data across conversations in-
volves collecting data from non-consenting individ-
uals. As discussed above, AWARE-TEXT offers
the ability to collect de-identified lexical features as
opposed to the underlying raw data. If the raw SMS
data must be collected then AWARE-TEXT offers
post-processing scripts that attempt to automati-
cally remove sensitive and identifying information,
which we highly recommend using. The result-
ing text (associated to an individual only with a
hashed identifier) may be considered de-identified
and, therefore, might not always be considered hu-
man subjects research. These distinctions should
ultimately be decided by an Institutional Review
Board. Note that further privacy preserving actions
can be taken in order to help ensure equitable data
collection. One study which collected both sides
of SMS conversations (Song et al., 2014), offered
participants the ability to remove or alter text and
asked participants to consider the preferences of
their conversation partners when removing sensi-
tive text10.

While outside of the scope of the AWARE-
TEXT app, when storing this data on remote servers
we recommended following standard security pro-
tocols such limited access, encryption, and two fac-
tor authentication. When collecting other measures
from participants (such as surveys, demographics,
or medical records), we recommend that raw data
from AWARE-TEXT be stored separately and, if
possible, on separate machines.

Mobile sensing, in general, opens up several
ethical and privacy issues, especially in the con-
text of health or when used to collect data from

10This study did not use AWARE-TEXT.

vulnerable populations; see Breslin et al. (2019)
and Fuller et al. (2017) for in-depth discussions on
such issues. At a minimum, we believe all uses
of AWARE-TEXT should obtain approval from
an ethical review board (e.g., Institutional Review
Board or Ethics Committee). Similarly, researchers
should follow informed consent principals when
recruiting study participants.

Acknowledgements

This research was supported by the Intramu-
ral Research Program of the NIH, NIDA (ZIA
DA000628). We thank Olivia Dodge and Miguel
Galván for their programming expertise. We also
thank both Denzil Ferreira and the AWARE team,
as well as Julio Vega and the RAPIDS team for
their guidance.

References
Iqra Ameer, Grigori Sidorov, Helena Gomez-Adorno,

and Rao Muhammad Adeel Nawab. 2022. Multi-
label emotion classification on code-mixed text: Data
and methods. IEEE Access, 10:8779–8789.

Audacious Software. 2018. Passive data kit.
https://passivedatakit.org/.

James Benoit, Henry K. Onyeaka, Matcheri S. Kesha-
van, and John B Torous. 2020. Systematic review
of digital phenotyping and machine learning in psy-
chosis spectrum illnesses. Harvard Review of Psychi-
atry, 28:296 – 304.

Samantha Breslin, Martine Shareck, and Daniel Fuller.
2019. Research ethics for mobile sensing device
use by vulnerable populations. Social Science &
Medicine, 232:50–57.

David Guy Brizan, Adam Goodkind, Patrick Koch, Ki-
ran Balagani, Vir V Phoha, and Andrew Rosenberg.
2015. Utilizing linguistically enhanced keystroke dy-
namics to predict typist cognition and demographics.
International Journal of Human-Computer Studies,
82:57–68.

Munmun De Choudhury and Sushovan De. 2014. Men-
tal health discourse on reddit: Self-disclosure, social
support, and anonymity. In Proceedings of the inter-
national AAAI conference on web and social media,
volume 8, pages 71–80.

Clayton Epp, Michael Lippold, and Regan L Mandryk.
2011. Identifying emotional states using keystroke
dynamics. In Proceedings of the sigchi conference on
human factors in computing systems, pages 715–724.

Denzil Ferreira, Vassilis Kostakos, and Anind K Dey.
2015. Aware: mobile context instrumentation frame-
work. Frontiers in ICT, 2:6.

107

Daniel Fuller, Martine Shareck, and Kevin Stanley.
2017. Ethical implications of location and accelerom-
eter measurement in health research studies with mo-
bile sensing devices. Social Science & Medicine,
191:84–88.

Salvatore Giorgi, Sharath Chandra Guntuku, Johannes C
Eichstaedt, Claire Pajot, H Andrew Schwartz, and
Lyle H Ungar. 2021. Well-being depends on social
comparison: Hierarchical models of twitter language
suggest that richer neighbors make you less happy. In
Proceedings of the International AAAI Conference on
Web and Social Media, volume 15, pages 1069–1074.

Salvatore Giorgi, David B Yaden, Johannes C Eich-
staedt, Lyle H Ungar, H Andrew Schwartz, Amy
Kwarteng, and Brenda Curtis. 2023. Predicting us
county opioid poisoning mortality from multi-modal
social media and psychological self-report data. Sci-
entific reports, 13(1):9027.

Sharath Chandra Guntuku, Anneke Buffone, Kokil
Jaidka, Johannes C Eichstaedt, and Lyle H Ungar.
2019a. Understanding and measuring psychological
stress using social media. In Proceedings of the inter-
national AAAI conference on web and social media,
volume 13, pages 214–225.

Sharath Chandra Guntuku, Rachelle Schneider, Arthur
Pelullo, Jami Young, Vivien Wong, Lyle Ungar,
Daniel Polsky, Kevin G Volpp, and Raina Merchant.
2019b. Studying expressions of loneliness in individ-
uals using twitter: an observational study. BMJ open,
9(11):e030355.

Kokil Jaidka, Salvatore Giorgi, H Andrew Schwartz,
Margaret L Kern, Lyle H Ungar, and Johannes C
Eichstaedt. 2020. Estimating geographic subjective
well-being from twitter: A comparison of dictionary
and data-driven language methods. Proceedings of
the National Academy of Sciences, 117(19):10165–
10171.

Oscar NE Kjell, Sverker Sikström, Katarina Kjell, and
H Andrew Schwartz. 2022. Natural language ana-
lyzed with ai-based transformers predict traditional
subjective well-being measures approaching the the-
oretical upper limits in accuracy. Scientific reports,
12(1):3918.

Mingyang Li, Louis Hickman, Louis Tay, Lyle Ungar,
and Sharath Chandra Guntuku. 2020. Studying po-
liteness across cultures using english twitter and man-
darin weibo. Proceedings of the ACM on Human-
Computer Interaction, 4(CSCW2):1–15.

Monika N Lind, Michelle L Byrne, Geordie Wicks,
Alec M Smidt, and Nicholas B Allen. 2018. The ef-
fortless assessment of risk states (ears) tool: An inter-
personal approach to mobile sensing. JMIR Mental
Health, 5(3):e10334.

Tingting Liu, Salvatore Giorgi, Xiangyu Tao, Sharath
Chandra Guntuku, Douglas Bellew, Brenda Curtis,

and Lyle Ungar. 2023. Different affordances on face-
book and sms text messaging do not impede gener-
alization of language-based predictive models. Pro-
ceedings of the International AAAI Conference on
Web and Social Media, 17(1):1153–1157.

Veronica Lynn, Salvatore Giorgi, Niranjan Balasubra-
manian, and H Andrew Schwartz. 2019. Tweet classi-
fication without the tweet: An empirical examination
of user versus document attributes. In Proceedings of
the third workshop on natural language processing
and computational social science, pages 18–28.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Merijn Mestdagh, Stijn Verdonck, Maarten Piot, Koen
Niemeijer, Ghijs Kilani, Francis Tuerlinckx, Peter
Kuppens, and Egon Dejonckheere. 2023. m-path: an
easy-to-use and highly tailorable platform for eco-
logical momentary assessment and intervention in
behavioral research and clinical practice. Frontiers
in Digital Health, 5.

Jonah Meyerhoff, Tingting Liu, Caitlin A. Stamatis,
Tony Liu, Harry Wang, Yixuan Meng, Brenda L.
Curtis, Chris J. Karr, Garrick T. Sherman, Pallavi V.
Kulkarni, and David C. Mohr. 2023. Analyzing text
message linguistic features: Do people with depres-
sion communicate differently with their close and
non-close contacts? Behaviour research and therapy,
166:104342.

Saif Mohammad. 2018. Obtaining reliable human rat-
ings of valence, arousal, and dominance for 20,000
english words. In Proceedings of the 56th annual
meeting of the association for computational linguis-
tics (volume 1: Long papers), pages 174–184.

Saif M Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Emotion measurement, pages 201–237.
Elsevier.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion categories
from tweets. Computational Intelligence, 31(2):301–
326.

Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring,
Linda M Collins, Katie Witkiewitz, Ambuj Tewari,
and Susan A Murphy. 2018. Just-in-time adaptive in-
terventions (jitais) in mobile health: key components
and design principles for ongoing health behavior
support. Annals of Behavioral Medicine, 52(6):446–
462.

Erik C. Nook, Thomas Derrick Hull, Matthew K. Nock,
and Leah H. Somerville. 2021. Linguistic measures
of psychological distance track symptom levels and
treatment outcomes in a large set of psychotherapy

108

https://doi.org/10.1609/icwsm.v17i1.22226
https://doi.org/10.1609/icwsm.v17i1.22226
https://doi.org/10.1609/icwsm.v17i1.22226
https://doi.org/10.3389/fdgth.2023.1182175
https://doi.org/10.3389/fdgth.2023.1182175
https://doi.org/10.3389/fdgth.2023.1182175
https://doi.org/10.3389/fdgth.2023.1182175

transcripts. Proceedings of the National Academy of
Sciences of the United States of America, 119.

Jukka-Pekka Onnela, Caleb Dixon, Keary Griffin,
Tucker Jaenicke, Leila Minowada, Sean Esterkin,
Alvin Siu, Josh Zagorsky, and Eli Jones. 2021.
Beiwe: A data collection platform for high-
throughput digital phenotyping. Journal of Open
Source Software, 6(68):3417.

Gregory Park, H Andrew Schwartz, Johannes C Eich-
staedt, Margaret L Kern, Michal Kosinski, David J
Stillwell, Lyle H Ungar, and Martin EP Seligman.
2015. Automatic personality assessment through
social media language. Journal of personality and
social psychology, 108(6):934.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates,
71(2001):2001.

Youngseo Son, Sean AP Clouston, Roman Kotov, Jo-
hannes C Eichstaedt, Evelyn J Bromet, Benjamin J
Luft, and H Andrew Schwartz. 2023. World trade
center responders in their own words: predicting
ptsd symptom trajectories with ai-based language
analyses of interviews. Psychological medicine,
53(3):918–926.

Zhiyi Song, Stephanie M Strassel, Haejoong Lee, Kevin
Walker, Jonathan Wright, Jennifer Garland, Dana
Fore, Brian Gainor, Preston Cabe, Thomas Thomas,
et al. 2014. Collecting natural sms and chat conversa-
tions in multiple languages: The bolt phase 2 corpus.
In LREC, pages 1699–1704. Citeseer.

Caitlin A. Stamatis, Jonah Meyerhoff, Tingting Liu,
Zhaoyi Hou, Garrick T. Sherman, Brenda L. Curtis,
Pallavi V. Kulkarni, and David C. Mohr. 2022a. The
association of language style matching in text mes-
sages with mood and anxiety symptoms. Procedia
computer science, 206:151–161.

Caitlin A. Stamatis, Jonah Meyerhoff, Tingting Liu, Gar-
rick T. Sherman, Harry Wang, Tony Liu, Brenda L.
Curtis, Pallavi V. Kulkarni, and David C. Mohr.
2022b. Prospective associations of text-message-
based sentiment with symptoms of depression, gen-
eralized anxiety, and social anxiety. Depression and
Anxiety, 39:794 – 804.

M. L. Tlachac and Elke A. Rundensteiner. 2020. Screen-
ing for depression with retrospectively harvested pri-
vate versus public text. IEEE Journal of Biomedical
and Health Informatics, 24:3326–3332.

M. L. Tlachac, Avantika Shrestha, Mahum Shah, Ben-
jamin R. Litterer, and Elke A. Rundensteiner. 2022.
Automated construction of lexicons to improve de-
pression screening with text messages. IEEE Jour-
nal of Biomedical and Health Informatics, 27:2751–
2759.

John Torous, Hannah Wisniewski, Bruce Bird, Elizabeth
Carpenter, Gary David, Eduardo Elejalde, Dan Ful-
ford, Synthia Guimond, Ryan Hays, Philip Henson,
et al. 2019. Creating a digital health smartphone app
and digital phenotyping platform for mental health
and diverse healthcare needs: an interdisciplinary
and collaborative approach. Journal of Technology
in Behavioral Science, 4:73–85.

Julio Vega, Meng Li, Kwesi Aguillera, Nikunj Goel,
Echhit Joshi, Kirtiraj Khandekar, Krina C Durica,
Abhineeth R Kunta, and Carissa A Low. 2021. Re-
producible analysis pipeline for data streams: open-
source software to process data collected with mobile
devices. Frontiers in Digital Health, 3:769823.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and domi-
nance for 13,915 english lemmas. Behavior research
methods, 45:1191–1207.

109

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 110–119
December 6, 2023 ©2023 Association for Computational Linguistics

SOTASTREAM: A Streaming Approach to Machine Translation Training

Matt Post Thamme Gowda Roman Grundkiewicz
Huda Khayrallah Rohit Jain Marcin Junczys-Dowmunt

Microsoft

Abstract

Many machine translation toolkits make use
of a data preparation step wherein raw data is
transformed into a tensor format that can be
used directly by the trainer. This preparation
step is increasingly at odds with modern re-
search and development practices because it
produces a static, unchangeable version of the
training data, making common training-time
needs difficult (e.g., subword sampling), time-
consuming (preprocessing with large data can
take days), expensive (e.g., disk space), and
cumbersome (managing experiment combina-
torics). We propose an alternative approach that
separates the generation of data from the con-
sumption of that data. In this approach, there
is no separate pre-processing step; data gener-
ation produces an infinite stream of permuta-
tions of the raw training data, which the trainer
tensorizes and batches as it is consumed. Addi-
tionally, this data stream can be manipulated by
a set of user-definable operators that provide on-
the-fly modifications, such as data normaliza-
tion, augmentation or filtering. We release an
open-source toolkit, SOTASTREAM, that imple-
ments this approach: https://github.com/
marian-nmt/sotastream. We show that it
cuts training time, adds flexibility, reduces ex-
periment management complexity, and reduces
disk space, all without affecting the accuracy
of the trained models.

1 Introduction

A cumbersome component of training machine
translation systems is working with large amounts
of data. Modern high-resource parallel datasets
are often on the order of hundreds of millions of
parallel sentences, and backtranslation easily dou-
bles that (Kocmi et al., 2022, Appendix A). Be-
cause this data is too large to fit into main memory,
toolkits such as FAIRSEQ (Ott et al., 2019) and
SOCKEYE (Hieber et al., 2022) make use of a pre-
processing step, which transforms the training data
from its raw state into a static sequence of tensors.

experimental
parametersdata

offline
preprocessing

data
variant

sotastream

ST
D

O
U

T

train
(from files)

train
(STDIN)

model
parameters

model

Figure 1: The SOTASTREAM approach separates data
generation from consumption. Whereas offline ten-
sorization requires model-specific parameters such as
the vocabulary, which ties processed data to a partic-
ular training, SOTASTREAM produces data on the fly,
avoiding time-consuming production and space-wasting
storage of preprocessed data.

These tensors can then be read in via an index and
memory-mapped shards, allowing for quick assem-
bly into batches at training time.

While this offline preprocessing prevents data
loading from becoming a bottleneck in training, it
creates a number of other problems:

• it breaks an abstraction: the tensorized data
is tied to specific modeling decisions, such as
the vocabulary;

• it is cumbersome: the tensorized data cannot
be easily changed, and even minor variations
of the data must be processed separately and
then managed;

• it is time-consuming: pre-processing can take
considerable time and must be completed be-
fore training can start; and

• it is wasteful: each data variant replicates the
original’s disk space.

These problems exist for construction of any model,
but are exacerbated in research settings, which of-
ten explore variations of the training data.

We describe an alternative that factors genera-
tion of data from the consumption of that data by

110

https://github.com/marian-nmt/sotastream
https://github.com/marian-nmt/sotastream

the training toolkit. This view presents the training
data as an infinite stream of permutations of the raw
training samples. This stream is then consumed by
the training toolkit, which tensorizes it on the fly,
consuming data into a buffer from which it can as-
semble batches. This framework eliminates all the
problems above: variants of the data are indepen-
dent of any model; arbitrary manipulations can be
applied on the fly; preprocessing time is amortized
over training, which can start as soon as the first
batch can be constructed;and no extra disk space
or management is required.

We release an open-source implementation of
the proposed data generation framework called SO-
TASTREAM1. SOTASTREAM is written in Python
and uses Infinibatch2 to provide a stream of data
over permutations of data sources. It additionally
provides an easily-extendable set of mixers, aug-
mentors, and filters that allow data to be probabilis-
tically manipulated on the fly. A particular config-
uration of manipulators is provided by the user in
the form of a dynamically-loadable pipeline, which
defines a parameterizable recipe that can be used
for training. SOTASTREAM uses multiprocessing to
reach high throughput levels that prevent starvation
of the training toolkit. And finally, it employs a
standard UNIX API, writing data to STDOUT.

After presenting this framework (§ 2), we con-
duct a quality comparison to demonstrate that it
does not reduce model quality (§ 4). We then inves-
tigate stream bandwidth under various pipelines as
well as necessary toolkit consumption needs (§ 5).
We conclude by demonstrating a number of use
cases (§ 6).

2 Training from data streams

The core idea underlying SOTASTREAM is to
cleanly separate data generation from consumption
of that data during training. The data generator is
responsible for producing training samples, and the
trainer consumes them. This factorization allows
us to separate properties of the data (such as their
sources, mixing ratios, and augmentations) from
properties of training and the model (such as tensor
format, batch size, and so on).

The current approach relies on standard UNIX

I/O pipes as an interface between these two pieces.
However, SOTASTREAM could also be used to gen-
erate data for offline uses, or modified to allow

1https://github.com/marian-nmt/sotastream
2https://github.com/microsoft/infinibatch

consumption through some other API, such as a
library call that returns a generator.

2.1 Data generation
SOTASTREAM is a data generator. At a high level,
it works by defining a pipeline. This pipeline reads
from a set of zero or more input data sources, ap-
plies any augmentations, and produces a single
output stream.

Pipelines Pipelines are implemented by inherit-
ing from the base Pipeline class. The class im-
plementation is responsible for defining the input
data sources, reading from them, applying augmen-
tations, and returning a single output stream. These
are depicted in Figure 2, a simplified presentation
that elides other support features, such as providing
the mixing weights for the input data sources.

The pipeline has three basic components:

1. Build a stream for each input data source;

2. apply a sequence of augmentors; and

3. merge the streams to a single output stream.

Data sources SOTASTREAM uses Infinibatch to
return a generator over a permutation of the sam-
ples in a data source. Each DataSource object
receives two key arguments: a file path to the data
source on disk, d, and a processor function, f , to
read it. This can be seen in Figure 2 in the call to
create_data_stream(d, f).

The data is received as a path to a directory of
compressed TSV file shards. Infinibatch requires
that data be presented in this way.3 For each data
epoch, Infinibatch produces a permutation of these
shards. The shards are then passed, in turn, to the
function f , which is responsible for opening, read-
ing, and processing the shard. It is important to
note that Infinibatch provides an infinite stream of
data; that is, it will iterate indefinitely over its input
data, subject to the constraint that no shard (within
a data source) will be seen n + 1 times until all
shards have been seen n times. See the Multipro-
cessing section (§ 2.3) below for important caveats
related to multiprocessing and MPI training).

Augmentations The second argument to
create_data_stream is a generator function, f ,

3SOTASTREAM can also receive a path to a single com-
pressed TSV file, in which case it splits the file into shards
under a temporary directory. The default shard size is 1e6
lines. The results of this automatic sharding are cached using
an MD5 checksum.

111

https://github.com/marian-nmt/sotastream
https://github.com/microsoft/infinibatch

@pipeline("robust -case")
class RobustCasePipeline(Pipeline):

def __init__(self , pa_dir: str , bt_dir: str , ** kwargs):
super ().__init__ (** kwargs)
pa_stream = self.create_data_stream(pa_dir , processor=Augment)
bt_stream = self.create_data_stream(bt_dir ,

processor=partial(Augment , tag="[BT]")) # tag the BT data
self.stream = Mixer([pa_stream , bt_stream], self.mix_weights)

definitions of other class methods go here ...

def LowerCase(stream: Generator[Line]) -> Generator[Line]:
for line in stream:

line [0] = line [0]. lower() # lowercase the source side
yield line

def TitleCase(stream: Generator[Line]) -> Generator[Line]:
for line in stream:

line[0], line [1] = line [0]. title(), line [1]. title () # titlecase both sides
yield line

def TagData(stream: Generator[Line], tag: str) -> Generator[Line]}:
for line in stream:

line [0] = f"{tag} {line}" # add a target language tag to the source
yield line

def Augment(path: str , tag: str = None) -> Generator[Line]:
stream = UTF8File(path) # open the path to the shard

stream = Mixer(# randomly mix casing variants
[stream , LowerCase(stream), TitleCase(stream)],
[0.95, 0.04, 0.01],

)

if tag is not None:
stream = TagData(stream , tag)

return stream

Figure 2: A simplified pipeline. Streams are built by composing generator functions over input data sources (here,
parallel and backtranslated data). This example tags the backtranslated stream, then mixes it with the parallel stream
using weights provided on the command line (defaulting to 1:1). It then applies random source-lowercasing (4%)
and title-casing (1%).

class Line:
def __init__(self , line: str):

if line is not None:
self.fields = line.split("\t")

else:
self.fields = []

Figure 3: The (simplified) Line object, a lightweight
wrapper around a single row of tab-separated input data.

an Infinibatch primitive whose task is to open each
shard and produce an output data stream. The
output is in the form of Line objects (Figure 3),
each of which is a class representation of the TSV
input. By convention in machine translation, fields
0 and 1 are treated as source and target segments,
respectively, but the code itself makes no such
assumptions.

The function is not limited in just reading and re-

turning the data. A key feature of SOTASTREAM is
augmentations, which are arbitrary manipulations
of a data stream that are easy to stack and accumu-
late. This is accomplished by composing genera-
tors. Figure 2 contains a number of examples in
the Augment function. It first opens a stream on a
path (passed from Infinibatch, containing a path to
a sharded file name). It then applies lowercasing
and title-casing to the input stream probabilisti-
cally, using a Mixer class to select among them
with specified weights. Finally, it prepends a tag to
the data, if requested by the caller.

Outputting the stream Finally, at the top
level, the (augmented) streams from different data
sources are merged into a single stream. This works
in the same way as the above Mixer class exam-
ple. One additional feature is that the Pipeline
class provides the ability to set these top-level data

112

weights from the command line (--mix-weights).

2.2 Data consumption

The main requirements for the trainer are to con-
sume data into a pool, apply subword processing,
organize into batches, and run backpropagation
against the training objective. Because these are
done on the fly, rather than in preprocessing, special
considerations must be implemented to ensure that
this extra processing does not become a bottleneck
for training.

In Section 5, we experiment with an implemen-
tation in the Marian toolkit (Junczys-Dowmunt
et al., 2018). Marian makes use of multiple worker
threads, which pre-fetch data from STDIN into an
internal memory pool, where the data is tokenized
and integerized. When the pool is filled, it is sorted
and batched (according to run-time settings). In
the meantime, prefetching continues into a sec-
ond pool. As training proceeds, these two pools
are used alternately for filling via prefetching and
batch generation.

2.3 Multiprocessing

In order to sustain a sufficient throughput, SOTAS-
TREAM makes use of multiprocessing. This can be
increasingly important if the augmentations applied
are expensive to compute. We quantify the effects
of multiprocessing for generation under a handful
of pipelines of varying complexity in Section 5.

Internally, this is accomplished with the
multiprocessing library. We create separate sub-
processes, each of which is provided with indepen-
dent access to the data sources. The parent process
maintains a pipe to each subprocess, and queries
them in sequence, reading a fixed number of lines
from each in turn, and passing them to the standard
output.

An important issue is raised when working with
subprocesses. If each subprocess were to return an
independent permutation over the input data, merg-
ing subprocesses would not itself result in a per-
mutation. To address this, each of n subprocesses
is initalized with 1

n of the data shards, themselves
assigned in round-robin order across the subpro-
cesses. In this way, we guarantee a permutation
in settings where the number of processes evenly
divides the number of shards.

When working over MPI, no such coordination
takes place. Each MPI instantiation will receive a
different randomly-seeded shard permutation.

3 Experimental setup

Our experimental goal is to demonstrate that the
many advantages of SOTASTREAM do not come at
a cost in accuracy (§ 4) or speed (§ 5). We do this
by comparing to a number of other data loading
methods. In order to isolate the effects of changing
the data loader, we conduct all of our experiments
within the Marian toolkit. Marian does not support
offline data preprocessing; instead, we compare a
number of different streaming settings that cover
best-case scenarios for data loading.

3.1 Streaming variations

We compare the following data-loading variations.

• Full loading. In this scenario, the trainer has
direct memory access to the entire data source.
For our experiments, Marian loads the com-
plete datasets into main memory. There is
some startup cost, after which all access to the
data is immediate.

• Sequential streaming. In this approach, the
training data is read sequentially, in a loop
over the entire training set. Data is prefetched
into a pool of a specified size, from which
mini-batches are assembled. Since data is
read sequentially, there is no randomization
across data epochs. The pool size determines
an upper bound on memory usage.

• Randomized sequential streaming. In this vari-
ant of sequential streaming, the lines in each
data source are randomly permuted prior to be-
ing read, providing a corpus-level permutation
on top of sequential streaming’s pool-based
reordering.

• SOTASTREAM. Our Infinibatch-based stream-
ing approach.

For toolkits that support preprocessing, it is typi-
cal to construct an index, which organizes the pre-
sorted and tensorized data into memory-mappable
shards. Marian does not have a preprocessing op-
tion, which means that we have no comparison to
a setting where tensorization is done offline. We
thus consider full-loading to be the closest equiv-
alent, since preprocessing is in fact a stand-in for
full loading. This can only possible affect speed
comparisons (§ 5).

113

3.2 Model parameters

We conduct experiments in a large-data and small-
data setting. Our large-data setting is English–
German. We train on 297m lines of Paracrawl v9
(Bañón et al., 2020) from WMT22 (Kocmi et al.,
2022). We use a 32k shared unigram subword
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018), trained jointly over both
sides. We train a standard base Transformer model
(Vaswani et al., 2017) with 6/6 encoder/decoder lay-
ers, an embedding size of 1024, a feed-forward size
of 4096, and 8 attention heads. The large model
is trained for 20 virtual epochs. Since there are
roughly 7.4 billion target-side tokens after tokeniz-
ing the data, this equates to roughly three passes
over the data.

For the small-data setting, we train on Czech–
Ukrainian, also from WMT22. This dataset has
roughly 12m parallel lines. We use the same model
and parameter settings, but train for only five vir-
tual epochs, or roughly 30 data epochs, since the
model converges by then.

3.3 Evaluation

We evaluate on the WMT21/en-de and WMT22/cs-
uk test sets. We use a number of metrics to capture
variation:

• BLEU (Papineni et al., 2002) and chrF
(Popović, 2015), both computed with sacre-
bleu4 (Post, 2018).

• COMET20/22 (Rei et al., 2020), us-
ing model wmt20-comet-da (EN-DE) or
wmt22-comet-da (CS-UK).

4 Quality Comparison

Table 1 contains metric results for both our high-
and low-resource settings. For English–German,
we observe rough equivalence across all training
methods and metrics, which establishes SOTAS-
TREAM as a viable data preparation tool. A similar
pattern holds for Czech–Ukrainian, except for the
odd outlier of the sequential streaming approach.
This approach simply ‘cat‘ed the training data re-
peatedly until model convergence. This result is
strongest for COMET and less pronounced for
BLEU and chrF. We have no clear explanation for
this; one guess is that in smaller data settings, with

4Version 2.3.1 with default settings.

no filtering, curriculum effects may be more pro-
nounced, and this is the only data generation ap-
proach with no randomization. Among approaches
that permuted the data, SOTASTREAM is on par
with the others. We therefore consider it to pass the
quality benchmark.

5 Speed

Next we ask whether SOTASTREAM has a negative
effect on speed. We examine speed in three settings:
generation speed (§ 5.1), Marian’s consumption
speed (§ 5.2), and total runtime (§ 5.3).

5.1 Data generation
We first examine how fast SOTASTREAM can write
data to STDOUT.

Our benchmark consists of a producer and a con-
sumer connected by UNIX pipe. The producer
varies among the tools we compare in our bench-
mark (described below), while the consumer is a
lightweight script, whose sole purpose is to count
records from STDIN and report the yield rate (the
number of lines per second). All benchmarks are
run one at a time, on the same machine,5 with no
other CPU- or I/O-intensive processes are compet-
ing for resources. We run each benchmark multiple
times and report the average.

We compare the following generation tools:

• zcat: A wrapper to GNU gzip6 that decom-
presses and outputs lines. This serves as the
best case scenario, where the producer is im-
plemented in an efficient way (e.g. C/C++)
and has no time-consuming augmentations.

• zcat.py: Similar to zcat, but based on gzip
API from Python’s standard library.7

• default pipeline: SOTASTREAM’ default, re-
turning lines from a single data source (§ 2.1)
with no augmentations.

• case augmentor pipeline: the pipeline from
Figure 2. It mixes two data sources, applies
case transformations, and prepends a "[BT]"
tag to the backtranslated data.

We benchmark multiple worker subprocesses: n ∈
{1, 2, 4, 8, 16, 32}. The throughput measured is

5An Intel Xeon E5-2620 CPU with 32 cores, 660 GB of
RAM, and running Ubuntu 20.04 LTS.

6https://git.savannah.gnu.org/cgit/gzip.git/
tree/zcat.in

7https://docs.python.org/3/library/gzip.html

114

https://git.savannah.gnu.org/cgit/gzip.git/tree/zcat.in
https://git.savannah.gnu.org/cgit/gzip.git/tree/zcat.in
https://docs.python.org/3/library/gzip.html

English–German (newstest2021) Czech–Ukranian (wmttest2022)
Model COMET20 BLEU chrF COMET22 BLEU chrF

Best constrained 54.8 31.3 60.7 91.6 34.7 61.5

Full loading 55.9± 0.4 34.9± 0.1 62.0± 0.0 85.5± 0.2 27.9± 0.4 55.6± 0.2
Sequential streaming 56.1± 0.2 35.0± 0.2 62.1± 0.0 86.4± 0.1 28.7± 0.3 56.6± 0.2
Randomized streaming 55.8± 0.2 35.1± 0.0 62.2± 0.0 85.6± 0.1 27.8± 0.0 55.6± 0.2
SOTASTREAM 55.9± 0.1 34.9± 0.1 62.1± 0.1 85.7± 0.2 28.5± 0.4 56.2± 0.2

Table 1: Mean over three runs for our high- and low-resource scenarios. The best constrained system is WeChat-AI
(Zeng et al., 2021) for EN-DE and AMU (Nowakowski et al., 2022) for CS-UK.

1,000

10,000

100,000

1,000,000

1 2 4 8 16 32

L
in

es
/s

(l
o

g
 s

ca
le

)

Workers (threads)

Yield and Consumption Rates

zcat zcat.py default case augmentor

Marian NMT trainer, 1 GPU

Marian NMT trainer, 8 GPUs

Figure 4: Generation and consumption rates with SO-
TASTREAM and Marian, respectively. SOTASTREAM is
not a bottleneck, but is easily able to generate data and
transmit it through the POSIX API to sustain training.

as lines/s and is given Figure 4. zcat, being the
fastest, yields over 585k lines/s, and Python’s al-
ternative (zcat.py) yields 342k lines/s.8 Our SO-
TASTREAM default with a single worker yields
approximately 136k lines/s, which can be increased
with more workers and plateaus after a certain rate
(possibly due to a bottleneck in number of parallel
reads supported by underlying storage device). As
we add more augmentations and mixture processes,
we observe a lower yield rate than no-augmentation
baselines (expected). However, yield rate can be
improved with more worker processes.

5.2 Consumption

We have shown the rate at which SOTASTREAM

can generate data. In this section, we show the
rate at which one particular NMT trainer (Marian)
consumes training data. Training time and the con-
sumption rate varies based the size of model being
trained, and the number of GPUs used for training.

We train smaller Transformer models than used
8Measured on CPython v3.11; prior versions of CPython

are found to be slower.

Model Time (Hours)

Full loading 36.84 ±0.16
Sequential streaming 35.51 ±0.15
Randomized streaming 35.73 ±0.05
SOTASTREAM 35.86 ±0.27

Table 2: End-to-end training time.

for Table 1, since smaller models train faster and
therefore have higher data consumption needs. We
use 6/6 encoder/decoder layers, 512-dimensional
embeddings, and feedforward sublayers of size
2048. We report consumption rate for six settings:
one vs. eight GPUs,9 and using one, four, or eight
prefetching worker threads. As shown in Figure 4,
a trainer with single GPU consumes about 1523
lines/s, and with eight GPUs, the consumption rate
increases to 8957 lines/s. Even in the best case
scenario (smaller model, more GPUs, and more
prefetcher threads), the consumption rates of train-
ing process are lower than SOTASTREAM produc-
tion rate.

We recommend running multiple workers when
augmentations are slow in order to maintain suf-
ficient output rates. We do not experiment with
them here, but in multi-node training settings coor-
dinated with MPI, one (multiprocess) instance of
SOTASTREAM should be run per node.

5.3 Total time to run
Table 2 verifies that SOTASTREAM’s amortized ap-
proach is neither slower nor faster than other ap-
proaches when total runtime is considered.

6 Example Use Cases

In this section we show example use cases how SO-
TASTREAM can be used to simply and easily mod-
ify data on the fly. This provides all the advantages
of training for robustness without the cumbersome
task of generating (and managing) data that has

9NVIDIA Tesla V100s with 32GB.

115

been preprocessed in many different forms, which
are combinatorial and impose high costs on the
complexity of managing training runs.

6.1 Mixing multiple streams of data

Training machine translation models often requires
combining different data sets in desired proportions
in order to balance their size or quality or other
properties. The example in Figure 2 demonstrates
that combining original parallel data and back-
translated data can be efficiently achieved in SO-
TASTREAM by mixing multiple data streams with
specific data weighting. The weights for each data
stream can be then specified using the command-
line options:

sotastream robust -case \
parallel.tsv.gz backtrans.tsv.gz \
--mix -weights 1 1

The weights are normalized and used as probabili-
ties with the Mixer augmentor.

This approach, when compared to the traditional
offline preparation of the data, is much simpler,
more scalable, saves disk space and does not re-
quire complicated ratio-computation and data over-
or downsampling.

6.2 Data augmentation for robustness

SOTASTREAM’s augmentors provide a flexible
framework for developing different methods for
data augmentation, for example, case manipulation
for robustness against different casing variants of
the input text. It is demonstrated in the example in
Figure 2, where LowerCase is an augmentor that
lowercases the source text, and TitleCase con-
verts both source and target sides to the English
title-cased format. The frequency of each variant
is easily controlled with the same Mixer used to
join separate data sources. The on-the-fly approach
simplifies experiments when testing multiple varia-
tions, which is often needed in order to find optimal
augmentation methods and ratios, it minimizes the
burden of experiment management.

Many other types of robustness augmentation
(Li et al., 2019), such as source-side punctuation
removal, spelling errors generation, etc., can be
implemented in a similar way.

6.3 Filtering bad data examples

In SOTASTREAM it is straightforward to do data
filtering on the fly. This type of filtering is espe-
cially useful in scenarios in which external data is

used for model training or fine-tuning that cannot
be manually filtered in a controlled way.

For example, a URLFilter filter that removes
lines that have unmatched URLs between the
source and target fields can be implemented using
the provided MatchFilter:
def URLFilter(stream):

pattern = r'\bhttps ?:\S+[a-z]\b'
return MatchFilter(stream , pattern)

6.4 Subword tokenization sampling
The boundary separating data generation from con-
sumption can be blurred. For example, instead of
producing raw text output, the tool could generate
subwords, if provided with a subword model. This
facilitates randomized sampling of different sub-
word segmentations from a Unigram LM model
with SentencePiece’s Python wrapper:
import sentencepiece as sp
spm = sp.SentencePieceProcessor(

model_file=SPM_VOCAB)

def spm_enc(stream , spm , fields =[0, 1]):
for line in stream:

for field in fields:
line[field] = spm.encode(

line[field], out_type=str ,
enable_sampling=True))

yield line

6.5 Training document-context models
When training document models (e.g., Post and
Junczys-Dowmunt (2023)), we can easily construct
pseudo-documents on the fly if the training data is
augmented with a document identifier field:
def read_docs(stream):

doc , previd = [], None
for line in stream:

docid = line [2]
if len(doc) and docid != previd:

yield doc
doc = []

doc.append(line)
previd = docid

if len(doc):
yield doc

A wrapper around this function could merge the
source and target sides of the Line object, perhaps
subject to parameters such as a maximum sequence
length, a maximum number of sentences, and struc-
tural tokens to be used as affixes.

6.6 Alignments and other data types
SOTASTREAM has been primarily designed for ma-
chine translation, which requires providing source
and target texts as separate fields. Other data types

116

or metadata can be generated on the fly or provided
as additional fields in the input stream. By design
the existing augmentors pass forward the unused
fields, which makes introducing new fields that are
used only by a subset of augmentors simple.

The example below demonstrates on-the-fly
generation of word alignment using SimAlign
(Jalili Sabet et al., 2020):
import simalign as sa
aln = sa.SentenceAligner ()

def align(stream , aln , fields =[0, 1]):
i, j = fields
for line in stream ,

res = aln.get_word_aligns(line[i],
line[j])

res = " ".join(f"{p[0]}-{p[1]}"
for p in res['mwmf'])

line.append(res)
yield line

The word alignment can be used directly by the
trainer, e.g., for guided alignment training (Chen
et al., 2016), or used by subsequent augmentors that
may require it, e.g., constrained terminology trans-
lation annotations (Bergmanis and Pinnis, 2021).

6.7 Integration with data collection tools
SOTASTREAM can integrate tools like MTData,
which automates the collection and preparation of
machine translation data sets (Gowda et al., 2021).
The following example shows mtdata pipeline
which downloads the specified data sets and mixes
them as per −−mix-weights argument:
sotastream -n 1 mtdata --langs rus -eng \

Statmt -news_commentary -16-eng -rus \
Statmt -backtrans_ruen -wmt20 -rus -eng \
OPUS -paracrawl -v9-eng -rus \
--mix -weights 2 1 1

6.8 Generating data sets for offline use
If the training tool does not support consuming
training data from the standard input, SOTAS-
TREAM can be used for static data generation.
While the real advantages of SOTASTREAM accrue
when making use of its on-the-fly data manipula-
tions, this approach retains some of its benefits.

6.9 Other uses
The SOTASTREAM approach to factoring data gen-
eration, as well as SOTASTREAM itself, could also
be used for generating non-textual content. The
benefits of not writing data to disk would be greater
in settings where input disk space is larger than
plain text, such as translation from visual repre-
sentations (Salesky et al., 2021). Nor does it need

to be limited to sequence-to-sequence settings; we
imagine the approach could be useful for training
of LLMs.

7 Related Work

To our knowledge, SOTASTREAM is novel in pre-
senting a framework for the generation of training
data as a distinct component in the model train-
ing pipeline. It emphasizes a clean separation be-
tween data generation and training, multithreading
for throughput, and the use of the standard UNIX

pipeline interface.
It is not the first to propose streaming data, how-

ever. Although Fairseq’s documentation empha-
sizes a preprocessing step,10, Fairseq can also read
and process raw data on the fly if it can be loaded
completely into memory. Pytorch (Paszke et al.,
2019) also provides “iterable-style” DataPipes for
iterating over data samples,11 but as far as we know,
they are not widely used for machine translation
training. They could, however, provide an inter-
face to SOTASTREAM for Python-based training
toolkits.

There are many libraries focused on data aug-
mentation. A number of these are focused just on
text augmentations, including nlpaug (Ma, 2019),
TextAttack (Morris et al., 2020), and TextFlint (Gui
et al., 2021). Another tool is AugLy (Papakipos
and Bitton, 2022), a multimodal tool for text, au-
dio, images, and video that provides robust training
against adversarial perturbations. Many of these
libraries could be useful within SOTASTREAM’s
general framework.

8 Conclusion

The data-preprocessing approach that is common
in machine translation model training makes it pos-
sible to work with increasingly large datasets, but
this ability does not come without costs. It is time-
consuming to copy and process data, and can be
expensive to store on disk. If data is compiled
with model-specific parameters that tie the data to
a particular model training, it prevents or at least
complicates reusability. This problem is further
exacerbated by research settings where one of the
experimental parameters is manipulations of the
training data, since each variant (and potentially

10https://web.archive.org/web/20230609072600/
https://fairseq.readthedocs.io/en/latest/
getting_started.html

11https://pytorch.org/data/main/torchdata.
datapipes.iter.html

117

https://web.archive.org/web/20230609072600/https://fairseq.readthedocs.io/en/latest/getting_started.html
https://web.archive.org/web/20230609072600/https://fairseq.readthedocs.io/en/latest/getting_started.html
https://web.archive.org/web/20230609072600/https://fairseq.readthedocs.io/en/latest/getting_started.html
https://pytorch.org/data/main/torchdata.datapipes.iter.html
https://pytorch.org/data/main/torchdata.datapipes.iter.html

their cross-products) must be written to disk and
then managed.

We have described an approach that separates
data generation from data consumption, and shared
SOTASTREAM, an implementation that makes use
of the standard UNIX pipeline. The requirement is
that preprocessing must now be computed on the
fly. Our experiments show that this does not slow
down training, nor does it affect the accuracy of
the models trained. The approach provides flexi-
bility, saves processing time and disk space, and
simplifies experiment management.

Limitations

We have only investigated data consumption rates
in a single toolkit, Marian, written in C++. It’s
possible that the online preprocessing requirements
may be too much for toolkits written in languages
without a proper thread implementation.

References
Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth

Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555–4567, Online. Association
for Computational Linguistics.

Toms Bergmanis and Mārcis Pinnis. 2021. Facilitating
terminology translation with target lemma annota-
tions. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 3105–3111,
Online. Association for Computational Linguistics.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi, and
Jan-Thorsten Peter. 2016. Guided alignment training
for topic-aware neural machine translation. In Con-
ferences of the Association for Machine Translation
in the Americas: MT Researchers’ Track, pages 121–
134, Austin, TX, USA. The Association for Machine
Translation in the Americas.

Thamme Gowda, Zhao Zhang, Chris Mattmann, and
Jonathan May. 2021. Many-to-English machine
translation tools, data, and pretrained models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 306–316,
Online. Association for Computational Linguistics.

Tao Gui, Xiao Wang, Qi Zhang, Qin Liu, Yicheng
Zou, Xin Zhou, Rui Zheng, Chong Zhang, Qinzhuo
Wu, Jiacheng Ye, Zexiong Pang, Yongxin Zhang,
Zhengyan Li, Ruotian Ma, Zichu Fei, Ruijian Cai,
Jun Zhao, Xinwu Hu, Zhiheng Yan, Yiding Tan, Yuan
Hu, Qiyuan Bian, Zhihua Liu, Bolin Zhu, Shan Qin,
Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng,
Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei, Xipeng
Qiu, and Xuanjing Huang. 2021. Textflint: Unified
multilingual robustness evaluation toolkit for natural
language processing. CoRR, abs/2103.11441.

Felix Hieber, Michael Denkowski, Tobias Domhan, Bar-
bara Darques Barros, Celina Dong Ye, Xing Niu,
Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nade-
jde, Surafel Lakew, Prashant Mathur, Anna Currey,
and Marcello Federico. 2022. Sockeye 3: Fast neural
machine translation with pytorch.

Masoud Jalili Sabet, Philipp Dufter, François Yvon,
and Hinrich Schütze. 2020. SimAlign: High qual-
ity word alignments without parallel training data
using static and contextualized embeddings. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1627–1643, Online. Association
for Computational Linguistics.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in C++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135, Melbourne, Australia.
Association for Computational Linguistics.

Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novák, Martin
Popel, and Maja Popović. 2022. Findings of the 2022
conference on machine translation (WMT22). In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 1–45, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

118

https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2021.eacl-main.271
https://doi.org/10.18653/v1/2021.eacl-main.271
https://doi.org/10.18653/v1/2021.eacl-main.271
https://aclanthology.org/2016.amta-researchers.10
https://aclanthology.org/2016.amta-researchers.10
https://doi.org/10.18653/v1/2021.acl-demo.37
https://doi.org/10.18653/v1/2021.acl-demo.37
http://arxiv.org/abs/2103.11441
http://arxiv.org/abs/2103.11441
http://arxiv.org/abs/2103.11441
http://arxiv.org/abs/2207.05851
http://arxiv.org/abs/2207.05851
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/W18-2716
https://doi.org/10.18653/v1/W18-2716
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and Has-
san Sajjad. 2019. Findings of the first shared task
on machine translation robustness. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 91–
102, Florence, Italy. Association for Computational
Linguistics.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Artur Nowakowski, Gabriela Pałka, Kamil Guttmann,
and Mikołaj Pokrywka. 2022. Adam Mickiewicz
University at WMT 2022: NER-assisted and quality-
aware neural machine translation. In Proceedings
of the Seventh Conference on Machine Translation
(WMT), pages 326–334, Abu Dhabi, United Arab
Emirates (Hybrid). Association for Computational
Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Zoe Papakipos and Joanna Bitton. 2022. Augly:
Data augmentations for robustness. CoRR,
abs/2201.06494.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. CoRR, abs/1912.01703.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and Marcin Junczys-Dowmunt. 2023. Escap-
ing the sentence-level paradigm in machine transla-
tion.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Elizabeth Salesky, David Etter, and Matt Post. 2021.
Robust open-vocabulary translation from visual text
representations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7235–7252, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Xianfeng Zeng, Yijin Liu, Ernan Li, Qiu Ran, Fan-
dong Meng, Peng Li, Jinan Xu, and Jie Zhou.
2021. WeChat neural machine translation systems
for WMT21. In Proceedings of the Sixth Conference
on Machine Translation, pages 243–254, Online. As-
sociation for Computational Linguistics.

119

https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2201.06494
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/2304.12959
http://arxiv.org/abs/2304.12959
http://arxiv.org/abs/2304.12959
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.emnlp-main.576
https://doi.org/10.18653/v1/2021.emnlp-main.576
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://aclanthology.org/2021.wmt-1.23
https://aclanthology.org/2021.wmt-1.23

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 120–129
December 6, 2023 ©2023 Association for Computational Linguistics

An Open-source Web-based Application for Development of Resources and
Technologies in Underresourced Languages

Siddharth Singh
CTRANS, Dr. Bhimrao Ambedkar University

Agra, India
siddharth.unreal@outlook.com

Shyam Ratan
CALTS, University of Hyderabad

Hyderabad, India
shyam.unral@outlook.com

Neerav Mathur
UnReaL-TecE LLP

Agra, India
neerav.unreal@outlook.com

Ritesh Kumar
UnReaL-TecE LLP

Agra, India
ritesh.unreal@outlook.com

Abstract
The paper discusses the Linguistic Field Data
Management and Analysis System (LiFE), a
new open-source, web-based software that sys-
tematises storage, management, annotation,
analysis and sharing of linguistic data gathered
from the field as well as that crawled from vari-
ous sources on the web such as YouTube, Twit-
ter, Facebook, Instagram, Blog, Newspaper,
Wikipedia, etc. The app supports two broad
workflows - (a) the field linguists’ workflow in
which data is collected directly from the speak-
ers in the field and analysed further to produce
grammatical descriptions, lexicons, educational
materials and possibly language technologies;
(b) the computational linguists’ workflow in
which data collected from the web using au-
tomated crawlers or digitised using manual or
semi-automatic means, annotated for various
tasks and then used for developing different
kinds of language technologies.

In addition to supporting these workflows, the
app provides some additional features as well
- (a) it allows multiple users to collaboratively
work on the same project via its granular ac-
cess control and sharing option; (b) it allows
the data to be exported to various formats in-
cluding CSV, TSV, JSON, XLSX, LATEX, PDF,
Textgrid, RDF (different serialisation formats)
etc as appropriate; (c) it allows data import
from various formats viz. LIFT XML, XLSX,
JSON, CSV, TSV, Textgrid, etc; (d) it allows
users to start working in the app at any stage
of their work by giving the option to either cre-
ate a new project from scratch or derive a new
project from an existing project in the app.

The app is currently available for use and test-
ing on our server1 and its source code has been
released under AGPL license on our GitHub
repository2. It is licensed under separate, spe-
cific conditions for commercial usage.

1http://life.unreal-tece.co.in/
2https://github.com/unrealtecellp/life

1 Introduction

Field linguists constantly need tools for collecting,
storing, annotating, analysing, sharing and manag-
ing linguistic data. As field linguists gather a lot of
data for lots of languages, including comparatively
under-represented, lesser-known, minoritised, and
endangered languages around the globe, this data
has to be properly preserved, quickly and accu-
rately analysed and processed and made available
to the larger community for social good. On the
other hand, there are very few publicly available
and accessible datasets for developing language
tools and technology for a vast array of languages
around the world including most of those which
have been worked upon by field linguists - the field
linguists’, if made available in a structured format,
could help in alleviating this situation to a certain
extent.

To address this dual issue of accelerating the pro-
cess of collecting and processing datasets of under-
resourced languages (possibly with assistance from
available state-of-the-art language technologies)
and developing language technologies for these
under-resourced languages, a unified platform with
an easily available/accessible and handy interface
targeted for linguists is required. Our application,
Linguistic Field Data Management and Analysis
System “LiFE” aims to offer a practical interven-
tion in the field. The app creates a structured frame-
work for the management, analysis and sharing of
primary linguistic field data. It also provides in-
terfaces for producing the derivatives of this data
such as digital and print lexicons, sketch grammars,
and basic language processing tools like part-of-
speech taggers and morphological analyzers and
generators, automatic speech recognition systems,
machine translation and others.

The software focuses on automating the different

120

http://life.unreal-tece.co.in/
https://github.com/unrealtecellp/life

tasks as much as possible through a handy, intuitive
interface for carrying out all the tasks. For instance,
by giving initial input, the system gradually trains
automatic techniques for inter-linear glossing of
the dataset and subsequent production of sketch
grammar as well as NLP tools for the language.

The app integrates popular machine learning
model hubs such as HuggingFace Hub3 and Univer-
sal Language Contribution API (ULCA)4 as well
as other popular models for individual tasks to pro-
vide automation for various tasks. This has en-
abled us to, for example, give access to the most re-
cent unsupervised and transfer learning-based ASR
models based on transformers (such as wav2vec
2.0 (Baevski et al., 2020), wav2vec-U (Baevski
et al., 2021) and Whisper (Radford et al., 2022)).
It has given field linguists direct access to the
most recent state-of-the-art models available for
language processing tasks. On the other hand, the
app has also provided access to a no-code environ-
ment for training or fine-tuning models for new
languages and new tasks using some of the most
popular libraries such as HuggingFace Transform-
ers and scikit-learn - this environment provides
simple point-and-click options to train baseline
models that could be quickly integrated into the
field linguists’ workflow. These two together have
helped us provide an automated pipeline for tran-
scription, inter-linear glossing and free translation
of the dataset collected from the field.

2 Related Work

The growth of field linguistics and NLP has mostly
taken place independently of one another. Thus the
tools for speech and multimodal data collection,
management and analysis used by linguists and the
tools used for data collection and annotation by
NLP practitioners are not developed to be interop-
erable and are generally used exclusively by the
two communities.

For the storage, management and gathering of
multimodal data as well as the creation of a lexi-
con, there are certain programmes and technologies
designed specifically for field linguists (or commu-
nity members engaged in fieldwork for their own
language). One of the earliest pieces of software
created by SIL (The Summer Institute of Linguis-
tics), Toolbox (Robinson et al., 2007), formerly

3https://huggingface.co/docs/hub
4https://bhashini.gov.in/ulca/model/

explore-models

known as Shoebox5, served as a forerunner to FLEx
and was primarily designed for use by anthropol-
ogists and field linguists to input their text data
and create dictionaries. FieldWorks Language Ex-
plorer (FLEx)6 (Butler and Volkinburg, 2007) and
(Manson, 2020), which is used for the gathering,
management, analysis, and sharing of linguistic
and cultural data, is one of the most well-liked
tools in the field. A software called LexiquePro7

(Guérin and Lacrampe, 2007) makes it simple to
create and format lexicon databases for sharing
with others. WeSay8 was developed by SIL to as-
sist native speakers and non-linguists in creating
dictionaries for their own languages (Perlin, 2012)
& (Albright and Hatton, 2008). There have been
various attempts to create tools that are primarily
used for data collection. (Vries et al., 2014) talks
about the creation of an app called Woefzela9. It
is a smartphone-based (Android Operating Sys-
tem) data-gathering tool that (Vries et al., 2014).
It supports several sessions for data collection and
can operate without an Internet connection. For
the purpose of data collection quality control, it
works well. In the South African data collection
experiment, where nearly 800 hours of voice data
were gathered from remote and rural locations, this
technique is displayed. Similarly, SayMore10 is
designed to collect data for building dictionaries.

While these different tools provide adequate sup-
port for different tasks, there are some serious limi-
tations -

• All of these are standalone desktop/mobile
applications and most of these tools are not
compatible with Linux systems, thereby, forc-
ing users to use them on Windows /Mac.

• There are different tools for different tasks
and it is expected from the users to learn all
these different tools and transfer and man-
age their datasets across these different tools
on their own. For example, FLEx and We-
Say are mainly lexicon-development soft-
ware (but FLEx also supports interlinear gloss-
ing), SayMore is a data collection tool and
LexiquePro is mainly for dictionary distri-

5https://software.sil.org/shoebox/,https:
//software.sil.org/toolbox/

6https://software.sil.org/fieldworks/
7https://software.sil.org/lexiquepro/
8https://software.sil.org/wesay/
9https://sites.google.com/site/woefzela/

10https://software.sil.org/saymore/

121

https://huggingface.co/docs/hub
https://bhashini.gov.in/ulca/model/explore-models
https://bhashini.gov.in/ulca/model/explore-models
https://software.sil.org/shoebox/, https://software.sil.org/toolbox/
https://software.sil.org/shoebox/, https://software.sil.org/toolbox/
https://software.sil.org/fieldworks/
https://software.sil.org/lexiquepro/
https://software.sil.org/wesay/
https://sites.google.com/site/woefzela/
https://software.sil.org/saymore/

bution (which gives a basic dictionary edit-
ing functionality). Moreover, generally, other
tools such as ELAN11 for video transcription,
something like Audacity12 or Praat13 for
slicing the sound recordings, etc are required
(Wittenburg et al., 2006), (Thompson, 2014)
and (Boersma and Van Heuven, 2001). Navi-
gating through these different tools and soft-
ware is a difficult task and has a long learning
curve.

• The data formats used by these tools are gen-
erally non-standard and trying to use the data
processed or produced through these tools
with NLP systems is not feasible without
significant processing of the dataset (which
would require good programming skills).

• Sharing the data, in general, and in a format
that works without these tools, more specifi-
cally, is not completely straightforward.

On the other side of the spectrum, NLP prac-
titioners, make use of a different set of tools and
applications for data management and annotation.
For example, Label Studio14 is a specific open-
source, web-based application for data labelling.
With a clear and simple user interface, it enables
users to label a variety of data kinds, including
speech, text, image, video, and time series, and
export to several model formats. To create more
accurate machine learning models, it can be used
to prepare raw data or enhance current training data
(Tkachenko et al., 2020-2022).

Similarly, an open-source platform named
Shoonya15 is being created with the goal of enhanc-
ing the digital presence of India’s underrepresented
languages. It allows users to annotate and classify
data at scale. This is a crucial necessity to pro-
duce larger datasets for neural machine translation
training on a wide range of Indian languages.

Some other open-source tools for token, span
and document-level text annotation include BRAT
rapid annotation tool (brat)16 (Stenetorp et al.,

11https://archive.mpi.nl/tla/elan
12https://www.audacityteam.org
13https://www.fon.hum.uva.nl/praat
14https://labelstud.io/,https://github.com/

heartexlabs/label-studio
15https://ai4bharat.iitm.ac.in/shoonya,https:

//github.com/AI4Bharat/Shoonya
16http://brat.nlplab.org,https://github.com/

nlplab/brat

2011, 2012), doccano17 is an open-source text an-
notation tool. For text categorization, sequence
labelling, and sequence-to-sequence applications,
it offers annotation features. Users can produce
labelled data for sentiment analysis, named entity
recognition, text summarising, and other purposes
(Nakayama et al., 2018), INCEpTION18 (Klie et al.,
2018), among several others.

As is evident, none of these tools even attempt to
support data collection from the field and its man-
agement and analysis. Given this, LiFE attempts to
provide the following -

• An integrated interface that caters to the needs
of both the field linguists and NLP practition-
ers for their data management and processing
workflows.

• Give field and documentary linguists access
to an integrated workspace for the complete
workflow from questionnaire preparation to
data analysis and production of community-
centred outputs such as grammars, lexicons,
etc, without them having to wade through the
convoluted workflow of different tools for dif-
ferent aspects of the same work. This inter-
face also provides a user-friendly interface for
putting their data in a structured format.

• Give field and documentary linguists access
to the most advanced NLP models without the
need for them to set up different NLP tools
for their work. It also gives them a scope
to train baseline models for underrepresented
and undocumented languages using a no-code
environment and use it for their own work as
well as make it available for others.

• Give computational linguists access to a uni-
fied data collection and annotation app with
support for AI-in-the-loop annotation.

• Give computational linguists access to data
from endangered, low-resource, un(der)-
represented languages in a structured way (if
the community and researchers agree to ren-
der it accessible). Additionally, an interface
allows using the interface to train and test the
model on this data.

17https://doccano.herokuapp.com,https:
//github.com/doccano/doccano

18https://inception-project.github.io,https:
//github.com/inception-project/inception

122

https://archive.mpi.nl/tla/elan
https://www.audacityteam.org
https://www.fon.hum.uva.nl/praat
https://labelstud.io/, https://github.com/heartexlabs/label-studio
https://labelstud.io/, https://github.com/heartexlabs/label-studio
https://ai4bharat.iitm.ac.in/shoonya, https://github.com/AI4Bharat/Shoonya
https://ai4bharat.iitm.ac.in/shoonya, https://github.com/AI4Bharat/Shoonya
http://brat.nlplab.org, https://github.com/nlplab/brat
http://brat.nlplab.org, https://github.com/nlplab/brat
https://doccano.herokuapp.com, https://github.com/doccano/doccano
https://doccano.herokuapp.com, https://github.com/doccano/doccano
https://inception-project.github.io, https://github.com/inception-project/inception
https://inception-project.github.io, https://github.com/inception-project/inception

We discuss the architecture and features of the
app in more detail in the following sections.

3 LiFE Interface

LiFE has a full-fledged interlinked pipeline of four
customisable modules for questionnaire creation,
multimodal data labelling (speech, text, image etc)
and validation, production of output based on data
annotation and analysis (viz lexicon generation)
and model training (Figure 1). All these four mod-
ules of LiFE are discussed in detail in the following
subsections and their interrelationship is demon-
strated in Figure 2.

Figure 1: LiFE Interface with All Modules

3.1 Questionnaire

This module is for creating questionnaires that
could be used for collecting data in the field (Fig-
ure 3). A field linguist could create a new cus-
tomised questionnaire project or could derive a
questionnaire project from the existing question-
naire project for a target language with the purpose
of adaptation/manipulation/modification or addi-
tion of/in the existing questionnaire. This module
facilitates uploading and downloading the question-
naire in multiple formats (viz JSON, CSV, XLSX,
Karya JSON19). The questionnaire could also be
downloaded in printable formats such as PDF and
carried to the field for elicitation.

3.2 Data

The basic interface of this module is also the same
as the questionnaire module, where a field linguist
or a computational linguist could create a new cus-
tomised data project or could derive a customised
data project from an existing questionnaire or an-
other data project (Figure 4). This module allows

19This is the format that could be directly uploaded on
the Karya Crowd-sourcing android app for data collection.
https://karya.in

the creation of three broad kinds of projects includ-
ing the following -

1. Data Collection Projects: The app sup-
ports data collection both from the field and
through the web through two different kinds
of projects.

(a) collection of speech and text from the
field.

(b) crawling data from different sources on
the web.

2. Data Labelling projects: The app supports
the following kinds of labelling tasks -

(a) labelling of text at both span and doc-
ument level (Figure 5 (Kumar et al.,
2021a)).

(b) transcription and labelling of images.
(c) transcription, labelling and inter-linear

glossing of audio-video data.
(d) text-to-text tasks such as translation,

summarisation, etc.

3. Data Validation Projects: The app supports
two kinds of validation projects.

(a) giving scores to the data or annotations
based on pre-defined metrics (similar to
a labelling project).

(b) arbitration and selection of the best la-
bels among labels assigned by multiple
annotators.

If the project is derived from the questionnaire
or a new project is created then the module allows
the upload of the data in various structured formats
such as XLSX, CSV, TSV, JSON, etc. If the project
is derived from another kind of data project then
data and labels are copied to the new project. The
module allows the data, transcriptions and anno-
tations to be downloaded in multiple formats viz
Praat Textgrid, CSV, TSV, JSON, XLSX, LATEX,
HTML and Markdown. The data could also be
pushed to different platforms and repositories such
as HuggingFace Hub, ULCA, GitHub, etc for pub-
lic usage.

3.3 Lexicon
The data processed in different kinds of data
projects is input data for this module and the field
linguist could gloss transcribed/labeled data with
lemma, pos category and morphological features

123

https://karya.in

XLSX, TSV, JSON,
Audio, etc.

Online Form

Create New Project
Karya

Questionnaire

Lexicon, Grammar,
Teaching Learning
Materials, etc

Hugging Face Hub,
Bhashini/ULCA,
GitHub, etc

Hugging Face
Transformers,
Scikit-learn,
Other
standalone
APIs and
Libraries

XLSX, TSV, CSV,
PDF, JSON, LATEX,
RDF, TextGrid, Model
checkpoints, etc.

Delete, Add, Edit,
View, Allow
Download, Allow
Share, Public Access

Downloads

Share

Upload

External Repos

Data Derivatives
Karya,
Other Apps

Recording Crawler
YouTube, Twitter,
Wikipedia,
Facebook, Blog,
Newspaper, General
web, etc.

Transcription,
Audio Labelling

Text and Image
Labelling

Data
Derive

Derive

Validation

DeriveDerive

Derive

External Apps

Models

Derive

Derive

Derive

Figure 2: LiFE Workflows

to create a new lexicon (Figure 6). The informa-
tion already provided during interlinear glossing
or other kinds of labelling tasks (such as part-of-
speech annotation) is automatically copied in the
new project. A new lexicon project from scratch
could also be created using the module. In that case,
lexical entries could be imported from XLSX, CSV,
TSV, JSON and also LIFT XML (this is the format
generated by FLEx and it allows the apps’ interop-
erability with the popular, legacy apps used by field
linguists for data management and generating lexi-
cons) formats. The data could be downloaded for
further editing in multiple formats such as XLSX,
CS, TSV, JSON, etc, in a publishable format for
further dissemination such as Markdown or HTML
or in a printable format such as PDF and LATEX.
This module also automatically generates an RDF
representation of the lexicon and downloads it in
different serialisation formats such as RDF/XML,
Turtle, N3, etc.

3.4 Models

This module provides a no-code environment for
training models for different tasks, using data from

one or more projects of the same kind or different
kinds of projects with similar kinds of data Figure
8. It could be derived from the projects both in the
data and the lexicon modules. The models trained
in this module are automatically made available
across different projects in the app for immediate
use. They could also be directly pushed to differ-
ent platforms such as HuggingFace Hub, ULCA,
GitHub, etc for public usage.

4 Supported Workflows in LiFE

LiFE does not enforce any specific workflows or
pipelines. The app is currently being used by over
200 users and at least three organisations for vari-
ous purposes and they all have different workflows.
The app allows users to start working at any point
in their data collection and analysis project. While
users could define their own workflow and use
different modules accordingly, the has been con-
sciously designed to support two broad kinds of
workflow -

• The Field Linguists’ Workflow and

• The Computational Linguists’ Workflow

124

Figure 3: LiFE Questionnaire Interface

Figure 4: LiFE Data Interface

Figure 5: LiFE Text Annotation Interface

These two are discussed in the following subsec-
tions.

4.1 The Field Linguists’ Workflow
A typical workflow of field linguists starts with
the creation of questionnaires and other elicita-
tion tools that could be used in the field for data
collection. For this, the users have two options

Figure 6: LiFE Lexicon Inteface

Figure 7: LiFE Models Module Form

to create questionnaires for field data collection.
The first is to develop new questionnaires as per
their target/goal for writing grammatical descrip-
tions, generating lexicons, and preparing educa-
tional materials of any language. The other way is
to modify and adapt some existing questionnaires
to their needs. The questionnaire module in the
app supports all these. After this data is collected
directly from the speakers in the field using that
questionnaire and imported into the data project
for storage, transcription, inter-linear glossing and
analysis. Once data is prepared the lexicon is gen-
erated by encoding grammatical, syntactic and se-
mantic categories, morphological features, lexical
relations, inter-linear glossing and free translation
including examples. Users could also develop text
and speech technologies like pos-tagger, morpho-
logical analyser and generator, automatic speech
recognition (ASR), etc out of labelled data for mul-
tiple domains. Thus the app provides a simple,
linear workflow for field linguists across its four
modules.

The app is being used in large projects that make
use of this workflow. One such project is “The
Speech Datasets and Models for Indian Languages"
(SpeeD-IL)20, which is working on developing tran-
scribed speech corpora of around 1000 hours each

20https://sites.google.com/view/speed-il,https:
//github.com/unrealtecellp/SpeeD-IL

125

https://sites.google.com/view/speed-il, https://github.com/unrealtecellp/SpeeD-IL
https://sites.google.com/view/speed-il, https://github.com/unrealtecellp/SpeeD-IL

for more than ten languages of the four major lan-
guage families of India: Tibeto-Burman, Austro-
Asiatic, Dravidian, and Indo-Aryan, as well as
other tools and models (Kumar et al., 2022b). The
project is being jointly executed by six institutions
and more than twenty-five linguists are working on
data collection and transcription across different
languages. The other project is that of the Linguis-
tic Data Consortium for Indian Languages (LDC-
IL) 21 is an initiative by the Government of India
to create all kinds of datasets across all Indian lan-
guages for technology development. The LiFE app
has been recently adapted as the application for
speech transcription, part-of-speech tagging and
other kinds of activities in the consortium.

4.2 The Computational Linguists’ Workflow
A typical workflow of computational linguists
starts with data collection, generally from the web
sources such as YouTube, Twitter, Facebook, Insta-
gram, Blog, Newspaper, Wikipedia, etc. using au-
tomated crawlers A large number of such crawlers
are integrated with the data module of the app and
could be employed out-of-the-box for collecting
multimodal data including speech, text and images.
After collection, the data is annotated, transcribed,
translated or processed in some way to make it
suitable for training models of different kinds. A
typical workflow also involves validating the data
and its annotations. The data module provides sup-
port for these as well. Further, annotated data is
used for developing different kinds of language
technologies by training different models using the
models module of the app.

Workflow like this has also been utilised in
projects like “The Communal and Misogynis-
tic Aggression in Hindi-English-Bangla-Meitei"
(ComMA)22, which was a multi-institutional
project that focused on aggression identification in
Hindi, English, Bangla, and Meitei ((Bhattacharya
et al., 2020), (Kumar et al., 2021b) and (Kumar
et al., 2022a)). Another similar project using the
app is “Measuring Harm Potential of Social Media
Content in India", being carried out by the Coun-
cil for Strategic and Defense Research (CSDR). It
aims to predict the possibility of a text (in Hindi or
English) leading to some real-world harm. The an-
notation schema of the project is a complex mix of
cross-document, single-document and span-level

21https://www.ldcil.org/
22https://sites.google.com/view/comma-ctrans,

https://github.com/unrealtecellp/ComMA

annotations and is handled efficiently in the app.

5 LiFE Technology Stack

The app’s backend is built on the Python-based
Flask23 framework, with MongoDB (as the
database) and the frontend using HTML, CSS,
and Javascript. Bootsrap v3 and JQeury are
used for developing the user interface in the app.
Wavesurfer.js24 is used for creating interactive, cus-
tomizable waveforms which is an open-source au-
dio visualization library. To train models for differ-
ent types (audio recording and transcription, crawl-
ing and annotation) of data created in the LiFE app,
Hugging Face25 and scikit-learn26 are used. We are
also using the models hosted on the HuggingFace
App to provide most of the automation facilities in
the app - the app basically provides user interfaces
to access these models for various tasks. The app is
being developed using Agile methodology - this is
ensured by keeping different modules as different
Blueprints in the Flask app.

5.1 Database Architecture

Since the app contains various kinds of data and
includes both structured and unstructured datasets,
we are using a NoSQL database, MongoDB. It
allows for storing the data entries as documents
across different collections. The database of the
tool contains fifteen core collections for storing
different kinds of information. These are discussed
below:

• userlogin: contains all the usernames with
metadata and user profile information in the
application,

• userprojects: contains projects that each user
has developed and shared, as well as their
active projects at any given point of time,

• projectsform: stores the forms created by
users for their projects (questionnaire, data,
lexicon and model) in JSON-like format. This
stored information is used to render the HTML
for all kinds of projects and is crucial to ensure
that the interface and other properties of all
projects remain completely customisable,

23https://flask.palletsprojects.com/en/2.0.x/
24https://wavesurfer-js.org/
25https://huggingface.co/
26https://scikit-learn.org/stable/

126

https://www.ldcil.org/
https://sites.google.com/view/comma-ctrans, https://github.com/unrealtecellp/ComMA
https://sites.google.com/view/comma-ctrans, https://github.com/unrealtecellp/ComMA
https://flask.palletsprojects.com/en/2.0.x/
https://wavesurfer-js.org/
https://huggingface.co/
https://scikit-learn.org/stable/

• projects: collection that has information
about the project, its owner and project type
(questionnaires, annotation, transcriptions,
recordings, etc), project derivatives (other
projects in the LiFE app that derive this
project), project derive from (project from
which this project is being derived),

• questionnaires: collection has a document
for each prompt in the questionnaire which
contains the prompt itself, a unique id, do-
main and elicitation information, prompt type
(text, audio, image, multimedia) of the ques-
tionnaire,

• recordings: collection contains one docu-
ment for each recorded audio and metadata of
the audio (channels, sample rate, length etc),

• crawling: has information of data which is
crawled with sources details from where the
data is crawled,

• tagsets: has info regarding the tagset up-
loaded for text and image annotation, these
tagsets can also be used by other projects if
the user has to do a similar kind of annota-
tion; since the app allows for using completely
customised tagsets, with relatively complex
structure, we have defined a structured format
for uploading the tagset - this collection con-
tains all the information provided through that
structure,

• annotation: collection has one document
for each data point to be annotated and as
the same data can be annotated by multiple
annotators so each annotators annotation is
recorded in the same document by their user-
name,

• transcriptions: collection contains the infor-
mation about the transcription that has been
done for each recording, speaker id, textgrid
which has information about the transcrip-
tion done for the audio at discourse, sentence,
word, or phoneme level. The same audio
could be transcribed by multiple users and
the record is maintained accordingly,

• lexemes: collection contains information
about each lexeme, with the aid of the ap-
propriate vocabulary.

• speakerdetails: stores a list of metadata of
all speakers,

• sourcedetails: is listing all the sources from
where data is fetched or uploaded in the sys-
tem,

• models: contains all the details about dif-
ferent models that have been trained in the
app,

• fs.files: saves fs.chunks and the file’s meta-
data. a file’s binary portions, including pic-
tures, videos, and audio files, are stored.

Besides these, some other collections are defined
for interfacing with external apps such as Karya,
interacting with external repositories like HF Hub
and also for storing the app-level settings. The
app stores all kinds of data and metadata in the
database, without the need of storing anything in
the file system.

Figure 8: Model Diagram of LiFE

6 Summary

In this paper, we have presented an open-source
app, LiFE for linguistic data management, analysis
and sharing. The app intends to accelerate the de-
velopment of language technologies for extremely
underresourced languages by providing a link be-
tween field linguists and computational linguists.
The app allows field linguists to use state-of-the-
art NLP models for aiding and accelerating their
work and also training baseline models for new
languages and tasks in a no-code environment. At
the same, it stores the data collected in the field
in a structured format that could be used by com-
putational linguists for their research. The app is

127

currently being actively developed and is also used
by multiple teams for their research.

7 Acknowledgements

We would like to thank the Linguistic Data Con-
sortium for Indian Languages, Central Institute of
Indian Languages and Ministry of Electronics and
Information Technology, Government of India for
providing grants and necessary support for the de-
velopment of this app. We would also like to thank
Karya Inc and the Council for Strategic and De-
fense Research for providing the support essential
for developing the app.

References
Eric Albright and John Hatton. 2008. Wesay, a tool for

collaborating on dictionaries with non-linguists. Doc-
umenting and revitalizing Austronesian languages,
6:189 – 201.

Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and
Michael Auli. 2021. Unsupervised speech recogni-
tion. CoRR, abs/2105.11084.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
CoRR, abs/2006.11477.

Shiladitya Bhattacharya, Siddharth Singh, Ritesh Ku-
mar, Akanksha Bansal, Akash Bhagat, Yogesh
Dawer, Bornini Lahiri, and Atul Kr. Ojha. 2020. De-
veloping a multilingual annotated corpus of misog-
yny and aggression. In Proceedings of the Second
Workshop on Trolling, Aggression and Cyberbullying,
pages 158–168, Marseille, France. European Lan-
guage Resources Association (ELRA).

Paul Boersma and Vincent Van Heuven. 2001. Speak
and unspeak with praat. Glot Int, 5:341–347.

Lynnika Butler and Heather Volkinburg. 2007. Review
of fieldworks language explorer (flex). Language
Documentation and Conservation, 1.

Valérie Guérin and Sébastien Lacrampe. 2007. Lexique
pro. Language Documentation and Conservation,
1(2):293 – 300.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico.

Ritesh Kumar, Enakshi Nandi, Laishram Niranjana
Devi, Shyam Ratan, Siddharth Singh, Akash Bha-
gat, and Yogesh Dawer. 2021a. The comma dataset

v0.2: Annotating aggression and bias in multilingual
social media discourse.

Ritesh Kumar, Shyam Ratan, Siddharth Singh, Enakshi
Nandi, Laishram Niranjana Devi, Akash Bhagat, Yo-
gesh Dawer, Bornini Lahiri, and Akanksha Bansal.
2021b. ComMA@ICON: Multilingual gender biased
and communal language identification task at ICON-
2021. In Proceedings of the 18th International Con-
ference on Natural Language Processing: Shared
Task on Multilingual Gender Biased and Communal
Language Identification, pages 1–12, NIT Silchar.
NLP Association of India (NLPAI).

Ritesh Kumar, Shyam Ratan, Siddharth Singh, Enakshi
Nandi, Laishram Niranjana Devi, Akash Bhagat, Yo-
gesh Dawer, bornini lahiri, Akanksha Bansal, and
Atul Kr. Ojha. 2022a. The comma dataset v0.2:
Annotating aggression and bias in multilingual so-
cial media discourse. In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
4149–4161, Marseille, France. European Language
Resources Association.

Ritesh Kumar, Siddharth Singh, Shyam Ratan, Mohit
Raj, Sonal Sinha, Sumitra Mishra, Bornini Lahiri,
Vivek Seshadri, Kalika Bali, and Atul Kr. Ojha.
2022b. Annotated Speech Corpus for Low Resource
Indian Langauges: Awadhi, Bhojpuri, Braj and Ma-
gahi. In Proc. 1st Workshop on Speech for Social
Good (S4SG), pages 1–5.

Ken Manson. 2020. Fieldworks linguistic explorer (flex)
training 2020 (ver 1.1 august 2020).

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Ross Perlin. 2012. Wesay, a tool for collaborating on
dictionaries with non-linguists. Language Documen-
tation & Conservation, 6:181 – 186.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Stuart Robinson, Greg Aumann, and Steven Bird. 2007.
Managing fieldwork data with toolbox and the natu-
ral language toolkit. Language Documentation and
Conservation, 1.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107, Avignon, France. Association for Compu-
tational Linguistics.

Pontus Stenetorp, Goran Topić, Sampo Pyysalo,
Tomoko Ohta, Jin-Dong Kim, and Jun’ichi Tsujii.
2011. Bionlp shared task 2011: Supporting resources.

128

http://hdl.handle.net/10125/4507
http://hdl.handle.net/10125/4507
http://arxiv.org/abs/2105.11084
http://arxiv.org/abs/2105.11084
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
https://aclanthology.org/2020.trac-1.25
https://aclanthology.org/2020.trac-1.25
https://aclanthology.org/2020.trac-1.25
https://www.aclweb.org/anthology/C18-2002
https://www.aclweb.org/anthology/C18-2002
http://arxiv.org/abs/2111.10390
http://arxiv.org/abs/2111.10390
http://arxiv.org/abs/2111.10390
https://aclanthology.org/2021.icon-multigen.1
https://aclanthology.org/2021.icon-multigen.1
https://aclanthology.org/2021.icon-multigen.1
https://aclanthology.org/2022.lrec-1.441
https://aclanthology.org/2022.lrec-1.441
https://aclanthology.org/2022.lrec-1.441
https://doi.org/10.21437/S4SG.2022-1
https://doi.org/10.21437/S4SG.2022-1
https://doi.org/10.21437/S4SG.2022-1
https://github.com/doccano/doccano
https://github.com/doccano/doccano
http://hdl.handle.net/10125/4507
http://hdl.handle.net/10125/4507
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
http://www.aclweb.org/anthology/W11-1816

In Proceedings of BioNLP Shared Task 2011 Work-
shop, pages 112–120, Portland, Oregon, USA. Asso-
ciation for Computational Linguistics.

Douglas Earl Thompson. 2014. An overview of audac-
ity. General Music Today, 27(3):40–43.

Maxim Tkachenko, Mikhail Malyuk, Andrey
Holmanyuk, and Nikolai Liubimov. 2020-
2022. Label Studio: Data labeling soft-
ware. Open source software available from
https://github.com/heartexlabs/label-studio.

Nic Vries, Marelie Davel, Jaco Badenhorst, Willem
Basson, Etienne Barnard, and Alta de Waal. 2014.
A smartphone-based asr data collection tool for
under-resourced languages. Speech Communication,
56:119–131.

Peter Wittenburg, Hennie Brugman, Albert Russel, Alex
Klassmann, and Han Sloetjes. 2006. Elan: A profes-
sional framework for multimodality research. Pro-
ceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC 2006).

129

https://doi.org/10.1177/1048371314523964
https://doi.org/10.1177/1048371314523964
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://doi.org/10.1016/j.specom.2013.07.001
https://doi.org/10.1016/j.specom.2013.07.001

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 130–140
December 6, 2023 ©2023 Association for Computational Linguistics

Rumour Detection in the Wild: A Browser Extension for Twitter

Andrej Jovanović and Björn Ross
University of Edinburgh

Edinburgh, United Kingdom
contact.me.maddox@gmail.com

b.ross@ed.ac.uk

Abstract

Rumour detection, particularly on social media,
has gained popularity in recent years. The ma-
chine learning community has made significant
contributions in investigating automatic meth-
ods to detect rumours on such platforms. How-
ever, these state-of-the-art (SoTA) models are
often deployed by social media companies; or-
dinary end-users cannot leverage the solutions
in the literature for their own rumour detection.
To address this issue, we put forward a novel
browser extension that allows these users to per-
form rumour detection on Twitter. Particularly,
we leverage the performance from SoTA archi-
tectures, which has not been done previously.
Initial results from a user study confirm that
this browser extension provides benefit. Addi-
tionally, we examine the performance of our
browser extension’s rumour detection model
in a simulated deployment environment. Our
results show that additional infrastructure for
the browser extension is required to ensure its
usability when deployed as a live service for
Twitter users at scale1.

1 Introduction

The advent of social media has forever transformed
the way in which we are able to communicate with
one another. Content-sharing has effectively been
democratised with the removal of existing tradi-
tional barriers (Bates, 2007). Indeed, this provides
many benefits: for those individuals involved in a
newsworthy event, for example, information can
be shared in real-time. This allows for news to
propagate faster, with the intention of informing
the wider public and inciting action from relevant
stakeholders. However, with the low barrier of
entry to content production and dissemination on
social media, the overall quality of information on
these platforms has degraded (Shu et al., 2017).

1We make all the materials related to this work available at
the following GitHub repository under an open-source license.

Figure 1: Server architecture of the Twitter rumour
detection browser extension. Icons are taken from the
following sources a, b, c, d and e

Users of social media platforms are now able to, in-
advertently or deliberately, publish misinformation
and falsehoods (Kydd and Shepherd, 2023). This
has led to very damaging consequences for society
in the past: Sharma et al. (2019) have provided
examples of these effects in the financial, political
and social domains. With this in mind, the machine
learning community has created automatic detec-
tion systems which are designed to identify misin-
formation on social media platforms. However, it
is the case that companies who own and manage
these platforms are the ones that implement and de-
ploy their own misinformation detection services
(Kydd and Shepherd, 2023; Kumar et al., 2020).
As such, regular content-consumers do not have ac-
cess to these services directly. This takes away the
autonomy of an individual who wishes to perform
rumour detection for themselves, for example.

In this work, we present a Google Chrome
browser extension, and the associated server ar-
chitecture, (seen in Figure 1) that addresses this
problem as highlighted by Fernandez and Alani
(2018). It allows regular Twitter users to per-
form on-demand rumour detection for any tweet,
whilst enhancing their experience through proving
semantically-related news articles.

130

https://github.com/maddox-j/rumour_detection_in_the_wild
https://cloud.google.com/icons
https://en.wikipedia.org/wiki/Google_Chrome
https://newsapi.org/
https://www.flaticon.com/free-icon/deep-learning_2103832
https://about.twitter.com/en/who-we-are/brand-toolkit

2 Related Work

Considerable progress has been made in investigat-
ing methods to perform rumour detection on social
media platforms. Seminal papers in this discipline
initially focussed on generating informative, hand-
crafted features for this task (Castillo et al., 2011;
Qazvinian et al., 2011; Yang et al., 2012). Stem-
ming from these works, researchers refocussed
their attention on temporal features. Kwon et al.
(2013) showed that these features are highly pre-
dictive of rumours as they described the periodic
bursts that are typical for these phenomena. These
new features now allowed researchers to capture
how rumours change over time, which is particu-
larly important for early rumour detection. Ma et al.
(2015) identified rumours through modelling their
lifecycle as a time series, whilst Wu et al. (2015)
approached this through modelling the propaga-
tion pattern as a tree. Furthermore, certain features
were shown to have greater importance at differ-
ent steps in a rumours’ propagation (Kwon et al.,
2017). However, the collective flaw in these works
is that the feature engineering processes are detail-
specific, could introduce biases and are extremely
laborious (Bian et al., 2020; Ma et al., 2016). As
such, SoTA solutions turn to deep learning for
the automatic feature representations, increased
model complexity and subsequent increase in per-
formance for rumour detection.

Ma et al. (2016) implemented the same time se-
ries ideas from their earlier works (Ma et al., 2015)
with recurrent neural networks (RNNs), later im-
proved with attention (Chen et al., 2017), which
leveraged the deep hidden representations that were
learnt by the neural network. Ma et al. (2018) found
that recursive neural networks (RvNNs) were more
performant than RNNs as they are able to embed
both content-based and propagation-based informa-
tion due to their tree-like structure. This architec-
ture was also improved with an attention mecha-
nism (Ma et al., 2020). Bian et al. (2020) achieved
SoTA performance on the Twitter15 and Twitter16
datasets for rumour detection on Twitter through
not only modelling the propagation properties of
a rumour, but also the dispersion properties with
their Bi-Directional Graph Convolutional Network
(Bi-GCN).

However, deploying said rumour detection mod-
els as a service has not been extensively researched
in an academic setting. Gupta et al. (2014) intro-
duced TweetCred, a Google Chrome browser exten-

sion that assigned a credibility score to each tweet
on a user’s feed using an SVM-rank model using
45 handcrafted features. Thilakarathna et al. (2020)
created a browser extension for Twitter, called Ver-
itas, that is able to detect fake news on the social
media platform. Most notably, their architecture in-
volves a model trainer pipeline to ensure that their
neural models are constantly up-to-date. Kydd and
Shepherd (2023) explored a very similar tool that
used a deep learning solution as the backbone to a
browser extension focusing on clickbait detection.

Additionally, we note that news articles are a
typical resource that one would use to determine
the status of a rumour. These resources enhance
the experience for the user, informing them of the
context in which the tweet occurs. To this end, our
work attempts to address the following flaws found
in previous work. i) Previous works that tackle
rumour detection specifically do not leverage SoTA
rumour detection models at the core of their ser-
vice, which renders them outdated. ii) In certain
cases, the rumour detection model is deployed on
the user-side. We posit that with SoTA models,
this will render the service inutile due to the com-
putational complexity of the models (Kydd and
Shepherd, 2023). iii) None of the aforementioned
works enhance the user’s experience through rec-
ommending articles that are semantically related to
the tweet in question. Our browser extension will
explore this addition.

3 Browser Extension Architecture

When creating a browser extension, and the as-
sociated architecture, we wish for the following
properties to be met. These are chosen to max-
imise the extension’s ease-of-use, performance and
informativeness.
D1: Twitter users should be able to use the ser-

vice in-real time in concert with their ordinary
browsing experience.

D2: Users of the service should not have to bear
the computational load of the underlying ar-
chitecture.

D3: The detection model should be interchange-
able, allowing for the browser extension to
improve continually with the latest advance-
ments in the field.

D4: News articles that are semantically related to
the source tweet should enhance the user’s
rumour detection experience.

To meet the above desiderata, we put forward the

131

(a) The browser extension’s landing page.

(b) The browser extension with results: a rumour
classification label of “True” and a list of five se-
mantically related news articles.

Figure 2: Screenshots showing the graphical user interface (GUI) of the browser extension.

browser extension architecture seen in Figure 1.
Furthermore, we designed a user-friendly interface
in the form of a Google Chrome browser extension
seen in Figure 2.

A user will interact with the system as follows:

(i) A user browses Twitter via Google Chrome.
Once they identify a particular tweet on which
they wish to perform rumour detection, the
user opens the browser extension and clicks
the “Detect rumour” button seen in Figure 2a
(D1). Once the button has been pressed, the
tweet ID is extracted from the URL of the
tweet and the client’s web browser sends a
POST request to the web server (D2), with the
specific tweet ID as a parameter.

(ii) Once the web server receives this POST re-
quest, three functions occur sequentially:

(a) Using the tweet ID, the web server in-
teracts with the Twitter API to retrieve
the source tweet, and its respective tweet
cascade as outlined in section 3.2.

(b) Once the tweet cascade has been re-
trieved and preprocessed, this is then fed
into the rumour detection model (D3)
seen in section 3.1, and inference is per-
formed. This returns a particular rumour
classification label.

(c) Finally, using the source tweet, the web
server finds semantically-related key-
words and retrieves relevant news articles
from NewsAPI.org (D4), as outlined in
Section 3.3. This returns a list of relevant
news articles to the web server.

(iii) Once the rumour classification label and the
relevant news articles have been retrieved,

these are returned to the user as a JSON object
in response to the original POST request.

3.1 Rumour Detection Model Choice

For this iteration of the rumour detection browser
extension, we choose the Bi-GCN architecture
(Bian et al., 2020) as the machine learning model
used in our service. The training code can be found
in our GitHub repository, or at in the original repos-
itory. This model was chosen as it reported SoTA
performance for the rumour detection task on the
Twitter15 and Twitter16 datasets. The model is
able to represent both the top-down and bottom-up
views of a tweet cascade, each of which is passed
to a dedicated two-layer GCN, along with a shared
tweet feature matrix (linguistic tokens). Bian et al.
(2020) also implement DropEdge to prevent overfit-
ting, and root feature enhancement after each GCN
layer to emphasise the information contained in the
source tweet2. To deploy the model, we train it us-
ing the Twitter16 data, with the same specifications
as in (Bian et al., 2020) (see Section 4) with 5-fold
cross validation, taking the average model as final.
The Bi-GCN, with a hidden dimension size of 64,
is trained using stochastic gradient descent with the
Adam optimiser (η = 5 × 10−4) to minimise the
cross entropy loss. The model is trained for 200
epochs, with early stopping on the validation loss
and patience set to 10 epochs. DropEdge rate is
set to 0.2, dropout rate is set to 0.5 and L2 regu-
larisation is applied to all model parameters with
λ = 1× 10−4.

2We point the interested reader to their original paper for
more details on the model’s functionality.

132

 https://github.com/TianBian95/BiGCN
 https://github.com/TianBian95/BiGCN

3.2 Twitter API

We make use of the Twitter API to retrieve the
raw data required to classify the rumour status of
a particular tweet. Since the Bi-GCN represents
each tweet as a cascade, we first collect the source
tweet from the API to act as the root of the cascade.
We then retrieve all the replies, quote tweets and
retweets related to the root. We continue this pro-
cess recursively, until the algorithm bottoms out at
the leaf tweets. Once we have retrieved the cascade,
each tweet is assigned its textual features according
to the vocabulary used at training (Section 4).

3.3 Semantically-Related News Articles

To find the semantically-related news articles, we
made use of the open-source KeyBERT tool3. This
package leverages embeddings that are created us-
ing a Sentence-BERT architecture (Reimers and
Gurevych, 2019; Devlin et al., 2018), particularly
the all-MiniLM-L6-v2 model found on Hugging-
Face4, to generate the semantically related key-
words. Before passing raw tweet text to KeyBERT,
we first preprocess it with NLTK’s tweet tokenizer5.
Candidate keyword phrases are extracted from N-
gram sequences (one to three grams in particular) in
the document text, and word embeddings are com-
puted for these. KeyBERT returns the candidate
phrases that are most similar to the document text
using the cosine similarity metric, and have been re-
ranked using Maximal Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998) to increase the di-
versity. The keywords are then passed to News-
API.org which returns relevant news articles ac-
cording to a keyword-based query.

4 Datasets

We make use of the Twitter15 and Twitter16
datasets (Ma et al., 2017) to train our rumour de-
tection model. The datasets comprise rumours
linked to newsworthy events at specific time pe-
riods; the statistics of these can be found in Table
1. In particular, these datasets are graphical in
nature. Each node refers to a tweet, where each
node is described by textual features derived from
a pretrained vocabulary of the top 5000 words in
terms of TF-IDF (Sammut and Webb, 2010) score.
Edges between tweets represent their retweet or
response relationships. A collection of tweets in a

3KeyBERT
4all-MiniLM-L6-v2
5NLTK Tokenize

cascade describes an event, and is assigned a ve-
racity tag (rumour (UR), non-rumour (NR), false
rumour (FR) or true rumour (TR)) which were
derived from cross-referencing rumour debunking
websites.

Statistic Twitter15 Twitter16
of posts 331,612 204,820
of users 276,663 173,487
of cascades 1,490 818
of non-rumours 374 205
of false rumours 370 205
of true rumours 372 205
of unverified rumours 374 203
Avg. time length / cas-
cade (Hours)

1,337 848

Avg. # of posts / cas-
cade

223 251

Max # of posts / cascade 1,768 2,765
Min # of posts / cascade 55 81

Table 1: Statistics of the Twitter16 and Twitter16
datasets.

5 Rumour Detection Model Evaluation

5.1 Out-of-Distribution Performance

An imperative part of the browser extension’s func-
tionality relies on the underlying performance of
the machine learning model used for inference. It
is well accepted that models are able to generalise
well (if trained appropriately) to data that is unseen,
but comes from a similar distribution to the training
data (Hendrycks and Dietterich, 2019; Klaise et al.,
2020; Engstrom et al., 2019). However, using our
browser extension for rumour detection in the wild
necessitates that the model will be used to evalu-
ate tweets that are OOD relative to the data which
it was trained. Concept drift is frequently occur-
ring in social media, particularly when the nature
of discourse underlying different rumours changes
(Horne et al., 2019). Furthermore, end-users of
the browser extension could use the tool outside
the environment in which it was intended to be de-
ployed. In these scenarios, we would expect that
the browser extension would perform suboptimally
on the rumour detection task.

To simulate this effect, we conduct a data mix-
ing experiment. Specifically, we leverage two
datasets that are frequently occurring in the ru-
mour detection literature: Twitter15 and Twitter16.
In this experiment, we create a third TwitterMix
dataset through a linear-interpolation-like com-
bination of the Twitter15 and Twitter16 datasets
TM = pT15 ∗ T15 + pT16 ∗ T16, controlling for

133

https://maartengr.github.io/KeyBERT/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://www.nltk.org/api/nltk.tokenize.casual.html

the size of the dataset by enforcing the following
constraint: pT15 + pT16 = 1. pT15 and pT16 act
as the proportion of the dataset that is selected.
We posit that a model trained on TwitterMix, as
a simple baseline, would be able to mitigate par-
tially the effects of concept drift. This baseline is
akin to a single-shot retraining procedure. Follow-
ing the training regime set out in Section 3.1, we
train three separate models based on the follow-
ing datasets: i) a Twitter15 model on the unmixed
1− pT15 Twitter15 data, ii) a Twitter16 model on
the unmixed 1 − pT16 Twitter16 data, and iii) a
TwitterMix model on the mixed data. In the case of
the Twitter15 and Twitter16, all models were eval-
uated on the pT15 and pT16 data. All models were
evaluated on the TwitterMix data, where we report
the cross-validation performance in the case of the
TwitterMix model. In Figure 3, we view the exper-
imental results where we set pT15 = pT16 = 0.5.
This particular proportion was chosen for the sake
of simplicity. On both the Twitter15 and Twitter16
datasets, we find that their respective models per-
form well, as expected. Similarly, we find that
the Twitter15 model’s performance decays dramat-
ically on the Twitter16 data, and vice versa. Both
models perform equally well on the TwitterMix
data. Furthermore, we find that the TwitterMix
model is able to mitigate some adverse effects when
evaluating a model on OOD data, seen particularly
on the Twitter15 data. While not as performant as
the Twitter16 model on Twitter16 data, it is able
to recover some performance relative to the Twit-
ter15 model. These results confirm findings of
Horne et al. (2019); Paleyes et al. (2022); Lobo
et al. (2020), and show the importance of retraining
schedules and engines when deploying machine
learning models in browser extension tools (Thi-
lakarathna et al., 2020). We perform additional
experiments (seen in Appendix B) altering the pro-
portion of pT15 and pT16. These experiments show
that if adequate care is not placed on constantly
maintaining a representative/diverse training sam-
ple through retraining, or if additional methods are
not put into place to detect when samples are OOD,
the performance of the model decays significantly.

5.2 Imperfect Data Performance

5.2.1 Textual Ablation Experiments

Another implication to consider is that the rumour
detection model’s performance is also constrained
by the Twitter API limits. For example, the quote

tweet endpoint has a 75 request per 15-minute win-
dow threshold6. This would not affect those users
who wish to perform rumour detection on a handful
of tweets, but rather “power users”. In the cases, we
could observe that the true tweet cascade cannot be
sufficiently represented, which in turn could affect
the performance of the rumour detection model.
Similarly, due to the effects of concept drift men-
tioned in Section 5.1, the rumour detection model
would be unable to represent the textual content
of certain tweets in a rumour cascade. As seen in
Section 3.1, the Bi-GCN architecture is trained on
a fixed, static vocabulary (as are many other NLP
solutions). If a tweet were composed of tokens that
were out-of-vocabulary for the rumour detection
model, this tweet would then be underrepresented.

To simulate these effects, we run two ablation
studies. First, we run a text ablation study where
generate new versions of the Twitter15 and Twit-
ter16 datasets according to some textual ablation
proportion. In these new datasets, we randomly
replace, according to the specified proportion, the
textual features of a given tweet with [0:1], which
is the corresponding [index:count] pair for an
<END> tag. Once the new datasets have been cre-
ated, we train a Twitter15 and Twitter16 model, and
report the performance on five-fold cross valida-
tion as done in section 3.1. This was done for the
textual ablation proportions: 0%, 50%, 70%, 90%,
100%. We view the results of this experiment in
Figure 4.

We see that the performance of the two models
dramatically decays as we increase the proportion
of tweets that have their textual features removed.
These results were expected due to the importance
of textual features to rumour detection models. Tex-
tual features have always provided an important
signal in predicting the rumour status of a partic-
ular tweet (Section 2). The same is true with the
Bi-GCN model. These results stress that without
the proper, and full, representation of tweet cas-
cades, the performance of the rumour detection
model drops dramatically.

5.2.2 Node Ablation Experiment
Similar to the textual feature ablation experiment,
we conduct a node ablation experiment. We first
generate new versions of the Twitter15 and Twit-
ter16 datasets according to some node ablation
proportion. However, instead of removing textual

6Quote Tweets API

134

https://developer.twitter.com/en/docs/twitter-api/tweets/quote-tweets/api-reference/get-tweets-id-quote_tweets

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter15

Twitter15
Twitter16
Twitter Mix

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter16

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Mix

Figure 3: Result from the dataset mixing experiment for the Twitter15, Twitter16 and TwitterMix models, with
pT15 = pT16 = 0.5. Each subplot indicates the evaluation dataset, and the legend the model versions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

Twitter15 - Text

Acc
NR F1
FR F1
TR F1
UR F1

0.0 0.2 0.4 0.6 0.8 1.0

Twitter16 - Text

0.0 0.2 0.4 0.6 0.8 1.0

Twitter15 - Node

0.0 0.2 0.4 0.6 0.8 1.0

Twitter16 - Node

Percentage of Ablation

Figure 4: Results from the textual and node ablation experiments, across varying ablation proportions, for the
Twitter15 and Twitter16 datasets.

features, we randomly remove nodes, and their de-
scendents, from every tweet cascade7. This was
done to simulate the scenario where certain tweets
would not be retrieved by the Twitter API. We
train a Twitter15 and Twitter16 model on these new
datasets and report the performance on five-fold
cross validation as done in section 3.1. We repeat
this experiment for the following node ablation pro-
portions: 0%, 50%, 70%, 90% and 99.9%. The
results of these experiments are specified in Figure
4.

Surprisingly, we did not observe the same ef-
fect as was seen in the textual ablation experiments
(Figure 4). Instead, we see that the Bi-GCN was
able to was able to maintain, and sometimes im-
prove, performance relative to the baseline, across
both datasets. This was achieved until over 90%
of the tweets in each cascade had been removed.
After this point, the models’ predictive capability
sharply decreased – once enough tweets had been
removed, both models lose enough signal from the
input data to classify the rumour status accurately.
However, we can contrast these results with the

7We did not remove the root nodes from the tweet cascades
as the label for each tweet cascade is tied to the root node.

early rumour detection study in the original paper
by Bian et al. (2020). Their work examined the
Bi-GCN’s performance on the task of early rumour
detection. Although our experiment does not re-
move tweets from the cascade temporally (as we do
not have access to the timestamp for each tweet),
we are, essentially, creating an experiment that is
very similar to this experiment in Bian et al. (2020).

However, an interesting result is that in both
datasets, we observed that the models were able
to score better than the baseline even with fewer
tweets representing the cascade. When randomly
removing a tweet, and its descendents, from a cas-
cade, we have no rules enforcing what type of
tweets are removed from the cascade. If we ob-
serve the rumour tweet in Figure 5, tweets that
express doubt in response to a root tweet indicates
that the tweet is potentially a rumour (Kwon et al.,
2017). As such, removing the tweets that express
support make the tweet seem more rumour-like.
Similarly, removing the tweets that express doubt
from the non-rumour would make this tweet more
non-rumour like. These situations would make
each of the tweet cascades seem more like a proto-
typical example of their respective class.

135

Figure 5: Prorogation structure of two source tweets
taken from Ma et al. (2017). Red nodes express doubt,
blue nodes express neutrality and black nodes express
support. The green node is the root of the cascade.

A similar effect could, by chance, be observed
in our node ablation experiments. By randomly
removing certain nodes, we inadvertently simplify
the rumour detection task for that tweet as it would
seem more prototypical of its class.

6 Latency Experiments

Similar to the work done by Gupta et al. (2014),
we wish to evaluate the browser extension’s perfor-
mance with respect to response time. This is calcu-
lated as the amount of time taken for our browser
extension to respond to a particular rumour detec-
tion request. In our experiment, we measure the
response time across 50 randomly selected news-
worthy tweets of varying size. We view the cumu-
lative distribution function (CDF) of the response
times in Figure 6.

2 4 6 8 10 12 14
x (Response time in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Figure 6: CDF for response time taken for rumour de-
tection across 50 tweets.

Observing Figure 6, we see that our browser
extension is able to provide a response for 90%
of requests in six seconds or less. This is an im-
provement over the 82% of requests in Gupta et al.
(2014); however, their experiment analysed the
CDF across 5.4 million requests. Due to time con-
straints, our sample size is significantly smaller.
Yet, we can make some initial comparisons be-
tween the two solutions. Our work retrieves the
entire tweet cascade for a tweet, and predicts the ru-
mour status using the Bi-GCN model. TweetCred,

on the other hand calculates 45 handcrafted fea-
tures based on the tweet itself, and uses SVM-rank
to assign a credibility score. Given the fact that
our approach uses far more information per tweet,
and a more sophisticated and computationally in-
tensive model8, this is still an encouraging result
for our browser extension. Unfortunately, the other
browser extensions mentioned in Section 2 do not
report results for a response time experiment. As
such, we are unable to compare our extension to
other solutions on this particular axis.

7 User Study

To determine whether the browser extension
provides benefit to Twitter users, we ran an
anonymised user study. We asked 19 participants
to perform five rumour detection tasks (RDTs). In
this context, a RDT is divided into two questions.

(i) Before performing rumour detection using the
browser extension, determine the rumour sta-
tus of the current tweet.

(ii) After performing rumour detection, assess
whether the browser extension aid in deter-
mining the true status of the tweet.

Each set of questions was asked on a preselected
tweet that was newsworthy at that instance in time.
This was done to ensure that the tweets used in the
study were as similar as possible to the training data
distribution on which the model was trained (see
Section 5.1 for out-of-distribution performance).

After performing these tasks, we asked the users
to comment on their overall experience using the
browser extension. The user study was facili-
tated through the use of anonymised survey. The
users accessed the server architecture through a re-
mote Google Cloud Platform server (GCP), and the
browser extension itself from a shareable Google
Chrome Store link. The user study was approved
by a research ethics board (see Section 8). The
results from the RDT and overall experience feed-
back are seen in Figures 7 and 8, respectively. See
Appendix A for full details on the user study.

Prior to performing rumour detection, we see
that there is considerable disagreement amongst the
annotators. Particularly, we find that Randolph’s
Kappa is κ = 0.345 (Randolph, 2010). These re-
sults confirm an assumed truth in the field: rumour

8Most notably, our browser extension was able to classify
a tweet cascade with over 579 retweets, 343 quote tweets and
454 replies in approximately 14 seconds.

136

Tweet 1
Tweet 2

Tweet 3
Tweet 4

Tweet 5
0
2
4
6
8

10
12
14
16
18

Fr
eq

ue
nc

y

Did you have reason to doubt the tweet a priori?

Yes
No

Tweet 1
Tweet 2

Tweet 3
Tweet 4

Tweet 5

Did the browser extension support your experience?

Yes
No

Figure 7: Results from the RDT in the user study.

Percentage of responses (%)

I found this browser extension
to be very useful.

I would recommend this browser
extension to my friends and

family.

I would use this browser
extension again in my personal

time.

5.26

5.26

10.53

15.79

5.26

5.26

42.11

31.58

52.63

36.84

57.89

31.58
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 8: Results from global feedback in the user study.

detection, a highly subjective task, is difficult for
humans as the labels are not necessarily objective
(Touvron et al., 2023). This further motivates the
need for assistive tools such as this browser exten-
sion. Contrastingly, we see that, generally, annota-
tors found that the browser extension supported
their rumour detection experience. κ = 0.443
which supports the fair agreement on the browser
extension’s positive impact on their rumour detec-
tion experience. An interesting result is that this
kappa score is similar to the user agreement on
the credibility score (43%) obtained for TweetCred
(Gupta et al., 2014). Whilst the questions posed
to the users are different, these results show that
there is some benefit to be gained through using
additional rumour detection tools. However, there
needs to be additional measures put into place to
make users more confident in the tool’s perfor-
mance, which would lead to higher user agreement
(see Section 8).

Furthermore, we asked the users to rate their
agreement to three questions on a five-point Likert
scale. Observing Figure 8, we see that the feed-
back for the browser extension is generally posi-
tive. 78.95% of the participants in the user study
agreed or strongly agreed with finding the browser
extension to be useful. However, we see that there
was a small portion of users who either disagreed
or were ambivalent to the three statements. This
study did not require the participant to be a Twitter
user. As such, the study could have attracted partic-

ipants who: do not use Twitter frequently, do not
use Twitter as a news source, or those users that
do not have a Twitter account at all. These users
would not see the need to have access to a tool such
as this browser extension as they would have no
use for it personally.

8 Conclusion and Future Work

In this work, we put forward a novel browser exten-
sion that allows Twitter users to perform rumour
detection, leveraging the performance from SoTA
models. Our work shows that this tool provides
benefit to those Twitter users wanting autonomy
over their rumour detection. However, we note
that our work is merely the first iteration in a se-
ries of deployments. Future work could explore
additional mechanisms to allow the browser exten-
sion to cope with OOD data. Online retraining
(Horne et al., 2019) has been shown to be effec-
tive in minimising the effects of concept drift; this
is similar to the trainer pipeline in Veritas (Thi-
lakarathna et al., 2020). Furthermore, Diethe et al.
(2019) show a more sophisticated paradigm with
their continual learning approach. Additionally, we
could extend the browser extension’s functionality
through allowing its users to submit examples of
tweets they believe to be (non-)rumours (with evi-
dence) to some community-moderated data store.
This process could be used to create more up-to-
date datasets for rumour detection.

137

Limitations

The work suffers from two main limitations, the
first of which is the current system’s reliance on the
Twitter API, and its changing access requirements.
At the time of writing, Twitter API users will no
longer be able to make use of the GET API end-
points, which include the endpoints used to fetch
the information needed for a tweet’s cascade repre-
sentation (Section 3.2), under the free tier. Instead,
users will have to pay $100 per month9. As such,
this limits the use-case of the browser extension
that we have created. However, the flexible archi-
tecture that we have created allows the browser
extension to be ported to a different context. In-
stead of focussing on Twitter, a similar use-case
would be found with Sina Weibo, for example. The
browser extension could focus on fake news de-
tection, rather than on rumour detection. Each of
these disciplines have their own state-of-the-art so-
lutions in the literature, and exploring practical
tools that would leverage their performance would
be a worthwhile research direction.

A second limitation lies in the small sample size
of the user study. Furthermore, the participants
themselves could be biased in their evaluation of
the browser extension because of their relation
to the author; the browser extension was shared
via a university mailing list. However, due to the
anonymity of the study, we hope that the partici-
pants of the user study would be objective in their
assessment of the browser extension. Nevertheless,
we find that these initial results support and en-
courage the viability of a Twitter rumour detection
extension. However, a potential direction for future
work would be extending the browser extension to
a wider, more diverse audience.

Ethics Statement

This project obtained approval from the Informatics
Research Ethics committee at the University of
Edinburgh.
Ethics application number: 2023/260884
Date when approval was obtained: 2023-01-30

Acknowledgements

We are grateful to the following people (in no
particular order) for their helpful insight and cor-
rections to the manuscript: Alessandro Palmarini,
Maxime Labonne, and Simon Chi Lok U.

9https://developer.twitter.com/en/portal/products/basic

References
Benjamin Bates. 2007. Yochai benkler. the wealth of

networks: How social production transforms markets
and freedom. Journal of Media Economics, 20:161–
165.

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing
Huang, Yu Rong, and Junzhou Huang. 2020. Rumor
detection on social media with bi-directional graph
convolutional networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(01):549–
556.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’98, page 335–336, New York, NY,
USA. Association for Computing Machinery.

Carlos Castillo, Marcelo Mendoza, and Barbara Poblete.
2011. Information credibility on twitter. In Proceed-
ings of the 20th International Conference on World
Wide Web, WWW ’11, page 675–684, New York, NY,
USA. Association for Computing Machinery.

Tong Chen, Lin Wu, Xue Li, Jun Zhang, Hongzhi Yin,
and Yang Wang. 2017. Call attention to rumors:
Deep attention based recurrent neural networks for
early rumor detection. CoRR, abs/1704.05973.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle,
and Neil Lawrence. 2019. Continual learning in prac-
tice.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Lud-
wig Schmidt, and Aleksander Madry. 2019. Explor-
ing the landscape of spatial robustness. In Proceed-
ings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1802–1811. PMLR.

Miriam Fernandez and Harith Alani. 2018. Online mis-
information: Challenges and future directions. In
Companion Proceedings of the The Web Conference
2018, WWW ’18, page 595–602, Republic and Can-
ton of Geneva, CHE. International World Wide Web
Conferences Steering Committee.

Aditi Gupta, Ponnurangam Kumaraguru, Carlos
Castillo, and Patrick Meier. 2014. Tweetcred: Real-
time credibility assessment of content on twitter.
pages 228–243.

Dan Hendrycks and Thomas Dietterich. 2019. Bench-
marking neural network robustness to common cor-
ruptions and perturbations. In International Confer-
ence on Learning Representations.

138

https://developer.twitter.com/en/portal/products/basic
https://doi.org/10.1080/08997760701193787
https://doi.org/10.1080/08997760701193787
https://doi.org/10.1080/08997760701193787
https://doi.org/10.1609/aaai.v34i01.5393
https://doi.org/10.1609/aaai.v34i01.5393
https://doi.org/10.1609/aaai.v34i01.5393
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/1963405.1963500
http://arxiv.org/abs/1704.05973
http://arxiv.org/abs/1704.05973
http://arxiv.org/abs/1704.05973
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/1903.05202
http://arxiv.org/abs/1903.05202
https://proceedings.mlr.press/v97/engstrom19a.html
https://proceedings.mlr.press/v97/engstrom19a.html
https://doi.org/10.1145/3184558.3188730
https://doi.org/10.1145/3184558.3188730
https://doi.org/10.1007/978-3-319-13734-6_16
https://doi.org/10.1007/978-3-319-13734-6_16
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=HJz6tiCqYm

Benjamin D. Horne, Jeppe Nørregaard, and Sibel Adali.
2019. Robust fake news detection over time and
attack. ACM Trans. Intell. Syst. Technol., 11(1).

Janis Klaise, Arnaud Van Looveren, Clive Cox, Gio-
vanni Vacanti, and Alexandru Coca. 2020. Monitor-
ing and explainability of models in production.

Sachin Kumar, Rohan Asthana, Shashwat Upadhyay,
Nidhi Upreti, and Mohammad Akbar. 2020. Fake
news detection using deep learning models: A novel
approach. Trans. Emerg. Telecommun. Technol.,
31(2).

Sejeong Kwon, Meeyoung Cha, and Kyomin Jung. 2017.
Rumor detection over varying time windows. PLOS
ONE, 12(1):1–19.

Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei
Chen, and Yajun Wang. 2013. Prominent features of
rumor propagation in online social media. In 2013
IEEE 13th International Conference on Data Mining,
pages 1103–1108.

Marc Kydd and Lynsay A. Shepherd. 2023. Deep
breath: A machine learning browser extension to
tackle online misinformation.

Jesus L. Lobo, Javier Del Ser, Albert Bifet, and Nikola
Kasabov. 2020. Spiking neural networks and on-
line learning: An overview and perspectives. Neural
Networks, 121:88–100.

Jing Ma, Wei Gao, Shafiq Joty, and Kam-Fai Wong.
2020. An attention-based rumor detection model
with tree-structured recursive neural networks. ACM
Trans. Intell. Syst. Technol., 11(4).

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Jim
Jansen, Kam-Fai Wong, and Meeyoung Cha. 2016.
Detecting rumors from microblogs with recurrent
neural networks.

Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and
Kam-Fai Wong. 2015. Detect rumors using time se-
ries of social context information on microblogging
websites. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowl-
edge Management, CIKM ’15, page 1751–1754, New
York, NY, USA. Association for Computing Machin-
ery.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect
rumors in microblog posts using propagation struc-
ture via kernel learning. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 708–717,
Vancouver, Canada. Association for Computational
Linguistics.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor
detection on Twitter with tree-structured recursive
neural networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1980–1989,
Melbourne, Australia. Association for Computational
Linguistics.

Andrei Paleyes, Raoul-Gabriel Urma, and Neil D.
Lawrence. 2022. Challenges in deploying machine
learning: A survey of case studies. ACM Comput.
Surv., 55(6).

Vahed Qazvinian, Emily Rosengren, Dragomir R.
Radev, and Qiaozhu Mei. 2011. Rumor has it: Identi-
fying misinformation in microblogs. In Proceedings
of the 2011 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1589–1599, Edin-
burgh, Scotland, UK. Association for Computational
Linguistics.

Justus Randolph. 2010. Free-marginal multirater kappa
(multirater κfree): An alternative to fleiss fixed-
marginal multirater kappa. volume 4.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Claude Sammut and Geoffrey I. Webb, editors. 2010.
TF–IDF, pages 986–987. Springer US, Boston, MA.

Karishma Sharma, Feng Qian, He Jiang, Natali Ruchan-
sky, Ming Zhang, and Yan Liu. 2019. Combating
fake news: A survey on identification and mitigation
techniques. ACM Trans. Intell. Syst. Technol., 10(3).

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. SIGKDD Explor.
Newsl., 19(1):22–36.

Madusha Prasanjith Thilakarathna, Vihanga Ashinsana
Wijayasekara, Yasiru Gamage, Kavindi Hanshani
Peiris, Chanuka Abeysinghe, Intizar Rafaideen, and
Prathieshna Vekneswaran. 2020. Hybrid approach
and architecture to detect fake news on twitter in
real-time using neural networks. In 2020 5th In-
ternational Conference on Information Technology
Research (ICITR), pages 1–6.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

139

https://doi.org/10.1145/3363818
https://doi.org/10.1145/3363818
http://arxiv.org/abs/2007.06299
http://arxiv.org/abs/2007.06299
https://doi.org/10.1002/ett.3767
https://doi.org/10.1002/ett.3767
https://doi.org/10.1002/ett.3767
https://doi.org/10.1371/journal.pone.0168344
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.48550/ARXIV.2301.03301
https://doi.org/10.48550/ARXIV.2301.03301
https://doi.org/10.48550/ARXIV.2301.03301
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/10.1145/3391250
https://doi.org/10.1145/3391250
https://doi.org/10.1145/2806416.2806607
https://doi.org/10.1145/2806416.2806607
https://doi.org/10.1145/2806416.2806607
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.1145/3533378
https://doi.org/10.1145/3533378
https://aclanthology.org/D11-1147
https://aclanthology.org/D11-1147
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1145/3305260
https://doi.org/10.1145/3305260
https://doi.org/10.1145/3305260
https://doi.org/10.1145/3137597.3137600
https://doi.org/10.1145/3137597.3137600
https://doi.org/10.1109/ICITR51448.2020.9310890
https://doi.org/10.1109/ICITR51448.2020.9310890
https://doi.org/10.1109/ICITR51448.2020.9310890
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Ke Wu, Song Yang, and Kenny Q. Zhu. 2015. False
rumors detection on sina weibo by propagation struc-
tures. In 2015 IEEE 31st International Conference
on Data Engineering, pages 651–662.

Fan Yang, Yang Liu, Xiaohui Yu, and Min Yang. 2012.
Automatic detection of rumor on sina weibo. In Pro-
ceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, MDS ’12, New York, NY, USA.
Association for Computing Machinery.

A User Study Information

The participants, all of whom are fluent in English,
accessed the survey via an anonymised Google
Form sent via a university undergraduate mailing
list. The web server architecture was deployed on
Google Cloud Platform; all participants received
the same underlying tweet cascade and recom-
mended articles as a response for every tweet. The
users could not comment on the speed of the ser-
vice as these results were cached for the sake of
reproducibility and efficiency.

B OOD: Additional Proportion
Experiments

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter15

Twitter15
Twitter16
Twitter Mix

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter16

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Mix

Figure 9: Result from the dataset mixing experiment for the Twitter15 and Twitter16 models, with pT15 = 0.3 and
pT16 = 0.7.

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter15

Twitter15
Twitter16
Twitter Mix

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Twitter16

Acc NR F1 FR F1 TR F1 UR F1
0.0

0.2

0.4

0.6

0.8

1.0
Mix

Figure 10: Result from the dataset mixing experiment for the Twitter15 and Twitter16 models, with pT15 = 0.7 and
pT16 = 0.3.

140

https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1145/2350190.2350203

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 141–146
December 6, 2023 ©2023 Association for Computational Linguistics

DeepZensols: A Deep Learning Natural Language Processing Framework
for Experimentation and Reproducibility

Paul Landes, Barbara Di Eugenio, Cornelia Caragea
Department of Computer Science
University of Illinois at Chicago

{plande2, bdieugen, cornelia}@uic.edu

Abstract

Given the criticality and difficulty of reproduc-
ing machine learning experiments, there have
been significant efforts in reducing the vari-
ance of these results. The ability to consistently
reproduce results effectively strengthens the un-
derlying hypothesis of the work and should be
regarded as important as the novel aspect of the
research itself. The contribution of this work is
an open source framework that has the follow-
ing characteristics: a) facilitates reproducing
consistent results, b) allows hot-swapping fea-
tures and embeddings without further process-
ing and re-vectorizing the dataset, c) provides
a means of easily creating, training and evaluat-
ing natural language processing deep learning
models with little to no code changes, and d) is
freely available to the community.

1 Introduction

Consistently reproducing results is a fundamental
criterion of the scientific method, without which,
a hypothesis may be weakened or even invali-
dated (Arvan et al., 2022). Reproduction of results
becomes even more necessary as a growing number
of publications are inflated by false positives (Head
et al., 2015). Efforts to abate this trend include
introducing new statistical methods to detect false
findings (Ulrich and Miller, 2015).

The inability to reproduce results has been re-
ferred to as the “replication crisis” (Hutson, 2018).
The problem of reproducibility in results is becom-
ing more acknowledged as a serious issue in the ma-
chine learning (ML) community with efforts to un-
derstand and overcome the challenge (Rogers et al.,
2021; Drummond, 2018). Not only has the commu-
nity addressed the issue in the literature, it has en-
deavored to assess if experiments are reproducible
and provide recommendations to enhance repro-
ducibility as with the Reproducibility Challenge1.
To address these issues, we present DeepZensols,

1https://www.cs.mcgill.ca/.../ReproducibilityChallenge.html

a freely available2 deep learning (DL) framework
for NLP research by and for the academic research
community including citizen scientists, academic
researchers, and students. It has been used for re-
search projects(Landes et al., 2022, 2023) funded
by the National Institute of Health (NIH)3.

A key feature that sets DeepZensols apart from
others is a novel method to rapidly and easily swap
features sets and compare performance across mod-
els (see Section 2.4). Other systems must re-parse
and re-vectorize each mini-batch over each epoch.
While there exist similar frameworks to ours (Ning
et al., 2020; Falcon, 2019; Paszke et al., 2019; Al-
berti et al., 2018), none of these provides this batch
strategy, vectorization of natural language text fea-
tures and reproducibility of results across advanced
programming interfaces (APIs) and datasets in one
framework. Popular neural network (NN) architec-
tures are available out of the box and easily con-
figurable with little to no coding necessary (see
Section 2.2 for NLP specific framework details).

2 Library Design

DeepZensols is a combination of Python APIs built
on top of PyTorch that provide a means of easily
and quickly creating NLP task specific pipelines.
The framework’s source code and installable li-
braries are released under the MIT Open Source Li-
cense, and includes extensive and in depth overview
and API documentation, tutorials, Jupyter Note-
book examples and class diagrams for NLP refer-
ence models and datasets. The framework is vali-
dated with 381 unit tests and six integration tests,
which are automated using continuous integration.

2.1 Reproducibility

All random state, including utility libraries, scien-
tific libraries, PyTorch, and GPU state, is consistent

2https://github.com/plandes/deepnlp
3NIH award R01CA225446, MyPHA: Automatically gen-

erating personalized accounts of in-patient hospitalizations.

141

https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://github.com/plandes/deepnlp
https://plandes.github.io/deepnlp/index.html
https://plandes.github.io/deepnlp/api.html
https://github.com/plandes/deepnlp/blob/master/example/clickbate/notebook/clickbate.ipynb
https://github.com/plandes/deepnlp/blob/master/example/clickbate/notebook/clickbate.ipynb
https://plandes.github.io/deepnlp/index.html#usage-and-reference-models
https://plandes.github.io/deepnlp/index.html#usage-and-reference-models
https://github.com/plandes/deepnlp

Robert

Plant

ripped

up

word embedding

$800M

token features

<ner> <head><pos>

join
layer

document
features

softmax
fully connected

linear layers

token concatenated features

<300D>

Figure 1: Word embeddings concatenated to vectorized linguistic features, and then joined with vectorized document
features constructed using configuration with no coding.

across each run of the interpreter execution of the
model’s training, evaluation and testing when using
the framework. Results are consistent by saving
this random state when saving the model, then re-
trieving and resetting it before using the model.

The order of mini-batches, and their constituent
data can affect the model performance as an as-
pect of training or the results of validation and
testing (Pham et al., 2020). This performance in-
consistency is addressed by recording the order of
all data4 and tracking the training, validation and
test data splits. Not only are mini-batches given in
the same order, the ordering in each mini-batch is
also preserved. These dataset partitions and their
order are saved to the file system so the commu-
nity has the option of distributing it along with the
source code for later experiment duplication.

The framework also saves the configuration used
to recreate the same in-memory state along with
the model. This duplicates all train-time memory
model structures, parameters, and hyperparameters
during testing. For the framework’s reproducibility,
unit tests are executed for individual components
and integration tests by comparing the validation
and training loss across six data sets5. In addition,
this demonstrates to users of the framework how to
add their own components and tests.

2.2 NLP-Focused Abstractions and Features
The framework provides many APIs for natural
language tasks, including concatenation of vector-
ized language features to input embedding (see
Figure 1). Vectorization of contextual embed-
dings such as BERT (Devlin et al., 2019) and non-

4Regardless of any given data pre-processing or shuffling.
5Data sets include the MNIST, Adult, Iris datasets and

those mentioned in Section 3.

contextual embeddings such as word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014) and
fastText (Bojanowski et al., 2017) are available.

The framework includes many layer implementa-
tions, which are compatible with the PyTorch API
as module classes. Examples of layers provided
include BiLSTM CRF, BERT transformer models,
1D convolution NN, word embedding layer for con-
catenating features (see Section 2.3), and TF/IDF
frequency weighting (Sparck Jones, 1972).

HuggingFace transformer layers are available
as embeddings, document, sentence and token fea-
tures. The framework also provides direct access
to these models’ data and utilizes it in a variety of
tasks such as text classification, token classification,
language generation, latent semantic analysis, etc.
A linguistic feature mapper that translates spaCy6

to wordpieces, which are token sub-units with asso-
ciated vectors (Wu et al., 2016), is also accessible
as an easy to configure module.

2.3 Vectorization

The DeepZensols framework allows for easily con-
figurable components that provide a higher level
abstraction that tokenizes, sentence chunks, and
vectorizes linguistic features. These vectorizers
have a class taxonomy based on data they vector-
ize so their output data can be automatically con-
structed in various off-the-shelf architectures. See
Section 2.2 for more information on NLP specific
feature generation.

2.4 Batching

We provide a novel method to vectorize and batch
data without wasteful pre-processing of feature and

6https://spacy.io

142

https://spacy.io
https://spacy.io

1.2 .1.5

.3

.5

.4.43

.4

.8 .1

01

0 1
.5

.4.43

.4

.8 .1

1.2 .1.5

.3 1

01

0

.5

.4.43

.4

.8 .1

1.2 .1.5

.3

.3

.5

.4.43

.4

.8 .1

1.2 .1.5

The

boy

word embedding

1 11

1

0

01 0

10

00

<ner> <head><pos>

word embed file batch 1 token file batch 1

token features

0

1 11

1

0

01 0

10

0

.8 .1

1.2 .1.5

.3

.5

.4.43

.4

0

01

1 word embed file

batch N

token embed file

batch N

Figure 2: Batch decoding “stitches” mini-batches to-
gether from files containing features for the current run.

embedding combinations. Other similar frame-
works pre-process data in an intermediate form
only once before training. However, this leads to a
brittle and difficult to reproduce dataset of ad-hoc
text processing scripts that are challenging to re-
execute, and thus, reproduce performance metrics.

Our framework addresses this with an organized
intermediate file scheme and partitioned feature set
so the input data is vectorized only once efficiently
using a multi-processing pipeline. The output for-
mat of this process allows for quick feature swap-
ping and hyperparameter tuning for re-training. It
leverages the fact that mini-batches are independent
and fit nicely as independent units of work by seg-
menting datasets into smaller chunks, vectorizing
each chunk in parallel sub-processes, and creating
batches independently across each sub processes.

This process by which data is written to the
file system in a format that is fast to reassem-
ble is called batch encoding and accomplished
by: a) split sentences and/or tokens into equal size
“chunks” units of work, b) parsing natural language
features from chunks across multiple processes,
and c) vectorizing each chunk as tensor data in
separate files by feature.

After batch encoding is complete, the model is
ready to be trained from data obtained from a batch
decoding step, which is accomplished by: a) choos-
ing a feature set for a training run, b) reassembling
features by mini-batch, c) decode each mini-batch
into a tensor (see Figure 2), and d) load, cache and
copy tensors to the GPU.

Reassembling mini-batches by feature greatly
reduces load time and memory space, which speeds

up model training (see Section 3) and ameliorates
issues of complex models. The train, validation and
test cycle is faster for other vectorized linguistic
data such as spaCy features as well.

2.5 Execution

The framework provides both a command line and
a Jupyter notebook interface to train, test and pre-
dict. A “glue” API is used to make a Python dat-
aclass7 class a dynamically generated command
line with help usage message documentation. A
set of default application classes are available with
the framework, but they can be extended to include
project specific workflows. The default application
set provides interactive early stopping or epoch
resetting during training.

Results are organized by each run and carry a
common file system structured named by either
what is provided in the configuration or by model
name. This directory structure contains the full
model with all configuration, the PyTorch model,
and results provided as human readable indented
text, JSON and binary formats.

3 Runtime Analysis

Runtime analysis was performed for parsing, fea-
ture vectorization (see Section 2.3), batching (see
Section 2.4), training and testing three different
types of models using a Nvidia TITAN RTX graph-
ics processor on an Intel 3.6GHz CPU using the
following criteria:

• Model: the model trained and evaluated.
• Batch: whether or not the mini-batches were

(re)created (see Section 2.4).
• GPU: whether or not the mini-batches were

cached in GPU memory.8

Since obtaining fast results allows for more ex-
perimentation with a variety of feature sets, em-
beddings, and NN architectures, our experiments
included several combinations of caching strate-
gies. Table 1 shows the latency to batch, retrain
and test the model for each dataset in the “Duration”
column. Experiments were rerun obtain the time
needed for training, validation and testing of each
model, then a second time using the precomputed
mini-batched data. The GPU caching option was
toggled across these experiments to find the CPU
to GPU latency for loading mini-batches.

7https://docs.python.org/3/library/dataclasses.html
8The framework offers GPU caching, CPU caching, and

iterative buffering of mini-batches.

143

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html

Data Model Duration Batch GPU Both

NER BERT 1:06:04 04:23 00:12 04:35
GloVe 34:08 04:19 05:41 10:00

Mov BERT 21:19 02:04 -00:26 01:38
GloVe 05:03 03:07 01:20 04:27

CB BERT 05:48 01:50 -00:01 01:49
GloVe 05:45 01:51 03:03 04:54

Table 1: Efficiency benchmarks showing the Named
Entity Recognition, Movie review sentiment, and
ClickBate datasets. The “Duration” column lists pro-
cessing latency with no batch or GPU caching in hours,
minutes and seconds. The “Batch” and “GPU” columns
have the caching speedup times in minutes and seconds.
The “Both” column is the speedup with both batch and
GPU caching are enabled.

The datasets used in the runtime analysis include
the CoNNL 2003 (Tjong Kim Sang and De Meul-
der, 2003) for NER, the movie review corpus (Pang
and Lee, 2005; Socher et al., 2013) for sentiment,
and the clickbate corpus (Chakraborty et al., 2016)
for text classification.

The results show significant processing improve-
ments in all three datasets with the GloVe model
leading. This is likely due to how the static embed-
ding are not computed for each sentence (unlike
BERT). The NER dataset with the BERT model
was faster by 4.5 minutes and the GloVe model was
10 minutes faster (1.4X speedup). However, the
movie review sentiment dataset shows the best im-
provement (7.8X speedup) on the GloVe model.
This is primarily from the batch caching 2.6X
speedup, but benefited from a GPU 1.3X caching
speedup. We hypothesize that the GPU slowdowns
for the movie review and clickbate datasets are
potentially due to larger BERT (768D vs 300D
embeddings) mini-batches copied from the CPU.

4 Related Frameworks

Popular DL frameworks such as TensorFlow9 have
a dashboard that provides metrics, such as training
and validation loss. However, these general pur-
pose frameworks offer basic performance metrics
and do not provide a means of producing higher ab-
straction level NLP specific models. More specif-
ically, frameworks such as Keras, supply a very
coarse API allowing solely for cookie-cutter mod-
els. They lack the ability to easily create and evalu-
ate models past this surface interface.

Frameworks such as PyTorch10, which are more

9https://www.tensorflow.org
10https://pytorch.org

common in academia, provide a more straightfor-
ward simple API that is similar to the core Tensor-
Flow libraries, and thus have the same shortcom-
ings as a tool to bridge the gap between pure re-
search and reproducibility. Specifically, they do not
provide batching for accessible feature swapping
and ablation studies, or retention of ML algorithm
state necessary to reproduce results.

AllenNLP (Gardner et al., 2018) is a flexible
configuration driven framework that provides con-
struction of NLP NN architectures and is the closest
framework to ours. However, it does not have fast
feature swapping (see Section 2.4) and batch cre-
ation capability, and lacks most of the components
necessary to consistently reproduce results11.

Popular packages providing support for trans-
former architectures such as BERT (Devlin et al.,
2019) include HuggingFace12. However, this
framework only provides transformer models for
contextual word embeddings.

5 Conclusion and Limitations

The DeepZensols framework is a viable solu-
tion to easily create NLP specific models with
APIs and analysis tools to produce consistent re-
sults. Such frameworks create the types of mod-
els that give confidence and legitimacy by pro-
viding a way to produce reliable reproducible re-
sults for researchers not familiar with deep learn-
ing tools, practitioners, medical personnel, stu-
dents, and those new to the field. Runtime analy-
sis shows the framework offers significant pro-
cessing time savings compared to systems that
do not provide feature caching with stable re-
sults, but not all HuggingFace pretrained mod-
els13 have been tested. The following have been
tested: BERT, RoBERTa (Liu et al., 2019), Distil-
BERT (Sanh et al., 2019), Big Bird (Zaheer et al.,
2020), BioBERT (Lee et al., 2020), XML-R (Con-
neau et al., 2020), ClinicalBioBERT (Alsentzer
et al., 2019), and GatorTron (Yang et al., 2022)
have been tested. A planned future work is to inte-
grate the framework with TensorBoard14.

6 Acknowledgments

This work is partially supported by award
R01CA225446 from the NIH.

11https://github.com/allenai/allennlp/issues/3100
12https://huggingface.co
13https://huggingface.co/models
14https://www.tensorflow.org/tensorboard

144

https://www.tensorflow.org
https://pytorch.org
https://www.tensorflow.org
https://pytorch.org
https://allennlp.org
https://github.com/allenai/allennlp/issues/3100
https://huggingface.co
https://huggingface.co/models
https://huggingface.co/models
https://www.tensorflow.org/tensorboard
https://github.com/allenai/allennlp/issues/3100
https://huggingface.co
https://huggingface.co/models
https://www.tensorflow.org/tensorboard

References
Michele Alberti, Vinaychandran Pondenkandath, Mar-

cel Würsch, Rolf Ingold, and Marcus Liwicki. 2018.
DeepDIVA: A Highly-Functional Python Framework
for Reproducible Experiments. In 2018 16th Inter-
national Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 423–428.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly Available Clin-
ical BERT Embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78. Association for Computational Linguis-
tics.

Mohammad Arvan, Luís Pina, and Natalie Parde. 2022.
Reproducibility in Computational Linguistics: Is
Source Code Enough? In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2350–2361. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Abhijnan Chakraborty, Bhargavi Paranjape, Sourya
Kakarla, and Niloy Ganguly. 2016. Stop clickbait:
Detecting and preventing clickbaits in online news
media. In Proceedings of the 2016 IEEE/ACM Inter-
national Conference on Advances in Social Networks
Analysis and Mining, ASONAM ’16, pages 9–16.
IEEE Press.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chris Drummond. 2018. Reproducible research: A
minority opinion. Journal of Experimental & Theo-
retical Artificial Intelligence, 30(1):1–11.

William A Falcon. 2019. Pytorch lightning. GitHub, 3.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.

2018. AllenNLP: A Deep Semantic Natural Lan-
guage Processing Platform. In Proceedings of Work-
shop for NLP Open Source Software (NLP-OSS),
pages 1–6.

Megan L. Head, Luke Holman, Rob Lanfear, Andrew T.
Kahn, and Michael D. Jennions. 2015. The Extent
and Consequences of P-Hacking in Science. PLoS
Biology, 13(3).

Matthew Hutson. 2018. Artificial intelligence faces
reproducibility crisis. Science, 359(6377):725–726.

Paul Landes, Aaron Chaise, Kunal Patel, Sean Huang,
and Barbara Di Eugenio. 2023. Hospital Discharge
Summarization Data Provenance. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 439–448. Associa-
tion for Computational Linguistics.

Paul Landes, Kunal Patel, Sean S. Huang, Adam Webb,
Barbara Di Eugenio, and Cornelia Caragea. 2022. A
New Public Corpus for Clinical Section Identifica-
tion: MedSecId. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3709–3721. International Committee on Com-
putational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: A pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv: 1907.11692 (Only available as
arXiv preprint).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Qiang Ning, Hao Wu, Pradeep Dasigi, Dheeru Dua,
Matt Gardner, Robert L. Logan Iv, Ana Marasović,
and Zhen Nie. 2020. Easy, Reproducible and Quality-
Controlled Data Collection with CROWDAQ. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 127–134.

Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploit-
ing Class Relationships for Sentiment Categoriza-
tion with Respect to Rating Scales. In Proceedings
of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 115–124.
Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward

145

https://doi.org/10.1109/ICFHR-2018.2018.00080
https://doi.org/10.1109/ICFHR-2018.2018.00080
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://aclanthology.org/2022.emnlp-main.150
https://aclanthology.org/2022.emnlp-main.150
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1080/0952813X.2017.1413140
https://doi.org/10.1080/0952813X.2017.1413140
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
https://aclanthology.org/2023.bionlp-1.41
https://aclanthology.org/2023.bionlp-1.41
https://aclanthology.org/2022.coling-1.326
https://aclanthology.org/2022.coling-1.326
https://aclanthology.org/2022.coling-1.326
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.17
https://doi.org/10.18653/v1/2020.emnlp-demos.17
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855

Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association
for Computational Linguistics.

Hung Viet Pham, Shangshu Qian, Jiannan Wang,
Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yao-
liang Yu, and Nachiappan Nagappan. 2020. Prob-
lems and opportunities in training deep learning soft-
ware systems: An analysis of variance. In Proceed-
ings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 771–783.
Association for Computing Machinery.

Anna Rogers, Timothy Baldwin, and Kobi Leins. 2021.
‘Just What do You Think You’re Doing, Dave?’ A
Checklist for Responsible Data Use in NLP. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4821–4833. Association
for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. In The
5th EMC2 - Energy Efficient Training and Inference
of Transformer Based Models.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642. Association for Computational
Linguistics.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Nat-
ural Language Learning at HLT-NAACL 2003, pages
142–147.

Rolf Ulrich and Jeff Miller. 2015. P-hacking by post hoc
selection with multiple opportunities: Detectability
by skewness test?: Comment on Simonsohn, Nel-
son, and Simmons (2014). Journal of Experimental
Psychology: General, 144(6):1137–1145.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine
Translation. arXiv: 1609.08144 (Only available as
arXiv preprint).

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang
Shin, Kaleb E. Smith, Christopher Parisien, Colin
Compas, Cheryl Martin, Mona G. Flores, Ying
Zhang, Tanja Magoc, Christopher A. Harle, Glo-
ria Lipori, Duane A. Mitchell, William R. Hogan,
Elizabeth A. Shenkman, Jiang Bian, and Yonghui
Wu. 2022. GatorTron: A Large Clinical Language
Model to Unlock Patient Information from Unstruc-
tured Electronic Health Records. arXiv: 2203.03540
(Only available as arXiv preprint).

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big Bird: Trans-
formers for Longer Sequences. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020.

146

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.18653/v1/2021.findings-emnlp.414
https://doi.org/10.18653/v1/2021.findings-emnlp.414
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
https://doi.org/http://dx.doi.org.proxy.cc.uic.edu/10.1037/xge0000086
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.48550/arXiv.2203.03540
https://doi.org/10.48550/arXiv.2203.03540
https://doi.org/10.48550/arXiv.2203.03540
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 147–152
December 6, 2023 ©2023 Association for Computational Linguistics

Improving NER Research Workflows with SeqScore

Constantine Lignos† and Maya Kruse∗ and Andrew Rueda∗

Michtom School of Computer Science
Brandeis University

{lignos,mayakruse,andrewrueda}@brandeis.edu

Abstract

We describe the features of SeqScore, an MIT-
licensed Python toolkit for working with named
entity recognition (NER) data. While SeqScore
began as a tool for NER scoring, it has been
expanded to help with the full lifecycle of work-
ing with NER data: validating annotation, pro-
viding at-a-glance and detailed summaries of
the data, modifying annotation to support ex-
periments, scoring system output, and aiding
with error analysis. SeqScore is released via
PyPI and development occurs on GitHub.

1 Introduction

While much attention in language technology de-
velopment is focused on the creation of better mod-
els and datasets, it is essential to also have tools
for understanding the output of those models and
the contents of the datasets. For classification
tasks, the combination of scikit-learn (Pedregosa
et al., 2011) and Pandas (Wes McKinney, 2010)
can provide preprocessing, data exploration, power-
ful modeling, and error analysis. However, chunk-
ing tasks like named entity recognition (NER) pose
a challenge for data workflows and error analysis.
While NER is often treated like a sequence-labeling
problem like part of speech (POS) tagging, unlike
POS tagging, the annotation and evaluation are per-
formed at the chunk level, not individual tokens.

For example, if a sentence begins “Alan Turing
was...”, an NER task may require that Alan Turing
is correctly identified as a mention of a person’s
name. Less or no credit would be received for
identifying just the person name Alan or separately
identifying the names Alan and Turing without not-
ing that they form a single unit. Typically, each
mention (also called an entity, phrase, or chunk)
is encoded using BIO encoding, so for example
Alan Turing might receive the tags B-PER I-PER

†Corresponding author.
*Equal contribution.

to reflect the beginning and continuation of a men-
tion of type person, while non-mention tokens are
tagged O.1

The nature of chunking tasks means that every
step of data processing is necessarily more compli-
cated than traditional classification tasks. Unlike
a per-token classification task, looking at the in-
dividual token labels is a poor summary of the
dataset. Scoring is more difficult as the scorer must
interpret a sequence of tagged tokens as mentions,
which becomes non-trivial when the tags produced
by a system do not follow the norms of the men-
tion encoding method (e.g., BIO) used (Lignos and
Kamyab, 2020).

This paper describes the SeqScore toolkit and
its applications for validating, summarizing, and
transforming NER data. A previous publication
(Palen-Michel et al., 2021), introduced SeqScore
and described its value as a reproducibility-focused
NER scorer. While this paper is also about Seq-
Score, it has a different focus. We describe the de-
velopment of new features for SeqScore and what
was needed to extend it from being just a scorer to a
more complete toolkit for working with NER data.
We discuss new feature development on SeqScore
and the process of expanding it to fill gaps common
in NER workflows. In addition to discussing the
details of SeqScore, we discuss the challenges of
trying to build open-source software for research.

2 Why a Toolkit?

For decades, NER researchers have been able to be
productive without any popular toolkits for work-
ing with NER data. There has been a commonly-
used scorer, conlleval, which was provided for the
2002–3 CoNLL shared tasks (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003),
available for two decades now. While standard-

1Lester (2020) provides a more detailed explanation of
common encodings and their intricacies in the context of soft-
ware development.

147

https://pypi.org/project/seqscore/
https://pypi.org/project/seqscore/
https://github.com/bltlab/seqscore

izing around a single scorer provides significant
benefits (Lignos and Kamyab, 2020; Post, 2018),
conlleval is not actively maintained and has not
been updated as approaches to NER have changed.

While common scorers and shared tasks are
uniquely capable of uniting the research commu-
nity, there is still a vital need for tools for tools
for many stages of working with NER data. For
example, given a dataset, how can we examine it?
How can we determine what mention encoding it
uses and whether it was used consistently? How
can we modify it efficiently? How can we examine
performance beyond just a few numbers? SeqScore
aims to provide efficient, command-line solutions
to these problems.

The most similar software package to SeqScore
is iobes (Lester, 2020). While the two projects be-
gan development concurrently, iobes was released
first and has previously been published at NLP-
OSS. The iobes package is designed for API-level
access and manipulation of spans. SeqScore is
focused on a command-line interface for scoring
NER data and performing common manipulations
on that data. Both provide logic around converting
chunk encodings (BIO, BIOES, etc.) to and from
mentions.

3 SeqScore’s Features

This section describes the features of SeqScore,
focusing on the newest features that enable it to
assist in many NER data workflows. Previous work
(Palen-Michel et al., 2021) has described the scor-
ing features of SeqScore, so they are not discussed
in detail in this paper. SeqScore is released via
PyPI (https://pypi.org/project/seqscore/)
and development occurs on GitHub (https://
github.com/bltlab/seqscore).

3.1 Overview

SeqScore is accessed via a command-line interface
(CLI), and like git provides a command for each
action. After running pip install seqscore,
the seqscore script is now available. Table 1 lists
SeqScore’s commands and their purposes.

All SeqScore commands share a common set of
capabilities. The most important is robust reading
and writing of CoNLL-style NER formats. Seq-
Score supports several options to work with a wide
variety of data files: setting the file encoding (older
files often use ISO-8859-1), ignoring comment
lines (which some files use for sentence provenance

information), and automatic detection of field de-
limiters (older files use space, newer ones use tabs).
Different strategies can be set regarding how to deal
with invalid label transitions like O I-PER in BIO
(for more details see Palen-Michel et al., 2021).
SeqScore can maintain or discard the document
boundaries specified using -DOCSTART- sentences
inside CoNLL-format files, which enables scoring
a reference with document boundaries against sys-
tem output without them.

While each of these features is simple, those
attempting to write “quick scripts” to manipulate
NER data often find them to be stumbling blocks.
For example, many older workflows used tools
like cut and paste to extract and replace NER
labels; these encounter problems when dealing with
comment lines, inconsistent delimiters, document
boundaries in one file but not the other, etc.

3.2 Validation
One of the most common questions that arises
when dealing with NER data is determining which
mention encoding (BIO, etc.) is used and whether it
has been used consistently. While BIO is currently
the most commonly-used encoding for dataset cre-
ation, many papers describing datasets do not ex-
plicitly state what the encoding is. Many older
datasets use IOB, often erratically.2

An example of running the validate command on
a file train.bio would be: seqscore validate
--labels BIO train.bio. The mention encoding
in use must be explicitly given; it is important that
users be sure of the mention encoding they are
using.

As part of an effort to test SeqScore to make
sure it can reliably load a variety of datasets, we
collected a mix of recent and older datasets and
validated them. The following datasets passed
validation without any modifications: NYTK-
NerKor+Cars-OntoNotes++ (Novák and Novák,
2022; Simon and Vadász, 2021), TurkuNLP (Lu-
oma et al., 2020), GermanLER (Leitner et al., 2019;
Leitner, 2019), TweebankNER (Jiang et al., 2022),
HiNER (Murthy et al., 2022), GermEval 2014

2Our experiments in validating older datasets led to in-
teresting findings. There seems to be disagreement on how
IOB encoding should be implemented. Some data files use
B- only when strictly necessary, that is when two adjacent
mentions of the same entity type appear, as would be for the
fragment “[Australian]MISC [Davis Cup]MISC captain” from
the CoNLL-02 English data. Others use B- for the second
mention of two adjacent mentions, even if the entity types are
different. SeqScore currently only allows the former variety
to pass IOB validation, but this may change in future releases.

148

https://pypi.org/project/seqscore/
https://github.com/bltlab/seqscore
https://github.com/bltlab/seqscore

Command Purpose

convert Convert between different mention encodings (BIO, BIOES, etc.)
count Show counts of the mentions in a file in descending order
process Modify the mentions in a file by choosing which entity types to keep/remove or mapping entity types
repair Correct invalid label transitions
score Produce a score or a summary of the scoring events (false positives, etc.)
summarize Give a high-level summary of a dataset that includes its length and the count of each entity type
validate Check whether a file contains any invalid labels or invalid label transitions

Table 1: Description of SeqScore commands

(Benikova et al., 2014), CoNLL-03 English and
German (Tjong Kim Sang and De Meulder, 2003,
we used the 2006 German data re-release), CoNLL-
02 Dutch (Tjong Kim Sang, 2002), and Europarl
annotation (Agerri et al., 2018).

Three datasets contained invalid label transi-
tions, but using SeqScore’s repair command
could be converted to valid versions that pass val-
idation: CoNLL-02 Spanish (Tjong Kim Sang,
2002), KazNERD (Yeshpanov et al., 2022), and
MultiCoNER II (Fetahu et al., 2023).

SeqScore’s validation tool helped identify more
significant issues with other datasets. When validat-
ing the BIO-encoded MasakhaNER 1.0 (Adelani
et al., 2021) dataset, we found sentences beginning
with I- labels that appeared to be a continuation
of a mention at the end of the previous sentence.
When we investigated, we discovered that after cre-
ation of the original dataset, long sentences were
split without regard to mention boundaries in order
to meet the maximum sentence length requirements
of the models used in their study. We were able to
locate an earlier version of the data in their GitHub
repository that did not have these additional sen-
tence breaks, and that data passed validation.

Other datasets passed validation after modifi-
cations were made to them. MahaNER (Litake
et al., 2022) has tags of the form BPER instead of
B-PER. After changing the tags to add -, SeqScore’s
repair command was used to correct invalid la-
bel transitions. The tags in KIND (Paccosi and
Palmero Aprosio, 2022) are “bare” tags like PER.
After changing all tags to IO tags like I-PER, the
dataset was successfully validated as IO.

The only dataset we found to be unusable was
SiNER (Ali et al., 2020), as it appears to have some
text processing issue resulting in some of the lines
having tokens but no label, and others the reverse.

3.3 Data Modification
While core entity types likes person, organization,
and location appear in many NER datasets, differ-

ent datasets use different ontologies. Often some
entity types are annotated less reliably, like MISC
in CoNLL 2002–3, and others may simply be of
less interest, like DATE in MasakhaNER.

SeqScore supports specifying either a set of en-
tity types to keep or remove. For example, to in-
clude only PER, LOC, and ORG, the user can run
seqscore process --keep-types PER,LOC,ORG
input.bio output.bio. Similarly, to remove the
DATE type, the user can run seqscore process
--remove-types DATE input.bio output.bio.

Another common task is collapsing a fine-
grained set of types into a smaller set. For example,
the MultiCoNER II dataset (Fetahu et al., 2023) is
annotated with 33 fine-grained types which can be
mapped to 6 coarse-grained types. The annotation
is provided using fine-grained types, so to evaluate
for the coarse types, the types must be mapped.

SeqScore supports this type mapping using a
JSON file. For example, this JSON can be used to
convert to the higher-level types PROD and LOC
from fine-grained types: {"PROD": ["Clothing",
"Drink", "Food", "OtherPROD", "Vehicle"],
"LOC": ["Facility", "HumanSettlement",
"OtherLOC", "Station"]}. This mapping can be
used as follows: seqscore process --type-map
map.json input.bio output.bio.

3.4 Error Analysis at a Glance
In text classification tasks, confusion matrices al-
low for quick understanding of error patterns in a
system’s output. For a chunking task like NER, it is
difficult to define exactly what a confusion matrix
should look like. For SeqScore, we attempted to
come up with a way to summarize the errors in
a system’s output in a way similar to identifying
the “hot spots” in a heat map of the confusion ma-
trix. When scoring, SeqScore can produce a table
of false positives and negatives sorted by descend-
ing frequency by using the --error-counts flag:
seqscore score --error-counts --labels
BIO --reference ref.bio pred.bio.

149

Count Error Type Text

7 FP MISC ALPINE
5 FN ORG Real Madrid
5 FN ORG Barcelona
4 FP LOC Tasmania
4 FP LOC Victoria
4 FP MISC National Hockey
4 FP MISC League
4 FP MISC ATLANTIC DIVISION
4 FP MISC PACIFIC DIVISION
4 FP LOC Santa Fe
4 FN ORG Victoria
4 FN ORG Tasmania
4 FN ORG National Hockey
4 FN ORG League
4 FN MISC ATLANTIC
4 FN LOC PACIFIC
4 FN ORG Santa Fe
3 FP MISC World Cup
3 FP ORG William Hill
3 FP MISC Italian
3 FP MISC EST
3 FP MISC Conservative
3 FP MISC SKIING-WOMEN
3 FN MISC SKIING-WORLD CUP
3 FN ORG NFL

Table 2: Most-frequent false positive (FP) and false
negative (FN) errors identified using seqscore score
--error-counts

Table 2 shows output of this command from
an NER model based on XLM-R (Conneau et al.,
2020) and fine-tuned on CoNLL++ English data us-
ing FLERT (Schweter and Akbik, 2020). It imme-
diately shows that some of the most-repeated errors
happen in all-caps contexts. The output also sug-
gests that sports is a problem domain, with leagues,
sub-leagues, and clubs appearing in both false posi-
tives and negatives. Looking at this output allowed
us to identify problems with the annotation of Na-
tional Hockey League in the CoNLL++ test data; a
deeper look revealed that improper sentence bound-
aries in the gold data repeatedly resulted in split
mentions of National Hockey and League.

As most papers reporting NER scores do not
report any error analysis, we hope the ease with
which the most frequent errors can be looked at in
SeqScore will help researchers at least identify the
largest sources of error.

4 Design Challenges

Explicit or Implicit? Unlike conlleval, which
will score many mention encodings without any
direction from the user—even encodings it does not
support (Akbik et al., 2019, footnote 2)—SeqScore
requires users to be specify the mention encoding

and how they want invalid transitions to be repaired.
This can be confusing to new users, because if they
do not specify a repair method, scoring may raise
an error. SeqScore has always erred on the side of
making users be explicit and avoiding any silent
defaults that could affect the results, but this comes
at a price of some user frustration.

Limiting Scope While SeqScore is so far the
most richly-featured toolkit for working with NER
files, we have intentionally limited the scope of its
capabilities where there is risk of misuse. One ex-
ample is scoring NER in cases where the reference
and system output may disagree in the tokens of
a sentence, such as when performing NER on the
output of speech recognition. SeqScore currently
insists that the reference and system output have
the same text to avoid issues where sentences have
become misaligned between the two, and this can-
not be disabled. Providing a flag to disable this
check could result in users specifying it “just in
case” to make sure scoring never raises an error,
potentially leading to incorrect scores. Benaicha
et al. (2023) forked SeqScore for their study of
NER on speech so they could score more flexibly.

Test Coverage While SeqScore stands apart
from much research software in having a test suite
and code coverage instrumentation, as the com-
plexity of the toolkit has increased, so has the time
required for tests to keep up with functionality.
While very time-intensive to maintain, writing tests
that exercise the command-line interface has been
essential to avoiding regressions. SeqScore uses
click3 to implement the CLI, and testing is greatly
aided by its CliRunner class which allows direct
invocation of the CLI in unit tests.

SeqScore’s test coverage stands at 95%, but it
will take substantial effort to reach 100%. A hand-
ful of warnings and error cases are not exercised
by the current tests due to the high time cost of
developing inputs that would reach them and main-
taining these inputs as the codebase changes.

Performance SeqScore is written highly defen-
sively to protect against user errors that could result
in incorrect evaluation results. This unfortunately
comes at the cost of speed; SeqScore is slower at
scoring and processing long files than other scor-
ers. While we are interested in improving speed by
using profiling, we are unwilling to optimize for
speed at the expense of safety.

3https://palletsprojects.com/p/click/

150

https://palletsprojects.com/p/click/

5 Conclusion

SeqScore provides a feature-rich toolkit for work-
ing with NER data, and we believe it will enable
easier and more reproducible NER research. As
more users adopt SeqScore, we look forward to
addressing their needs and the bugs they find.

Development of SeqScore is ongoing. A major
area of interest is developing a stable API for scor-
ing. Unlike iobes and seqeval (Nakayama, 2018),
the primary use case of SeqScore has been through
the command line. We plan to add a stable API
before a version 1.0 release.

References
David Ifeoluwa Adelani, Jade Abbott, Graham Neu-

big, Daniel D’souza, Julia Kreutzer, Constantine Lig-
nos, Chester Palen-Michel, Happy Buzaaba, Shruti
Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
rael Abebe Azime, Shamsuddeen H. Muhammad,
Chris Chinenye Emezue, Joyce Nakatumba-Nabende,
Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
rah Otiende, Iroro Orife, Davis David, Samba Ngom,
Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
Temilola Oloyede, Yvonne Wambui, Victor Akin-
ode, Deborah Nabagereka, Maurice Katusiime, Ayo-
dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
breyohannes, Henok Tilaye, Kelechi Nwaike, De-
gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Rodrigo Agerri, Yiling Chung, Itziar Aldabe, Nora
Aranberri, Gorka Labaka, and German Rigau. 2018.
Building named entity recognition taggers via par-
allel corpora. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018).

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.
2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Wazir Ali, Junyu Lu, and Zenglin Xu. 2020. SiNER: A
large dataset for Sindhi named entity recognition. In

Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 2953–2961, Marseille,
France. European Language Resources Association.

Moncef Benaicha, David Thulke, and M. A. Tuğtekin
Turan. 2023. Exploring spoken named entity recog-
nition: A cross-lingual perspective. ArXiv preprint
2307.01310.

Darina Benikova, Chris Biemann, Max Kisselew, and
Sebastian Pado. 2014. GermEval 2014 named en-
tity recognition shared task: companion paper. In
Workshop Proceedings of the 12th edition of the KON-
VENS conference, pages 104–112.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Besnik Fetahu, Sudipta Kar, Zhiyu Chen, Oleg
Rokhlenko, and Shervin Malmasi. 2023. SemEval-
2023 task 2: Fine-grained multilingual named entity
recognition (MultiCoNER 2). In Proceedings of the
The 17th International Workshop on Semantic Eval-
uation (SemEval-2023), pages 2247–2265, Toronto,
Canada. Association for Computational Linguistics.

Hang Jiang, Yining Hua, Doug Beeferman, and Deb
Roy. 2022. Annotating the Tweebank corpus on
named entity recognition and building NLP models
for social media analysis. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 7199–7208, Marseille, France. European
Language Resources Association.

Elena Leitner. 2019. Eigennamen- und Zitaterkennung
in Rechtstexten. Master’s thesis, Universität Pots-
dam, Potsdam.

Elena Leitner, Georg Rehm, and Julian Moreno-
Schneider. 2019. Fine-grained Named Entity Recog-
nition in Legal Documents. In Semantic Systems.
The Power of AI and Knowledge Graphs. Proceed-
ings of the 15th International Conference (SEMAN-
TiCS 2019), number 11702 in Lecture Notes in Com-
puter Science, pages 272–287, Karlsruhe, Germany.
Springer. 10/11 September 2019.

Brian Lester. 2020. iobes: Library for span level pro-
cessing. In Proceedings of Second Workshop for NLP
Open Source Software (NLP-OSS), pages 115–119,
Online. Association for Computational Linguistics.

Constantine Lignos and Marjan Kamyab. 2020. If you
build your own NER scorer, non-replicable results
will come. In Proceedings of the First Workshop on
Insights from Negative Results in NLP, pages 94–99,
Online. Association for Computational Linguistics.

151

https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.18653/v1/N19-1078
https://doi.org/10.18653/v1/N19-1078
https://aclanthology.org/2020.lrec-1.361
https://aclanthology.org/2020.lrec-1.361
http://arxiv.org/abs/2307.01310
http://arxiv.org/abs/2307.01310
https://www.inf.uni-hamburg.de/en/inst/ab/lt/publications/2014-benikovaetal-germeval2014.pdf
https://www.inf.uni-hamburg.de/en/inst/ab/lt/publications/2014-benikovaetal-germeval2014.pdf
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2023.semeval-1.310
https://doi.org/10.18653/v1/2023.semeval-1.310
https://doi.org/10.18653/v1/2023.semeval-1.310
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/docs/Leitner_LER_BA.pdf
https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/docs/Leitner_LER_BA.pdf
https://doi.org/10.18653/v1/2020.nlposs-1.16
https://doi.org/10.18653/v1/2020.nlposs-1.16
https://doi.org/10.18653/v1/2020.insights-1.15
https://doi.org/10.18653/v1/2020.insights-1.15
https://doi.org/10.18653/v1/2020.insights-1.15

Onkar Litake, Maithili Ravindra Sabane, Parth Sachin
Patil, Aparna Abhijeet Ranade, and Raviraj Joshi.
2022. L3Cube-MahaNER: A Marathi named entity
recognition dataset and BERT models. In Proceed-
ings of the WILDRE-6 Workshop within the 13th Lan-
guage Resources and Evaluation Conference, pages
29–34, Marseille, France. European Language Re-
sources Association.

Jouni Luoma, Miika Oinonen, Maria Pyykönen,
Veronika Laippala, and Sampo Pyysalo. 2020. A
broad-coverage corpus for Finnish named entity
recognition. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4615–4624, Marseille, France. European Language
Resources Association.

Rudra Murthy, Pallab Bhattacharjee, Rahul Sharnagat,
Jyotsana Khatri, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2022. HiNER: A large Hindi named en-
tity recognition dataset. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 4467–4476, Marseille, France. European
Language Resources Association.

Hiroki Nakayama. 2018. seqeval: A Python framework
for sequence labeling evaluation. Software avail-
able from https://github.com/chakki-works/
seqeval.

Attila Novák and Borbála Novák. 2022. NerKor+Cars-
OntoNotes++. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
1907–1916, Marseille, France. European Language
Resources Association.

Teresa Paccosi and Alessio Palmero Aprosio. 2022.
KIND: an Italian multi-domain dataset for named
entity recognition. In Proceedings of the Thirteenth
Language Resources and Evaluation Conference,
pages 501–507, Marseille, France. European Lan-
guage Resources Association.

Chester Palen-Michel, Nolan Holley, and Constantine
Lignos. 2021. SeqScore: Addressing barriers to re-
producible named entity recognition evaluation. In
Proceedings of the 2nd Workshop on Evaluation and
Comparison of NLP Systems, pages 40–50, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Stefan Schweter and Alan Akbik. 2020. FLERT:
Document-level features for named entity recogni-
tion.

Eszter Simon and Noémi Vadász. 2021. Introducing
NYTK-NerKor, a gold standard Hungarian named en-
tity annotated corpus. In Text, Speech, and Dialogue:
24th International Conference, TSD 2021, Olomouc,
Czech Republic, September 6–9, 2021, Proceedings
24, pages 222–234. Springer.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 – 61.

Rustem Yeshpanov, Yerbolat Khassanov, and
Huseyin Atakan Varol. 2022. KazNERD: Kazakh
named entity recognition dataset. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 417–426, Marseille, France.
European Language Resources Association.

152

https://aclanthology.org/2022.wildre-1.6
https://aclanthology.org/2022.wildre-1.6
https://aclanthology.org/2020.lrec-1.567
https://aclanthology.org/2020.lrec-1.567
https://aclanthology.org/2020.lrec-1.567
https://aclanthology.org/2022.lrec-1.475
https://aclanthology.org/2022.lrec-1.475
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://aclanthology.org/2022.lrec-1.203
https://aclanthology.org/2022.lrec-1.203
https://aclanthology.org/2022.lrec-1.52
https://aclanthology.org/2022.lrec-1.52
https://doi.org/10.18653/v1/2021.eval4nlp-1.5
https://doi.org/10.18653/v1/2021.eval4nlp-1.5
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/2011.06993
http://arxiv.org/abs/2011.06993
http://arxiv.org/abs/2011.06993
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://aclanthology.org/2022.lrec-1.44
https://aclanthology.org/2022.lrec-1.44

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 153–164
December 6, 2023 ©2023 Association for Computational Linguistics

torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free
Deep Learning Studies: A Case Study on NLP

Yoshitomo Matsubara ∗

University of California, Irvine
yoshitom@uci.edu

Abstract

Reproducibility in scientific work has been be-
coming increasingly important in research com-
munities such as machine learning, natural lan-
guage processing, and computer vision com-
munities due to the rapid development of the
research domains supported by recent advances
in deep learning. In this work, we present
a significantly upgraded version of torchdis-
till1, a modular-driven coding-free deep learn-
ing framework significantly upgraded from the
initial release, which supports only image clas-
sification and object detection tasks for repro-
ducible knowledge distillation experiments. To
demonstrate that the upgraded framework can
support more tasks with third-party libraries,
we reproduce the GLUE benchmark results of
BERT models using a script based on the up-
graded torchdistill, harmonizing with various
Hugging Face libraries. All the 27 fine-tuned
BERT models and configurations to reproduce
the results are published at Hugging Face2, and
the model weights have already been widely
used in research communities. We also reim-
plement popular small-sized models and new
knowledge distillation methods and perform ad-
ditional experiments for computer vision tasks.

1 Introduction

The rapid developments of various research do-
mains such as natural language procession (NLP),
computer vision, and speech recognition (He et al.,
2016; Ballé et al., 2017; Devlin et al., 2019; Doso-
vitskiy et al., 2020; Raffel et al., 2020; Rombach
et al., 2022; Radford et al., 2023) have been sup-
ported by advances in deep learning (Krizhevsky
et al., 2012; Mikolov et al., 2013; Kingma and
Welling, 2014; Sutskever et al., 2014; Kingma and
Ba, 2015; Sohl-Dickstein et al., 2015; Vaswani
et al., 2017; Brown et al., 2020). While it has been

∗This work was done prior to joining Amazon.
1https://github.com/yoshitomo-matsubara/

torchdistill/
2https://huggingface.co/yoshitomo-matsubara

developed rapidly, poor reproducibility of deep
learning-based studies is a severe problem that re-
search communities have been facing (Crane, 2018;
Yang et al., 2019; Daoudi et al., 2021; Matsubara,
2021), and the reproducibility has been attracting
significant attention from researchers (Gundersen
et al., 2018; Gundersen, 2019; Dodge et al., 2019;
Kamphuis et al., 2020; Lopresti and Nagy, 2021;
Pineau et al., 2021).

To address the serious problem, research com-
munities introduced reproducibility checklists. At
the time of writing, some venues require au-
thors to complete checklists when submitting their
work e.g., Responsible NLP Research Check-
list3 (Rogers et al., 2021) at NLP venues (ACL,
NAACL, ARR) and Paper Checklist at NeurIPS.4

Matsubara (2021) developed torchdistill, a mod-
ular, configuration-driven knowledge distillation
framework built on PyTorch (Paszke et al., 2019)
for reproducible deep learning research. Knowl-
edge distillation (Hinton et al., 2014) is a well
known model compression method usually to train
a small model (called student) leveraging outputs
from a more complex model (called teacher) as part
of loss functions to be minimized. Recent knowl-
edge distillation approaches are more complex e.g.,
using intermediate layers’ outputs (embeddings or
feature maps) besides the final output (logits) of
teacher models with auxiliary module branches
attached to teacher and/or student models during
training (Kim et al., 2018; Zhang et al., 2020; Chen
et al., 2021), using multiple teachers (Mirzadeh
et al., 2020; Matsubara et al., 2022b), and train-
ing multilingual or non-English models solely with
an English teacher model (Reimers and Gurevych,
2020; Li et al., 2022b; Gupta et al., 2023).

For implementing such approaches, researchers

3https://aclrollingreview.org/
responsibleNLPresearch/

4https://neurips.cc/public/guides/
PaperChecklist

153

https://github.com/yoshitomo-matsubara/torchdistill/
https://github.com/yoshitomo-matsubara/torchdistill/
https://huggingface.co/yoshitomo-matsubara
https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://neurips.cc/public/guides/PaperChecklist
https://neurips.cc/public/guides/PaperChecklist

torchvision

torchdistill

Image
Classification

Object
Detection

Base Frameworks

Core Engine

torchvision

Tasks transformers datasets
 evaluate accelerate timm

Packages of Your Choice e.g.,
ML Tasks with

Initial Design torchdistill v1.0.0

Figure 1: Initial design of torchdistill (Matsubara, 2021) vs. v1.0.0 in this work.

unpacked existing model implementations and
modified their input-output interfaces to extract
and/or hard-code new auxiliary modules (train-
able modules to be used only during train-
ing) (Zagoruyko and Komodakis, 2016; Passalis
and Tefas, 2018; Heo et al., 2019; Park et al., 2019;
Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021). torchdistill (Matsubara, 2021) was initially
designed as a unified knowledge distillation frame-
work to enable users to design experiments by
declarative PyYAML configuration files without
such hardcoding effort and help researchers com-
plete the ML Code Completeness Checklist5 for
high-quality reproducible knowledge distillation
studies. One of its key concepts is that a declarative
PyYAML configuration file designs an experiment
and explains key hyperparameters and components
used in the experiment. While the initial framework
is well generalized and supports 18 different knowl-
edge distillation methods implemented in a unified
way, the implementation of the initial framework
is highly dependent on torchvision6, a package for
popular datasets, model architectures, and common
image transformations for computer vision tasks.

In this work, we significantly upgrade torchdis-
till from the initial framework (Matsubara, 2021)
to enable further generalized implementations, sup-
porting more flexible module abstractions and
enhance the advantage of decralative PyYAML
configuration files to design experiments with
third-party packages of user’s choice, as promised

5https://github.com/paperswithcode/
releasing-research-code

6https://github.com/pytorch/vision

in (Matsubara, 2021). Using GLUE tasks (Wang
et al., 2019) as an example, we demonstrate that
the upgraded torchdistill and a new script har-
monize with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022) to reproduce the GLUE test results
reported in (Devlin et al., 2019) by fine-tuning pre-
trained BERT-Base and BERT-Large models with
the upgraded torchdistill. We also conduct knowl-
edge distillation experiments using the fine-tuned
BERT-Large models as teachers to train BERT-
Base models. All these experiments are performed
on Google Colaboratory.7 We also publish all the
code and configuration files at GitHub1 and trained
model weights and training logs at Hugging Face2

for reproducibility and helping researchers build
on this work. Our BERT models fine-tuned for
the GLUE tasks have already been downloaded
138,000 times in total and widely used in research
communities not only in research papers but also
in tutorials of deep learning frameworks and ACL
2022. Besides the NLP tasks, we reimplement pop-
ular small-sized computer vision models and a few
more recent knowledge distillation methods as part
of torchdistill, and perform additional experiments
to demonstrate that the upgraded torchdistill still
supports computer vision tasks.

2 Related Work

In this section, we briefly summarize related work
on open source software that supports end-to-end

7https://colab.google/

154

https://github.com/paperswithcode/releasing-research-code
https://github.com/paperswithcode/releasing-research-code
https://github.com/pytorch/vision
https://colab.google/

research frameworks. Yang et al. (2018) propose
Anserini, an information retrieval toolkit built on
Lucene8 for reproducible information retrieval re-
search. Pyserini (Lin et al., 2021) is a Python
toolkit built on PyTorch (Paszke et al., 2019) and
Faiss (Johnson et al., 2019) for reproducible infor-
mation retrieval research with sparse and dense rep-
resentations, and the sparse representation-based
retrieval support comes from Lucene via Anserini.

AllenNLP (Gardner et al., 2018) is a toolkit
built on PyTorch for research on deep learning
methods in NLP and designed to lower barriers
to high quality NLP research e.g., useful NLP mod-
ule abstractions and defining experiments using
declarative configuration files. Highly inspired by
AllenNLP, Matsubara (2021) design torchdistill,
a module, configuration-driven framework built
on PyTorch for reproducible knowledge distilla-
tion studies. Similar to AllenNLP, torchdistill en-
ables users to design experiments by declarative
PyYAML configuration files and supports high-
level module abstractions. For image classification
and object detection tasks, its generalized starter
scripts and configurations help users implement
knowledge distillation methods without much cod-
ing cost. Matsubara (2021) also reimplement 18
knowledge distillation methods with torchdistill
and point out that the standard knowledge distil-
lation (Hinton et al., 2014) can outperform many
of the recent state of the art knowledge distilla-
tion methods for a popular teacher-student pair
(ResNet-34 and ResNet-18) with ILSVRC 2012
dataset (Russakovsky et al., 2015). In Section 3,
we describe major upgrades in torchdistill from the
initial release (Matsubara, 2021).

3 Major Upgrades from the Initial
Release

In this section, we summarize the major up-
grades from the initial release of torchdistill (Mat-
subara, 2021). Figure 1 highlights high-level differ-
ences between the initial design (Matsubara, 2021)
of torchdistill and a largely upgraded version in
this work. The initial torchdistill is dependent on
PyTorch and torchvision and contains key modules
and functionalities specifically designed to support
image classification and object detection tasks. For
example, dataset modules that the initial version
officially supports are only those in torchvision,
and some of dataset-relevant functionalities such as

8https://lucene.apache.org/

building a sequence of data transforms and dataset
loader are based on datasets in torchvision.

In this work, we make torchdistill less depen-
dent on torchvision and support more tasks with
third-party packages of users’ choice, by generaliz-
ing some of the key components in the framework
and exporting task-specific implementations to the
corresponding executable scripts and local pack-
ages. We also reimplement popular small-sized
models whose official PyTorch implementations
are not either available or maintained.

3.1 PyYAML-based Instantiation
A declarative PyYAML configuration file plays
an important role in torchdistill. Users can de-
sign experiments with the declarative PyYAML
configuration file, which defines various types of
abstracted modules with hyperparameters such as
dataset, model, optimizer, scheduler, and loss mod-
ules. To allow more flexibility in PyYAML con-
figurations, we add more useful constructors such
as importing arbitrary local packages to register
modules but without edits on an executable script,
and instantiating an arbitrary class with a log mes-
sage. Those can be done simply at the very begin-
ning of an experiment when loading the PyYAML
configuration file and make the configuration files
more self-explanatory since the configuration for-
mat used for the initial version does not explicitly
tell users whether the experiment needs specific
local packages. Those features also help us gener-
alize ways to define key module such as datasets
and their components (e.g., pre-processing trans-
forms, samplers).

Figure 2 shows an example that build a sequence
of image/tensor transforms with the initial version
and torchdistill in this work. While the former re-
quires both a Python function specifically designed
for torchvision modules (build_transform) and
a list of dict objects defined in a PyYAML
configuration to be given to the function as
(transform_params_config), the latter can build
exactly the same transform when loading the
PyYAML configuration and store the instantiated
object as part of a dict object with transform key.

3.2 Generalized Modules for Supporting
More Tasks

The PyYAML-based instantiation feature described
in Section 3.1 enables us to remove torchvision-
specific modules mentioned in Section 3 (e.g.,
build_transform in Fig. 2) so that we can reduce

155

https://lucene.apache.org/

import torchvision
from torchdistill.datasets.transform import TRANSFORM_CLASS_DICT

TRANSFORM_CLASS_DICT.update(torchvision.transforms.__dict__)

def build_transform(transform_params_config , compose_cls=None):
if not isinstance(transform_params_config , (dict , list)) or len(transform_params_config) == 0:

return None

component_list = list()
if isinstance(transform_params_config , dict):

for component_key in sorted(transform_params_config.keys ()):
component_config = transform_params_config[component_key]
params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

else:
for component_config in transform_params_config:

params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

return transforms.Compose(component_list) if compose_cls is None else compose_cls(component_list)

transform_params:
− type: 'RandomCrop'

params:
size: 32
padding: 4

− type: 'RandomHorizontalFlip'
params:

p: 0.5
− type: 'ToTensor'

params:
− type: 'Normalize'

params:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

transform: !import_call
key: 'torchvision.transforms.Compose'
init:

kwargs:
transforms:

− !import_call
key: 'torchvision.transforms.RandomCrop'
init:

kwargs:
size: 32
padding: 4

− !import_call
key: 'torchvision.transforms.RandomHorizontalFlip'
init:

kwargs:
p: 0.5

− !import_call
key: 'torchvision.transforms.ToTensor'
init:

− !import_call
key: 'torchvision.transforms.Normalize'
init:

kwargs:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

Figure 2: Example of two different ways to build a sequence of transforms in torchvision (transform) for CIFAR-10
dataset. The initial version (top, left) defines a function for torchvision build_transform in torchdistill and
gives the function a list of dict objects in the left PyYAML as transform_params_config. torchdistill in this
work (right) can build exactly the same transform by instantiating each of the transform classes step-by-step with
!import_call, one of our pre-defined PyYAML constructors in the upgraded torchdistill.

torchdistill’s dependency on torchvision and gener-
alize its modules for supporting more tasks.

The initial version of torchdistill is designed to
support image classification and object detection
tasks based on torchvision, and torchvision models
for the tasks such as ResNet (He et al., 2016) and
Faster R-CNN (Ren et al., 2015) require an image
(tensor) and an annotation as part of the model in-

puts during training. However, this interface does
not generalize well to support other tasks. Tak-
ing a text classification task as an example, Trans-
former (Vaswani et al., 2017) models in Hugging
Face Transformers (Wolf et al., 2020) have much
more input data fields such as (not limited to) token
IDs, attention mask, token type IDs, position IDs,
and labels for BERT (Devlin et al., 2019), and dif-

156

ferent models have different input data fields e.g.,
BART (Lewis et al., 2020) has additional input data
fields such as token IDs for its decoder.

In order to support diverse models and tasks, we
generalize interfaces of model input/output and the
subsequent processes in torchdistill such as com-
puting training losses. For demonstrating that the
upgraded torchdistill can support more tasks, we
provide starter scripts based on the upgraded frame-
work for GLUE (Wang et al., 2019) and seman-
tic segmentation tasks. For the GLUE tasks, we
harmonize popular Python libraries with torchdis-
till in the script such as Hugging Face Transform-
ers (Wolf et al., 2020), Datasets (Lhoest et al.,
2021), and Evaluate (Von Werra et al., 2022) for
model, dataset, and evaluation modules. We also
leverage Accelerate (Gugger et al., 2022) for ef-
ficient training and inference. In Section 4.1, we
demonstrate GLUE experiments with torchdistill
and the third-party libraries.

3.3 Reimplemented Models and Methods

We find in recent knowledge distillation stud-
ies (Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021) that there is still a demand of small models
for relatively simple datasets such as ResNet (He
et al., 2016)9, WRN (Zagoruyko and Komodakis,
2016)10, and DenseNet (Huang et al., 2017)11

for image classification tasks with CIFAR-10 and
CIFAR-100 datasets (Krizhevsky, 2009) since the
official repositories are no longer maintained and/or
not implemented with PyTorch.

For helping the community conduct better bench-
marking, we reimplement the models for CIFAR-
10 and CIFAR-100 datasets as part of torchdistill
and attempt to reproduce the reported results fol-
lowing the original training recipes (See Section 4).
With the upgraded torchdistill, we also reimple-
ment and test a few more knowledge distillation
methods (He et al., 2019; Chen et al., 2021).

4 Google Colab Demos

In this section, we demonstrate that the upgraded
torchdistill can collaborate with third-party li-
braries for supporting more tasks. We also attempt
to reproduce the CIFAR-10 and CIFAR-100 results

9https://github.com/facebookarchive/fb.resnet.
torch

10https://github.com/szagoruyko/
wide-residual-networks

11https://github.com/liuzhuang13/DenseNet

reported in the original papers. To lower the bar-
rier to reusing and building on the scripts with
torchdistill, we conduct all the experiments on
Google Colaboratory7, which gives users access
to GPUs free of charge. We publish the Jupyter
Notebook12 files to run the experiments as part
of torchdistill repository1 so that researchers can
easily use them.

4.1 GLUE Tasks
The GLUE benchmark (Wang et al., 2019) uses
nine datasets in three different task categories.
The benchmark consists of 1) two single-sentence
tasks: CoLA (Warstadt et al., 2019) and SST-
2 (Socher et al., 2013), 2) three similarity and
paraphrase tasks: MRPC (Dolan and Brockett,
2005), QQP13, and STS-B (Cer et al., 2017), and
3) four inference tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016; Wang et al.,
2019), RTE (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al.), and
WNLI (Levesque et al., 2012).

We attempt to reproduce GLUE test results re-
ported in a popular study, BERT (Devlin et al.,
2019), using the upgraded torchdistill harmonizing
with Hugging Face libraries (transformers, datasets,
evaluate, and accelerate) (Wolf et al., 2020; Lhoest
et al., 2021; Von Werra et al., 2022; Gugger et al.,
2022). Following the experiments, we also conduct
knowledge distillation experiments that fine-tune
pretrained BERT-Base models for GLUE tasks, us-
ing the fine-tuned BERT-Large models as teachers
for the knowledge distillation method of Hinton
et al. (2014) minimizing

L = α ·LCE(ŷ,y)+(1−α) ·τ2 ·LKL (p,q) , (1)

where LCE is a standard cross entropy. ŷ indi-
cates the student model’s estimated class probabil-
ities, and y is the annotated category. LKL is the
Kullback-Leibler divergence, and α and τ are a
balancing factor and a temperature, respectively. p
and q represent the softened output distributions
from teacher and student models, respectively. p is
used as a target distribution for LKL. Specifically,
p = [p1, p2, . . . , p|C|] where C is a set of categories
in the target task. pi indicates the student model’s
softened output value (scalar) for the i-th category:

pi =
exp

(
vi
τ

)
∑

k∈C exp
(
vk
τ

) , (2)

12https://jupyter.org/
13https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

157

https://github.com/facebookarchive/fb.resnet.torch
https://github.com/facebookarchive/fb.resnet.torch
https://github.com/szagoruyko/wide-residual-networks
https://github.com/szagoruyko/wide-residual-networks
https://github.com/liuzhuang13/DenseNet
https://jupyter.org/
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Model (Method, Reference) MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
Acc./Acc. F1 Acc. Acc. M Corr. P-S Corr. F1 Acc. Acc.

BERT-Large (FT, Devlin et al. (2019)) 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 N/A
BERT-Large (FT, Ours) 86.4/85.7 72.2 92.4 94.6 61.5 85.0 89.2 68.9 65.1

BERT-Base (FT, Devlin et al. (2019)) 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 N/A
BERT-Base (FT, Ours) 84.2/83.3 71.4 91.0 94.1 51.1 84.4 86.8 66.7 65.8
BERT-Base (KD, Ours) 85.9/84.7 72.8 90.7 93.7 57.0 85.6 87.5 66.7 65.1

Table 1: GLUE test results. Our results are hyperlinked to our Hugging Face Model repositories. FT: Fine-Tuning,
KD: Knowledge Distillation using BERT-Large (FT, ours) as teacher.

where τ is one of the hyperparameters defined in
Eq. (1). vi denotes a logit value for the i-th cat-
egory. The same rules are applied to q for the
student model.

For reproducing the GLUE test results in (De-
vlin et al., 2019), we use pretrained BERT-Base14

and BERT-Large15 models in Hugging Face Trans-
formers (Wolf et al., 2020). Following (Devlin
et al., 2019) we minimize a standard cross-entropy
and the Adam optimizer (Kingma and Ba, 2015)
with slightly extended hyperparameter choices:
batch size of either 16 or 32 and 2-5 epochs
for fine-tuning and select a learning rate among
{2.0×10−5, 3.0×10−5, 4.0×10−5, 5.0×10−5} on
the dev set for each of the tasks. For knowledge dis-
tillation, we also choose learning rate from {1.0×
10−5, 2.0 × 10−5, 3.0 × 10−5, 4.0 × 10−5, 5.0 ×
10−5}, temperature τ ∈ {1, 3, 5, 7, 9, 11}, and
a balancing weight α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
based on the dev sets. Note that since STS-B is
not a classification task, we use the sum of 1) a
mean squared error between the annotation and the
student model’s output and 2) a mean squared error
between outputs of the teacher and student models
instead of Eq. (1) for the dataset.

Table 1 shows the GLUE test results reported
by Devlin et al. (2019) and those obtained from
GLUE Benchmark16 for our three configura-
tions: fine-tuning pretrained BERT-Base (FT, Ours)
and pretrained BERT-Large (FT, Ours) models
and knowledge distillation to fine-tune pretrained
BERT-Base (KD, Ours) as a student, using the fine-
tuned BERT-Large as the teacher. Note that Devlin
et al. (2019) do not report the results for the WNLI
test dataset.

Overall, our fine-tuned BERT-Base and BERT-
Large models achieved GLUE test results com-
parable to the official test results reported by De-

14https://huggingface.co/bert-base-uncased
15https://huggingface.co/bert-large-uncased
16https://gluebenchmark.com/

vlin et al. (2019). The knowledge distillation
method (Hinton et al., 2014) helped BERT-Base
models improve the performance for most of the
tasks, compared to those fine-tuned without the
teacher models. All the trained model weights and
training logs are published at Hugging Face2, and
the training configurations are published as part of
the torchdistill GitHub repository.1

The fine-tuned BERT models we published are
widely used in the research communities and have
already been downloaded about 138,000 times in
total at the time of writing. For instance, some
of the models are used for benchmarks, ensem-
bling, model quantization, token pruning (Matena
and Raffel, 2022; Church et al., 2022; Guo et al.,
2022; Lee et al., 2022), DeepSpeed Tutorials17,
Intel® Neural Compressor Examples18, and ACL
2022 Tutorial.19

4.2 CIFAR-10 and CIFAR-100

We also attempt to reproduce the CIFAR-10 and
CIFAR-100 results reported in (He et al., 2016;
Zagoruyko and Komodakis, 2016; Huang et al.,
2017) using the upgraded torchdistill with the reim-
plemented ResNet, WRN, and DenseNet models.
We follow the original papers and reuse the hy-
perparameter choices and training recipes such as
data augmentations. Note that we do not con-
fider models that can not fit to the GPU mem-
ory which Google Colab can offer e.g., ResNet-
1202 (He et al., 2016) for CIFAR-10 and DenseNet-
BC(k = 24 and k = 40) (Huang et al., 2017) for
CIFAR-10 and CIFAR-100.

Tables 2 and 3 compare the results reported in
the original papers (He et al., 2016; Zagoruyko
and Komodakis, 2016; Huang et al., 2017) with

17https://www.deepspeed.ai/tutorials/
model-compression/

18https://github.com/intel/neural-compressor/
tree/master/examples

19https://github.com/kwchurch/ACL2022_
deepnets_tutorial

158

https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-wnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-wnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mnli_from_bert-large-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qqp_from_bert-large-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qnli_from_bert-large-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-sst2_from_bert-large-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-cola_from_bert-large-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-stsb_from_bert-large-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mrpc_from_bert-large-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-rte_from_bert-large-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-wnli_from_bert-large-uncased-wnli
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://gluebenchmark.com/
https://www.deepspeed.ai/tutorials/model-compression/
https://www.deepspeed.ai/tutorials/model-compression/
https://github.com/intel/neural-compressor/tree/master/examples
https://github.com/intel/neural-compressor/tree/master/examples
https://github.com/kwchurch/ACL2022_deepnets_tutorial
https://github.com/kwchurch/ACL2022_deepnets_tutorial

CIFAR-10 Model Test Accuracy
Original torchdistill

ResNet-20 91.25 91.92
ResNet-32 92.49 93.03
ResNet-44 92.83 93.20
ResNet-56 93.03 93.57
ResNet-110 93.57 93.50
WRN-40-4 95.47 95.24
WRN-28-10 96.00 95.53
WRN-16-8 95.73 94.76
DenseNet-BC (k=12, depth=100) 95.49 95.53

Table 2: CIFAR-10 results for ResNet (He et al.,
2016), WRN (Zagoruyko and Komodakis, 2016), and
DenseNet (Huang et al., 2017).

CIFAR-100 Model Test Accuracy
Original torchdistill

WRN-40-4 79.82 79.44
WRN-28-10 80.75 81.27
WRN-16-8 79.57 79.26
DenseNet-BC (k=12, depth=100) 77.73 77.14

Table 3: CIFAR-100 results for WRN (Zagoruyko and
Komodakis, 2016) and DenseNet (Huang et al., 2017).

those we reproduced for CIFAR-10 and CIFAR-
100 test datasets, respectively. We can confirm that
for most of the reimplemented models, our results
are comparable to those reported in the original
papers. Those model weights and training con-
figuration files are publicly available, and users
can automatically download the weights via the
upgraded torchdistill PyPI package.

5 ILSVRC 2012

As highlighted in Section 3, torchdistill was ini-
tially focused on supporting implementations of
diverse knowledge distillation in a unified way and
dependent on torchvision to specifically support im-
age classification and object detection tasks with its
relevant modules (see Fig. 1). To demonstrate that
the upgraded torchdistill still preserves the feature,
we reimplement a few more knowledge distillation
methods with the upgraded torchdistill: knowledge
review (KR) framework (Chen et al., 2021) and
knowledge translation and adaptation with affin-
ity distillation (KTAAD) (He et al., 2019). Note
that Matsubara (2021) present the results of vari-
ous knowledge distillation methods reimplemented
with the initial version of torchdistill for ILSVRC
2012 and COCO 2017 (Lin et al., 2014) datasets.
Those results are not included in this work, and we
refer interested readers to (Matsubara, 2021).

T: ResNet-34 S: ResNet-18
CE CE KR (Original) KR (Ours)

73.31 69.75 71.61 71.64

Table 4: ILSVRC 2012 top-1 accuracy of ResNet-18
(student) trained by KR (Chen et al., 2021) with pre-
trained ResNet-34 (teacher). CE: torchvision models
pretrained with cross-entropy.

Chen et al. (2021) demonstrate that the KR
method can outperform other knowledge distilla-
tion using ResNet-34 and ResNet-18 (He et al.,
2016), a popular pair of teacher and student models
for the ImageNet (ILSVRC 2012) dataset (Rus-
sakovsky et al., 2015). Using the reimplemented
KR method based on the upgraded torchdistill with
hyperparameters in (Chen et al., 2021), we success-
fully reproduce their reported result of ResNet-18
for the ImageNet dataset as shown in Table 4. The
trained model weights and configuration are pub-
lished as part of the torchdistill repository.1

6 PASCAL VOC 2012 & COCO 2017

The initial torchdistill (Matsubara, 2021) supports
image classification and object detection tasks. As
mentioned in Section 3.2, we also provide a starter
script for semantic segmentation tasks. Using two
popular datasets, PASCAL VOC 2012 (Evering-
ham et al., 2012) and COCO 2017 (Lin et al., 2014),
we demonstrate that the upgraded torchdistill sup-
ports semantic segmentation tasks as well.

In the experiments with PASCAL VOC 2012
dataset, we use DeepLabv3 (Chen et al., 2017)
with ResNet-50 and ResNet-101 backbones (He
et al., 2016), using torchvision’s pretrained model
weights for COCO 2017 dataset. We choose
hyperparameters such as learning rate policy
and crop size based on the original study of
DeepLabv3 (Chen et al., 2017). Our results are
shown in Table 5, and DeepLabv3 with ResNet-
101 achieved comparable mIoU (mean Intersection
over Union) to the best DeepLabv3 model for PAS-
CAL VOC 2012 dataset (val set) in the original
study (mIoU: 82.70). Following torchvision docu-
mentation20, we measure global pixelwise accuracy
as well. In terms of both the metrics, DeepLabv3
with ResNet-101 outperforms DeepLabv3 with
ResNet-50.

20https://pytorch.org/
vision/stable/models.html#
table-of-all-available-semantic-segmentation-weights

159

https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights
https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights
https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights

Model mean IoU Pixelwise Acc.

DeepLabv3 w/ ResNet-50 80.6 95.7
DeepLabv3 w/ ResNet-101 82.4 96.2

Table 5: PASCAL VOC 2012 (Segmentation, val set)
validation results for DeepLabv3 with ResNet back-
bones (Chen et al., 2017) initialized with torchvision
pretrained model weights for COCO 2017 dataset.

Method mean IoU Pixelwise Acc.

CE (torchvision) 57.9 91.2
KTAAD (Ours) 58.2 92.1

Table 6: COCO 2017 (Segmentation, val set) results for
LRASPP with MobileNetV3-Large backbone (Howard
et al., 2019).

We also examine our reimplemented KTAAD
method (He et al., 2019) for the Lite R-ASPP
model (LRASPP in torchvision) (Howard et al.,
2019) as a student model, using the COCO 2017
dataset and the pretrained DeepLabv3 with ResNet-
50 in torchvision as a teacher model, whose mIoU
and global pixelwise accuracy are 66.4 and 92.4,
respectively. Since the KTAAD method is not
tested on COCO 2017 dataset for LRASPP with
MobileNetV3-Large backbone in the original paper
of KTAAD (He et al., 2019), our hyperparameter
choice is based on torchvision’s reference script.21

Table 6 presents the semantic segmentation re-
sults of LRASPP with MobileNetV3-Large back-
bone trained without the teacher model and by the
KTAAD method we reimplemented. We confirm
that the student model trained by KTAAD outper-
forms the same model trained on COCO 2017 avail-
able in torchvision in terms of mean IoU and global
pixelwise accuracy.

As with other experiments, the trained model
weights and configuration used in this section are
published as part of the torchdistill repository.1

7 Conclusion

In this work, we significantly upgraded torchdis-
till (Matsubara, 2021), a modular, configuration-
driven framework built on PyTorch (Paszke et al.,
2019) for reproducible deep learning and knowl-
edge distillation studies. We enhanced PyYAML-
based instantiation, generalized internal modules
for supporting more tasks, and reimplemented pop-
ular models and methods.

21https://github.com/pytorch/vision/tree/main/
references/segmentation

To demonstrate that the upgraded framework
can support more tasks as we claim, we provided
starter scripts for new tasks based on the upgraded
framework. One of the new starter scripts sup-
ports GLUE tasks (Wang et al., 2019) and har-
monizes with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022). Using the script on Google Colab-
oratory, we reproduced the GLUE test results of
fine-tuned BERT models (Devlin et al., 2019) and
performed knowledge distillation experiments with
our fine-tuned BERT-Large models as teacher mod-
els. Similarly, we reproduced CIFAR-10 and -100
results of popular small-sized models we reimple-
mented, using Google Colaboratory. Furthermore,
we reproduced the result of ResNet-18 trained
with the reimplemented KR method (Chen et al.,
2021) for the ImageNet dataset. We also demon-
strated a new starter script for semantic segmenta-
tion tasks using PASCAL VOC 2012 and COCO
2017 datasets, and the reimplemented KTAAD
method (He et al., 2019) improves a pretrained
semantic segmentation model in torchvision.

In this study, we also published 27 trained mod-
els for NLP tasks2 and 14 trained models for com-
puter vision tasks.1 According to Hugging Face
Model repositories, the BERT models fine-tuned
for the GLUE tasks have already been downloaded
about 138,000 times in total at the time of writ-
ing. Research communities leverage torchdistill
not only for knowledge distillation studies (Liu
et al., 2021; Li et al., 2022a; Lin et al., 2022;
Dong et al., 2022; Miles and Mikolajczyk, 2023),
but also for machine learning reproducibility chal-
lenge (MLRC) (Lee and Lee, 2023) and repro-
ducible deep learning studies (Matsubara et al.,
2022a,c; Furutanpey et al., 2023b,a; Matsubara
et al., 2023). torchdistill is publicly available as
a pip-installable PyPI package and will be main-
tained and upgraded for encouraging coding-free
reproducible deep learning and knowledge distilla-
tion studies.

Acknowledgements

We thank the anonymous reviewers for their com-
ments. This project has been supported by Travis
CI’s OSS credits and JetBrain’s Free License Pro-
grams (Open Source) since November 2021 and
June 2022, respectively.

160

https://github.com/pytorch/vision/tree/main/references/segmentation
https://github.com/pytorch/vision/tree/main/references/segmentation

References
Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

2017. End-to-end Optimized Image Compression.
In International Conference on Learning Representa-
tions.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Gi-
ampiccolo. The Sixth PASCAL Recognizing Textual
Entailment Challenge.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot
Learners. Advances in neural information processing
systems, 33:1877–1901.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14.

Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. 2017. Rethinking Atrous Con-
volution for Semantic Image Segmentation. arXiv
preprint arXiv:1706.05587.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya
Jia. 2021. Distilling Knowledge via Knowledge Re-
view. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5008–5017.

Kenneth Church, Valia Kordoni, Gary Marcus, Ernest
Davis, Yanjun Ma, and Zeyu Chen. 2022. A Gen-
tle Introduction to Deep Nets and Opportunities for
the Future. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
Tutorial Abstracts, pages 1–6.

Matt Crane. 2018. Questionable Answers in Question
Answering Research: Reproducibility and Variability
of Published Results. Transactions of the Association
for Computational Linguistics, 6:241–252.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL Recognising Textual Entail-
ment Challenge. In Machine learning challenges
workshop, pages 177–190. Springer.

Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé,
and Jacques Klein. 2021. Lessons Learnt on Re-
producibility in Machine Learning Based Android
Malware Detection. Empirical Software Engineering,
26(4):74.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A Smith. 2019. Show Your
Work: Improved Reporting of Experimental Results,
author=Dodge, Jesse and Gururangan, Suchin and
Card, Dallas and Schwartz, Roy and Smith, Noah A.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2185–
2194. Association for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Auto-
matically Constructing a Corpus of Sentential Para-
phrases. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005).

Chengyu Dong, Liyuan Liu, and Jingbo Shang. 2022.
SoTeacher: Toward Student-oriented Teacher Net-
work Training for Knowledge Distillation.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. In International
Conference on Learning Representations.

Mark Everingham, Luc Van Gool, CKI Williams, John
Winn, and Andrew Zisserman. 2012. The PASCAL
Visual Object Classes Challenge 2012 (VOC2012).

Alireza Furutanpey, Johanna Barzen, Marvin Bechtold,
Schahram Dustdar, Frank Leymann, Philipp Raith,
and Felix Truger. 2023a. Architectural Vision for
Quantum Computing in the Edge-Cloud Continuum.
arXiv preprint arXiv:2305.05238.

Alireza Furutanpey, Philipp Raith, and Schahram Dust-
dar. 2023b. FrankenSplit: Saliency Guided Neural
Feature Compression with Shallow Variational Bot-
tleneck Injection. arXiv preprint arXiv:2302.10681.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew E Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The Third PASCAL
Recognising Textual Entailment Challenge. In Pro-
ceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pages 1–9.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, and Sourab Mangrulkar.
2022. Accelerate: Training and inference at scale
made simple, efficient and adaptable. https://
github.com/huggingface/accelerate.

Odd Erik Gundersen. 2019. Standing on the Feet of
Giants - Reproducibility in AI. AI Magazine, 40(4):9–
23.

161

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.1609/aimag.v40i4.5185
https://doi.org/10.1609/aimag.v40i4.5185

Odd Erik Gundersen, Yolanda Gil, and David W. Aha.
2018. On Reproducible AI: Towards Reproducible
Research, Open Science, and Digital Scholarship in
AI Publications. AI Magazine, 39(3):56–68.

Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu,
Fan Yang, Yunxin Liu, Minyi Guo, and Yuhao Zhu.
2022. ANT: Exploiting Adaptive Numerical Data
Type for Low-bit Deep Neural Network Quantization.
In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1414–1433.
IEEE.

Shivanshu Gupta, Yoshitomo Matsubara, Ankit Chadha,
and Alessandro Moschitti. 2023. Cross-lingual
knowledge distillation for answer sentence selection
in low-resource languages. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7259–7272.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The Second PASCAL Recognising Textual
Entailment Challenge. In Proceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising
Textual Entailment, volume 7, pages 785–794.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–
778.

Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Chang-
ming Sun, and Youliang Yan. 2019. Knowledge
Adaptation for Efficient Semantic Segmentation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 578–
587.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and
Jin Young Choi. 2019. Knowledge Transfer via Dis-
tillation of Activation Boundaries Formed by Hidden
Neurons. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3779–3787.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the Knowledge in a Neural Network. In
Deep Learning and Representation Learning Work-
shop: NIPS 2014.

Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
2019. Searching for MobileNetV3. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 1314–1324.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Chris Kamphuis, Arjen P de Vries, Leonid Boytsov, and
Jimmy Lin. 2020. Which BM25 Do You Mean? A
Large-Scale Reproducibility Study of Scoring Vari-
ants. In Advances in Information Retrieval: 42nd
European Conference on IR Research, ECIR 2020,
Lisbon, Portugal, April 14–17, 2020, Proceedings,
Part II 42, pages 28–34. Springer.

Jangho Kim, SeongUk Park, and Nojun Kwak. 2018.
Paraphrasing Complex Network: Network Compres-
sion via Factor Transfer. In Advances in Neural In-
formation Processing Systems, pages 2760–2769.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Third Inter-
national Conference on Learning Representations.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In International Con-
ference on Learning Representations.

Alex Krizhevsky. 2009. Learning Multiple Layers of
Features from Tiny Images.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. ImageNet Classification with Deep Convolu-
tional Neural Networks. In Advances in Neural In-
formation Processing Systems 25, pages 1097–1105.

Heejun Lee, Minki Kang, Youngwan Lee, and Sung Ju
Hwang. 2022. Sparse Token Transformer with Atten-
tion Back Tracking. In The Eleventh International
Conference on Learning Representations.

Seungjae Ryan Lee and Seungmin Lee. 2023. [Re]
Pure Noise to the Rescue of Insufficient Data. In ML
Reproducibility Challenge 2022.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The Winograd Schema Challenge. In Proceed-
ings of the Thirteenth International Conference on
Principles of Knowledge Representation and Reason-
ing, pages 552–561.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A Commu-
nity Library for Natural Language Processing. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 175–184.

Wei Li, Shitong Shao, Weiyan Liu, Ziming Qiu, Zhihao
Zhu, and Wei Huan. 2022a. What Role Does Data
Augmentation Play in Knowledge Distillation? In
Proceedings of the Asian Conference on Computer
Vision, pages 2204–2220.

162

https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.1609/aimag.v39i3.2816
https://openreview.net/forum?id=ErBe4MnsVD
https://openreview.net/forum?id=ErBe4MnsVD

Yulong Li, Martin Franz, Md Arafat Sultan, Bhavani
Iyer, Young-Suk Lee, and Avirup Sil. 2022b. Learn-
ing Cross-Lingual IR from an English Retriever. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4428–4436.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python Toolkit for Reproducible
Information Retrieval Research with Sparse and
Dense Representations. In Proceedings of the 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2356–2362.

Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xi-
aojun Chang, Xiaodan Liang, and Gang Wang. 2022.
Knowledge Distillation via the Target-aware Trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10915–10924.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Li Liu, Qingle Huang, Sihao Lin, Hongwei Xie, Bing
Wang, Xiaojun Chang, and Xiaodan Liang. 2021.
Exploring Inter-Channel Correlation for Diversity-
preserved Knowledge Distillation. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 8271–8280.

Daniel Lopresti and George Nagy. 2021. Repro-
ducibility: Evaluating the Evaluations. In Interna-
tional Workshop on Reproducible Research in Pattern
Recognition, pages 12–23. Springer.

Michael S Matena and Colin A Raffel. 2022. Merging
Models with Fisher-Weighted Averaging. Advances
in Neural Information Processing Systems, 35:17703–
17716.

Yoshitomo Matsubara. 2021. torchdistill: A Modu-
lar, Configuration-Driven Framework for Knowledge
Distillation. In International Workshop on Repro-
ducible Research in Pattern Recognition, pages 24–
44. Springer.

Yoshitomo Matsubara, Davide Callegaro, Sameer Singh,
Marco Levorato, and Francesco Restuccia. 2022a.
BottleFit: Learning Compressed Representations in
Deep Neural Networks for Effective and Efficient
Split Computing. arXiv preprint arXiv:2201.02693.

Yoshitomo Matsubara, Luca Soldaini, Eric Lind, and
Alessandro Moschitti. 2022b. Ensemble Transformer
for Efficient and Accurate Ranking Tasks: an Ap-
plication to Question Answering Systems. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 7259–7272.

Yoshitomo Matsubara, Ruihan Yang, Marco Levorato,
and Stephan Mandt. 2022c. Supervised Compression
for Resource-Constrained Edge Computing Systems.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2685–
2695.

Yoshitomo Matsubara, Ruihan Yang, Marco Levorato,
and Stephan Mandt. 2023. SC2 Benchmark: Super-
vised Compression for Split Computing. Transac-
tions on Machine Learning Research.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and Their Composition-
ality. Advances in Neural Information Processing
Systems, 26.

Roy Miles and Krystian Mikolajczyk. 2023. A closer
look at the training dynamics of knowledge distilla-
tion. arXiv preprint arXiv:2303.11098.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved Knowledge Dis-
tillation via Teacher Assistant. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 5191–5198.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho.
2019. Relational Knowledge Distillation. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3967–3976.

Nikolaos Passalis and Anastasios Tefas. 2018. Learning
Deep Representations with Probabilistic Knowledge
Transfer. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 268–284.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems, pages
8024–8035.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo Larochelle.
2021. Improving Reproducibility in Machine Learn-
ing Research(A Report from the NeurIPS 2019 Re-
producibility Program). The Journal of Machine
Learning Research, 22(1):7459–7478.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. The Journal of Machine Learning Re-
search, 21(1):5485–5551.

163

https://openreview.net/forum?id=p28wv4G65d
https://openreview.net/forum?id=p28wv4G65d

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392.

Nils Reimers and Iryna Gurevych. 2020. Making Mono-
lingual Sentence Embeddings Multilingual using
Knowledge Distillation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4512–4525.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. In
Advances in neural information processing systems,
pages 91–99.

Anna Rogers, Timothy Baldwin, and Kobi Leins. 2021.
‘Just What do You Think You’re Doing, Dave?’A
Checklist for Responsible Data Use in NLP. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 4821–4833.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
Resolution Image Synthesis with Latent Diffusion
Models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10684–10695.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep Un-
supervised Learning using Nonequilibrium Thermo-
dynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
Advances in Neural Information Processing Systems,
27.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019.
Contrastive Representation Distillation. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in neural information process-
ing systems, 30.

Leandro Von Werra, Lewis Tunstall, Abhishek Thakur,
Sasha Luccioni, Tristan Thrush, Aleksandra Piktus,
Felix Marty, Nazneen Rajani, Victor Mustar, and He-
len Ngo. 2022. Evaluate & Evaluation on the Hub:
Better Best Practices for Data and Model Measure-
ments. In Proceedings of the The 2022 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 128–136.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In Inter-
national Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change
Loy. 2020. Knowledge Distillation Meets Self-
supervision. In European Conference on Computer
Vision, pages 588–604. Springer.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible Ranking Baselines Using Lucene.
Journal of Data and Information Quality (JDIQ),
10(4):1–20.

Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. 2019.
Critically Examining the "Neural Hype": Weak Base-
lines and the Additivity of Effectiveness Gains from
Neural Ranking Models. In Proceedings of the 42nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1129–1132.

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide
residual networks. In Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 87.1–87.12.
BMVA Press.

Youcai Zhang, Zhonghao Lan, Yuchen Dai, Fangao
Zeng, Yan Bai, Jie Chang, and Yichen Wei. 2020.
Prime-Aware Adaptive Distillation. In The European
Conference on Computer Vision (ECCV).

164

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 165–173
December 6, 2023 ©2023 Association for Computational Linguistics

Using Captum to Explain Generative Language Models

Vivek Miglani*, Aobo Yang*, Aram H. Markosyan, Diego Garcia-Olano, Narine Kokhlikyan

Meta AI
{vivekm, aoboyang, amarkos, diegoolano, narine}@meta.com

Abstract

Captum is a comprehensive library for model
explainability in PyTorch, offering a range of
methods from the interpretability literature to
enhance users’ understanding of PyTorch mod-
els. In this paper, we introduce new features
in Captum1 that are specifically designed to
analyze the behavior of generative language
models. We provide an overview of the avail-
able functionalities and example applications
of their potential for understanding learned as-
sociations within generative language models.

1 Introduction

Model interpretability and explainability have be-
come significantly more important as machine
learning models are used in critical domains such
as healthcare and law. It is insufficient to simply
make a prediction through a black-box model and
important to better understand why the model made
a particular decision.

Interest in Large Language Models (LLMs) has
also grown exponentially in the past few years with
the release of increasingly large and more powerful
models such as GPT-4 (OpenAI, 2023). A lack of
explainability continues to exist despite larger mod-
els, and with the use of these models expanding
to more and more use-cases, it is increasingly im-
portant to have access to tooling providing model
explanations.

Captum is an open-source model explainability
library for PyTorch providing a variety of generic
interpretability methods proposed in recent litera-
ture such as Integrated Gradients, LIME, DeepLift,
TracIn, TCAV and more (Kokhlikyan et al., 2020).

In this work, we discuss newly open-sourced
functionalities in Captum v0.7 to easily apply ex-
plainability methods to large generative language
models, such as GPT-3.

*Denotes equal contribution
1https://captum.ai

2 Attribution Methods

One important class of explainability methods is
attribution or feature importance methods, which
output a score corresponding to each input feature’s
contribution or impact to a model’s final output.

Formally, given a function f : Rd → R, where
f ∈ F and X ∈ Rd is a single input vector con-
sisting of d dimensions or features, an attribution
method is defined as a function ϕ : F× Rd → Rd.
Each element in the attribution output corresponds
to a score of the contribution of corresponding fea-
ture i ∈ D, where D denotes the set of all feature
indices D = {1, 2, ..., d}.

Many attribution methods also require a baseline
or reference input B ∈ Rd defining a comparison
input point to measure feature importance with
respect to.

We utilize the notation XS to denote selecting
the feature values with indices from the set S ⊆ D
and the remaining indices from B. Formally, the
value of feature i in XS is (XS)i = Ii∈SXi +
Ii/∈SBi, where I is the indicator function.

In this section, we provide background con-
text on attribution methods available in Captum.
These methods can be categorized broadly into
(i) perturbation-based methods, which utilize re-
peated evaluations of a black-box model on per-
turbed inputs to estimate attribution scores, and
(ii) gradient-based methods, which utilize back-
propagated gradient information to estimate attri-
bution scores. Perturbation-based methods do not
require access to model weights, while gradient-
based models do.

2.1 Perturbation-Based Methods

2.1.1 Feature Ablation
The most straightforward attribution is feature ab-
lation, where each feature is substituted with the
corresponding element of the baseline feature vec-
tor to estimate the corresponding importance.

165

https://captum.ai

Formally, this method is defined as

ϕi(f,X) = f(X)− f(XD\{i}) (1)

Feature Ablation has clear advantages as a sim-
ple and straightforward method, but the resulting
attributions may not fully capture the impacts of
feature interactions since features are ablated indi-
vidually.

2.1.2 Shapley Value Sampling
Shapley Values originated from cooperative game
theory as an approach to distribute payouts fairly
among players in a cooperative game. Analogously,
in the attribution setting, Shapley Values assign
scores to input features, with payouts correspond-
ing to a feature’s contribution to the model output.
Shapley Values satisfy a variety of theoretical prop-
erties including efficiency, symmetry and linearity.
Formally, this method is defined as

ϕi(f,X) =
∑

S⊆D\{i}

[|S|!(|D| − |S| − 1)!

|D|!

f(XS∪{i})− f(XS)
]

(2)

While computing this quantity exactly requires
an exponential number of evaluations in the num-
ber of features, we can estimate this quantity using
a sampling approach (Castro et al., 2009). The
approach involves selecting a permutation of the
d features and adding the features one-by-one to
the original baseline. The output change as a result
of adding each feature accounts for its contribu-
tion, and averaging this over sampled perturbations
results in an unbiased estimate of Shapley Values.

2.1.3 LIME
LIME or Locally Interpretable Model Explanations
proposes a generic approach to sample points in
the neighborhood of the input point X and train an
interpretable model (such as a linear model) based
on the results of the local evaluations (Ribeiro et al.,
2016).

This method proposes reparametrizing the in-
put space to construct interpretable features such
as super-pixels in images and then evaluating the
original model on a variety of perturbations of the
interpretable features. The method can be utilized
with any perturbation sampling and weighting ap-
proaches and interpretable model / regularization
parameters. The interpretable model can then be
used as an explanation of the model’s behavior in

the local region surrounding the target input point.
For a linear model, the coefficients of this model
can be considered as attribution scores for the cor-
responding feature.

2.1.4 Kernel SHAP
Kernel SHAP is a special case of the LIME
framework, which sets the sampling approach, in-
tepretable model, and regularization in a specific
way such that the results theoretically approximate
Shapley Values (Lundberg and Lee, 2017).

2.2 Gradient Based Methods
2.2.1 Saliency
Saliency is a simple gradient-based approach, uti-
lizing the model’s gradient at the input point as the
corresponding feature attribution (Simonyan et al.,
2013). This method can be understood as taking a
first order approximation of the function, in which
the gradients would serve as the coefficients of each
feature in the model.

ϕi(f,X) = f ′(X) (3)

2.2.2 Integrated Gradients
Integrated Gradients estimates attribution by com-
puting the path integral of model gradients between
the baseline point and input point (Sundararajan
et al., 2017). This approach has been shown to sat-
isfy desirable theoretical properties including sen-
sitivity and implementation invariance. Formally,
the method can be defined as

ϕi(f,X) = (Xi −Bi)

×
∫ 1

α=0

f ′(B + (X −B)α)

∂xi
dα

(4)

2.2.3 Other Gradient-Based Methods
Other popular gradient-based attribution methods
include DeepLift and Layerwise Relevance Pro-
pogation (LRP) (Shrikumar et al., 2017; Bach et al.,
2015). These methods both require a backward
pass of the model on the original inputs but cus-
tomize the backward propagation of specific func-
tions, instead of using their default gradient func-
tions.

3 Language Model Attribution

In Captum v0.7, we propose new functionalities
to apply the attribution methods within Captum to
analyze the behaviors of LLMs. Users can choose
any interested tokens or segments from the input

166

OUTPUT 1: attribution for most likely
 decoded sequence

David lives in Palm Coast, FL and …

playing golf, hiking, and cooking.
 -.204 1.081 -0.8918 -0.0498 -.2699
 Feature Importance Scores Relative to Selected Input

OUTPUT 2: attribution for user provided
 target string
David lives in Palm Coast, FL and ..

Open sourcing explainable tech..
 .7051 -2.341 -.1851 -.2834
 Feature Importance Scores Relative to Selected Input

Case 2
Prompt: David lives in Palm
Coast, FL and is a lawyer. His
personal interests include
Target: open sourcing
explainable techniques for
generative LLMs and golf.

Case 1
Prompt: David lives in Palm
Coast, FL and is a lawyer. His
personal interests include
Target: None

LLM +
CAPTUM
ATTRIBUTION
METHOD

LLM +
CAPTUM
ATTRIBUTION
METHOD

Figure 1: Example of applying Captum attribution methods to analyze the input prompt’s effect on the output of
LLMs, showing two types of target strings accepted by Captum attribution API and token level attribution outputs
for both with respect to the input "Palm Coast". In Case 1, no Target string is provided, so attributions are provided
for the most likely decoded sequence. In Case 2, attributions are provided for the chosen target output.

prompt as features, e.g., "Palm Coast" in the exam-
ple shown in Figure 1, and use attribution methods
to quantify their impacts to the generation targets,
which can be either a specified output sequence or
a likely generation from the model.

3.1 Perturbation-Based Methods

We introduce simple APIs to experiment with
perturbation-based attribution methods including
Feature Ablation, Lime, Kernel SHAP and Shapley
Value Sampling.

We prioritize ease-of-use and flexibility, allow-
ing users to customize the chosen features for attri-
bution, mask features into groups as necessary, and
define appropriate baselines to ensure perturbed
inputs remain within the natural data distribution.

In Figure 2, we demonstrate an example usage
of the LLMAttribution API for the simple prompt
"Dave lives in Palm Coast, FL and is a lawyer. His
personal interests include". Providing this input
prompt to a language model to generate the most
likely subsequent tokens, we can apply Captum
to understand the impact of different parts of the
prompt string on the model generation. Figure 3
presents a more customized usage where we use
the same function to understand a specific output
we are interested in ("playing golf, hiking, and
cooking.").

3.1.1 Defining Features
Users are able to define and customize ’features’
for attribution in the prompt text. The simplest ap-
proach would be defining the features as individual

tokens.
Unfortunately, in many cases, it doesn’t make

sense to perturb individual tokens, since this may
no longer form a valid sentence in the natural distri-
bution of potential input sequences. For example,
perturbing the token "Palm" in the above sentence
would result in a city name that is not in the natu-
ral distribution of potential cities in Florida, which
may lead to unexpected impacts on the perturbed
model output. Moreover, tokenizers used in mod-
ern LLMs may further break a single word in many
cases. For example, the tokenizer can break the
word "spending" into "_sp" and "ending".

The API provides flexibility to define units of
attribution as custom interpretable features which
could be individual words, tokens, phrases, or even
full sentences. For example, in Figure 2, we select
the relevant features to be the name, city, state,
occupation, and pronoun in the sentence prompt
and desire to determine the relative contribution of
these contextual features on the model’s predicted
sentence completion.

Users can define the units for attribution as a list
or dictionary of features and provide a format string
or function to define a mapping from the attribution
units to the full input prompt as shown in Figure 3.

3.1.2 Baselines
The baseline choice is particularly important for
computing attribution for text features, as it serves
as the reference value used when perturbing the
chosen feature. The perturbation-based feature API
allows defining custom baselines corresponding to

167

from captum.attr import FeatureAblation , LLMAttribution , TextTemplateFeature

fa = FeatureAblation(model)
llm_attr = LLMAttribution(fa, tokenizer)

inp = TextTemplateFeature(
the text template
"{} lives in {}, {} and is a {}. {} personal interests include",
the values of the features
["Dave", "Palm Coast", "FL", "lawyer", "His"],
the reference baseline values of the features
baselines=["Sarah", "Seattle", "WA", "doctor", "Her"],

)
llm_attr.attribute(inp)

Figure 2: Example of applying Captum with a list of features in a text template

inp = TextTemplateFeature(
"{name} lives in {city}, {state} and is a {occupation}. {pronoun} personal

interests include",
{"name":"Dave", "city": "Palm Coast", "state": "FL", "occupation":"lawyer", "

pronoun":"His"},
baselines={"name":"Sarah", "city": "Seattle", "state": "WA", "occupation":"doctor

", "pronoun":"Her"}
)
attr_result = llm_attr.attribute(inp , target="playing golf , hiking , and cooking.")
attr_result.plot_token_attr ()

Figure 3: Example of applying Captum with a dictionary of features in a text template and a specific target, and
visualize the token attribution

each input feature.
It is recommended to select a baseline which fits

the context of the original text and remains within
the natural data distribution. For example, replac-
ing the name of a city with another city ensures
the sentence remains naturally coherent, but allows
measuring the contribution of the particular city
selected.

In addition to a single baseline, the Captum API
also supports providing a distribution of baselines,
provided as either a list or function to sample a
replacement option. For example, in the example
above, the name "Dave" could be replaced with
a sample from the distribution of common first
names to measure any impact of the name "Dave"
in comparison to the chosen random distribution as
shown in Figure 6.

3.1.3 Masking Features
Similar to the underlying Captum attribution meth-
ods, we support feature masking, which enables
grouping features together to perturb as a single
unit and obtain a combined, single attribution score.
This functionality may be utilized for highly corre-
lated features in the text input, where it often makes
sense to ablate these features together, rather than

independently.
For example, in Figure 2, the feature pairs (city,

state) and (name, pronoun) are often highly corre-
lated, and thus it may make sense to group them
and consider them as a single feature.

3.1.4 Target Selection
For any attribution method, it is also necessary to
select the target function output for which attribu-
tion outputs are computed. Since language models
typically output a probability distribution over the
space of tokens for each subsequently generated to-
ken, there are numerous choices for the appropriate
target.

By default, when no target is provided, the target
function behavior is for the attribution method to
return attributions with respect to the most likely
decoded token sequence.

When a target string is provided, the target func-
tion is the log probability of the output sequence
from the language model, given the input prompt.
For a sequence with multiple tokens, this is numer-
ically computed through the sum of the log proba-
bilities of each token in the target string. Figure 1
shows these two input use cases and shows token
level attribution relative to an input subsequence

168

for both.
We also support providing a custom function on

the output logit distribution, which allows attribu-
tion with respect to an alternate quantity such as
the entropy of the output token distribution.

3.2 Gradient-Based Methods
Captum 0.7 also provides a simple API to apply
gradient-based methods to LLMs. Applying these
methods to language models is typically more chal-
lenging than for models with dense feature inputs,
since embedding lookups in LLMs are typically
non-differentiable functions, and gradient-based
attributions need to be obtained with respect to
embedding outputs. Captum allows these attribu-
tions to be aggregated across embedding dimen-
sions to obtain per-token attribution scores. Figure
4 demonstrates an example of applying Integrated
Gradients on a sample input prompt.

3.3 Visualization
We also open source utilities for easily visualizing
the attribution outputs from language models. Fig-
ure 3 shows how to use the utilities to visualize the
attribution result, and Figure 5 demonstrates the
heatmap plotted with the prompt along the top, the
target string along the left side and feature impor-
tance scores in each cell.

(Feature) Value Golfing Hiking Cooking

(Name) Dave 0.4660 -0.2640 -0.4515
(City) Palm Coast 1.0810 -0.8762 -0.2699
(State) FL 0.6070 -0.3620 -0.3513
(Occupation) lawyer 0.7584 -0.1966 0.0331
(Pronoun) His 0.2217 -0.0650 -0.2577

Table 1: Associations between input and generated text
features

4 Applications

In this section, we discuss two applications of the
attribution methods described above in different
contexts. These applications provide additional
transparency as well as contribute to a better un-
derstanding of a model’s learned associations and
robustness.

4.1 Understanding Model Associations
This perturbation-based tooling can be particularly
useful for improved understanding of learned asso-
ciations in LLMs.

Consider the example prompt:

“David lives in Palm Coast, FL and is a lawyer.
His personal interests include ”

We can define features including gender, city,
state and occupation. Obtaining attributions on
these features against the subsequent target

“playing golf, hiking, and cooking. ”

allows us to better understand why the model pre-
dicted these personal interests and how each feature
correlates with each of these interests. The model
might be associating this activity as a common
hobby for residents in the specific city or as an ac-
tivity common to lawyers. Through this choice of
features, we can obtain a better understanding of
why the model predicted these particular hobbies
and how this associates with the context provided
in the prompt.

We apply Shapley Value Sampling to better un-
derstand how each of the features contributed to
the prediction. The corresponding code snippet
is shown in the Appendix in Figure 6. Table 1
presents the effects of each feature on the LLM’s
probability of outputting the corresponding inter-
est, with positive and negative values indicating
increases and decreases of the probability respec-
tively. We can therefore identify some interesting
and even potentially biased associations. For ex-
ample, the male name and pronoun, i.e., "Dave"
and "His", have positive attribution to "golfing" but
negative attribution to "cooking".

4.2 Evaluating Effectiveness of Few-Shot
Prompts

Significant prior literature has demonstrated the
ability of LLMs to serve as few-shot learners
(Brown et al., 2020). We utilize Captum’s attri-
bution functionality to better understand the impact
and contributions of few-shot examples to model
predictions. Table 2 demonstrates four example
few shot prompts and corresponding attribution
scores when predicting positive sentiment for "I
really liked the movie, it had a captivating plot!"
movie review.

Here we aim to understand the impact of each ex-
ample prompt on the Positive sentiment prediction.
The LLM is asked to predict positive or negative
sentiment using the following prompt:

“Decide if the following movie review enclosed
in quotes is Positive or Negative. Output only
either Positive or Negative:

169

from captum.attr import LayerIntegratedGradients , TextTokenFeature

ig = LayerIntegratedGradients(model , "model.embed_tokens")
llm_attr = LLMGradientAttribution(ig, tokenizer)

inp = TextTokenFeature("Dave lives in Palm Coast , FL and is a lawyer. His personal
interests include", tokenizer)

llm_attr.attribute(inp)

Figure 4: Example of applying Captum with a gradient-based approach

Figure 5: Text Attribution Visualization Example

‘I really liked the movie, it had a captivating plot!’
”

We consider each of the provided example
prompts as features and we utilize zero-shot prompt
as a baseline in the attribution algorithm. The de-
tailed implementation can be found in Appendix in
Figure 7.

We obtain results as shown in Table 2 by ap-
plying Shapley Values. Surprisingly, the results
suggest that all the provided examples actually re-
duced confidence in the prediction of "Positive".

Example Shapley
Value

’The movie was ok, the actors weren’t
great’ -> Negative

-0.0413

’I loved it, it was an amazing story!’
-> Positive

-0.2751

’Total waste of time!!’ -> Negative -0.2085
’Won’t recommend’ -> Negative -0.0399

Table 2: Example prompts’ contribution to model re-
sponse "Positive."

5 Related Work

Numerous prior works have developed and inves-
tigated attribution methods with a variety of prop-
erties, but few efforts have been made to develop
open-source interpretability tools providing a vari-
ety of available methods, particularly for the text
domain. Captum was initially developed to fill
this gap and provide a centralized resource for re-
cent interpretability methods proposed in literature
(Kokhlikyan et al., 2020).

Ecco and inseq are two libraries that have pro-
vided attribution functionalities for text / language
models (Sarti et al., 2023; Alammar, 2021), and
both libraries are built on top of the attribution
methods available in Captum. These libraries pri-
marily focus on gradient-based attribution methods,
which provide token-level attribution based on gra-
dient information.

In contrast, our main contribution in this work
has been a focus on perturbation-based methods
and providing flexibility on aspects such as feature
definition, baseline choice and masking. We do not
necessarily expect that these attribution methods
provide a score for each token individually, which
is typically the case for gradient-based methods.
This shift in structure allows us to generalize to
a variety of cases and allows the users to define
features for attribution as it fits best.

Some prior work on attribution methods have
also demonstrated limitations and counterexamples
of these methods in explaining a model’s reliance
on input features, particularly with gradient-based
attribution methods (Adebayo et al., 2018).

Perturbation-based methods generally have an
advantage of being justifiable through the model’s
output on counterfactual perturbed inputs. But per-
turbing features by removing individual tokens or
replacing them with pad or other baseline tokens
may result in inputs outside of the natural data dis-
tribution, and thus, model outputs in this region
may not be accurate. The tools developed have

170

been designed to make it easier for developers to
select features, baselines, and masks which can en-
sure perturbations remain within the natural data
distribution in order to obtain more reliable feature
attribution results.

Recent advances in data augmentation (Pluščec
and Šnajder, 2023) for natural language processing
have led to the development of a number of open-
source libraries (Wang et al., 2021; Papakipos and
Bitton, 2022; Zeng et al., 2021; Morris et al., 2020;
Ma, 2019; Dhole et al., 2022; Wu et al., 2021).
Among many functionalities, these libraries pro-
vide a rich set of text perturbations. Some libraries
have specific focus, e.g. perturbing demographic
references (Qian et al., 2022). An interesting di-
rection of future work will be the extension of our
present API to provide fully automated feature and
baseline selections, allowing users to simply pro-
vide an input string and automatically identify ap-
propriate text features and corresponding baselines
for attribution.

6 Conclusion

In this work, we introduce new features in the
open source library Captum that are specifically de-
signed to analyze the behavior of generative LLMs.
We provide an overview of the available functional-
ities and example applications of their potential in
understanding learned associations and evaluating
effectiveness of few-shot prompts within generative
LLMs. We demonstrate examples for using pertur-
bation and gradient-based attribution methods with
Captum which highlight the API’s flexibility on
aspects such as feature definition, baseline choice
and masking. This flexibility in structure allows
users to generalize to a variety of cases, simplifying
their ability to conduct explainability experiments
on generative LLMs.

In the future, we plan to expand our API for
additional automation in baseline and feature selec-
tion as well as incorporate other categories of inter-
pretability techniques for language models. Run-
time performance optimization of attribution algo-
rithms is another area of research that could be
beneficial for the OSS community.

References

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. 2018. San-
ity checks for saliency maps.

J Alammar. 2021. Ecco: An open source library for the
explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations. Association for
Computational Linguistics.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Javier Castro, Daniel Gómez, and Juan Tejada. 2009.
Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research,
36(5):1726–1730.

Kaustubh D. Dhole, Varun Gangal, Sebastian
Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma-
hamood, Abinaya Mahendiran, Simon Mille, Ashish
Shrivastava, Samson Tan, Tongshuang Wu, Jascha
Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, On-
drej Dusek, Sebastian Ruder, Sajant Anand, Na-
gender Aneja, Rabin Banjade, Lisa Barthe, Hanna
Behnke, Ian Berlot-Attwell, Connor Boyle, Car-
oline Brun, Marco Antonio Sobrevilla Cabezudo,
Samuel Cahyawijaya, Emile Chapuis, Wanxiang
Che, Mukund Choudhary, Christian Clauss, Pierre
Colombo, Filip Cornell, Gautier Dagan, Mayukh
Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis
Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di
Giovanni, Tanya Goyal, Rishabh Gupta, Rishabh
Gupta, Louanes Hamla, Sang Han, Fabrice Harel-
Canada, Antoine Honore, Ishan Jindal, Przemys-
law K. Joniak, Denis Kleyko, Venelin Kovatchev,
Kalpesh Krishna, Ashutosh Kumar, Stefan Langer,
Seungjae Ryan Lee, Corey James Levinson, Hualou
Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukya-
nenko, Vukosi Marivate, Gerard de Melo, Simon
Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat
Moosavi, Niklas Muennighoff, Timothy Sum Hon
Mun, Kenton Murray, Marcin Namysl, Maria Obed-
kova, Priti Oli, Nivranshu Pasricha, Jan Pfister,
Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin,
Shahab Raji, Pawan Kumar Rajpoot, Vikas Rau-
nak, Roy Rinberg, Nicolas Roberts, Juan Diego
Rodriguez, Claude Roux, Vasconcellos P. H. S.,
Ananya B. Sai, Robin M. Schmidt, Thomas Scialom,
Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen,
Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel,
Damien Sileo, Jamie Simon, Chandan Singh, Ro-
man Sitelew, Priyank Soni, Taylor Sorensen, William
Soto, Aman Srivastava, KV Aditya Srivatsa, Tony
Sun, Mukund Varma T, A Tabassum, Fiona Anting
Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn,

171

http://arxiv.org/abs/arXiv:1810.03292
http://arxiv.org/abs/arXiv:1810.03292

Athena Wang, Zijian Wang, Gloria Wang, Zijie J.
Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata,
Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama
Yaseen, Michael A. Yee, Jing Zhang, and Yue Zhang.
2022. Nl-augmenter: A framework for task-sensitive
natural language augmentation.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.
Captum: A unified and generic model interpretability
library for pytorch.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp.

OpenAI. 2023. Gpt-4 technical report.

Zoe Papakipos and Joanna Bitton. 2022. Augly: Data
augmentations for robustness.

Domagoj Pluščec and Jan Šnajder. 2023. Data augmen-
tation for neural nlp.

Rebecca Qian, Candace Ross, Jude Fernandes,
Eric Michael Smith, Douwe Kiela, and Adina
Williams. 2022. Perturbation augmentation for fairer
NLP. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9496–9521, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar
van der Wal, Malvina Nissim, and Arianna Bisazza.
2023. Inseq: An interpretability toolkit for sequence
generation models. ArXiv, abs/2302.13942.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145–3153.
PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng
Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui
Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li,
Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian Cai,
Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan,
Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin, Bolin
Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong
Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei,
Xipeng Qiu, and Xuanjing Huang. 2021. TextFlint:
Unified multilingual robustness evaluation toolkit for
natural language processing. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 347–355, Online. Association
for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel S Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving
models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6707–6723.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021. OpenAttack: An open-
source textual adversarial attack toolkit. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations. Association for Computa-
tional Linguistics.

A Appendix

172

http://arxiv.org/abs/2112.02721
http://arxiv.org/abs/2112.02721
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/arXiv:1705.07874
http://arxiv.org/abs/arXiv:1705.07874
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2302.11412
http://arxiv.org/abs/2302.11412
https://doi.org/10.18653/v1/2022.emnlp-main.646
https://doi.org/10.18653/v1/2022.emnlp-main.646
http://arxiv.org/abs/arXiv:1602.04938
http://arxiv.org/abs/arXiv:1602.04938
https://arxiv.org/abs/2302.13942
https://arxiv.org/abs/2302.13942
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43

from captum.attr import ShapleyValueSampling , LLMAttribution , TextTemplateFeature ,
ProductBaselines

svs = ShapleyValueSampling(model)
baselines = ProductBaselines(

{
("name", "pronoun"): [("Sarah", "Her"), ("John", "His")],
"city": ["Seattle", "Boston"],
"state": ["WA", "MA"],
"occupation": ["doctor", "engineer", "teacher", "technician", "plumber"],

}
)

llm_attr = LLMAttribution(svs , tokenizer)

inp = TextTemplateFeature(
"{name} lives in {city}, {state} and is a {occupation}. {pronoun} personal

interests include",
{"name":"Dave", "city": "Palm Coast", "state": "FL", "occupation":"lawyer", "

pronoun":"His"},
baselines=baselines ,

)

attr_result = llm_attr.attribute(inp , target="playing golf , hiking , and cooking.")

Figure 6: Applying Captum for the model associations example

from captum.attr import ShapleyValues , LLMAttribution , TextTemplateFeature

sv = ShapleyValues(model)
llm_attr = LLMAttribution(sv, tokenizer)

def prompt_fn(*examples):
main_prompt = "Decide if the following movie review enclosed in quotes is

Positive or Negative :\n'I really liked
the Avengers , it had a captivating

plot!'\nReply only Positive or
Negative."

subset = [elem for elem in examples if elem]
if not subset:

prompt = main_prompt
else:

prefix = "Here are some examples of movie reviews and classification of
whether they were Positive or
Negative :\n"

prompt = prefix + "\n".join(subset) + "\n" + main_prompt
return "[INST] " + prompt + "[/INST]"

input_examples = [
"'The movie was ok, the actors weren't great' -> Negative",
"'I loved it, it was an amazing story!' -> Positive",
"'Total waste of time!!' -> Negative",
"'Won't recommend ' -> Negative",

]
inp = TextTemplateFeature(prompt_fn , input_examples)

attr_result = llm_attr.attribute(inp)

Figure 7: Applying Captum for the few-shot prompt example

173

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 174–178
December 6, 2023 ©2023 Association for Computational Linguistics

nerblackbox:
A High-level Library for Named Entity Recognition in Python

Felix Stollenwerk
AI Sweden

felix.stollenwerk@ai.se

Abstract

We present nerblackbox, a python library to
facilitate the use of state-of-the-art transformer-
based models for named entity recognition. It
provides simple-to-use yet powerful methods
to access data and models from a wide range of
sources, for fully automated model training and
evaluation as well as versatile model inference.
While many technical challenges are solved
and hidden from the user by default, nerblack-
box also offers fine-grained control and a rich
set of customizable features. It is thus targeted
both at application-oriented developers as well
as machine learning experts and researchers.

1 Introduction

Named Entity Recognition (NER) is an important
natural language processing task with a multitude
of applications (Lorica and Nathan, 2021). While
generative AI is currently ubiquitous in the scien-
tific literature and public debate, it has not (yet)
replaced discriminative AI for information extrac-
tion tasks like NER. Fine-tuned, transformer-based
encoder models are both SOTA in research1 and
commonly used by developers to solve real-world
problems, see e.g. (Raza et al., 2022; Stollenwerk
et al., 2022). Popular open source frameworks, like
the ones provided by HuggingFace (Wolf et al.,
2020; Lhoest et al., 2021; Von Werra et al., 2022),
greatly facilitate the use of such models. They
cover the whole workflow consisting of dataset in-
tegration, model training, evaluation and inference,
see Fig. 1.

Figure 1: Essential stages in the life cycle of a machine
learning model.

1http://nlpprogress.com/english/named_entity_
recognition.html

However, they do require a certain degree of
expertise and often some significant, use-case spe-
cific effort. Some of the (general and NER-specific)
challenges are:

(i) There exist various sources for datasets. Re-
garding public datasets, HuggingFace and GitHub
repositories are important sources. Private datasets
may be stored on local filesystems or be created
using annotation tools. Additional complexity is
introduced by the circumstance that datasets often
come in different formats. This may be true even
for datasets from the same source. These issues typ-
ically require customized data preprocessing code
for every new use case.

(ii) Data for NER is processed on three differ-
ent levels: tokens, words and entities. Different
parts of the workflow may operate on different
levels, as shown in Tab. 1. Datasets may be pre-

stage token word entity
dataset ✕ ✕
training ✕ ✕
evaluation ✕
inference ✕ ✕

Table 1: Overview of the data levels that the different
parts of a NER model workflow can operate on.

tokenized (word level) or not (entity level). At
training time, labels for tokens that are not the first
token of a word may be ignored (word level) or
included (token level) in the computation of the
loss. Model evaluation takes place primarily on
the entity level (although it is labels on the token
or word level that are employed for the computa-
tion). Finally, while model predictions are often
made on the entity level, some use cases may re-
quire predictions on the word level, for instance if
the associated probabilities are to be used for ac-
tive learning. Handling these technical intricacies
requires expert knowledge.

174

http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/named_entity_recognition.html

(iii) There exists a multitude of NER-specific an-
notation schemes and variants and it is important
to be aware of the differences. For instance, during
data preprocessing, existing word or entity labels
need to be mapped to token labels, which is an an-
notation scheme dependent process. At evaluation
time, there are different ways to cope with predic-
tions that do not obey the rules of the given annota-
tion scheme (we will get back to this in Sec. 4.6).

(iv) Training hyperparameters which lead to
reasonable performance may depend on the
employed model and dataset. For instance, while a
small dataset often requires more training epochs,
larger datasets can usually be trained for fewer
epochs.

The aim of nerblackbox is to provide a high-level
framework which makes the usage of SOTA NER
models as simple as possible. As we will see in de-
tail in Sec. 3, it offers easy access to datasets from
various sources, automated training and evaluation
as well as simple but versatile model inference. It
does so by hiding all technical complications from
the user2 and is targeted at developers as well as
people who are not necessarily experts in machine
learning or NLP. However, nerblackbox also al-
lows fine-grained control over all sorts of low-level
parameters and provides many advanced features,
some of which we will cover in Sec. 4. This might
make the library appealing also for researchers and
experts.

2 Related Work

The most commonly used framework for
transformer-based NLP is arguably the Hugging-
Face ecosystem, in particular the open source
libraries transformers (Wolf et al., 2020), datasets
(Lhoest et al., 2021) and evaluate (Von Werra
et al., 2022). Another popular alternative is spacy
(Honnibal et al., 2020).

High-level libraries that are build on top of trans-
formers exist in the form of Simple Transformers
(Rajapakse, 2019) and T-NER (Ushio and Camacho-
Collados, 2021). Simple Transformers is a high-
level library that covers a broad range of NLP tasks
with basic support for NER. T-NER is specific to

2This is where the name nerblackbox stems from: The
framework does not require any knowledge about internal
processes and can be used as a black box by only specify-
ing inputs (pretrained model, dataset) and using the outputs
(fine-tuned model). Note that there is no direct relation to
explainability.

NER with an emphasis on cross-domain and cross-
lingual model evaluation. Of all the mentioned
libraries, it is arguably the most similar to nerblack-
box. However, as will be discussed in the following
sections, nerblackbox offers many unique and pow-
erful features that—to the best of our knowledge—
make it distinct from any existing frameworks.

3 Basic Usage

nerblackbox provides a simple API to automate
each step in the life cycle of a NER model
(cf. Fig. 1) using very few lines of code. It does so
in terms of the following classes:

1 >> from nerblackbox import Dataset ,
Training , Model

A high-level overview of the involved compo-
nents is shown in Fig. 2.

3.1 Dataset Integration

nerblackbox allows seamless access to datasets
from the following sources: HuggingFace (HF),
the local filesystem (LF), built-in datasets (BI) and
annotation tools (AT)3.

Basically, a dataset can be set up for training and
evaluation like in the following example:

1 >> dataset = Dataset(
2 "conll2003",
3 source ="HF",
4)
5 >> dataset.set_up ()

While this works out-of-the-box for the sources
HF and BI, some additional information needs to
be provided for the sources LF and AT in order for
nerblackbox to be able to find the data. Integrating
different datasets can be challenging as they may
have different formatting (even on HuggingFace)
and annotation schemes. Some datasets are pretok-
enized and split into training/validation/test subsets,
while others are not. The set_up() method auto-
matically deals with these challenges and makes
sure that every dataset, irrespective of the source,
is transformed into a standard format4. Apart from
downloading, reformatting, and dataset splitting (if
needed), it also includes an analysis of the data.
For details, we refer to the library’s documentation.

3Currently, the two commonly used (open source) annota-
tion tools LabelStudio (Tkachenko et al., 2020) and Doccano
(Nakayama et al., 2018) are supported.

4Datasets may still have different annotation schemes (IO,
BIO, BILOU), and be pretokenized or not.

175

Figure 2: High-level overview of the nerblackbox library. It allows to easily fine-tune, evaluate and apply models
for named entity recognition. The symbols to the left and right represent the sources that nerblackbox provides
seamless access to. These are the Local Filesystem (LF), HuggingFace (HF), Annotation Tools (AT) as well as
Built-in (BI) datasets that are fetched from GitHub.

3.2 Training

In order to train a model, one only needs to choose
a name for the training run (for later reference) and
specify the model and dataset names, like so:

1 >> training = Training(
2 "my_training",
3 model="bert -base -cased",
4 dataset =" conll2003",
5)
6 >> training.run()

In order to ensure stable results irrespective of
the dataset, the training employs well-established
hyperparameters by default (Mosbach et al., 2021).
In particular, a specific learning rate schedule (Stol-
lenwerk, 2022) based on early stopping and warm
restarts (Loshchilov and Hutter, 2017) is used to
accommodate different dataset sizes.

3.3 Evaluation

Any NER model, whether it was trained using
nerblackbox or is taken directly from Hugging-
Face (HF), can be evaluated on any dataset that
is accessible via nerblackbox (see Sec. 3.1)

1 >> model = Model.from_training(
2 "my_training"
3)
4 >> results = model.evaluate_on_dataset(
5 "conll2003",
6 phase="test",
7)
8 >> results ["micro "][" entity "]["f1"]
9 ## 0.9045

The standard metrics for NER are used, i.e. pre-
cision, recall and the f1 score. Each metric is com-
puted as a micro- and macro-average as well as for
the individual classes. All metrics are determined
both on the entity and word level.

3.4 Inference

Similar to evaluation, both NER models trained
using nerblackbox and models taken directly from
HuggingFace (HF) can be used for inference.

1 >> model = Model.from_training(
2 "my_training"
3)
4 >> model.predict ("The United Nations ")
5 ## [[{
6 ## 'char_start ': '4',
7 ## 'char_end ': '18',
8 ## 'token ': 'United Nations ',
9 ## 'tag ': 'ORG '

10 ## }]]

Apart from the predictions on the entity level for
a single document shown above, nerblackbox also
supports predictions on the word level (with or
without probabilities) and batch inference. In ad-
dition, a model can be applied directly to a file
containing raw data, which may be useful for infer-
ence at large scale (e.g. in production).

4 Advanced Usage

The nerblackbox workflow and the API are de-
signed to be as simple as possible and to con-
ceal technical complications from the user. How-
ever, they are also highly customizable in terms
of optional function arguments, which may be par-
ticularly interesting for machine learning experts
and researchers. In this section, we are going to
cover a non-exhaustive selection of nerblackbox’s
advanced features, with a slight emphasis on the
training part. For further information, the reader is
referred to the library’s documentation.

4.1 Training Hyperparameters and Presets

While nerblackbox uses sensible default values for
the training hyperparameters (see Sec. 3.2), one
may also opt to specify them manually. In par-

176

ticular, all aspects of the learning rate schedule
(e.g. maximum learning rate, epochs, early stop-
ping parameters etc.) can be chosen at one’s own
discretion. In addition, the Training class offers
several popular hyperparameter presets via the in-
stantiation argument from_preset . Among them
are the learning rate schedules from (Devlin et al.,
2019) and (Mosbach et al., 2021), which may work
well for larger and smaller datasets, respectively.
Hyperparameters search is also supported.

4.2 Dataset Pruning

nerblackbox provides the option to only use a sub-
set of the training, validation or test data by spec-
ifying parameters like train_fraction . This may
be useful to accelerate the training (for instance
in the development phase of a product) or if one
wants to investigate the effect of the dataset size
(for instance to see if the model has saturated, or
for research).

4.3 Annotation Schemes

While every dataset is associated with a certain an-
notation scheme, nerblackbox provides the option
to translate between schemes at training time. The
desired annotation scheme can simply be specified
via the training parameter annotation_scheme . This
may be interesting for users who aim to optimize
their model’s performance as well as researchers
who systematically want to investigate the impact
of the annotation scheme.

4.4 Multiple Runs

Since the training of a neural network includes
stochastic processes, the performance of the result-
ing model depends on the employed random seed.
In order to gain control over the associated statis-
tical uncertainties, one may train multiple models
using different random seeds. With nerblackbox,
this can trivially be done by setting the training
parameter multiple_runs to an integer greater than
1. In that case, the evaluation metrics will be given
in terms of the mean and its associated uncertainty.
For inference, the best model is automatically used.

4.5 Detailed Results

nerblackbox saves detailed training and evaluation
results (e.g. loss curves, confusion matrices) using
MLflow5 and TensorBoard. This is useful in order
to keep an overview of trained models, inspect their

5https://pypi.org/project/mlflow/

detailed properties as well as optimize and cross-
check the training process.

4.6 Careful Evaluation
A model may predict labels for a sequence of to-
kens that are inconsistent with the employed anno-
tation scheme. For instance, if the BIO annotation
scheme is used, the combination O I-PER is in-
correct6. When translated to entity predictions,
nerblackbox ignores incorrect labels by default,
both at evaluation and inference time. However,
the popular evaluate (Von Werra et al., 2022) and
seqeval (Nakayama, 2018) libraries do take incon-
sistent predictions into account during evaluation.
For this reason, the evaluate_on_dataset() method
(see Sec. 3.3) returns results for both approaches.

4.7 Compatibility with transformers

nerblackbox is heavily based on transformers (Wolf
et al., 2020) such that compatibility is guaranteed.
In particular, the Model class has the attributes
tokenizer and model , which are ordinary trans-

formers classes and can be used as such. GPU
support (i.e. automatic detection and use) is also
provided through transformers.

5 Resources and Code Quality

nerblackbox is available as a package on PyPI7.
The associated GitHub repository is public at
https://github.com/flxst/nerblackbox and
contains the source code as well as multiple ex-
ample notebooks. A detailed documentation is
provided8. It includes a pedagogical introduction
to the library, an in-depth discussion of its fea-
tures as well as docs for the python API. Consis-
tent code syntax and typing are ensured by usage
of black9 and mypy10, respectively. We employ
unit and end-to-end testing. As an additional cross-
check, numerical results from the literature are re-
produced using nerblackbox (details can be found
in the documentation).

Acknowledgements

This work was supported by Vinnova through the
grants 2019-02996 and 2021-03630.

6The variant of the BIO scheme which we assume here is
also known as IOB2

7https://pypi.org/project/nerblackbox/
8https://flxst.github.io/nerblackbox/
9https://pypi.org/project/black/

10https://pypi.org/project/mypy/

177

https://pypi.org/project/mlflow/
https://github.com/flxst/nerblackbox
https://pypi.org/project/nerblackbox/
https://flxst.github.io/nerblackbox/
https://pypi.org/project/black/
https://pypi.org/project/mypy/

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A Community Library for Natural Lan-
guage Processing. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Ben Lorica and Paco Nathan. 2021. 2021 NLP Survey
Report.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic Gradient Descent with Warm Restarts.
ArXiv:1608.03983 [cs, math].

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the Stability of Fine-tuning
BERT: Misconceptions, Explanations, and Strong
Baselines. ArXiv:2006.04884 [cs, stat].

Hiroki Nakayama. 2018. seqeval: A Python framework
for sequence labeling evaluation.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
Annotation Tool for Human.

T. C. Rajapakse. 2019. Simple Transformers.

Shaina Raza, Deepak John Reji, Femi Shajan, and
Syed Raza Bashir. 2022. Large-Scale Application
of Named Entity Recognition to Biomedicine and
Epidemiology. Pages: 2022.09.22.22280246.

Felix Stollenwerk. 2022. Adaptive Fine-Tuning of
Transformer-Based Language Models for Named En-
tity Recognition. ArXiv:2202.02617 [cs].

Felix Stollenwerk, Niklas Fastlund, Anna Nyqvist, and
Joey Öhman. 2022. Annotated Job Ads with Named
Entity Recognition. SLTC.

Maxim Tkachenko, Mikhail Malyuk, Andrey Hol-
manyuk, and Nikolai Liubimov. 2020. Label Studio:
Data labeling software.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An All-Round Python Library for Transformer-
based Named Entity Recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53–62, Online. Association
for Computational Linguistics.

Leandro Von Werra, Lewis Tunstall, Abhishek Thakur,
Sasha Luccioni, Tristan Thrush, Aleksandra Piktus,
Felix Marty, Nazneen Rajani, Victor Mustar, and He-
len Ngo. 2022. Evaluate & Evaluation on the Hub:
Better Best Practices for Data and Model Measure-
ments. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 128–136, Abu Dhabi,
UAE. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

178

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://gradientflow.com/2021nlpsurvey/
https://gradientflow.com/2021nlpsurvey/
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.2006.04884
https://doi.org/10.48550/arXiv.2006.04884
https://doi.org/10.48550/arXiv.2006.04884
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://github.com/ThilinaRajapakse/simpletransformers
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.48550/arXiv.2202.02617
https://doi.org/10.48550/arXiv.2202.02617
https://doi.org/10.48550/arXiv.2202.02617
https://2022.sltc.se/papers/SLTC22_paper_3062.pdf
https://2022.sltc.se/papers/SLTC22_paper_3062.pdf
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://aclanthology.org/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 179–189
December 6, 2023 ©2023 Association for Computational Linguistics

News Signals: An NLP Library for Text and Time Series

Chris Hokamp* and Demian Gholipour Ghalandari* and Parsa Ghaffari
Quantexa

<firstname><lastname>@quantexa.com

Abstract
We present an open-source Python library for
building and using datasets where inputs are
clusters of textual data, and outputs are se-
quences of real values representing one or more
time series signals. The news-signals li-
brary supports diverse data science and NLP
problem settings related to the prediction of
time series behaviour using textual data feeds.
For example, in the news domain, inputs are
document clusters corresponding to daily news
articles about a particular entity, and targets
are explicitly associated real-valued time se-
ries: the volume of news about a particular per-
son or company, or the number of pageviews
of specific Wikimedia pages. Despite many
industry and research use cases for this class
of problem settings, to the best of our knowl-
edge, News Signals is the only open-source
library designed specifically to facilitate data
science and research settings with natural lan-
guage inputs and time series targets. In addi-
tion to the core codebase for building and in-
teracting with datasets, we also conduct a suite
of experiments using several popular Machine
Learning libraries, which are used to establish
baselines for time series anomaly prediction
using textual inputs.

1 Introduction

The natural ordering of many types of data along
a time dimension is a consequence of the known
physics of our universe. Real-world applications of
machine learning often involve data with implicit
or explicit temporal ordering. Examples include
weather forecasting, market prediction, self-driving
cars, and language modeling.

A large body of work on time series forecast-
ing studies models which consume and predict
real-valued target signals that are explicitly or-
dered in time; however, aside from some exist-
ing work mainly related to market signal predic-
tion using social media (Chen et al., 2021, 2022;

*equal contribution

Figure 1: News Signals Datasets: clusters of documents,
bucketed by time period, are associated with time series
signals. ML models can be trained to predict time series
signals using the textual data.

Arno et al., 2022; Li et al., 2014; Bing et al., 2014;
Kim et al., 2016; Wang and Luo, 2021), inter alia,
the NLP research community has generally not
focused on tasks with textual inputs and time se-
ries outputs. This is confirmed by the lack of any
popular NLP tasks related to time series in result-
tracking projects such as nlp-progress1 and papers-
with-code2.

We believe there is potential for novel, impactful
research into tasks beyond market signal forecast-
ing, in which textual inputs and real-valued output
signals are explicitly organized along a time dimen-
sion with fixed-length "ticks". Two reasons for the
lack of attention to such tasks to date may be:

1. researchers do not have access to canonical
NLP datasets for time series forecasting.

2. data scientists are missing a high level soft-
ware library for NLP datasets with time series.

Examples of tasks where natural language input
can be used to predict a time series signal include:

• weather or pandemic forecasting using social
media posts from a recent time period,

• market signal prediction using newsfeeds or
bespoke textual data feeds,

1https://nlpprogress.com/
2https://paperswithcode.com/

179

https://nlpprogress.com/
https://paperswithcode.com/

• media monitoring for consumer behavior pre-
diction and forecasting,

• forecasting the impact of a news event on the
pageviews of a particular website,

and many others. We refer to this general task
setting as text2signal (T2S).

1.1 news-signals

This work introduces news-signals3, a high-
level MIT-licensed software package for building
and interacting with datasets where inputs are clus-
ters of texts, and outputs are time series signals
(Figure 1). Despite the package’s news-focused
origins, it is built to be a general purpose library
for interacting with time-ordered clusters of text
and associated time series signals.

Preparing and utilizing datasets for T2S tasks
requires purpose-built software for retrieving and
sorting data along the time dimension. In many
cases, data will be retrieved from one or more APIs,
or web-scraped, further complicating dataset gen-
eration pipelines. news-signals exposes an
intuitive interface for generating datasets that we
believe will be straightforward for any data sci-
entist or developer familiar with the Python data
science software stack (see Section 2).
news-signals includes tooling for:

• calling 3rd party APIs to populate signals with
text and time series data,

• visualizing signals and associated textual data,

• extending signals with new time series, feeds,
and transformations,

• aggregations on textual clusters, such as ab-
stractive and extractive summarization.

news-signals provides two primary inter-
faces: Signal and SignalsDataset. A
SignalsDataset represents a collection of re-
lated signals. A Signal consists of one or more
textual feeds, each connected to one or more time
series. Time series have strictly one real value
per-tick, while feeds are time-indexed buckets of
textual data. For example, a news signal might
contain a feed of all articles from a financial source
that mention a particular company, linked to multi-
ple time series representing relevant market signals
for that company.

3https://github.com/AYLIEN/
news-signals-datasets

news-signals datasets are designed to be easy
to extend with new data sources, entities, and time
series signals. In our initial release of the library,
we work with three collections of entities: US
politicians, NASDAQ-100 companies, and S&P
500 companies (see section 5).

The rest of the paper is organized as fol-
lows: section 2 gives an overview of library de-
sign and Section 3 describes the Signal and
SignalsDatasetAPIs, the two main interfaces
to time-indexed NLP datasets. Section 4 discusses
how datasets can be created. Section 5 describes
our example datasets, models, and end-to-end ex-
periments, which are open-source, and can be used
as templates for new research projects. Section 6
discusses applications, Section 7 reviews related
work, and Section 8 gives conclusions and direc-
tions for the future.

2 Time-Indexed NLP Datasets

Traditional NLP and ML datasets consist of iid
(X,Y) pairs. These pairs can be assigned indices,
and be operated on by standard pre-processing pro-
cedures, such as randomly shuffling and splitting
into train, dev, test subsets. However, for
time series forecasting and related tasks, inputs
are ordered along a time axis, and the distribution
of later time steps is typically heavily dependent
upon the distribution of earlier time steps; therefore,
training, dev and test subsets are usually partitioned
and split chronologically to reduce the potential
for leakage, introducing additional complexity into
data preparation.

Within the Python data science ecosystem, li-
braries such as Numpy (Harris et al., 2020), Pan-
das (Wes McKinney, 2010), and Pytorch (Paszke
et al., 2019) have standardized a syntax for in-
dexing and slicing multi-dimensional matrices and
dataframes along axes. When a Pandas dataframe
is indexed along a dimension with time-interval
semantics, slicing between dates or timestamps is a
very useful feature. For example, a user may want
to work with the news articles and corresponding
time series signals that occurred between particu-
lar START and END dates. Pandas in particular in-
cludes rich tooling for indexing and slicing datasets
along time-indexed axes, and news-signals
delegates slice commands and indexing to Pandas,
exposing an interface for interacting with datasets

180

https://github.com/AYLIEN/news-signals-datasets
https://github.com/AYLIEN/news-signals-datasets

using datetime indices4.

2.1 news-signals Technical Requirements

The key technical desiderata we took into consid-
eration when building news-signals are listed
below:

• the complexity of data retrieval should be min-
imized: calling APIs, retrying failed requests,
and parsing API output should be invisible to
users.

• large datasets containing hundreds or thou-
sands of signals, each lasting for thousands of
"ticks", should be straightforward to configure
and build.

• standard data science libraries such as Pandas
should be used as much as possible to reduce
maintenance burden over time.

• transformations on time series such as
anomaly detection or trend/seasonality re-
moval should be straightforward to imple-
ment.

• the complexity of compressing, saving, and
loading datasets locally and remotely should
be invisible to users.

• new types of signals should be easy to imple-
ment.

• Signals should be easy to use with standard
machine learning libraries.

3 The Signal and SignalsDataset
APIs

Signals consist of at least one time series coupled
with zero or more textual data feeds. Figure 2
shows an example of creating and populating a
Signal. Because most functions on the signal
class return the signal itself, users can employ a
convenient chaining syntax when performing mul-
tiple operations on a signal.

The library retrieves and stores the time series
and news stories for the signal, and exposes a
Pandas-like API to the underlying dataframes. We
can add arbitrary textual data feeds to signals; in fig-
ure 2, signal.sample_stories() samples
stories for every day of the time series (see library
documentation on GitHub for more detailed infor-
mation on how this works).

4https://pandas.pydata.org/docs/
reference/api/pandas.DatetimeIndex.html

import datetime
from news_signals import signals

wikidata QID for Twitter

qid = 'Q918'

signal = signals.AylienSignal(

name='Twitter-Signal',

params={"entity_ids": [qid]}

)

start = '2023-01-01'

end = '2023-06-01'

retrieve a timeseries for the count of

news articles per-day for this signal

signal = \

signal(start, end).anomaly_signal()

sample stories for every day in the signal

signal = signal.sample_stories()

let's have a look at the biggest anomaly

top_day = signal.anomalies.idxmax()

what was going on that day?

stories = signal.feeds_df.loc[top_day]['stories']

for s in stories:

print(s['title'])

Twitter experiencing outages nationwide

Twitter experiencing international outages ...

It's Not Just You, Twitter Is Acting Weird

: Twitter briefly goes down

Twitter outage: what happened, ...

#....

Figure 2: Creating and using a news signal

Once feeds and time series have been initialized,
users can perform exploratory data analysis (EDA)
in many ways, for example by examining and sum-
marizing the news stories for an anomalous window
of the signal’s time series, or by plotting the signal.

Signals can also be easily mapped into a single
dataframe representation by using the .df prop-
erty. Signals’ dataframe representations contain the
textual and time series data associated with a sig-
nal, indexed along a DatetimeIndex, but they
do not contain metadata such as how the signal
is populated from one or more APIs, and trans-
formation semantics such as how anomalies are
computed.

Signals automatically differentiate between tex-
tual data and time series data types – for example,
when signal.plot() is called, a signal’s as-
sociated time series are automatically plotted in a
multi-line plot.

181

https://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.html
https://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.html

3.1 API integrations

Most signals require retrieving data from one or
more third-party APIs or on-disk datasets. In the
current version of news-signals, we provide
a deep integration with the Aylien NewsAPI, and
additionally implement an interface to the Wikidata
pageviews API for building pageview time series
for Wikidata items 5.

3.2 The SignalsDataset API

Individual signals can be grouped into datasets.
The SignalsDataset is a useful abstraction
for working with groups of related signals — con-
cretely, these might be signals for all politicians
from a particular country, or for all companies
connected to a specific market subset, such as the
NASDAQ-100 or the S&P-500. Another dataset
type could contain signals encapsulating content
and time series related to different social media
forums, such as Subreddits (Wang and Luo, 2021).
The number of signals in a dataset can easily num-
ber in the hundreds or thousands, so we design
a simple configuration DSL using yaml to allow
easy construction of large datasets, which is docu-
mented in our GitHub repository.

Aylien NewsAPI and Wikimedia APIs Because
our production use cases for news-signals
are focused upon analyzing news data from
the Aylien NewsAPI6, the flagship Signal
type in news-signals is currently7 the
AylienSignal. This signal type ab-
stracts away API call semantics, allowing
users to populate a signal by simply calling
signal(start_date, end_date). Of
the data sources currently implemented in
news-signals, Wikidata is completely free,
but the Aylien NewsAPI requires a license key.
However, we note that the Aylien NewsAPI
currently has a two-week free trial allowing signif-
icant free API calls8, and we hope to implement
Signal types for fully public data sources beyond
Wikidata in the near future.

3.2.1 Saving and loading Datasets
Local and remote serialization and persistence are
essential features for dataset-focused libraries, and

5https://wikitech.wikimedia.org/wiki/
Analytics/AQS/Pageviews

6Aylien was acquired by Quantexa in February 2023
7as of August 2023
8https://aylien.com/news-api-signup

both Signal and SignalsDataset support saving and
loading. We have also implemented persistent on
Google Drive and Google Cloud Storage, that only
require a remote path to be provided. Datasets are
decompressed and cached locally so that the same
dataset will not be re-downloaded if it is already
available locally.

Library Documentation Section 3 has given
only a small sample of the news-signals li-
brary capabilities, and we refer interested readers
to the library documentation on GitHub, which also
includes end-to-end example notebooks and video
walkthroughs.

4 Building Signals Datasets

As discussed in section 3.2, news-signals pro-
vides an API for the creation of large-scale datasets
representing collections of related signals.

Bootstrapping Datasets using Wikidata The
Aylien NewsAPI links named entities in text to
their Wikidata IDs (Vrandečić and Krötzsch, 2014).
news-signals users can make use of the Wiki-
data Query Service9 to easily build new datasets
starting from SPARQL queries that return sets of
matching entities (Prud’hommeaux et al., 2013).
We build the datasets for NASDAQ-100, S&P 500,
and US Politicians in this manner, and the SPARQL
queries used to bootstrap these entity sets are avail-
able in our repository. For the purpose of this paper,
and to exemplify use of the library, we build three
example datasets: NASDAQ100, S&P 500, and US
Politicians. Each of these datasets is bootstrapped
from a list of Wikidata entities belonging to the
respective set. To retrieve the entity sets, we build
a SPARQL query returning the set of Wikidata
entities that match the query, and then use this en-
tity set to generate a dataset. This is a powerful
way to generate arbitrary datasets for collections of
related entities: for example, datasets for all politi-
cians from a particular country or all American
football players could be generated in this fash-
ion. Note that in some cases Wikidata does not
contain all entities in a particular set, for example,
the NASDAQ100 dataset contains fewer than 100
entities. Dataset statistics are summarized in Table
1. Each of the entity sets is retrieved via one or
more SPARQL queries10. We then use the Aylien

9https://query.wikidata.org/
10about SPARQL

182

https://wikitech.wikimedia.org/wiki/Analytics/AQS/Pageviews
https://wikitech.wikimedia.org/wiki/Analytics/AQS/Pageviews

NewsAPI11 to sample up to 20 stories about each
entity for each day of the time period Jan 2020-Jan
2023.

Multi-document Summarization (MDS) We
provide a multi-document summarization model
in news-signals for turning clusters of news
articles associated with a particular timestamp into
an easily readable summary. In particular, we use
a hybrid extractive-abstractive approach that first
uses a centroid-based sentence extraction method
(Gholipour Ghalandari, 2017) to select 5 key sen-
tences from the whole collection of provided news
articles. We generate an abstractive summary from
these sentences using a fine-tuned BART-large
model (Lewis et al., 2020). The model was fine-
tuned on such extractive summaries on the WCEP
dataset (Gholipour Ghalandari et al., 2020), which
contains compact event summaries with a neutral
style.

Sampling News Data for Entities Importantly,
we do not provide all news articles about each en-
tity, rather, we provide only a sample of the news
content about the entity for each day. This means
that successful models should predict the time-
series signal based upon the content of the article,
rather than global numerical features 12.

Connecting Entities with Timeseries Signals In
our example datasets, we focus upon entities that
exist in the Wikidata knowledge graph. Differ-
ent time series signal sources can be automatically
linked to these entities. The Wikimedia API itself
exposes several interesting time series signals, such
as the number of pageviews and the number of ed-
its for each page. We hypothesize that these signals
are affected by events occurring in the real world –
when an impactful event connected with an entity
occurs, there is likely to be an observable change
in signal behavior.

4.1 Dataset Release

To avoid potential licensing issues with releasing
the news data content of the example datasets, at
this stage we plan to only release the datasets con-
taining article titles instead of full article texts and
metadata. We also release a version of the datasets
with daily abstractive summaries of the content,

11https://aylien.com/
12We may also consider models such as vector auto-

regression that use signals derived from textual content as
well as real-valued signals

which do not reveal any source-specific content
or data. Both versions will be available by email
request to the authors13.

Extending NewsSignals Because our datasets
are grounded on the Wikidata knowledge graph,
they are easy to extend with new inputs, entities,
and signals. Obvious extensions to our work might
include textual data from platforms such as Twitter
and Reddit, and market signals such as stock price
or other technical indicators for entities that are con-
nected with publicly traded companies. Datasets
should also be easy to extend with additional en-
tities, and we provide a set of tools for extend-
ing NewsSignals in the accompanying code reposi-
tory14.

4.1.1 Docker Container and Example K8s
Configuration

Because news-signals is designed to be used
in both research and production settings, we have
also provided a Dockerfile and an example Kuber-
netes (K8s) job configuration that can be deployed
to Google Cloud Platform with minimal setup re-
quired. Together, these assets can be used to build
signals datasets at a regular cadence, for example
once a day or once a week.

5 Example Models and Experiments

This section presents a suite of example mod-
els and experiments for users to quickly adapt to
their own task settings, and to verify the utility of
news-signals by establishing baselines for a
straightforward anomaly prediction task.

5.1 Binary Anomaly Prediction Task
In this work, we focus on a simple binary anomaly
prediction task, which we treat as text classification.
The goal is to predict whether a time series signal
about a particular entity is anomalous during some
window in the past, present, or future, based on
textual information in news feeds about the entity.
The input for an individual prediction is a set of
news articles, an aspect (e.g. an entity) and the
target a binary anomaly indicator. For simplicity,
we predict the target value of a particular day from
the textual input of the same day.

We transform time series signals into binary
anomaly predictions with the following procedure:

13note also that all code used to produce the full datasets is
open source

14https://github.com/AYLIEN/
news-signals-datasets

183

https://github.com/AYLIEN/news-signals-datasets
https://github.com/AYLIEN/news-signals-datasets

Dataset Name Start-End Date Number of Signals Total Articles Time Series Targets
US Politicians 2020-01-01 to 2022-

12-31
100 1285238 news volume, Wiki-

media pageviews
NASDAQ-100 2020-01-01 to 2022-

12-31
99 1569139 news volume, Wiki-

media pageviews
S&P-500 2020-01-01 to 2022-

12-31
100 1728179 news volume, Wiki-

media pageviews

Table 1: Datasets Overview

5.2 Target Signals

We experiment with two different time series target
signals: anomalies time series of NewsAPI vol-
ume counts and Wikimedia page views. One target
time series consists of day-level binary values for
the time range of our datasets. We use a simple
anomaly detector to convert the raw time series sig-
nals into binary values, based on the Z-score: We
treat each value xt in a time series as an anomaly
if the following is true:

xt − µ

σ
> t (1)

where µ is the mean and σ standard deviation of a
time series. We set the anomaly threshold t (mea-
sured in standard deviations) to 3 which results
in a proportion of 1-3% positive examples in our
datasets.

5.3 Dataset Splits

Each of the three dataset is split chronologically
into training (80%), validation (10%) and test
(10%) sections. A trained model is informed about
all entities in the training data and is tested to apply
this knowledge to future data about these entities.
The split can also be done across entities to test
whether models can generalize to new entities. In
this work, we focus on the simpler setting where
the entities are known. Note that this does not apply
to the zero-shot baselines using LLMs discussed
below.

5.4 Balanced Sampling for Training

We preserve the validation and test dataset split as
they are, i.e. with a small amount of 1-3% of posi-
tive labels, and as continuous time periods. Since
training with this label imbalance results in poor re-
sults, we create modified training datasets from the
time period of the training split: we randomly sam-
ple 10,000 positive and 10,000 negative examples
for each dataset.

5.5 Compressing Textual Input
Since we are dealing with a large amount of text
for each individual prediction task, i.e. a set of 20
news articles, we need to compress these articles
into a shorter text to fit the input size of typical
current deep learning models. In our experiments,
we use the concatenation of all headlines of a day
as the textual input. We leave a comparison to
alternatives, e.g. multi-document summaries or
representative articles, to future work.

5.6 Models for Anomaly Classification
We include several text classification baselines that
predict the target based on one day of compressed
textual content:

Fine-tuned Transformer Classifier: We fine-
tune the pre-trained RoBERTa-base model (Liu
et al., 2019) with an un-trained randomly initial-
ized binary classification head. We fine-tune the
model on 1 epoch of the label-balanced training
examples with a batch size of 8, a learning rate of
2e-5 and a weight decay of 0.01, using the Adam
optimizer.

Random Forest with Sparse Lexical Features:
We train random forest models on binary lexi-
cal features, to explore how well the target sig-
nals are represented in surface-level text. We
use sklearn15 to extract sparse binary token-
indicator features, with a vocabulary of 10,000 to-
kens, excluding stop words. We train the models
with 100 trees and a maximum depth of 20. We
determined these values on the validation datasets.

Zero-Shot Classification with Llama-2 (13B):
We use Meta’s Llama-2-13b-chat 16 model
for zero-shot classification. We provide the 20
headlines of a day along with a prompt that de-
scribes the target signals as an input. The prompt
used in the presented experiments is shown in Ap-
pendix B.

15https://scikit-learn.org/
16https://huggingface.co/meta-llama/

Llama-2-13b-chat

184

https://scikit-learn.org/
https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/meta-llama/Llama-2-13b-chat

5.7 Evaluation and Results
We evaluate the binary anomaly classification task
using Precision, Recall and F1-score. We put the
results into perspective by comparing them to two
random baselines: random-uniform, i.e. randomly
classifying each input as an anomaly with a 50%
chance, and random-target, where we classify each
input as an anomaly with a probability set to the
proportion of positive examples in the test set. Ta-
ble 2 shows the results for anomaly classification
for news volume and Wikimedia pageviews as tar-
get signals. The trained models achieve above-
random f1-scores on most of the dataset-target
combinations, and obtain better results than the
zero-shot baseline. We discuss the results in more
detail in Appendix A. Figure 3 shows an example
of predicted anomalies, compared to the ground-
truth anomalies defined by the anomaly detection
method. The predicted anomalies in this example
consistently correspond to a spike of Wikipedia
page views on the day or shortly after the day on
which the input news stories were published.

Figure 3: Predicted and ground-truth anomalies of a
Wikipedia pageviews time series of US politician Karen
Bass. The predictions are from a random forest model
with sparse lexical features.

5.8 Extending to forecasting tasks
This experimental setup can easily be converted
into forecasting tasks by pairing the text content
of a particular day with the target signal shifted by
some offset into the future. By sliding our fore-
casting window earlier than the input, we can also
study how well today’s news predicts signals that
already happened. This may be more relevant for
signals that imply significant information asym-
metry, such as stock price, as opposed to signals

that are public by definition, such as Wikimedia
pageviews. Rather than binary anomaly targets, we
can train models to directly predict the real-valued
signal or quantized representations of the signal.

6 Intended Applications of NewsSignals

Time Series Forecasting using Texual Data As
discussed, time series signal forecasting is an im-
portant task which is relatively unexplored in the
context of models for natural language processing
(NLP).

Financial Data Analysis We believe that this
dataset and task setting should be straightforward
to adapt to financial time series analysis. Financial
time series such as stock price and trading volume
are impacted by real-world events. The behavior of
market signals reflects sentiment about particular
entities, and is influenced by events happening in
the world. However, market signals may contain
opaque and confounding factors that make accurate
prediction more challenging. Although this work
deliberately does not consider market signals, it is
very straightforward to add market time series such
as stock price(s) or trading volume to signals.

NLP for Healthcare The text2signal task
setting is well-suited to the emerging field of
BioNLP or NLP for Healthcare – for example, pre-
dicting the number of hospital visits in subsequent
months based upon a collection of doctor’s notes
from preceding months, or forecasting total medi-
cal expenditure in subsequent months based upon
the content of a doctor’s notes.

Sentiment To date, sentiment analysis datasets
have been created by human annotation. However,
the annotation task is difficult to fully specify, and
impossible to scale to real-world volumes of data.
An insight is that there are many real world signals
that can be considered proxies to sentiment, most
obviously market signals, especially when the defi-
nition of sentiment is constrained to specific (entity,
aspect) pairs. Instead of using model-derived senti-
ment to forecast time series, market signals can be
used as ground-truth proxies to sentiment annota-
tions.

Social Sciences Social scientists may be
interested in the tooling we have built around
the Wikidata SPARQL endpoint, because
news-signals allows users to easily build a set
of signals connected to any set of Wikidata entities.

185

Target Signal News Volume
Model/Dataset Nasdaq-100 Smp-500 US-politicians

prec rec f1 %pos prec rec f1 %pos prec rec f1 %pos
Random - uniform 0.01 0.43 0.02 0.5 0.01 0.49 0.02 0.49 0.03 0.5 0.05 0.51
Random - target 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.04 0.03
Sparse + RF 0.19 0.58 0.28 0.04 0.12 0.30 0.18 0.03 0.20 0.28 0.23 0.04
RoBERTa-base 0.12 0.69 0.2 0.08 0.1 0.52 0.17 0.05 0.21 0.69 0.33 0.08
Llama-2-13b-chat 0.03 0.71 0.06 0.16 0.03 0.47 0.05 0.1 0.05 0.46 0.1 0.22
Target Signal Wikimedia Pageviews
Model/Dataset Nasdaq-100 Smp-500 US-politicians

prec rec f1 %pos prec rec f1 %pos prec rec f1 %pos
Random - uniform 0.02 0.46 0.03 0.5 0.02 0.52 0.04 0.49 0.02 0.51 0.03 0.5
Random - target 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02
Sparse + RF 0.01 0.09 0.02 0.12 0.02 0.11 0.04 0.11 0.22 0.16 0.19 0.01
RoBERTa-base 0.01 0.09 0.03 0.11 0.03 0.19 0.05 0.13 0.18 0.57 0.28 0.05
Llama-2-13b-chat 0.02 0.21 0.04 0.3 0.05 0.24 0.08 0.24 0.04 0.52 0.07 0.22

Table 2: Evaluation results for anomaly classification experiments. %pos indicates the proportion of positive
predicted labels.

In one of our example datasets, we produced
a signal for every living US politician present
in Wikidata, and we believe that many social
scientists will be researching similar specific sets
of entities and related time series signals.

This section discusses potential applications for
news-signals and directions for future work.

Causality News-signals may be useful for NLP
researchers working on tasks related to causal-
ity, because time series signals are well-suited to
causality research. In general, we wish to find out
what types of information are likely to impact time
series signals. Concretely, we may believe that
there is a true causal relationship between news
and the edit rate on Wikimedia pages.

7 Related Work

NLP and Time Series Dataset Libraries
news-signals can be seen as sitting between
NLP-focused dataset libraries such as Hugging-
face Datasets (Lhoest et al., 2021) and time se-
ries focused libraries such as GluonTS and KATS
(Alexandrov et al., 2019; Jiang et al., 2022). We
specifically build tooling for working with datasets
with textual inputs and time series outputs, and
news-signals is complementary to and com-
patible with other popular NLP and time series
libraries.

Granger Causality It is natural to consider
whether the content of textual inputs "caused" an
observed time series signal behavior. Granger
causality (Granger, 1969) is a method of measur-
ing the degree to which one signal may cause an-
other. Marcinkevičs and Vogt (2021) propose a

framework for discovering Granger Causality with
interpretable neural networks.

Summary graphs (Peters et al., 2017) are a useful
way of compressing relationships about Granger
causality. Wen et al. (2017) introduce a flexible
RNN architecture for time series forecasting. Nour-
bakhsh and Bang (2019) is a position paper dis-
cussing the use of PLMs for anomaly detection on
financial data.

Time Series prediction with Textual Inputs As
discussed in Section 1, one significant line of work
focuses on predicting financial time series using
signals derived from text, in particular aggregations
of sentiment scores from social media posts (Chen
et al., 2021, 2022; Arno et al., 2022; Li et al., 2014;
Bing et al., 2014; Kim et al., 2016; Wang and Luo,
2021), inter alia.

PLMs and Transfer Learning Recently, signif-
icant work has been done to adapt transformer-
based models in particular to time series forecast-
ing tasks with flexible semantics (Wen et al., 2023).

Timeline Summarization from News Corpora
A related line of work within the NLP commu-
nity is constructing timelines of important events
from large collections of news focused on long-
term topics, e.g. disasters or entities (Martschat
and Markert, 2018). The methods for identifying
important events often make use of time-series-like
signals defined over dates: the number of articles
published per day or the number of times the date
is mentioned in text (Tran et al., 2013; Ghalandari
and Ifrim, 2020).

186

8 Conclusion

We have presented news-signals, an open
source library for building and working with NLP
datasets that predict time series signals based on
textual inputs. We hope that this library can be
useful to a broad group of researchers and data
scientists in both academic and industry settings.
Naturally, we would be very happy for additional
contributions from the open source community to
further improve the library.

References
Alexander Alexandrov, Konstantinos Benidis, Michael

Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski, Danielle C. Maddix, Syama Sun-
dar Rangapuram, David Salinas, Jasper Schulz,
Lorenzo Stella, Ali Caner Türkmen, and Yuyang
Wang. 2019. Gluonts: Probabilistic time series mod-
els in python. CoRR, abs/1906.05264.

Henri Arno, Klaas Mulier, Joke Baeck, and Thomas De-
meester. 2022. Next-year bankruptcy prediction from
textual data: Benchmark and baselines. In Proceed-
ings of the Fourth Workshop on Financial Technology
and Natural Language Processing (FinNLP), pages
187–195, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Li Bing, Keith C. C. Chan, and Carol Ou. 2014. Public
sentiment analysis in twitter data for prediction of a
company’s stock price movements. In Proceedings
of the 2014 IEEE 11th International Conference on
E-Business Engineering, ICEBE ’14, page 232–239,
USA. IEEE Computer Society.

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura,
and Hsin-Hsi Chen, editors. 2021. Proceedings of
the Third Workshop on Financial Technology and
Natural Language Processing. -, Online.

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura,
and Hsin-Hsi Chen, editors. 2022. Proceedings of
the Fourth Workshop on Financial Technology and
Natural Language Processing (FinNLP). Association
for Computational Linguistics, Abu Dhabi, United
Arab Emirates (Hybrid).

Demian Gholipour Ghalandari and Georgiana Ifrim.
2020. Examining the state-of-the-art in news time-
line summarization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 1322–1334.

Demian Gholipour Ghalandari. 2017. Revisiting the
centroid-based method: A strong baseline for multi-
document summarization. EMNLP 2017, page 85.

Demian Gholipour Ghalandari, Chris Hokamp,
Nghia The Pham, John Glover, and Georgiana Ifrim.
2020. A large-scale multi-document summarization

dataset from the Wikipedia current events portal.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1302–1308, Online. Association for Computational
Linguistics.

C W J Granger. 1969. Investigating Causal Relations
by Econometric Models and Cross-Spectral Methods.
Econometrica, 37(3):424–438.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy.
Nature, 585(7825):357–362.

Xiaodong Jiang, Sudeep Srivastava, Sourav Chatterjee,
Yang Yu, Jeffrey Handler, Peiyi Zhang, Rohan Bopar-
dikar, Dawei Li, Yanjun Lin, Uttam Thakore, Michael
Brundage, Ginger Holt, Caner Komurlu, Rakshita
Nagalla, Zhichao Wang, Hechao Sun, Peng Gao,
Wei Cheung, Jun Gao, Qi Wang, Marius Guerard,
Morteza Kazemi, Yulin Chen, Chong Zhou, Sean
Lee, Nikolay Laptev, Tihamér Levendovszky, Jake
Taylor, Huijun Qian, Jian Zhang, Aida Shoydokova,
Trisha Singh, Chengjun Zhu, Zeynep Baz, Christoph
Bergmeir, Di Yu, Ahmet Koylan, Kun Jiang, Ploy
Temiyasathit, and Emre Yurtbay. 2022. Kats.

Young Bin Kim, Jun Gi Kim, Wook Kim, Jae Ho Im,
Tae Hyeong Kim, Shin Jin Kang, and Chang Hun
Kim. 2016. Predicting fluctuations in cryptocurrency
transactions based on user comments and replies.
PLOS ONE, 11(8):1–17.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online

187

http://arxiv.org/abs/1906.05264
http://arxiv.org/abs/1906.05264
https://doi.org/10.18653/v1/2022.finnlp-1.25
https://doi.org/10.18653/v1/2022.finnlp-1.25
https://doi.org/10.1109/ICEBE.2014.47
https://doi.org/10.1109/ICEBE.2014.47
https://doi.org/10.1109/ICEBE.2014.47
https://aclanthology.org/2021.finnlp-1.0
https://aclanthology.org/2021.finnlp-1.0
https://aclanthology.org/2021.finnlp-1.0
https://aclanthology.org/2022.finnlp-1.0
https://aclanthology.org/2022.finnlp-1.0
https://aclanthology.org/2022.finnlp-1.0
https://doi.org/10.18653/v1/2020.acl-main.120
https://doi.org/10.18653/v1/2020.acl-main.120
https://ideas.repec.org/a/ecm/emetrp/v37y1969i3p424-38.html
https://ideas.repec.org/a/ecm/emetrp/v37y1969i3p424-38.html
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/facebookresearch/Kats
https://doi.org/10.1371/journal.pone.0161197
https://doi.org/10.1371/journal.pone.0161197
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846

and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiaodong Li, Haoran Xie, Li Chen, Jianping Wang, and
Xiaotie Deng. 2014. News impact on stock price
return via sentiment analysis. Know.-Based Syst.,
69(1):14–23.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ričards Marcinkevičs and Julia E Vogt. 2021. In-
terpretable models for granger causality using self-
explaining neural networks. In International Confer-
ence on Learning Representations.

Sebastian Martschat and Katja Markert. 2018. A tempo-
rally sensitive submodularity framework for timeline
summarization. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 230–240.

Armineh Nourbakhsh and Grace Bang. 2019. A frame-
work for anomaly detection using language modeling,
and its applications to finance.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
2017. Elements of Causal Inference: Foundations
and Learning Algorithms. Adaptive Computation
and Machine Learning. MIT Press, Cambridge, MA.

Eric Prud’hommeaux, Steve Harris, and Andy Seaborne.
2013. SPARQL 1.1 Query Language. Technical
report, W3C.

Giang Bihn Tran, Mohammad Alrifai, and Dat
Quoc Nguyen. 2013. Predicting relevant news events
for timeline summaries. In Proceedings of the 22nd
International Conference on World Wide Web, pages
91–92. ACM.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Charlie Wang and Ben Luo. 2021. Predicting $GME
stock price movement using sentiment from Reddit
r/wallstreetbets. In Proceedings of the Third Work-
shop on Financial Technology and Natural Language
Processing, pages 22–30, Online. -.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen,
Ziqing Ma, Junchi Yan, and Liang Sun. 2023. Trans-
formers in time series: A survey. In International
Joint Conference on Artificial Intelligence(IJCAI).

Ruofeng Wen, Kari Torkkola, Balakrishnan (Murali)
Narayanaswamy, and Dhruv Madeka. 2017. A multi-
horizon quantile recurrent forecaster. In NeurIPS
2017.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 – 61.

A Discussion of Anomaly Classification
Results

The trained models, i.e. RoBERTa-base and the
random forest with sparse features achieve consid-
erable improvements over random results on most
of the dataset-target combinations, with mixed
rankings. In these cases, the models detect 50-
70 % of the anomalies while only predicting 3-
8% anomalies in total, which is a promising pat-
tern. All baselines show close-to-random results
on Nasdaq-100 and Smp-500 with Wikimedia
Pageviews. Zero-shot anomaly prediction with
Llama-2-13b-chat generally performs worse
than the trained models, but still better than the
random baselines. Our zero-shot approach suffers
from over-prediction of the positive class - a behav-
ior that is difficult to tune when designing prompts.
We leave more systematic prompt tuning for this
task to future work.

B Prompting for Zero-Shot Approach

We use the following prompt template for
LLama-2-13b-chat to do anomaly classifica-
tion from news:

Headlines: {{HEADLINES}} The stories above
all involve {{ENTITY}} and were published on the
same day. Do these news stories indicate one of the
most significant events for {{ENTITY}}? Respond
with ’no’ or ’yes’.

We instantiate the placeholders with headlines
and an entity name (person or company) for a spe-
cific data item.

We use the following system prompt: You are an
anomaly detector for news.

We formatted the prompt according to the
LLama-2-specific pattern.

A key issue in this zero-shot approach is to con-
trol the overall proportion of times an anomaly is
detected in a dataset, i.e. to express the signif-
icance or importance of news stories to entities.

188

https://doi.org/10.1016/j.knosys.2014.04.022
https://doi.org/10.1016/j.knosys.2014.04.022
https://openreview.net/forum?id=DEa4JdMWRHp
https://openreview.net/forum?id=DEa4JdMWRHp
https://openreview.net/forum?id=DEa4JdMWRHp
https://doi.org/10.48550/ARXIV.1908.09156
https://doi.org/10.48550/ARXIV.1908.09156
https://doi.org/10.48550/ARXIV.1908.09156
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference
http://www.w3.org/TR/sparql11-query
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://aclanthology.org/2021.finnlp-1.4
https://aclanthology.org/2021.finnlp-1.4
https://aclanthology.org/2021.finnlp-1.4
https://www.amazon.science/publications/a-multi-horizon-quantile-recurrent-forecaster
https://www.amazon.science/publications/a-multi-horizon-quantile-recurrent-forecaster
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a

Signal-specific prompts, e.g. directly describing
Wikipedia pageviews or news volume, turn out less
effective than this generic description.

189

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 190–198
December 6, 2023 ©2023 Association for Computational Linguistics

PyTAIL: An Open Source Tool for Interactive and Incremental Learning
of NLP Models with Human in the Loop for Online Data

Shubhanshu Mishra∗

shubhanshu.com
mishra@shubhanshu.com

Jana Diesner
University of Illinois at Urbana-Champaign

jdiesner@illinois.edu

Abstract

Online data streams make training machine
learning models hard because of distribution
shift and new patterns emerging over time. For
natural language processing (NLP) tasks that
utilize a collection of features based on lexi-
cons and rules, it is important to adapt these
features to the changing data. To address this
challenge we introduce PyTAIL, a python li-
brary, which allows a human in the loop ap-
proach to actively train NLP models. PyTAIL
enhances generic active learning, which only
suggests new instances to label by also suggest-
ing new features like rules and lexicons to label.
Furthermore, PyTAIL is flexible enough for
users to accept, reject, or update rules and lexi-
cons as the model is being trained. Finally, we
simulate the performance of PyTAIL on exist-
ing social media benchmark datasets for text
classification. We compare various active learn-
ing strategies on these benchmarks. The model
closes the gap with as few as 10% of the train-
ing data. Finally, we also highlight the impor-
tance of tracking evaluation metric on remain-
ing data (which is not yet merged with active
learning) alongside the test dataset. This high-
lights the effectiveness of the model in accu-
rately annotating the remaining dataset, which
is especially suitable for batch processing of
large unlabelled corpora. PyTAILwill be open
sourced and available at https://github.
com/socialmediaie/pytail.

1 Introduction

Analysis of large scale natural language corpora of-
ten requires annotation of dataset in a given domain
with pre-trained models. Generally, these models
are pre-trained on a fixed training dataset which
is often different from the domain of the dataset
under consideration. This often leads to poor per-
formance of the model on this new domain. One

∗Work done while at University of Illinois at Urbana-
Champaign.

way to address this gap is to utilize domain adapta-
tion (Sarawagi, 2008; Daumé III, 2007) to improve
the model accuracy. However, efficient domain
adaptation requires labeled training data from the
new domain, which is costly to acquire. The prob-
lem gets compounded for social media data (Mishra
et al., 2015, 2014; Mishra and Diesner, 2016, 2018),
for which the vocabulary and language usage con-
tinuously evolve over time (Mishra et al., 2019,
2020b; Mishra and Mishra, 2019). Take the exam-
ple of sentiment classification, where the ways of
expressing the same opinion also change with time.
For example, the opinion label of the phrase “you
are just like subject", will depend on the general
opinion about “subject" when the phrase was ex-
pressed. Similarly, many new words are coined on
social media (Eisenstein, 2013; Gupta et al., 2010).
This poses a challenge for maintaining these mod-
els retain their accuracy over time. In this work, we
propose an approach to alleviate this issue by cre-
ating a system based on active human-in-the-loop
learning which incrementally updates an existing
classifier by requiring an user to provide few new
examples from the new data. Traditionally, this
setup, called active learning (Settles, 2009) only
deals with suggesting new training examples to
annotate. However, since many NLP models use
feature based on existing rules or lexicons, with
changing data characteristics it may be more desir-
able to also suggest rule and lexicon updates in the
model. Our system PyTAIL (Python Text Analy-
sis and Incremental Learning) addresses the issues
highlighted here by allowing human-in-the-loop ac-
tive learning systems to integrate new data points,
rules, and lexicons. Our main contributions are
as follows: (i) Introduce PyTAIL, an open source
tool with an active learning workflow which uses
new data, rules, and lexicons to continuously train
NLP models. (ii) Introduce a social media text clas-
sification benchmark for active learning research.
(iii) Introduce an evaluation setup on unconsumed

190

https://github.com/socialmediaie/pytail
https://github.com/socialmediaie/pytail

data in active learning to quantify how quickly a
corpus can be fully annotated with a reasonable
accuracy.

2 Incremental learning of models with
human in the loop

In this section we describe PyTAIL (Python Text
Analysis and Incremental Learning). PyTAIL’s
goal is to enable efficient construction of training
data using active learning, while supporting incre-
mental learning of models using the most recent
data. A description of PyTAIL workflow is shown
in figure 1. PyTAIL is built with the following
features in mind: (i) Low cost of continuous train-
ing data acquisition (ii) Incorporation of domain
knowledge using lexicon and rules (iii) Efficient
update of model using only the newly acquired
training data.

Lexicons and Rules Traditional active learning
systems usually rely on only using the data as an
input. However, PyTAIL’s focus is on involving
humans at multiple stages of the learning process.
Hence, PyTAIL relies on data, a set of lexicons,
and a set of rules. The lexicons are used for count-
ing lexicon matches, e.g. positive or negative words
from sentiment lexicons. Rules are arbitrary rules
for generating features from the data, e.g. presence
of a regular expression pattern. The lexicons are
often used via a rule to count lexicon matches in
the text. These lexicons and rules are used to help
human annotators make better decisions on anno-
tating the data and also help in the training of the
model. Our rules are inspired from the Labeling
function approach of Snorkel (Ratner et al., 2019),
however, they differ as they are used as feature
generator.

Overview As shown in figure 1, the user starts
with a collection of artifacts in the Bootstrap Stage.
This can include an pre-trained model, a small seed
training dataset, existing rules, and lexicons. Next,
the user introduces their unlabeled data stream from
their domain of interest, e.g. social media corpora.
The bootstrap artifacts are used to predict this data
stream. These predictions are then fed to the query
strategy (described below) to identify artifacts for
the suggestion stage. The user can then accept,
reject, update these suggestions or even introduce
new suggestions. Next, the model is updated using
updated artifacts such that the rules and lexicons
are used for updating the model features and the

annotated data is used for updating the model. Fi-
nally, PyTAIL shows continuous evaluation met-
rics which include metric on a test set, user ac-
cepted training set, and unobserved data stream.
This process is repeated till a stopping criteria is
met, e.g. the exhaustion of data stream or achiev-
ing reasonable evaluation score. PyTAIL supports
two modes for training, one is human in the loop
(HITL) mode, and another is simulation mode. The
simulation model uses pre-defined heuristics to sim-
ulate human actions based on model prediction
scores. The default model when applied to bench-
mark datasets is the simulation mode.

Human in the loop (HITL) mode In the HITL
mode, PyTAIL uses the pre-trained model to sug-
gest top K instances to the user. The user can sort
the instances using the scoring criterion. In order to
reduce the cognitive work of labeling an instance
from scratch, the user is shown the model predic-
tions (as well as the label probability). The user
is only required to edit the labels if they disagree.
Model predictions for all the unlabeled instances
from the top suggestions are now used as gold la-
bels and fed to the model during the update process
(this is similar to self-supervision with the possibil-
ity of human intervention). The user is also shown
the prominent features for that instance, the user
can select these features and mark them as useful
or useless. Lexicon matches with the annotations
are also shown, along with prominent key phrases
in the unlabeled data stream. The user can choose
to update the lexicon with these new suggestions.
Once the model update has happened, the user is
provided feedback on the change in model evalua-
tion on a held out data.

3 Benchmark for social media active
learning

We introduce an active learning benchmark of 10
social media text classification datasets consisting
of 200K posts. These datasets cover sentiment
classification, abusive content identification, and
uncertainty indication and is derived from the So-
cialMediaIE benchmark (Mishra, 2021, 2020a,b).
The dataset is available at https://zenodo.
org/doi/10.5281/zenodo.7236429.

3.1 Sentiment classification
For sentiment classification we use the same data
as in (Mishra and Diesner, 2018). A description
of these data is shown in table 1a. Clarin (Mozetič

191

https://zenodo.org/doi/10.5281/zenodo.7236429
https://zenodo.org/doi/10.5281/zenodo.7236429

Training Data

Rules

Lexicons

Bootstrap Stage

Base Model

New Training Data

Rules

Lexicons

Online Stage

New Model

Unlabeled
Data Stream

Data to Label

New Rules

New Lexicons

Suggestions
User

Accept / Reject / Update

Repeat

Suggest
Test Data Metrics

Remaining Data
Metrics

Evaluation

Predict

Annotated
Data Stream

Query Strategy

Figure 1: PyTAIL Workflow: Given a user and an unlabeled data stream, along with some bootstrapping
artifacts, PyTAIL suggests data instances, rules, and lexicons which can be merged with bootstrapping artifacts to
continuously create new model.

(a) Description of sentiment classification datasets. Datasets
clustered together are enclosed between horizontal lines. Labels
are negative, neutral, positive.

data split tokens tweets vocab

Airline
dev 20079 981 3273
test 50777 2452 5630
train 182040 8825 11697

Clarin
dev 80672 4934 15387
test 205126 12334 31373
train 732743 44399 84279

GOP
dev 16339 803 3610
test 41226 2006 6541
train 148358 7221 14342

Healthcare
dev 15797 724 3304
test 16022 717 3471
train 14923 690 3511

Obama
dev 3472 209 1118
test 8816 522 2043
train 31074 1877 4349

SemEval
dev 105108 4583 14468
test 528234 23103 43812
train 281468 12245 29673

(b) Description of abusive content classification datasets.
Datasets which are clustered together are enclosed between
horizontal lines. Labels for Founta are abusive, hateful,
normal, and spam. Labels for WaseemSRW are none, racism,
and sexism.

data split tokens tweets vocab

Founta
dev 102534 4663 22529
test 256569 11657 44540
train 922028 41961 118349

WaseemSRW
dev 25588 1464 5907
test 64893 3659 10646
train 234550 13172 23042

(c) Description of uncertainty indicators dataset. Datasets
which are clustered together are enclosed between horizontal
lines. Labels for Riloff are sarcasm and not sarcasm. Labels
are for Swamy are definitely no, definitely yes, probably no,
probably yes, and uncertain.

data split tokens tweets vocab

Riloff
dev 2126 145 1002
test 5576 362 1986
train 19652 1301 5090

Swamy
dev 1597 73 738
test 3909 183 1259
train 14026 655 2921

Table 1: Benchmark Datasets for Social Media Active Learning

192

et al., 2016) and SemEval are the two largest cor-
pora. However, SemEval has a larger test set. All
the sentiment datasets use the traditional labels
of positive, neutral, and negative for labeling the
tweets.

3.2 Abusive content classification

The second task we consider is abusive content
classification. This task has recently gained promi-
nence, owing to the the growth of abusive content
on social media platforms. We utilize two datasets
of abusive content. The first data is Founta from
(Founta et al., 2018), which tags tweets as abu-
sive, hateful, normal, spam. The second dataset is
WaseemSRW from (Waseem and Hovy, 2016). It
tags the data as none, racism, sexism. The ratio-
nale for including both these data under the same
task it the core idea of identifing abusive content
either direct or using racist or sexist variation. A
description of these data is shown in table 1b.

3.3 Uncertainty indicators

Finally, we consider a collection of datasets for the
task of identifying uncertainty indicators. Uncer-
tainty indicators are defined as indicators in text
which capture a level of uncertainty about the text,
e.g., veridictality or sarcasm (uncertainty in in-
tended meaning). We consider two datasets for
this task as well. The first dataset is Riloff from
(Riloff et al., 2013). This dataset consists of tweets
annotated for sarcasm and non-sarcasm. The sec-
ond dataset is Swamy from (Swamy et al., 2017).
This dataset tries to identify the level of veridic-
tality or degree of belief expressed in the tweet.
The label set for this data is definitely no, proba-
bly no, uncertain, probably yes, definitely yes. A
description of these data is shown in 1c.

4 PyTAIL for Social Media Text
Classification

Model We use a logistic regression model with
L2 regularization. The regularization parameter is
selected for each model using cross validation. We
track the model scores on the held out test as well
as validation data. Each text is represented using
a set of features. Each tweet is tokenized and pre-
processed by normalizing all mentions of hashtags,
URLs, and mentions. We also use a large senti-
ment lexicon1. Furthermore, we suggest including

1https://github.com/juliasilge/tidytext/blob/master/data-
raw/sentiments.csv

a domain specific negative filter, i.e., words which
should not be used to identify classification signals.
For sentiment classification this can be entities in
the corpora which should not bias the model.

Query selection strategies Active learning algo-
rithms (Settles, 2009) identify most informative
instances from unlabeled data that can be used
to construct a high quality training dataset. The
process of identifying informative instances is
called query selection. Top instances Xselected

from the unlabeled data Xunlabeled are identified
based on a score. We consider two types of score:
(i) entropy =

∑
i pi ∗ log(pi) - higher is better

(ii) min−margin = maxi ̸=⋆{pi−p⋆ | p⋆ = maxj pj}
- lower is better. The entropy based scoring favors
model predictions with highest randomness. The
min-margin based scoring is useful in ensuring
that the difference between the top prediction
score and the second top prediction score is
less. The selection is done using three strategies:
(i) Rand: Instances are selected randomly without
considering their scores, this acts as a baseline.
(ii) Xtop: Top K instances are selected based on
their scores (X). (iii) Xprop: K instances are
sampled proportional to their scores (X). This
adds a degree of randomness to the top k strategy.
These new instances are then added to the existing
training instances Xtrain = Xtrain ∪ Xselected,
and the model is retrained.

Evaluation on remaining dataset Active learn-
ing systems often just track the test dataset per-
formance. However, we observe another dataset
which is not used for training, it is the left over
dataset Xleft after selecting the examples in each
round. Xleft is continously decreasing and track-
ing the performance of the model on Xleft can
reveal how fast can an in-distribution dataset be ac-
curately annotated using the specific querying strat-
egy. This is suitable for simulation mode where
the whole dataset (Xleft = Xunlabeled) is already
annotated.

Simulation Experiments Human annotation for
PyTAIL can be simulated.First, Xtrain is set to
N = 100 random samples from Xunlabeled. In
each round, Xselect is K (K=100) instances from
Xunlabeled based on the scoring criterion described
above. We conduct 100 rounds of active learning
(200 for Clarin as it is a very large dataset) and
evaluate the models using the micro-f1 score. We
also compare against a model trained on the full

193

Table 2: Performance of query strategies across datasets using around 10% training dataset.

task dataset round N Nleft %used Full Rand Etop Eprop Mtop Mprop

Test Dataset

ABUSIVE Founta 42 41,861 37,661 0.10 0.79 0.77 0.78 0.78 0.79 0.77
WaseemSRW 14 13,072 11,672 0.11 0.82 0.79 0.78 0.77 0.78 0.76

SENTIMENT Airline 9 8,725 7,825 0.10 0.82 0.76 0.78 0.79 0.77 0.77
Clarin 45 44,299 39,799 0.10 0.66 0.63 0.61 0.62 0.63 0.63
GOP 8 7,121 6,321 0.11 0.67 0.63 0.64 0.63 0.62 0.64
Healthcare 1 590 490 0.17 0.59 0.64 0.60 0.61 0.60 0.60
Obama 2 1,777 1,577 0.11 0.63 0.56 0.60 0.58 0.59 0.57
SemEval 13 12,145 10,845 0.11 0.65 0.59 0.60 0.61 0.58 0.61

UNCERTAINITY Riloff 2 1,201 1,001 0.17 0.78 0.77 0.76 0.77 0.76 0.79
Swamy 1 555 455 0.18 0.39 0.39 0.40 0.39 0.34 0.31

Remaining Dataset

ABUSIVE Founta 42 41,861 37,661 0.10 NaN 0.77 0.80 0.78 0.81 0.78
WaseemSRW 14 13,072 11,672 0.11 NaN 0.78 0.79 0.77 0.80 0.76

SENTIMENT Airline 9 8,725 7,825 0.10 NaN 0.75 0.79 0.79 0.80 0.78
Clarin 45 44,299 39,799 0.10 NaN 0.62 0.62 0.62 0.64 0.63
GOP 8 7,121 6,321 0.11 NaN 0.62 0.64 0.62 0.63 0.63
Healthcare 1 590 490 0.17 NaN 0.53 0.56 0.53 0.47 0.50
Obama 2 1,777 1,577 0.11 NaN 0.54 0.56 0.57 0.56 0.56
SemEval 13 12,145 10,845 0.11 NaN 0.61 0.62 0.62 0.63 0.62

UNCERTAINITY Riloff 2 1,201 1,001 0.17 NaN 0.80 0.82 0.84 0.82 0.81
Swamy 1 555 455 0.18 NaN 0.37 0.40 0.40 0.33 0.36

194

0 25 50 75
round

0.70

0.75

0.80

Airline

0 50 100 150 200
round

0.55

0.60

0.65

Clarin

0 20 40 60
round

0.55

0.60

0.65

GOP

0 2 4 6
round

0.58

0.60

0.62

0.64
Healthcare

0 5 10 15
round

0.525

0.550

0.575

0.600

0.625

Obama

0 25 50 75 100
round

0.50

0.55

0.60

0.65
SemEval

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(a) Sentiment classification

0 25 50 75 100
round

0.72

0.74

0.76

0.78

Founta

0 25 50 75 100
round

0.70

0.75

0.80

WaseemSRW

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(b) Abusive content detection

0 5 10
round

0.76

0.78

0.80
Riloff

0 2 4 6
round

0.30

0.35

0.40

Swamy

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(c) Uncertainty indicators

Figure 2: Progression of active learning classifier performance (micro f1-score) on the respective test set across 100
rounds of active learning (200 for Clarin). The annotation budget for each round is 100 instances, and the model is
warm started with 100 random samples of the training data. Black dotted line is the classifier performance when
trained on all of the training data. Data ordered alphabetically and X and Y axes are not shared.

195

0 25 50 75
round

0.7

0.8

0.9

1.0
Airline

0 50 100 150 200
round

0.55

0.60

0.65

0.70

0.75
Clarin

0 20 40 60
round

0.4

0.6

0.8

1.0
GOP

0 2 4
round

0.5

0.6

0.7

Healthcare

0 5 10 15
round

0.5

0.6

0.7

0.8

0.9

Obama

0 25 50 75 100
round

0.5

0.6

0.7

0.8

0.9
SemEval

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(a) Sentiment classification

0 25 50 75 100
round

0.75

0.80

0.85
Founta

0 25 50 75 100
round

0.7

0.8

0.9

WaseemSRW

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(b) Abusive content detection

0 5 10
round

0.00

0.25

0.50

0.75

1.00
Riloff

0 2 4
round

0.30

0.35

0.40

Swamy

random
entropy_top
entropy_proportional
min_margin_top
min_margin_proportional

(c) Uncertainty indicators

Figure 3: Progression of active learning classifier performance (micro f1-score) on the respective unselected data set
across 100 rounds of active learning (200 for Clarin). The annotation budget for each round is 100 instances, and
the model is warm started with 100 random samples of the training data. Data ordered alphabetically and X and Y
axes are not shared.

196

data (Full). The experimental results on the test
split of each data are shown in figure 2 and table 2.
We observe that the top K strategy is usually the
best followed by the proportional strategy across
all data. For larger datasets we see that the model
closes the gap very soon. We also show experi-
mental results on the Xleft part of the training data
in figure 3. We observe that the top K strategy is
consistently the best, followed by the proportional
strategy across all data. The increase in perfor-
mance on the Xleft is indicative of the fact that
active learning ensures that the remaining data is
actually easy to annotate without human correction.
This evaluation presents a more practical usage pat-
tern of ML models. This usage pattern requires
annotating pre-selected and large Xunlabeled. In re-
ality, once the dataset is selected, one is interested
in reducing the size of Xtrain to efficiently anno-
tate the data. We think, it is in this setting that the
active learning is most beneficial. If the user can
achieve high labeling accuracy by annotating few
samples, then the user’s job is done.

5 Conclusion

We described experiments for evaluating active
learning approaches for text classification tasks
on tweet data. We introduced, PyTAIL, an open
source user interface for active learning of NLP
models by only requiring the user to update the
labels for the model prediction if required. We also
release a benchmark dataset for social media ac-
tive learning. One limitation of our work is that
our experiments are only conducted using simple
linear model as they are easier to experiment with
for sparse text features which we used for feature
importance. However, the API does not place any
restriction on the type of model.

In the future we plan to extend this strategy to
non classification tasks for Social Media datasets
e.g. structured prediction tasks like Named Entity
Recognition, POS tagging, and Chunking (Mishra
and Diesner, 2016; Mishra et al., 2020a; Eskander
et al., 2022; Mishra and Haghighi, 2021; Mishra,
2019; Mishra et al., 2022; Mishra, 2020c).
PyTAIL is available as an open source tool at

https://github.com/socialmediaie/
pytail/ and our dataset is available at
https://zenodo.org/doi/10.5281/
zenodo.7236429.

References
Hal Daumé III. 2007. Frustratingly Easy Domain Adap-

tation. Association for Computational Linguistic
(ACL)s, (June):256–263.

Jacob Eisenstein. 2013. What to do about bad language
on the internet.

Ramy Eskander, Shubhanshu Mishra, Sneha Mehta,
Sofia Samaniego, and Aria Haghighi. 2022. Towards
improved distantly supervised multilingual named-
entity recognition for tweets. In Proceedings of the
The 2nd Workshop on Multi-lingual Representation
Learning (MRL), pages 115–124, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large Scale
Crowdsourcing and Characterization of Twitter Abu-
sive Behavior. In International AAAI Conference on
Web and Social Media.

Manish Gupta, Rui Li, Zhijun Yin, and Jiawei Han.
2010. Survey on social tagging techniques. ACM
SIGKDD Explorations Newsletter, 12(1):58.

Shubhanshu Mishra. 2019. Multi-dataset-multi-task
Neural Sequence Tagging for Information Extraction
from Tweets. In Proceedings of the 30th ACM Con-
ference on Hypertext and Social Media - HT ’19,
pages 283–284, New York, New York, USA. ACM
Press.

Shubhanshu Mishra. 2020a. Information Extraction
from Digital Social Trace Data with Applications to
Social Media and Scholarly Communication Data.
ACM SIGIR Forum, 54(1).

Shubhanshu Mishra. 2020b. Information extraction
from digital social trace data with applications to
social media and scholarly communication data.
Ph.d. dissertation, University of Illinois at Urbana-
Champaign.

Shubhanshu Mishra. 2020c. Non-neural Structured Pre-
diction for Event Detection from News in Indian Lan-
guages. In Working Notes of FIRE 2020 - Forum for
Information Retrieval Evaluation, Hyderabad, India.
CEUR Workshop Proceedings, CEUR-WS.org.

Shubhanshu Mishra. 2021. Information extraction from
digital social trace data with applications to social
media and scholarly communication data. SIGWEB
Newsl., 2021(Spring).

Shubhanshu Mishra, Sneha Agarwal, Jinlong Guo,
Kirstin Phelps, Johna Picco, and Jana Diesner. 2014.
Enthusiasm and support. In Proceedings of the 2014
ACM conference on Web science - WebSci ’14, pages
261–262, New York, New York, USA. ACM Press.

197

https://github.com/socialmediaie/pytail/
https://github.com/socialmediaie/pytail/
https://zenodo.org/doi/10.5281/zenodo.7236429
https://zenodo.org/doi/10.5281/zenodo.7236429
https://doi.org/10.1.1.110.2062
https://doi.org/10.1.1.110.2062
https://aclanthology.coli.uni-saarland.de/papers/N13-1037/n13-1037 https://www.aclweb.org/anthology/N13-1037
https://aclanthology.coli.uni-saarland.de/papers/N13-1037/n13-1037 https://www.aclweb.org/anthology/N13-1037
https://doi.org/10.18653/v1/2022.mrl-1.12
https://doi.org/10.18653/v1/2022.mrl-1.12
https://doi.org/10.18653/v1/2022.mrl-1.12
http://arxiv.org/abs/1802.00393 https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17909
http://arxiv.org/abs/1802.00393 https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17909
http://arxiv.org/abs/1802.00393 https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17909
https://doi.org/10.1145/1882471.1882480
https://doi.org/10.1145/3342220.3344929
https://doi.org/10.1145/3342220.3344929
https://doi.org/10.1145/3342220.3344929
https://doi.org/10.1145/3451964.3451981
https://doi.org/10.1145/3451964.3451981
https://doi.org/10.1145/3451964.3451981
https://www.ideals.illinois.edu/items/115573
https://www.ideals.illinois.edu/items/115573
https://www.ideals.illinois.edu/items/115573
https://ceur-ws.org/Vol-2826/T10-2.pdf
https://ceur-ws.org/Vol-2826/T10-2.pdf
https://ceur-ws.org/Vol-2826/T10-2.pdf
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/2615569.2615667

Shubhanshu Mishra, Sneha Agarwal, Jinlong Guo,
Kirstin Phelps, Johna Picco, and Jana Diesner. 2019.
Tweet IDs annotated for enthusiasm and support to-
wards social causes: CTE, cyberbullying, and LGBT.

Shubhanshu Mishra and Jana Diesner. 2016. Semi-
supervised Named Entity Recognition in noisy-text.
In Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT), pages 203–212, Osaka,
Japan. The COLING 2016 Organizing Committee.

Shubhanshu Mishra and Jana Diesner. 2018. Detecting
the Correlation between Sentiment and User-level
as well as Text-Level Meta-data from Benchmark
Corpora. In Proceedings of the 29th on Hypertext
and Social Media - HT ’18, pages 2–10, New York,
New York, USA. ACM Press.

Shubhanshu Mishra, Jana Diesner, Jason Byrne, and
Elizabeth Surbeck. 2015. Sentiment Analysis with
Incremental Human-in-the-Loop Learning and Lexi-
cal Resource Customization. In Proceedings of the
26th ACM Conference on Hypertext & Social Media -
HT ’15, pages 323–325, New York, New York, USA.
ACM Press.

Shubhanshu Mishra and Aria Haghighi. 2021. Im-
proved Multilingual Language Model Pretraining for
Social Media Text via Translation Pair Prediction.
In Proceedings of the Seventh Workshop on Noisy
User-generated Text (W-NUT 2021), pages 381–388,
Online. Association for Computational Linguistics.

Shubhanshu Mishra, Sijun He, and Luca Belli. 2020a.
Assessing Demographic Bias in Named Entity Recog-
nition. In Bias in Automatic Knowledge Graph Con-
struction - A Workshop at AKBC 2020.

Shubhanshu Mishra and Sudhanshu Mishra. 2019. 3Id-
iots at HASOC 2019: Fine-tuning Transformer Neu-
ral Networks for Hate Speech Identification in Indo-
European Languages. In Proceedings of the 11th an-
nual meeting of the Forum for Information Retrieval
Evaluation.

Shubhanshu Mishra, Aman Saini, Raheleh Makki,
Sneha Mehta, Aria Haghighi, and Ali Mollahosseini.
2022. Tweetnerd - end to end entity linking bench-
mark for tweets. In Advances in Neural Information
Processing Systems, volume 35, pages 1419–1433.
Curran Associates, Inc.

Sudhanshu Mishra, Shivangi Prasad, and Shubhan-
shu Mishra. 2020b. Multilingual Joint Fine-
tuning of Transformer models for identifying
Trolling,Aggression and Cyberbullying at TRAC
2020. In Proceedings of the Second Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2020).

Igor Mozetič, Miha Grčar, Jasmina Smailović, H Alani,
Igor Mozetič, and A Scala. 2016. Multilingual Twit-
ter Sentiment Classification: The Role of Human
Annotators. PLOS ONE, 11(5):e0155036.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2019.
Snorkel: rapid training data creation with weak su-
pervision. The VLDB Journal, 29(2-3):709–730.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De
Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as Contrast between a Positive Sentiment
and Negative Situation. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 704–714, Seattle, Washing-
ton, USA. Association for Computational Linguis-
tics.

Sunita Sarawagi. 2008. Information extraction. Foun-
dation and Trends in Databases, 1(3):261–377.

Burr Settles. 2009. Active Learning Literature Survey.
Technical report, University of Wisconsin–Madison.

Sandesh Swamy, Alan Ritter, and Marie-Catherine
de Marneffe. 2017. "i have a feeling trump will
win..................": Forecasting Winners and Losers
from User Predictions on Twitter. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1583–1592, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

198

https://doi.org/10.13012/B2IDB-2603648{_}V1
https://doi.org/10.13012/B2IDB-2603648{_}V1
http://aclanthology.info/papers/semi-supervised-named-entity-recognition-in-noisy-text http://aclweb.org/anthology/W16-3927
http://aclanthology.info/papers/semi-supervised-named-entity-recognition-in-noisy-text http://aclweb.org/anthology/W16-3927
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/2700171.2791022
https://doi.org/10.1145/2700171.2791022
https://doi.org/10.1145/2700171.2791022
https://doi.org/10.18653/v1/2021.wnut-1.42
https://doi.org/10.18653/v1/2021.wnut-1.42
https://doi.org/10.18653/v1/2021.wnut-1.42
http://arxiv.org/abs/2008.03415
http://arxiv.org/abs/2008.03415
https://proceedings.neurips.cc/paper_files/paper/2022/file/09723c9f291f6056fd1885081859c186-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/09723c9f291f6056fd1885081859c186-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1371/journal.pone.0155036
https://doi.org/10.1371/journal.pone.0155036
https://doi.org/10.1371/journal.pone.0155036
https://doi.org/10.1007/s00778-019-00552-1
https://doi.org/10.1007/s00778-019-00552-1
https://aclweb.org/anthology/papers/D/D13/D13-1066/
https://aclweb.org/anthology/papers/D/D13/D13-1066/
https://doi.org/10.1561/1500000003
http://burrsettles.com/pub/settles.activelearning.pdf
https://doi.org/10.18653/v1/D17-1166
https://doi.org/10.18653/v1/D17-1166
https://doi.org/10.18653/v1/D17-1166
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 199–211
December 6, 2023 ©2023 Association for Computational Linguistics

Antarlekhaka: A Comprehensive Tool for
Multi-task Natural Language Annotation

Hrishikesh Terdalkar and Arnab Bhattacharya
{hrishirt, arnabb} @cse.iitk.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur, India

Abstract

One of the primary obstacles in the advance-
ment of Natural Language Processing (NLP)
technologies for low-resource languages is the
lack of annotated datasets for training and test-
ing machine learning models. In this paper,
we present Antarlekhaka, a tool for manual
annotation of a comprehensive set of tasks rele-
vant to NLP. The tool is Unicode-compatible,
language-agnostic, Web-deployable and sup-
ports distributed annotation by multiple simul-
taneous annotators. The system sports user-
friendly interfaces for 8 categories of annota-
tion tasks. These, in turn, enable the annota-
tion of a considerably larger set of NLP tasks.
The task categories include two linguistic tasks
not handled by any other tool, namely, sen-
tence boundary detection and deciding canoni-
cal word order, which are important tasks for
text that is in the form of poetry. We pro-
pose the idea of sequential annotation based on
small text units, where an annotator performs
several tasks related to a single text unit before
proceeding to the next unit. The research ap-
plications of the proposed mode of multi-task
annotation are also discussed. Antarlekhaka
outperforms other annotation tools in objective
evaluation. It has been also used for two real-
life annotation tasks on two different languages,
namely, Sanskrit and Bengali. The tool is avail-
able at https://github.com/Antarlekhaka/code.

1 Introduction and Motivation

Manual annotation plays an important role in nat-
ural language processing (NLP). It is particularly
important in the context of low-resource languages
for the creation of datasets.

There are a number of syntactic and semantic
tasks in NLP which can utilize annotation by do-
main experts. Lemmatization, morphological anal-
ysis, parts-of-speech tagging, named entity recog-
nition, dependency parsing, constituency parsing,
co-reference resolution, sentiment detection, dis-
course analysis and so on are some examples of

such common NLP tasks.
There’s a need of considering historical con-

text and respecting the perspectives of Indigenous
language speaking communities when conducing
NLP research involving these languages (Schwartz,
2022). Sanskrit, a classical language, has a large
amount of text available digitally; however, it still
suffers from poor performance in standard NLP
tasks. Hence, manual annotation of text in Sanskrit
is of prime necessity. Further, most of the clas-
sical Sanskrit literature is in poetry form follow-
ing mostly free word order (Kulkarni et al., 2015),
without any punctuation marks. Therefore, certain
specialized tasks, such as sentence boundary detec-
tion and canonical word ordering, are needed for
Sanskrit text processing

Consider an example1 from a Sanskrit text,
Valmiki Ramayana, (Dutt et al., 1891) shown in
Fig. 1. The sentence boundaries are denoted using
square brackets ([and]). The half-verse boundaries
are marked by single forward slashes (/) and the
verse boundaries by two forward slashes (//). It can
be observed that the sentence boundaries do not
coincide with the verse boundaries. In particular,
there may be multiple sentences present in a single
verse, or a sentence may extend across multiple
verses. Further, the right side of the arrow shows
that the canonical word order is different from the
order in which words appear in the original text.

For such languages that either do not use punc-
tuations or use them in a limited amount, sentence
boundary detection is an important task. Addition-
ally, in languages with relatively free word order,
decision of a canonical word order is also relevant.
These two tasks also play a vital role when deal-
ing with the corpora in the form of poetry, making
them potentially relevant for all languages.

Performing multiple annotation tasks on the

1Using IAST transliteration scheme: https:
//en.wikipedia.org/wiki/International_Alphabet_of_
Sanskrit_Transliteration

199

https://github.com/Antarlekhaka/code
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration

[na rocate mama-api-etad-ārye]1 [yad-rāghavo vanam /
tyaktvā rājyaśriyaṃ gacchet]2 [striyā vākyavaśaṃ gataḥ // 2
viparītaś ca vṛddhaś ca viṣayaiś ca pradharṣitaḥ /
nṛpaḥ kim iva na brūyāc codyamānaḥ samanmathaḥ // 3]3
[...]

[ārye etad mama api na rocate]1
[yad rāghavo rājyaśriyaṃ tyaktvā vanam gacchet]2
[viparītaḥ vṛddhaḥ ca viṣayaiḥ pradharṣitaḥ ca codyamānaḥ
samanmathaḥ ca striyā vākyavaśaṃ gataḥ nṛpaḥ kim iva na brūyāt]3
[...]

Figure 1: Sanskrit verses from Valmiki Ramayana. Original text appears on the left with sentence boundary markers
added. The canonical word order is shown on the right.

same corpus is common, and the order of these
tasks can be important due to their interdependence.
Specifically, in cases2 where sentence boundary de-
tection is relevant, it must be performed before any
other annotation task. For instance, determining
the word order of a sentence requires finalizing the
constituent words first. The same holds true for
tasks such as dependency parsing, sentence classi-
fication, and discourse analysis.

In this paper, we describe Antarlekhaka3, a
tool for distributed annotation that provides user-
friendly interfaces to facilitate the annotation pro-
cess of various common NLP tasks in a straight-
forward and efficient way. We propose a sequen-
tial annotation model, where an annotator carries
out multiple annotation tasks relevant for a small
text unit, such as a verse, before proceeding to
the next. The tool has full Unicode support and
is designed to be language-agnostic, meaning it
can be used with corpora from any language, mak-
ing it highly versatile. The tool sports eight task-
specific user-friendly annotation interfaces corre-
sponding to eight general categories of NLP tasks:
sentence boundary detection, canonical word or-
dering, free-form text annotation of tokens, token
classification, token graph construction, token con-
nection, sentence classification and sentence graph
construction. The goal of the tool is to streamline
the annotation process, making it easier and more
efficient for annotators to complete multiple NLP
tasks on the same corpus. Annotators can partic-
ipate in the annotation without any programming
knowledge. Additionally, the tool’s easy setup and
intuitive administrator interface make it accessible
to administrators with minimal technical expertise.

2 Background

An annotation tool is crucial for the successful com-
pletion of any annotation task, and its success relies
heavily on its usability for the annotators. Apart
from this, the tool should be easily installable and

2For corpora without clear sentence boundaries, like lan-
guages with limited punctuation or poetic corpora

3Antarlekhaka is a Sanskrit word meaning ‘annotator’.

should support web deployment for distributed an-
notation, allowing multiple annotators to work on
the same task from different locations. The admin-
istration interface of the tool should also be intu-
itive and should provide convenient access to com-
mon administrative tasks such as corpus upload,
ontology creation, and user access management.
Additionally, often there is a need for multiple an-
notation tasks to be completed on the same corpus.
A well-designed annotation tool should encompass
these features to ensure a smooth, efficient, and
accurate annotation process.

Numerous text annotation tools are available that
target specific annotation tasks, such as WebAnno
(Yimam et al., 2013), INCePTION (Klie et al.,
2018), GATE Teamware (Bontcheva et al., 2013),
FLAT (van Gompel, 2014), BRAT (Stenetorp et al.,
2012), doccano (Nakayama et al., 2018) and more.
However, each of these tools falls short in fulfilling
all the requirements of an ideal annotation tool. For
instance, WebAnno is rich in features but becomes
complex to use and experiences performance is-
sues as the number of lines displayed on the screen
increases. Both WebAnno and BRAT lack full
support for Firefox (Fort, 2016), an issue that was
rectified in INCEpTION. GATE Teamware suffers
from shortcomings such as inadequate support for
relation and co-reference annotation (Herik et al.,
2018), installation issues (Neves and Ševa, 2021)
and complexity for average users (Yimam et al.,
2013). FLAT uses a non-standard FoLiA XML data
format and the system is not intuitive (Neves and
Ševa, 2021). BRAT has not been actively4 devel-
oped and exhibits issues such as slowness, limited
scope for configuration and limitations regarding
file formats (Yimam et al., 2013). The tool doc-
cano, although simple to set up and intuitive, only
supports labeling tasks. Sangrahaka (Terdalkar and
Bhattacharya, 2021), while being easy to set up
and use, focuses only on the annotation towards
creation of knowledge graphs and lacks support
towards general-purpose NLP annotation tasks.

Some annotation tools including INCEpTION

4The latest version was published in 2012

200

Table 1: Comparison of NLP annotation tools based on primary features and supported tasks

INCEpTION GATE BRAT FLAT doccano Sangrahaka Antarlekhaka

Distributed Annotation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Easy Installation ✓ ✓ ✓ ✓ ✓
Sequential Annotation ✓
Querying Interface ✓
Token Text Annotation ✓ ✓ ✓ ✓ ✓
Token Classification ✓ ✓ ✓ ✓ ✓ ✓
Token Graph ✓ ✓ ✓ ✓ ✓ ✓
Token Connection ✓ ✓ ✓ ✓ ✓ ✓
Sentence Boundary ✓ ✓
Word Order ✓
Sentence Classification ✓ ✓
Sentence Graph ✓

use spans for marking most annotations, which a
user by selecting and dragging mouse cursor over
the corpus text. This method, while versatile, has
a trade-off that the annotation process is slower
and more tedious. Importantly, none of these tools
address crucial tasks like canonical word ordering.
Hence, there is a need for an annotation tool that is
user-friendly, easy to install and deploy, and encom-
passes all the necessary tasks for NLP annotation.

Thus, for the general purpose multi-task annota-
tion of NLP tasks, we present Antarlekhaka. The
annotation is performed in a sequential manner on
small units of text (e.g., verses in poetry). The
application is language and corpus agnostic. The
tool is able to process data in two different for-
mats: the standard CoNLL-U5 format and plain
text format. Regular-expressions based tokenizer
is applied when using the data in plain text format.

Tab. 1 shows a comparison of the prominent an-
notation tools. We also conduct an objective eval-
uation of Antarlekhaka using the scoring method-
ology proposed by (Neves and Ševa, 2021). We
modify the criteria suitable to the domain of NLP
annotation. Details of the evaluation are described
in Sec. 4. It is important to note that while some
of the existing tools, in theory, have the capabil-
ity to support certain NLP tasks, they may not be
designed with user-friendly interfaces.

3 Architecture

Antarlekhaka is a language-agnostic, multi-task,
distributed annotation tool presented as a Web-
deployable software. The tool makes use of several
technologies, including Python 3.8 , Flask 2.2.2 ,
and SQLite 3.38.3 for the backend, and HTML5,
JavaScript, and Bootstrap 4.6 for the frontend.

Flask web framework powers the backend of
Antarlekhaka providing a robust and scalable in-

5https://universaldependencies.org/format.html

frastructure. A web framework is responsible for
a range of backend tasks, including routing, tem-
plating, managing user sessions, connecting to
databases and others. The recommended way to
run the tool in a production environment is using
a Web Server Gateway Interface (WSGI) HTTP
server, such as Gunicorn , which can operate be-
hind a reverse proxy server such as NGINX or
Apache HTTP Server . However, any WSGI server,
including the built-in server of Flask, can be uti-
lized to run the application.

SQLite is used as the database management sys-
tem to store and manage the data and metadata
associated with the annotation tasks. An Object
Relational Mapper (ORM) SQLAlchemy6 is used
to interact with the relational database. This allows
the user to choose any supported dialect of tradi-
tional SQL, such as SQLite, MySQL , PostgreSQL ,
Oracle , MS-SQL , Firebird , Sybase and others7.

The frontend of the tool, built using HTML5,
JavaScript, and Bootstrap, provides user-friendly
interfaces for annotators and administrators. The
tool provides a feature-rich administrative interface
to manage user access, corpus, tasks and ontology.
The tool also includes eight types of intuitive anno-
tation interfaces, explained in detail in Sec. 3.3.

The tool simplifies setup with a single configura-
tion file that controls various customizable aspects.
Overall, by combining the state-of-the-art technolo-
gies, Antarlekhaka offers a powerful and flexible
solution for large-scale annotation projects.

3.1 Workflow

The workflow of the system is demonstrated in
Fig. 2. The application is presented as a full-stack
web-based software. It follows a single-file configu-
ration system. An administrator may configure the
tool and deploy it to web, making it immediately

6https://www.sqlalchemy.org/
7https://docs.sqlalchemy.org/en/20/dialects/

201

https://universaldependencies.org/format.html
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/20/dialects/

Upload
Corpus

Setup
Tasks

Task 1

Database

Administrator

Annotator

Visualize

Export

Task 2

Task n

Unit 1

Task 1

Task 2

Task n

Unit 2

Annotation

Figure 2: Workflow of Antarlekhaka

available for use. User registration is supported.
User access is controlled by a 4-tier permission sys-
tem, namely User, Annotator, Curator and Admin.

The tool has eight annotation interface templates
corresponding to eight generic categories of NLP
annotation tasks: sentence boundary detection,
canonical word order, free-form token annotation,
token classification, token graph construction, to-
ken connection, sentence classification, and sen-
tence graph construction. Various NLP tasks can be
modelled using each of these categories. More than
one tasks of same category may be required for a
specific annotation project. For example, named en-
tity recognition (NER) and parts-of-speech (POS)
tagging are both examples of token classification.
To facilitate this, the administrative interface allows
an administrator to create multiple tasks of each
category. Additionally, an administrator can also
control the set of active tasks, order of the tasks,
ontology for the relevant tasks, corpus management
and user access management.

We propose a streamlined sequential mode of
annotation where an annotator completes multiple
tasks for a single unit of text before moving on to
the next unit. The set and order of tasks is cus-
tomizable through an administrative interface. We
consider a small logical block of text as a unit for
the annotation, e.g., a verse from the poetry corpus.

3.2 Data

The data for corpus can be in either of two for-
mats: CoNLL-U format or plain text format and
can contain Unicode text. CoNLL-U is a widely
used format for linguistic annotation, and it is based
on the column format for treebank data. The for-
mat is designed to store a variety of linguistic an-
notations, including part-of-speech tags, lemmas,
morphological features, and dependencies between
words in a sentence. Data in CoNLL-U format can

be obtained from treebanks such as Universal De-
pendencies (De Marneffe et al., 2021), which is
a project that aims to develop cross-linguistically
consistent treebank annotation. In addition, NLP
tools such as Stanza (Qi et al., 2020) are capable of
processing a general corpus of text and producing
data in CoNLL-U format.

Plain text data is processed using a regular-
expression based tokenizer, which is a process that
splits the text into individual units of meaning, such
as verses, lines and tokens using patterns defined
in the form of regular expressions to identify the
respective separators. The plain text processor mod-
ule is a pluggable component. An administrator
may reimplement it using any language specific
features or tools as long as the data output by the
module meets the current format specifications.

After the data has been imported, it is organized
in a five-level hierarchy structure consisting of:
Corpus, Chapter, Verse, Line, and Token. The hier-
archical structure of the data provides a clear and
organized framework for annotating and analyzing
the data, making it easier to capture the relation-
ships between different elements of the data.

3.3 Task Categories and Interfaces

The annotation supports annotation towards eight
categories of annotation tasks and offers intuitive
interfaces for each category. Annotators view the
corpus in the form of text units (e.g., verses) on
the left, and an annotation area on the right. After
submitting annotations for a task, the interface au-
tomatically advances to the next task. Annotators
are expected to complete all the tasks associated
with a text unit before moving on to the next unit.
This, however, is not strictly enforced, allowing
annotator to still go back to modify annotations.
Fig. 3 showcases the overall annotation interface.

The administrator can configure task-related in-
formation, including task titles, instructions, active
tasks, and their order, through the administrative
interface. This interface is illustrated in Fig. 5
(Appx. A). Tasks such as user access management,
corpus creation, and ontology management also
have intuitive administrative interfaces. Next, we
provide a detailed description of each task category
and its corresponding interface.

3.3.1 Sentence Boundary Detection
The importance of the sentence boundary task is
not limited to languages without distinct sentence
markers; it also pertains to poetry text, making it

202

Figure 3: Annotation Interface: a Sanskrit corpus split into small units, and annotation area with task tabs

relevant to all languages.
The annotator’s task is to identify and mark sen-

tence boundaries by placing the delimiter ‘##’ (two
‘hash’ symbols) at the end of each sentence in the
provided editable text area prefilled with the orig-
inal text. If the sentence does not end in the dis-
played unit, the user does not add any delimiters.
After marking sentence boundaries, the user can
proceed to the next annotation task. An illustration
of this annotation task is shown in Fig. 6 (Appx. A).

It is worth mentioning that although the sentence
boundary task is given primary citizen treatment,
it can still be turned off for languages where it is
not applicable. In such instances, the boundaries
of annotation text units (e.g., verses) are treated as
sentence boundaries.

3.3.2 Canonical Word Order
All sentences that end in the current unit of text
are displayed to the annotator as a list of sortable
tokens. The annotator can rearrange these tokens
into the correct canonical word order by dragging
them into place. Additionally, if any tokens are
missing, the annotator can add them as well. A
visual representation of this task is shown in Fig. 7
(Appx. A). The sorting capability is made possible
through the use of the jQuery UI (Sortable plugin)8.

3.3.3 Token Annotation
The token annotation interface allows an annotator
to add free-form text associated with every token.
This free-form text can have different purposes,
such as to identify the root word of a word (lemma-
tization), to separate multi-word expressions into
individual words (compound splitting), to analyze
the morphological structure of a word (morpholog-
ical analysis), etc. The token annotation interface
is shown in Fig. 8 (Appx. A).

8https://api.jqueryui.com/sortable/

3.3.4 Token Classification
Token classification is a process of assigning pre-
defined categories to individual tokens in text data.
It is a special case of free-form token annotation,
wherein the annotations are guided by an ontology.
For such a task, an administrator must create an on-
tology. During the annotation process, an annotator
is provided with a list of tokens, each accompanied
by a dropdown menu, from which they can select
the appropriate category for relevant tokens. Some
common examples of token classification tasks in-
clude NER, dependency tagging, POS tagging, and
compound classification. Fig. 9 (Appx. A) illus-
trates the token classification interface.

3.3.5 Token Graph
A token graph is a graph representation of the sen-
tence, where the nodes are tokens belonging to a
single sentence and the relations are based on an
ontology. Tasks such as dependency parse tree,
constituency graph, action graph are examples of
tasks belonging to this category.

Semantic triple9 is a standard format to repre-
sent and store graph-structured information in a
relational database in a systematic manner. The in-
terface allows an annotator to add multiple relations
per sentence in the form of subject-predicate-object
triples, where subject and object are tokens from
the sentence and the predicate is a relation from the
task specific ontology. The valid values of subject,
object and predicate appear in individual dropdown
menu elements for the annotator to choose from.
Erroneous triples may also be removed. During
the annotation process, an annotator can view the
current status of the token graph at any time using
the ‘Show Graph’ button. Fig. 10 (Appx. A) shows
the token graph interface with graph visualization.

9https://en.wikipedia.org/wiki/Semantic_triple

203

https://api.jqueryui.com/sortable/
https://en.wikipedia.org/wiki/Semantic_triple

3.3.6 Token Connection
Token connection is similar to token graph, how-
ever, there is a single type of relation to be cap-
tured. For example, when marking co-references,
only connecting the two tokens to each other is
sufficient, while the relationship ‘is-coreference-of’
is implicit. The tool provides a special simplified
interface for this scenario. In addition to implicit
relations, token connections can also be established
across sentences. The annotator is presented with
a list of clickable tokens from the current sentence
as well as tokens from a context window of pre-
vious n (a configuration parameter with default
as 5) sentences. The annotator can add a connec-
tion by clicking on the source token and the target
token one after the other and confirming the con-
nection. If a connection is added in error, it can
be removed as well. In some cases, a connection
might extend beyond the default context window.
To address this, we have incorporated a button that
an annotator can click to load additional context
when needed. The token connection interface is
shown in Fig. 11 (Appx. A).

3.3.7 Sentence Classification
Sentence classification is a task where sentences
are classified into different categories, e.g., senti-
ment classification and sarcasm detection. This
task is similar to ontology-driven token classifi-
cation, with the difference being that classes are
associated with sentences rather than tokens. The
ontology is predefined by the administrator while
setting up the task. The annotator can select the
category for a sentence from a dropdown menu.
Fig. 12 (Appx. A) illustrates the sentence classifi-
cation interface.

3.3.8 Sentence Graph
Sentence graph is a graph representation of rela-
tionships between sentences, captured as subject-
predicate-object triples. The connections can be be-
tween tokens or complete sentences. Tokens from
the previous n (a configuration parameter with de-
fault as 5) sentences are presented as buttons ar-
ranged in the annotated word order. An annotator
creates connections by clicking on the source and
target tokens and selecting the relationship from
a dropdown menu based on an ontology. A spe-
cial token is provided to denote the entire sentence
as an object. Tasks such as timeline annotation
and discourse graphs are examples of tasks belong-
ing to this category. Fig. 13 (Appx. A) shows the

interface for creating sentence graph connections.
Similar to the token graph task, an annotator can
also visualize the sentence graph.

3.4 Clone Annotations

The administrative interface offers the capability
to replicate annotations from one user to another.
This feature proves valuable in cases where certain
annotators possess expertise in specific tasks or if
an annotator leaves a task incomplete, requiring
another annotator to resume the task from their
account. The cloned annotations are displayed just
like regular annotations. However, they maintain
the source information, including the annotator’s
ID and a reference to the original annotation.

3.5 Pluggable Heuristics

The tool supports the use of heuristics as ‘pre-
annotations’ to assist annotators. Heuristics are cus-
tom functions that generate suggestions for the an-
notators to use or ignore. These heuristics are often
specific to the language and corpus, and thus, must
be implemented by the administrator when setting
up the tool. The codebase of the tool outlines the
format and type specifications of the heuristics,
making them a pluggable component.

3.6 Progress Report

Detailed progress tracking serves multiple essen-
tial functions. Firstly, it provides project managers
with the capability to allocate resources effectively
and oversee the distribution of tasks among chap-
ters. This facilitates the early detection of potential
bottlenecks or areas needing extra focus. Moreover,
the breakdown of progress contributes to streamlin-
ing the annotation process, guaranteeing the steady
advancement of all chapters and tasks at an opti-
mal rate. To facilitate this, we’ve developed an
interface that offers a comprehensive overview of
annotators’ progress. This interface provides a de-
tailed breakdown of advancements on a per-chapter
and per-task basis, enabling thorough tracking and
evaluation of their contributions.

3.7 Export

The export interface enables the access, retrieval
and visualization of the annotated data for each task
in a clear and straightforward manner. Annotator
can easily view and export the data in two formats
(1) a human-readable format for easy inspection
and (2) a machine-readable format compatible with

204

the standard NLP tools. The specifics of the stan-
dard format depend on the task. For example, a
standard format for NER datasets is the BIO format
(Tjong Kim Sang and De Meulder, 2003), which
stands for begin, inside, and outside. The B-tag
marks the beginning of a named entity, while the
I-tag indicates the continuation of a named entity.
The O-tag signifies that a word is not part of a
named entity. Fig. 14 (Appx. A) illustrates the ex-
port interface showcasing the capability to export
NER data in the standard BIO format. The inter-
face facilitates the visualization and export of graph
representations for tasks related to graphs. The ex-
port interface is accessible not only to annotators
but also to curators, allowing them to review anno-
tations made by other users. This feature serves as
a mechanism for quality control.

3.8 Language Independence

Unicode is a widely used standard for encoding,
representing, and handling text in a uniform and
consistent way across various languages, comput-
ing platforms and applications. The standard as-
signs unique numerical codes to each character in
a large number of scripts. Thus, full Unicode sup-
port allows users to work with text data in their
preferred languages.

4 Evaluation

The tool is being used for annotation of a large cor-
pus in Sanskrit, namely, Valmiki Ramayana. The
details of this project are described in Sec. 4.3.
Additionally, the tool is also being used for the an-
notation of plain text corpus in Bengali language.

Following (Terdalkar and Bhattacharya, 2021),
we have evaluated our tool using a two-fold eval-
uation method of subjective and objective evalua-
tion. We have not used the time taken for annota-
tion as an evaluation metric since annotators often
spend more time processing the text to identify
the relevant information than physically annotating.
Hence, it may not be a reliable measure.

4.1 Subjective Evaluation

For the subjective evaluation, an online survey was
conducted, with participation from 16 annotators.
They were asked to rate the tool on a scale of 1
to 5 across various categories including ease of
use, annotation interface, and overall performance.
The feedback from annotators was predominantly
positive. The tool received a score of 4.3 for ease

Figure 4: Word cloud of comments received in a survey

of use, 4.4 for annotation interface, and an overall
score of 4.1. Furthermore, we gathered comments
from users, and a word cloud over these comments
can be found in Fig. 4.

4.2 Objective Evaluation
The objective evaluation utilized a scoring mech-
anism similar to that employed in previous stud-
ies (Neves and Ševa, 2021; Terdalkar and Bhat-
tacharya, 2021). We retained the additional cate-
gories introduced by (Terdalkar and Bhattacharya,
2021) while incorporating supplementary cate-
gories pertinent to the comprehensive assessment
of a general-purpose NLP tool. These supplemen-
tary categories were designed to gauge the tool’s
support for a diverse range of NLP tasks. Conse-
quently, a total of 29 categories were employed for
the evaluation process. Each tool was assigned a
rating: 1 for full support of a feature, 0.5 for partial
support, and 0 for the absence of a feature.

In this evaluation, Antarlekhaka achieved a score
of 0.79, outperforming other tools like Sangrahaka
(0.74), INCEpTION (0.74) and FLAT (0.71). The
detailed list of the 29 categories used for objectively
scoring the annotation tools can be found in Tab. 2.

4.3 Case Study: Large Sanskrit Text
The Valmiki Ramayana, an ancient Sanskrit text,
presents a rich and intricate narrative with a diverse
array of characters, events, emotions, and settings,
making it an ideal choice for annotation purposes.
We employ Antarlekhaka, for this large-scale an-
notation task, as a case study. The text, sourced
from the Digital Corpus of Sanskrit (DCS) (Hell-
wig, 2010–2021), comprises a total of 18754 verses
distributed across 606 chapters.

The annotation is being performed with the help
of 119 annotators to annotate 5 tasks per verse.
These annotations have resulted in the following
task-specific datasets:
• Sentence Boundary: 1972 sentence markers

across 1499 verses;
• Canonical Word Ordering: 1886 sentences;

205

Table 2: Objective evaluation criteria for annotation tools. Each feature is evaluated on a ternary scale of 0, 0.5 and
1, where 0 indicates absence of the feature, 0.5 indicates partial support and 1 indicates full support for the feature.

Criteria Tools

ID Description Weight INCEpTION doccano FLAT BRAT Sangrahaka Antarlekhaka

P1 Year of the last publication 0 1 0 0 1 1 1
P2 Citations on Google Scholar 0 1 0 0 1 0 0
P3 Citations for Corpus Development 0 1 0 0 1 0 0
T1 Date of the last version 1 1 1 1 0.5 1 1
T2 Availability of the source code 1 1 1 1 1 1 1
T3 Online availability for use 1 0 0 1 0 0 0
T4 Easiness of Installation 1 0 1 1 0.5 1 1
T5 Quality of the documentation 1 1 1 1 1 0.5 0.5
T6 Type of license 1 1 1 1 1 1 1
T7 Free of charge 1 1 1 1 1 1 1
D1 Format of the schema 1 1 1 1 0.5 1 1
D2 Input format for documents 1 1 0.5 1 1 1 1
D3 Output format for annotations 1 1 1 1 0.5 0 0
F1 Allowance of multi-label annotations 1 1 0 1 1 1 1
F2 Allowance of document level annotations 0 0 0 0 0 0 0
F3 Support for annotation of relationships 1 1 0 0 1 1 1
F4 Support for ontologies and terminologies 1 1 0 1 1 1 1
F5 Support for pre-annotations 1 0.5 0 0.5 0.5 0 0
F6 Integration with PubMed 0 0 0 0 0 0 0
F7 Suitability for full texts 1 0.5 0.5 1 1 1 1
F8 Allowance for saving documents partially 1 1 1 1 1 1 1
F9 Ability to highlight parts of the text 1 1 1 1 1 1 1
F10 Support for users and teams 1 0.5 0.5 1 0.5 0.5 0.5
F11 Support for inter-annotator agreement 1 1 0.5 0 0.5 0.5 0.5
F12 Data privacy 1 1 1 1 1 1 1
F13 Support for various languages 1 1 1 1 1 1 1
A1 Support for querying 1 0 0 0 0 1 0
A2 Crash tolerance 1 0 0 0 0 1 0.5
A3 Web-based / Distributed annotation 1 1 1 1 1 1 1
A4 Sequential Annotation 1 0 0 0 0 1 1
A5 Support for Sentence Boundary Annotation 1 1 0 0 0 0 1
A6 Support for Word Order Annotation 1 0 0 0 0 0 1
A7 Support for Token Classification Tasks 1 1 1 1 1 1 1
A8 Support for Sentence Classification Tasks 1 1 0 0 0 0 1

Total 29 21.5 16.0 20.5 18.5 21.5 23.0
Score 0.74 0.55 0.71 0.64 0.74 0.79

• Named Entity Recognition: 1717 entities in 947
verses based on custom ontology with 89 labels;

• Co-reference Resolution: 2271 co-reference con-
nections across 950 verses;

• Action Graph: 90 action graphs with 720 rela-
tions from 71 verses, where an action graph cap-
tures action-related words, encompassing verbs,
participles, and other action-denoting words and
their relationships with other words.
We continue to enhance these datasets through

the ongoing annotation endeavour.

5 Potential for NLP Research

A natural language annotation tool simplifies the
process of creating datasets for machine learning
models, which is useful for NLP tasks such as
lemmatization, NER, POS tagging, co-reference
resolution, text classification, sentence classifica-
tion, and relation extraction. Annotator-friendly
and intuitive interfaces can simplify the otherwise
tedious process of manual annotation process to
a great extent. The effectiveness of higher-level
tasks such as question-answering, grammatical er-
ror correction and machine translation often relies

on the success of several low-level tasks, which
can be handled by a multiple task annotation tool.
The tool’s ability to handle large amounts of data
and multiple users simultaneously can contribute
to faster completion of these tasks.

6 Conclusions
We have developed a web-based multi-task anno-
tation tool called Antarlekhaka for sequential an-
notation of various NLP tasks. It is available at
https://github.com/Antarlekhaka/code. The tool is
language-agnostic and has full Unicode support.
The tool sports eight categories of annotation tasks
and an annotator-friendly interface for each cate-
gory. Multiple annotation tasks from each category
are supported. The tool enables creation of datasets
for computational linguistics tasks without expect-
ing any programming knowledge from the annota-
tors or administrators. It is actively being used for
a large-scale annotation project, involving a large
Sanskrit corpus and a significant number of annota-
tors, as well as another annotation task in Bengali
language. Antarlekhaka has a potential to propel
research opportunities in NLP by simplifying the
conduction of large-scale annotation projects.

206

https://github.com/Antarlekhaka/code

7 Limitations

While Antarlekhaka is a powerful tool for annota-
tion, it does have some limitations. These include:
• Subjectivity in annotations: Manual annota-

tion can introduce subjective biases and incon-
sistencies among annotators. Currently, there
is no in-built automated mechanism to ensure
inter-annotator agreement and quality check is
performed manually with a small set of cura-
tors. Nevertheless, we plan to implement inter-
annotator agreement metrics in future.

• Language-specific challenges: Antarlekhaka may
encounter challenges specific to certain lan-
guages or linguistic phenomena, including varia-
tions in syntax, morphology, or semantic nuances
that may require additional customization or fine-
tuning. Additionally, languages with complex
orthographic systems or unique writing conven-
tions may pose difficulties.

• Dependency on sequential annotation: Sequen-
tial annotation is one of the strong features of the
tool. However, if the sentence boundary detec-
tion task is enabled, it imposes a dependency in
the sense that other tasks can be performed only
after marking the sentence boundaries.

• Constraints on AI-guided annotation support:
While Antarlekhaka supports incorporation of
heuristics as pluggable components, the in-built
support for AI-guided annotation is still limited
in nature. The inherent language-specific char-
acteristics and limitations of various NLP tools
present challenges in delivering a fully language-
agnostic guided annotation system. However, our
future plans involve the integration of established
NLP tools to offer more comprehensive guidance
for annotators during the annotation process.

8 Ethics Statement

The research conducted in the development and use
of Antarlekhaka adheres to ethical considerations
and guidelines. The annotation tasks performed
using the tool involve the analysis and processing
of language data. We ensure the following ethical
principles:
• Informed Consent: Prior to engaging in annota-

tion tasks, all annotators participating in the re-
search are informed about the nature of the tasks,
their purpose, and the potential use of the anno-
tated data. Annotators provide their voluntary
consent to participate.

• Anonymity and Privacy: All personal information

of annotators is kept confidential and handled se-
curely. The data collected during the annotation
process is anonymized to protect the privacy of
individuals involved.

• Data Usage: The annotated data is solely used
for research purposes and in compliance with rel-
evant data protection regulations. It is not shared
with any third parties without explicit consent or
legal requirements.

• Bias Mitigation: We strive to minimize any bi-
ases that may arise during the annotation pro-
cess. Annotators are provided with guidelines
and training to ensure consistency and fairness
in their annotations. Regular quality checks are
being performed to address any potential bias
issues for the Sanskrit text corpus.

• Annotator Pool: Annotators for the Sanskrit
text corpus are under-graduate and post-graduate
level Sanskrit students from various institutes and
colleges. This ensured that annotations were of
accepted quality. Participation in the annotation
task was voluntary, and everybody who wanted
to annotate was allowed to do so.
By adhering to these ethical principles, we aim to

contribute to the responsible advancement of Natu-
ral Language Processing technologies and promote
ethical practices in language annotation research.

207

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-
based, collaborative text annotation framework. Lan-
guage Resources and Evaluation, 47(4):1007–1029.

Marie-Catherine De Marneffe, Christopher D Manning,
Joakim Nivre, and Daniel Zeman. 2021. Universal
dependencies. Computational linguistics, 47(2):255–
308.

Manmatha Nath Dutt et al. 1891. The Ramayana, vol-
ume 1. Girish Chandra Chackravarti.

Karën Fort. 2016. Collaborative annotation for reliable
natural language processing: Technical and socio-
logical aspects. John Wiley & Sons.

Oliver Hellwig. 2010–2021. The Digital Corpus of
Sanskrit (DCS).

Hendrik Jacob Herik, Ana Paula Rocha, and Joaquim
Filipe. 2018. Agents and Artificial Intelligence: 9th
International Conference, ICAART 2017, Porto, Por-
tugal, February 24 {u2013} 26, 2017, Revised Se-
lected Papers. Springer International Publishing.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
proceedings of the 27th international conference on
computational linguistics: system demonstrations,
pages 5–9.

Amba Kulkarni, Preethi Shukla, Pavankumar Satuluri,
and Devanand Shukl. 2015. How free is free word
order in sanskrit. The Sanskrit Library, USA, pages
269–304.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2021. An extensive
review of tools for manual annotation of documents.
Briefings in bioinformatics, 22(1):146–163.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. arXiv preprint arXiv:2003.07082.

Lane Schwartz. 2022. Primum non nocere: Before
working with indigenous data, the acl must confront
ongoing colonialism. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics, volume 2.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. Brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations

at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2021.
Sangrahaka: A tool for annotating and querying
knowledge graphs. In Proceedings of the 29th
ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2021,
page 1520–1524, New York, NY, USA. Association
for Computing Machinery.

Erik F Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: language-
independent named entity recognition. In Proceed-
ings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 142–
147.

Maarten van Gompel. 2014. Folia linguistic annotation
tool. https://github.com/proycon/flat.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6.

208

https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1145/3468264.3473113
https://doi.org/10.1145/3468264.3473113
https://github.com/proycon/flat

A Screenshots of Various Interfaces

We showcase various interfaces of Antarlekhaka in
this section. An administrative interface for manag-
ing tasks is shown in Fig. 5. Figs. 6 to 13 illustrate
annotation interfaces for each task category. Fig. 14
highlights the export interface with the capability
to export the data in the standard format.

Figure 5: Task Management Interface: Add, Edit, Acti-
vate, Deactivate, Reorder Tasks

Figure 6: Sentence Boundary Annotation Interface

Figure 7: Word Order Annotation Interface

Figure 8: Token Annotation Interface: Lemmatization

Figure 9: Token Classification Interface: Named Entity
Recognition

Figure 10: Token Graph Interface with Graph Visualiza-
tion: Action Graph

209

Figure 11: Token Connection Interface: Co-reference
Resolution

Figure 12: Sentence Classification Interface

Figure 13: Sentence Graph Interface

B Schema

Antarlekhaka utilizes a relational database to store
information such as, corpus data, user data, task
data and annotations. A relational database allows
for efficient storage and retrieval of functional data,
as well as the ability to establish relationships be-
tween different pieces of data. For example, anno-
tations of specific verses by specific users can be
linked allowing the system to quickly locate and
display relevant annotations when needed.

B.1 Tasks
The information regarding tasks is stored in a single
table within the relational database. This table
serves as a centralized repository for information
related to each task, including its title, category, and
instructions for annotators. Each task is assigned a
unique identifier known as a ‘task id’, which serves
as a means of easily referring or linking to a specific
task.

B.2 Ontology
Ontology is required for four task categories: token
classification, token graph, sentence classification,
and sentence graph. The ontology information is
stored as a flat list of labels in four separate tables,
each specific to a particular task category. There
may be multiple tasks corresponding to each of
these categories. Therefore, every ontology table
also has a ‘task id’ column which associates the
ontology entries with the corresponding tasks. This
setup allows for clear organization and linking of
the ontology information with the relevant tasks.

B.3 Annotations
There are eight annotation tables, each correspond-
ing to a different category of annotation tasks. An-
notations of all tasks belonging to each category are
stored in the corresponding table. The annotations
are linked to the semantic units of text, specifically,
the sentences marked in the sentence boundary task.
The other seven annotation tables include a ref-
erence to the ‘boundary id’. In cases where the
sentence boundary task is not necessary, the bound-
aries of the annotation text units (e.g., verse) are
considered as sentence boundaries and annotated
automatically in the background using a special
annotation user. Additionally, to facilitate multiple
instances of tasks from each task category, every
annotation table contains a reference to the ‘task
id’. Finally, each annotation table sports a tailored
schema to support the recording of task specific an-
notations. An ‘annotator id’ associated with every
task annotation table, allows for proper organiza-
tion and tracking of the annotations.

Fig. 15 shows the Entity Relationship (ER) di-
agram on a subset of tables from the relational
database of Antarlekhaka.

210

Figure 14: Export Interface: NER data in the standard BIO format

Figure 15: Entity Relationship Diagram illustrating some relevant links. Tables are color coded. Yellow: Annotation
Tables, Orange: Ontology Tables, Blue: Corpus Tables, Pink: User Tables, Green: Task Information Table. The
annotation table for ‘Sentence Boundary’ task is highlighted, showing the references incoming (red) and outgoing
(green) references to other tables.

211

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 212–218
December 6, 2023 ©2023 Association for Computational Linguistics

GPTCache: An Open-Source Semantic Cache for LLM Applications
Enabling Faster Answers and Cost Savings

Bang Fu, Di Feng
Zilliz Inc.

Abstract

The rise of ChatGPT 1 has led to the develop-
ment of artificial intelligence (AI) applications,
particularly those that rely on large language
models (LLMs). However, recalling LLM APIs
can be expensive, and the response speed may
slow down during LLMs’ peak times, caus-
ing frustration among developers. Potential
solutions to this problem include using better
LLM models or investing in more computing re-
sources. However, these options may increase
product development costs and decrease devel-
opment speed. GPTCache 2 is an open-source
semantic cache that stores LLM responses to
address this issue. When integrating an AI ap-
plication with GPTCache, user queries are first
sent to GPTCache for a response before be-
ing sent to LLMs like ChatGPT. If GPTCache
has the answer to a question, it quickly returns
the answer to the user without having to query
the LLM. This approach saves costs on API
recalls and makes response times much faster.
For instance, integrating GPTCache with the
GPT service offered by OpenAI can increase
response speed 2-10 times when the cache is
hit. Moreover, network fluctuations will not
affect GPTCache’s response time, making it
highly stable. This paper presents GPTCache
and its architecture, how it functions and per-
forms, and the use cases for which it is most
advantageous.

1 Introduction

Since OpenAI released ChatGPT, large language
models have impressed many people and have been
frequently integrated into our daily work and lives.
At the same time, more open-source enthusiasts
and tech companies have invested time and effort
into developing open-source LLMs, such as Meta’s
LLama (Touvron et al., 2023a,b), Google’s PaLM
(Chowdhery et al., 2022), Stanford’s Alpaca (Wang

1https://openai.com/chatgpt
2https://github.com/zilliztech/GPTCache

et al., 2023; Taori et al., 2023), and Databrick’s
Dolly (Conover et al., 2023).

There are two ways to use large language mod-
els: online services provided by companies like
OpenAI, Claude, and Cohere or downloading open-
source models and deploying them on your servers.
Both methods require payment. Online services
charge you based on tokens, while deploying mod-
els on your own server requires purchasing specific
computing resources. The choice depends on indi-
vidual needs.

While online services are more expensive, they
are more convenient and effective and provide a bet-
ter user experience than deploying models yourself.
Costs and user experience are two critical consid-
erations for building LLM applications. As your
LLM application gains popularity and experiences
a surge in traffic, the cost of LLM API calls will
increase significantly. High response latency will
also be frustrating, particularly during peak times
for LLMs, directly affecting the user experience.

GPTCache is an open-source semantic cache
designed to improve the efficiency and speed of
GPT-based applications by storing and retrieving
the responses generated by language models. Un-
like traditional cache systems such as Redis, GPT-
Cache employs semantic caching, which stores and
retrieves data through embeddings. It utilizes em-
bedding algorithms to transform the queries and
LLMs’ responses into embeddings and conducts
similarity searches on these embeddings using a
vector store such as Milvus. GPTCache allows
users to customize the cache to their specific re-
quirements, offering a range of choices for embed-
ding, similarity assessment, storage location, and
eviction policies. Furthermore, GPTCache sup-
ports both the OpenAI ChatGPT interface and the
Langchain interface, with plans to support more
interfaces in the coming months.

Through experiments using the
paraphrase-albert-small-v2 model (Reimers

212

https://openai.com/chatgpt
https://github.com/zilliztech/GPTCache

and Gurevych, 2019) to embed input in the onnx
runtime environment and running it on a local
Mac with i7, 4CPU, and 32G memory, the time
consumed when hitting the cache is approximately
0.3 seconds. Compared to accessing OpenAI
ChatGPT with an average response latency of
3 seconds, the time consumed is only 1/10.
Furthermore, no tokens are consumed when
hitting the cache. Different embedding models
and similarity evaluation algorithms must be
selected in real development scenarios based on
the tolerance for cache errors. Even so, the entire
consumption time is about 3-4 times faster.

2 Related Works

2.1 Accelerating LLM Inference

Accelerating LLM Inference. Large language mod-
els (LLMs) typically take seconds to infer an-
swers, prompting researchers to explore ways to
reduce inference time and resource consumption.
One approach is quantization (Dettmers and Zettle-
moyer, 2023), which decreases the number of bits
needed to represent each parameter and, therefore
reduces the model size. However, this can result
in a trade-off between accuracy and memory foot-
print. Another method is pruning, which can spar-
sify large-scale generative pre-trained transformer
(GPT) models without retraining, as demonstrated
by SparseGPT (Frantar and Alistarh, 2023). Ad-
ditional methods include Compressing (Xu et al.,
2020) and Inference with Reference (Yang et al.,
2023).

2.2 Widespread application of Caching

Widespread application of Caching. Caching is a
commonly used technique to reduce frequent and
computationally expensive data accesses, which
can improve system query performance. Many dif-
ferent caching schemes have been proposed for
various scenarios. For example, semantic knowl-
edge extracted from data can convert cache misses
to cache hits, avoiding unnecessary access to web
sources (Lee and Chu, 1999). Another example is
in querying multiple databases with sensitive in-
formation, where a differentially private cache of
past responses can answer the current workload at a
lower privacy budget while meeting strict accuracy
guarantees (Mazmudar et al., 2022). In addition,
a cached memory architecture for new changes to
embedding tables has been proposed during embed-
ding. In this architecture, most rows in embeddings

are trained at low precision, while the most fre-
quent or recently accessed rows are cached and
trained at full precision (Yang et al., 2020). As
demonstrated, caching is applied in a variety of
real-world development processes.

2.3 Embedding Models

Embedding models (Almeida and Xexéo, 2023) are
a type of machine learning model that map discrete
symbols or objects (such as text, images, audio,
etc.) to continuous vector spaces. These vectors
are called embedding vectors and are indispensable
in many natural language processing (NLP) and
computer vision (CV) tasks.

In NLP tasks, embedding models aim to map text
into a low-dimensional continuous vector space.
This makes it easier for machine learning models
to process the text. The vectors can capture seman-
tic information about the text, such as its meaning
in context. In CV tasks, embedding models can
map images, videos, or objects into a vector space.
This approach allows them to be processed by com-
puter vision algorithms, such as image search and
identification. Common text embedding models
include BERT (Devlin et al., 2019), GloVe (Pen-
nington et al., 2014), and Word2Vec (Goldberg and
Levy, 2014; Mikolov et al., 2013). These models
generate embedding vectors by processing large
amounts of text data. They can also perform well
in many NLP tasks, such as semantic similarity
calculation, part-of-speech tagging, named entity
recognition, and sentiment analysis.

2.4 Vector Store

A vector database is designed for storing and man-
aging vector data. Vector data consists of sequences
of numbers commonly used to represent objects or
features in high-dimensional spaces. For exam-
ple, data types such as images, audio, and natural
language text can be represented as vector data.

Vector databases improve the efficiency and ac-
curacy of vector data retrieval by using vector simi-
larity measures to index and query the data. This
indexing technique allows the database to quickly
find vectors most similar to a query vector, making
it useful for various applications such as sentiment
analysis, image search, speech recognition, and
recommendation systems.

213

Figure 1: GPTCache: The architecture comprises six
core components: adapter, pre-processor, embedding
generator, cache manager, similarity evaluator, and post-
processor.

3 GPTCache: Semantic Cache for LLMs

The overall workflow of GPTCache follows the
general cache pattern - attempting to obtain results
from the cache before fetching data or processing
requests. If successful, the process terminates im-
mediately. Otherwise, the processing path is the
same as if the cache did not exist. However, before
returning, the corresponding results are stored in
the cache so that repeated actions will retrieve re-
sults directly from the cache next time. Using the
cache significantly reduces workflow time, which
explains why cache designs are ubiquitous in our
lives, such as multi-level caches in computers, DNS
caches in networks, and Redis/Memcache in man-
agement systems.

3.1 Adapter

The adapter serves as the interface for GPTCache
to interact with the outside world. It is responsible
for converting LLM requests into cache protocols,
controlling the entire cache workflow, and trans-
forming cache results into LLM responses. For
easy integration of GPTCache into our systems
or other ChatGPT-based systems without extra de-
velopment effort, the adapter should be easy to
integrate with all LLMs and flexible enough to in-
tegrate more multimodal models in the future.

3.2 Pre-Processor
The pre-processor handles the input of LLM re-
quests primarily by formatting the information as
the primary key for the cache data. This includes
removing prompt information from inputs, com-
pressing input information, and only retaining the
last certain words for long texts or the last round
in a multi-round conversation. These operations
make the request data more distinguishable from
each other and remove redundant and irrelevant
information from the requests.

Pre-processing is a critical factor affecting the
performance of the cache. For example, suppose
both inputs contain a large portion of prompt in-
formation, where the key part of the information
is only a small portion of the entire input. In that
case, the cache cannot obtain the key information
without eliminating the prompt. This can result in a
high probability that all requests hit the cache. The
preprocessed results are passed to the Embedding
component for vector conversion.

3.3 Embedding Generator
The embedding generator can convert user queries
into embedding vectors for later vector similar-
ity retrieval. There are two methods to achieve
this functionality. The first method generates em-
bedding vectors through cloud services (such as
OpenAI, Hugging Face, Cohere, etc.). The sec-
ond method involves generating embedding vectors
using local models that can be downloaded from
sources such as HuggingFace or GitHub.

3.4 Cache Manager
The cache manager is the core component of GPT-
Cache and has three functions:

• Cache storage: stores user requests and corre-
sponding LLM responses.

• Vector storage: stores embedding vectors and
retrieves similar results.

• Eviction management: controls cache capac-
ity and clears expired data according to LRU
or FIFO policy when the cache is full.

Before a piece of data is stored, an id will be
generated. The id and scalar data will be stored in
cache storage, and the id and vector data will be
stored in vertor storage. In this way, cache storage
and vertor storage are associated. Eviction man-
agement also records these IDs. When cache data

214

needs to be cleared, the data corresponding to cache
storage and vertor storage will be deleted based on
the id.

The eviction manager releases the cache space
by deleting data that has been unused for a long
time or is furthest away from using in the GPT-
Cache. If necessary, it removes data from both the
cache and vector store. However, frequent deletion
operations in the vector store can lead to perfor-
mance degradation. Therefore, GPTCache only
triggers asynchronous operations (e.g., index build-
ing, compression, etc.) upon reaching deletion
thresholds.

3.5 Similarity Evaluator

GPTCache retrieves the Top-K most similar an-
swers from its cache and uses a similarity evalu-
ation function to determine if the cached answer
matches the input query. The similarity evalua-
tion module is also crucial for GPTCache. After
research, we eventually adopted the fine-tuned AL-
BERT model. Of course, there is still room for
improvement here, and other language models or
LLMs (such as LLaMa-7b) can also be used.

3.6 Post-Processor

The post-processor is responsible for preparing the
final response to be returned to the user. It can
either return the most similar response or adjust
the response’s randomness based on the request’s
temperature parameter. If a similar response is not
found in the cache, the LLM will handle the request
to generate a response. The generated response will
be stored in the cache before being returned to the
user.

3.7 Key GPTCache Use Cases

Not all LLM applications are suitable for GPT-
Cache, as the cache hit rate is a crucial factor for
the cache’s effectiveness. If the cache hit rate is
too low, the return on investment cannot balance
the input, and there is no need to spend effort on
this feature. This is similar to traditional caching
scenarios, where caching is usually done only on
frequently accessed public nodes to maximize re-
source utilization and system performance and im-
prove user experience.

This paper introduces three critical practical sit-
uations where GPTCache is most beneficial:

1. LLM applications designed for specific do-
mains of expertise, such as law, biology,

medicine, finance, and other specialized
fields.

2. LLM applications applied to specific use
cases, such as internal company ChatBots
or personal assistants like chat-pdf and chat-
paper. These applications can be enhanced
with a cutting-edge AI technology stack called
CVP3 (ChatGPT+Vector DB]+prompt engi-
neering). This combination overcomes the
limitations of knowledge bases and enables
further expansion and innovation.

3. LLM applications with large user groups can
benefit from using the same cache for user
groups with the same profile if user profiling
and classification can be done. This approach
yields good returns.

4 Experiments

To evaluate GPTCache, we randomly scrape some
information from the webpage, and then let chatgpt
produce a corresponding data (similar or exactly
opposite). And then we created a dataset consisting
of three types of sentence pairs:

• Similar sample pairs: two sentences with iden-
tical semantics

• Opposite sample pairs: two sentences with
related but not identical semantics

• Unrelated sample pairs: two sentences with
completely different semantics

Then we evaluate the effectiveness of cache
through five indicators, which are:

1. Cache Hit, which successfully finds similar
values based on the input, which consists of
Positive Hits and Negative Hits.

2. Cache Miss, no similar value was found based
on the input

3. Positive Hits, the obtained cache value is con-
firmed to be similar to the input value

4. Negative Hits, the obtained cache value is
found to be not similar through inspection.

3https://zilliz.com/blog/ChatGPT-VectorDB-Prompt-as-
code

215

Cache Cache Positive Negative Hit
Hit Miss Hits Hits Latency
876 124 837 39 0.20 s

Table 1: Results for Caching Hit and Miss Samples,
Caching Mixed Positive and Negative Queries, and Hit
Latency

5. Hit Latency, it includes pre-processing time,
cache data search time, similarity calcula-
tion time and post-processing time. The pre-
processing and post-processing do not use the
model during the test process, and are just
simple character or number comparisons.

In addition, we tried different similarity algo-
rithms and found that they had no impact on the
results, so we used the common cosine similarity.

First, we cached the keys of all 30,000 positive
sample pairs. Next, we randomly selected 1,000
samples and used their peer values as queries. Table
1 presents the results.

We found setting the similarity threshold of GPT-
Cache to 0.7 achieves a good balance between hit
and positive ratios. So we used this for subsequent
tests.

To determine if a cached result is positive or
negative to the query, we used the similarity score
from ChatGPT with a positive threshold of 0.7. We
generated this by prompting:

Please rate the similarity of the follow-
ing two questions on a scale from 0 to 1,
where 0 means not related and 1 means
exactly the same meaning. And ques-
tions, "Which app lets you watch live
football for free?" and "How can I watch
a football live match on my phone?" The
similarity score is.

We issued 1,160 queries with 50% positive and
50% unrelated negative samples. Table 2 presents
the results. The hit ratio was about 50%, and the
negative hit ratio was similar to Experiment 1, in-
dicating GPTCache successfully distinguished re-
lated and unrelated queries.

Next, we tried to also cache all negative samples
and queried with their peers. Surprisingly, despite
high ChatGPT similarity scores (over 0.9) for some
pairs, none hit the cache. The cause of the cache
error could be the similarity evaluator’s fine-tuning
on this dataset correctly undervalued the similarity
of negative pairs.

Cache Cache Positive Negative Hit
Hit Miss Hits Hits Latency
570 590 549 21 0.17 s

Table 2: Results for Caching Hit and Miss Samples,
Caching Mixed Positive and Negative Queries, and Hit
Latency

The initial experiments demonstrate that GPT-
Cache can effectively utilize semantic similarity
to cache LLM query-response pairs and achieve
significant speedups. We plan to conduct more
rigorous evaluations on larger and more diverse
datasets. When tuning the similarity threshold, fur-
ther investigation is required to balance cache hits
versus false positives.

5 Future Challenges

One core factor affecting GPTCache’s caching
effectiveness is the choice of embedding model.
Compared to other component selections, the
choice of embedding model is crucial because sub-
sequent vector database retrieval relies on the em-
bedding vectors. If the vectors cannot adequately
capture the features of the input text, the retrieval
results will be very noisy or even counterproduc-
tive, returning completely irrelevant cached data.
Our testing has shown that even the best cache hit
rates do not exceed 90% with current embedding
models. This means that negative cache hits are
noticeable during use. While this may not greatly
impact individual users, it would be unacceptable
in real production scenarios. Although other meth-
ods, like more strict similarity evaluation, could
improve positive cache hit rates, this would also
decrease the overall hit rate. Most current embed-
ding models are likely optimized for search scenar-
ios but may not work as well for cache matching.
For example, results with semantics opposite to
the input text are acceptable in search since they
have structural similarity, but this is unacceptable
in caching scenarios. Naturally, how to obtain em-
beddings suitable for caching is an open area for
exploration.

Even with a suitable embedding model, positive
hit rates are unlikely to reach production require-
ments, such as 99%, without decreasing cache hits.
The similarity evaluation module plays a core role
in improving positive cache hit rates by filtering
incorrect hits. Our current implementations include
vector distance, retrieving distance, cohere rerank

216

API, and sbert cross-encoder. However, testing
shows these methods do not sufficiently distinguish
between positive and negative cache hits. To ad-
dress this, we are using large models to judge sen-
tence similarity and distill them into a small model
to obtain a specialized model for textual similarity.

As large language models are widely adopted,
their supported token counts have increased from
2k initially to 100k. However, if a single input
exceeds the LLM’s token count limit, it cannot
process the request. Similarly, conversations with
total tokens exceeding the limit must drop some
information. Large token counts from long texts or
conversations pose a challenge for caching, making
it difficult to identify key information and gener-
ate representative vectors. Currently, we utilize
summary models to pre-process and shorten long
inputs, but this approach increases cache instability,
and its effectiveness is not optimistic. Therefore,
special cache lookup methods may be needed for
long texts.

As mentioned earlier, is there any alternative
to retrieving cache data using vector databases?
For example, can we use traditional databases like
MySQL, PostgreSQL, SQL Server, or Oracle to
store cache data, with textual pre-rocessing to stan-
dardize user inputs? For instance, when the inputs
are "tell me a joke" and "I want to get a joke",
can we convert them to a certain string, like "tell a
joke" , or a same number? Cache hits could then
utilize string matching or numeric ranges instead
of vectors.

6 Conclusion

GPTCache is a caching solution tailored for LLM
applications. It brings the following benefits to the
LLM app developers:

• Less costs: Most LLM services charge fees
based on a combination of the number of re-
quests and token count. GPTCache can effec-
tively minimize expenses by caching query re-
sults, thereby reducing the number of requests
and tokens sent to the LLM service.

• Faster response times: LLMs utilize gener-
ative AI to produce responses in real-time,
which can be time-consuming. However,
when a similar query is cached, the response
time greatly improves, as the result is retrieved
directly from the cache without interaction

with the LLM service. In most cases, GPT-
Cache can also offer better query throughput
than standard LLM services.

• More scalable and available: LLM services of-
ten impose rate limits on the number of access
requests within a given timeframe. If these
limits are exceeded, additional requests are
blocked until a cooldown period has elapsed,
leading to service outages. GPTCache al-
lows you to easily scale and handle increas-
ing query volumes, ensuring consistent per-
formance as your application’s user base ex-
pands.

By utilizing semantic similarity search and vec-
tor embeddings, GPTCache provides an effective
caching solution that enhances performance, re-
duces costs, and improves scalability for applica-
tions that use large language models. Our initial
experiments have shown great potential, and we
plan to conduct more comprehensive evaluations
on diverse real-world datasets and application sce-
narios.

References
Felipe Almeida and Geraldo Xexéo. 2023. Word em-

beddings: A survey.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

217

http://arxiv.org/abs/1901.09069
http://arxiv.org/abs/1901.09069
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Tim Dettmers and Luke Zettlemoyer. 2023. The case
for 4-bit precision: k-bit inference scaling laws. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 7750–7774.
PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774.

Yoav Goldberg and Omer Levy. 2014. word2vec ex-
plained: deriving mikolov et al.’s negative-sampling
word-embedding method. CoRR, abs/1402.3722.

Dongwon Lee and Wesley W. Chu. 1999. Semantic
caching via query matching for web sources. In
Proceedings of the Eighth International Conference
on Information and Knowledge Management, CIKM
’99, page 77–85, New York, NY, USA. Association
for Computing Machinery.

Miti Mazmudar, Thomas Humphries, Jiaxiang Liu,
Matthew Rafuse, and Xi He. 2022. Cache me if
you can: Accuracy-aware inference engine for differ-
entially private data exploration.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-theseus: Com-
pressing BERT by progressive module replacing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7859–7869, Online. Association for Computa-
tional Linguistics.

Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping
Tak Peter Tang, and Andrew Tulloch. 2020. Mixed-
precision embedding using a cache.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu Wei.
2023. Inference with reference: Lossless accelera-
tion of large language models.

218

https://proceedings.mlr.press/v202/dettmers23a.html
https://proceedings.mlr.press/v202/dettmers23a.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
https://doi.org/10.1145/319950.319960
https://doi.org/10.1145/319950.319960
http://arxiv.org/abs/2211.15732
http://arxiv.org/abs/2211.15732
http://arxiv.org/abs/2211.15732
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
http://arxiv.org/abs/2010.11305
http://arxiv.org/abs/2010.11305
http://arxiv.org/abs/2304.04487
http://arxiv.org/abs/2304.04487

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 219–244
December 6, 2023 ©2023 Association for Computational Linguistics

The Vault: A Comprehensive Multilingual Dataset for Advancing Code
Understanding and Generation

Dung Nguyen Manh1,
∗
, Nam Le Hai1,3,

∗
, Anh T. V. Dau1,3,

Anh Minh Nguyen1, Khanh Nghiem1, Jin Guo4,5, Nghi D. Q. Bui2

1FPT Software AI Center
{dungnm31, namlh35, anhdtv7, minhna4, khanhnv22}@fpt.com

2Fulbright University, Viet Nam
nghi.bui@fulbright.edu.vn

3Hanoi University of Science and Technology, Viet Nam
4School of Computer Science, McGill University, Canada

5Mila - Quebec AI Institute

Abstract

We present The Vault, an open-source dataset
of high quality code-text pairs in multiple pro-
gramming languages for training large lan-
guage models to understand and generate code.
We propose methods for thoroughly extract-
ing samples that use both rules and deep learn-
ing to ensure that they contain high-quality
pairs of code and text, resulting in a dataset
of 42 million high-quality code-text pairs. We
thoroughly evaluated this dataset and discov-
ered that when used to train common code lan-
guage models (such as CodeT5, CodeBERT,
and CodeGen), it outperforms the same models
train on other datasets such as CodeSearchNet.
These evaluations included common coding
tasks such as code generation, code summa-
rization, and code search. The Vault can be
used by researchers and practitioners to train
a wide range of big language models that un-
derstand code. Alternatively, researchers can
use our data cleaning methods and scripts to
improve their own datasets. We anticipate that
using The Vault to train large language mod-
els will improve their ability to understand and
generate code, propelling AI research and soft-
ware development forward. We are releasing
our source code and a framework to make it
easier for others to replicate our results.

1 Introduction

The advent of deep learning and advancements in
large language models (LLMs) have spurred a rev-
olution in the field of code representation learning.
These developments, supported by the growing ac-
cessibility of vast open-source code repositories,

∗Equal contribution

have heralded the emergence of code large lan-
guage models (CodeLLMs) for code generation
and understanding tasks. The sheer volume of
these repositories and the rich, unprocessed raw
data they contain, serve as unparalleled resources
for training LLMs. Consequently, current state-of-
the-art models for coding tasks effectively utilize
these expansive datasets for training. However, it is
important to note that these datasets, including The
Stack [Kocetkov et al., 2022] and The Pile [Gao
et al., 2020a], often comprise unprocessed data.

Alternatively, there are established datasets,
such as CONCODE [Iyer et al., 2018b], FunCom
[LeClair et al., 2019], Deepcom [Hu et al., 2020]
for code summarization tasks; APPS [Hendrycks
et al., 2021] for text-to-code generation; and Code-
SearchNet [Husain et al., 2019] for code search.
These datasets contain carefully curated code-text
pairs. Although considerably smaller in compari-
son to raw code datasets (e.g., 2.3M functions in
CodeSearchNet [Husain et al., 2019] versus 197M
files in The Stack [Kocetkov et al., 2022]), they
provide high-quality code-text pairings that signifi-
cantly enhance the effectiveness of model training.

Consequently, we identify two main types of
datasets used to train CodeLLMs: large yet un-
processed, and smaller yet well-structured (e.g.,
arranged into code-text pairs). The scaling law
[Kaplan et al., 2020, Gordon et al., 2021, Sorscher
et al., 2022] indicates that the volume of train-
ing data is crucial for model performance. How-
ever, other studies underscore the importance of
dataset quality over quantity in training superior
LLMs [Zhou et al., 2023, Sorscher et al., 2022, Dau
et al., 2022, Brown et al., 2020, Khan et al., 2020].

219

Given these observations, we propose that an ideal
dataset for training CodeLLMs should combine
both elements: it should be expansive in volume
and meticulously processed to ensure quality.

In this paper, we present The Vault dataset, de-
tailing its creation process, the toolkit developed
for constructing and quality-controlling code-text
pairs from raw source code, as well as an analysis
of The Vault’s metrics. We also share empirical
results obtained from utilizing The Vault to fine-
tune well-known foundational models. Our specific
contributions include the following:

• A dataset with approximately 42M pairs of high-
quality code-text pairs (approximately 10 times
larger than CoDesc), 243M unimodal samples,
and 69M pairs of line comments with context
from 10 popular programming languages (Java,
JavaScript, Python, Ruby, Rust, Golang, C#,
C++, C, PHP), more diverse than CodeSearch-
Net, which has six programming languages.

• A novel approach to use a pre-trained language
model for detecting and removing noisy samples
to complement traditional rule-based methods.

• A thorough report of the process for transforming
raw source code into code-text pairs and filtering
noisy samples. We have released the toolkit used
in this process to the open community via a pub-
lic GitHub repository, including tools for parsing
code and docstrings in different programming
languages.

• We perform extensive evaluation where we fine-
tuned different CodeLLMs with The Vault com-
pared to other datasets, such as CodeSearch-
Net on various code understanding tasks, includ-
ing code generation, code summarization and
code search. The results show that models fine-
tuned on The Vault outperform those fine-tuned
on CodeSearchNet (code summarization, code
search) and outperform the original model by a
significant margin (code generation on pass@k
over Human Eval dataset).

2 Related works

Code Large Language Models for Understand-
ing and Generation Code large language mod-
els facilitate various code understanding and code
generation tasks, including but not limited to code
generation [Feng et al., 2020a, Wang et al., 2023,
Elnaggar et al., 2021], code completion [Feng et al.,

2020a, Wang et al., 2023, Peng et al., 2021], pro-
gram repair [Xia et al., 2022], and code trans-
lation [Roziere et al., 2020]. A significant por-
tion of recent research employs language models,
originally developed for natural language process-
ing, for handling code [Feng et al., 2020a, Wang
et al., 2023, Guo et al., Ahmad et al., 2021b, Bui
et al., 2021, Elnaggar et al., 2021, Peng et al.,
2021, Kanade et al., 2020, Chakraborty et al., 2022,
Ahmed and Devanbu, 2022, Niu et al., 2022]. Such
approaches largely regard code as analogous to text
and adapt pretraining strategies that mirror those
used for natural languages. CodeBERT [Feng et al.,
2020a], for instance, modifies a Roberta model [Liu
et al., 2019] to pretrain a code model on multiple
programming languages. CodeT5 [Wang et al.,
2021] and CodeT5+ [Wang et al., 2023] employs
unique identifier information from source code to
pretrain the T5 model [Raffel et al., 2019] for code
in a multi-modal fashion.

Datasets for Code Representation Learning:
Code is commonly represented in training datasets
for foundational LLMs, including the ROOTS cor-
pus [Laurençon et al., 2023] for training BLOOM
[Scao et al., 2022] and The Pile [Gao et al., 2020a]
for training LLaMA [Touvron et al., 2023]. The
code data represented in these datasets are unla-
beled raw source code from GitHub. There is also
a family of code-only datasets for training or fine-
tuning coding-specific LLMs, including The Stack
[Kocetkov et al., 2022], a 3TB corpus of permis-
sively licensed source code, preceded by CodePar-
rot with 50GB of deduplicated source code [Tun-
stall et al., 2022]. These massive datasets are usu-
ally used to train CodeLLMs. However, labeled
data are required for training and evaluating LLMs
for coding tasks involving source code and natural
language descriptions. CodeXGLUE is a bench-
mark dataset Lu et al. [2021] for 10 coding tasks
that include 14 subsets, four of which are code-text
pairs. Most of the code-text pairs in CodeXGLUE
come from CodeSearchNet.

CodeSearchNet (CSN) has also been employed
for pretraining LLMs, enabling supervised learning
techniques to achieve state-of-the-art performance
for models such as CodeT5+ [Wang et al., 2023]
and UniXcoder [Guo et al., 2022]. A few code-
text pair datasets set out to surpass CSN in size.
CoDesc combines existing parallel datasets (CSN,
DeepCom [Hu et al., 2020], CONCODE [Iyer et al.,
2018a], and FunCom [LeClair et al., 2019]), and

220

then refines the results from the superset, which
yielded 4.2M Java data samples. PyMT5 [Clement
et al., 2020] is a dataset with 7.7M Python code-
text. However, both of these datasets each contains
code for a single programming language. Notable
datasets created from Stack Overflow 1 include the
necessary code-text data for generating post titles
[Gao et al., 2020b, Liu et al., 2022].

3 The Vault dataset

3.1 Overview
The Stack [Kocetkov et al., 2022] stands as
the largest publicly accessible, multilingual,
permissive-licensed source code dataset, with a
size of 3TB. The Stack serves as the foundational
dataset for constructing The Vault, wherein we
transform raw source code into a compendium of
high-quality code-text pairs. Our transformation
pipeline is designed to efficiently extract data from
source code, create text-code pairings, and remove
noise, yielding three distinct output datasets, as
detailed in Figure 2. We draw from a subset of
The Stack, which comprises code in 10 prevalent
programming languages, such as C, C#, C++, Java,
JavaScript, GoLang, PHP, Python, Ruby, and Rust
(out of the total 300 languages featured in The
Stack). Each language-specific raw source code
feeds into a custom-built tree-sitter2 parser.

This parser is designed to extract functions,
classes, methods, block code snippets, and their
corresponding block or inline comments. The fig-
ure 1 illustrated a basic structure of a code file that
contains multiple levels of code snippets. By ap-
plying a breadth-first search on the Abstract Syntax
Tree (AST) of the root node, the parser is able to
traverse down different node and leaf levels (class,
function, and inline), result three separate datasets:

1. The first output dataset, referred to as Dpaired,
contains pairs of classes (node 1) and functions
(node 3) with corresponding block comments
that serve as docstrings (node 2). After the ini-
tial construction, this dataset proceeds through
a pipeline that employs both rule-based filters
and Deep Learning-based classification to re-
move noisy samples that fail to meet the criteria
detailed in Section 3.2.

2. The second output dataset, denoted as Dunimodal,
1https://stackoverflow.com/
2https://tree-sitter.github.io/

tree-sitter/

consists of standalone functions and classes, not
paired with any docstring or comments, thereby
forming a unimodal dataset.

3. The third and final dataset, Dblock, includes pairs
of arbitrary code blocks (node 4) and inline com-
ments (node 5). To construct this set, we capture
all inline comments. Each comment is paired
with the preceding code block, tagged as the
“previous context” (node 4a), and the following
code block, “next context” (node 4b).

A large number of block comments adhere to
widely accepted docstring formats (Appendix A.5),
encompassing neatly organized details about the
name (identifier) of the associated function or class,
their parameters, arguments, and return types. We
channel these block comments through docstring
parsers, which we have developed and made pub-
licly available, to extract this information as meta-
data for each sample in our dataset. We contend
that this metadata could prove beneficial for down-
stream tasks, prompt settings, and other applica-
tions (Figure 8). Collectively, these three datasets
(Dblock, Dunimodal, and Dpaired) constitute The Vault.
Note that through the evaluation process, only
Dpaired is used since its contains data that is suitable
for training and comparison with other datasets.

3.2 Data Cleaning Pipeline
From preliminary survey of the output dataset con-
taining pairs of classes and functions with their
corresponding block comments Dpaired, we ob-
serve salient patterns that would impair the training
quality for code related tasks. We implemented a
set of rule-based filters (section 3.2.1) to remove
irrelevant information or reformat textual data to be
more descriptive of the corresponding code block.
To address cases where the code-text pairs have
inadequate or erroneous semantic correlation, we
trained a deep-learning model based on CodeBERT
(section 3.2.2) to score the semantic consistency of
a code-text pair and remove low-scoring samples.

3.2.1 Remove Noisy Sample by Rules
Our data pipeline employs 13 rule-based filters
to eliminate noisy patterns in the source dataset.
These filters, detailed in Table 1, are categorized
into three main groups: enhancing readability, pro-
moting consistency, and preserving the intended
usage of the code.

In terms of readability, we strip delimiters, math
formulas, HTML tags, and metadata tags from the

221

https://stackoverflow.com/
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/

// Java program for implementation of QuickSort

class QuickSort
{
 /* This function takes last element as pivot,
 places the pivot element at its correct
 position in sorted array, and places all
 smaller (smaller than pivot) to left of
 pivot and all greater elements to right
 of pivot */

 int partition(int arr[], int low, int high)
 {
 int pivot = arr[high];
 int i = (low-1); // index of smaller element

 for (int j=low; j<high; j++)
 {
 // If current element is smaller than or
 // equal to pivot
 if (arr[j] <= pivot)
 {
 i++;

 // swap arr[i] and arr[j]
 int temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
 }
 }

 // swap arr[i+1] and arr[high] (or pivot)

 int temp = arr[i+1];
 arr[i+1] = arr[high];
 arr[high] = temp;

 return i+1;
 }
}

1. Class Node

3. Function Node

2. Block comment Node

5. Line comment Node

4. Nodes
Node 4a and 4b are
previous and next

context respectively

Node 2 is the
docstring of this
function node

4a

4b

Figure 1: The tree-sitter node structure. Classes (1) and functions (3) are extracted along with their corresponding
docstring, which may be in the form of a block comment (2) or a line comment (5). The line comments (5) are
extracted along with their preceding (4a) and succeeding (4b) code nodes for the inline dataset.

text. This ensures a cleaner and more coherent
code-text pairing. For consistency, we remove ele-
ments that may cause irregularities in the dataset.
This includes stripping hyperlinks and embedded
code, and removing empty comments, overly short
or long comments, non-English comments, auto-
generated blocks, and work-in-progress comments.
Lastly, to preserve the original purpose of the code,
we remove comments that are questions or serve as
examples or notes. This rigorous filtering process
guarantees a high-quality dataset, improving the
effectiveness of code-focused language models.

3.2.2 Remove Low-Quality Samples with
Classifier

Beyond the use of rule-based filtering methods, a
crucial question arises: how do we ensure align-
ment between code and text? Random comments
unrelated to the functionality of the code snippet
can contaminate the dataset, necessitating the re-
moval of such misaligned samples to guarantee
quality. To address this issue, we constructed a clas-
sifier utilizing CodeBERT [Feng et al., 2020b], de-
signed to score the semantic relationship between
a function or class and its corresponding docstring.

Categories Percentage (%)

Readability

Strip Delimiters 13.430
Strip Math Formulas 0.021
Strip HTML Tags 3.180
Strip Metadata Tags 5.260

Consistency

Strip Hyperlink 0.510
Strip Embedded Code 12.680
Remove Empty Comments 71.470
Remove Comments Too Short / Long 4.100
Remove Non-English Comments 3.230
Remove Auto-gen Blocks 0.050
Remove Work-in-Progress Comments 0.002

Intended usage

Remove Comments as Questions 0.020
Remove Comments as Examples or Notes 0.460

Table 1: The percentage of constructed code-text pairs
from The Stack caught by each rule-based filter.

In our scoring model, we input code snippets and
docstrings separated by a token < /s >. Approx-
imately 12% of the already rule-filtered code-text
pairs dataset was randomly selected for training.
As labeled data was unavailable, we generated neg-
ative samples by randomly pairing functions and

222

Classifier

Functions & classes w/ comment

Rule
Functions & classes wo/ comment

Functions & classes w/
docstring metadata

Code block w/ comment

FunctionsCode blocks

Classes

Raw files Tree-sitter Parsers

Figure 2: Pipeline to create datasets of code blocks with comments Dblock, unimodal code Dunimodal, and code-text
pairs Dpaired from raw source code.

Language Number of functions #Repositories #Tokens

w/docstring All #Unique code
token

#Unique
docstring token

#Unique
identifier

Python 7,825,291 39,221,539 628,069 22,050,020 1,633,062 3,423,694
PHP 4,696,756 30,323,578 439,514 11,203,393 715,546 1,133,437
JavaScript 1,683,568 33,015,657 355,761 4,895,923 501,750 753,399
Java 6,667,422 69,744,181 321,129 16,536,979 1,749,151 2,525,492
C# 3,350,316 35,736,746 150,657 5,485,063 409,220 1,233,383
C++ 1,709,448 28,684,400 116,897 5,630,067 678,063 1,155,241
C 1,685,966 13,762,988 88,556 5,764,837 750,146 1,197,164
Go 5,153,436 23,832,763 241,238 6,818,885 2,472,000 1,918,773
Rust 864,987 8,230,575 68,615 2,130,327 221,877 315,331
Ruby 461,585 4,342,191 61,804 1,436,713 146,237 213,005
Total 34,098,775 286,894,618 2,364,144 73,077,761 7,351,960 12,869,338

Table 2: The size of extracted function data in each programming language.

docstrings within the same programming language.
We then passed the representation of the < s >
token to a linear layer, which produced a semantic
correlation score between 0.0 and 1.0. Code-text
pairs were then filtered using a binary classification
gate with a threshold of 0.5.

To validate our model, we employed GPT 3.5-
turbo for analogous predictions. A million pre-
dictions were generated from unseen instances,
from which we selected 300 per language: 200
high-confidence instances (100 consistent and 100
inconsistent code-text predictions) and 100 low-
confidence instances. GPT 3.5-turbo was in-
structed to assign a consistency score (1-10) for
each instance’s code-docstring pair, serving as a
benchmark for our model’s predictions. For high-
confidence instances, our model agreed with the
GPT 3.5-turbo scores over 80% of the time. Al-
though our model faced challenges with ambiguous
samples, the Area Under the Curve (AUC) met-
ric proved suitable due to our primary goal of ex-

cluding misalignments while preserving matched
examples. An average AUC of 0.89 indicates
that our approach effectively reduced dataset noise
without discarding numerous informative samples.
Detailed configurations and evaluation results are
available in Appendix A.2.

In addition, we use our model to find noisy ex-
amples in the rule-based noise-remove version of
CodeSearchNet in CodeXGlue. Table 3 presents
some inconsistent examples found by our model
for Python, Java and JavaScript of CSN. It can
be observed that detected pairs show strong incon-
sissency between docstring and code.

4 Empirical Evaluation

In this section, we aim to assess the quality of
The Vault in comparison with other datasets, such
as CSN. To substantiate this quality, we fine-tune
prominent CodeLLMs on tasks that necessitate the
involvement of both code and text, including code
summarization, code search, and code generation.

223

Languages Inconsistent pairs

Python

// Handy for templates.
def has_urls(self):

if self.isbn_uk or self.isbn_us or self.official_url or self.notes_url:
return True

else:
return False

Java

// only for change appenders
public MapContentType getMapContentType(ContainerType containerType){

JaversType keyType = getJaversType(Integer.class);
JaversType valueType = getJaversType(containerType.getItemType());
return new MapContentType(keyType, valueType);

}

JavaScript

// we do not need Buffer pollyfill for now
function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);

}

Table 3: Examples of Inconsistent pairs in CodeSearchNet found by our model in Python, Java, and Javascript. “//”
represents for docstring section. More examples are demonstrated in Table 15 in Appendix section.

Dataset #PL
#Function

w/ docstring w/o docstring
PyMT5 [Clement et al., 2020] 1 ≈ 7,700,000 -
CoDesc [Hasan et al., 2021] 1 4,211,516 -
CodeSearchNet [Husain et al., 2019] 6 2,326,976 4,125,470
CodeXGLUE CSN [Lu et al., 2021] 6 1,005,474 -
Deepcom [Hu et al., 2020] 1 424,028 -
CONCODE [Iyer et al., 2018b] 1 2,184,310 -
Funcom [LeClair et al., 2019] 1 2,149,121 -
CodeT5 [Wang et al., 2021] 8 3,158,313 5,189,321
THEVAULT 10 34,098,775 205,151,985

Table 4: Comparison of THEVAULT function set to other
code-text datasets.

We then compare these models, which have been
fine-tuned on The Vault, with those fine-tuned on
CSN. The comparison is made using the same test
datasets and commonly employed metrics, such as
BLEU, MRR, and pass@k.

4.1 Dataset Statistics

Table 2 provides the statistics of the samples for
each programming language after undergoing our
data-cleaning pipeline. In total, we have approxi-
mately 34M samples. The table also includes other
information, like the number of tokens for code and
docstrings, and the quantity of repositories.

Table 4 offers a comparison between The Vault
and other parallel datasets frequently used for pre-
training and fine-tuning downstream tasks. These
datasets include Funcom [LeClair and McMillan,
2019], Deepcom [Hu et al., 2020], CONCODE
[Iyer et al., 2018b], CSN [Husain et al., 2019],
CoDesc [Hasan et al., 2021], and non-public data
used for pretraining [Clement et al., 2020, Ciurume-

lea et al., 2020, Wang et al., 2021].
We split the training set into two smaller subsets:

the small set and the medium set that contain 5%
and 20% of the full training set, respectively. To re-
duce data leakage during training, we employed the
MinHash LSH technique to filter training instance
clusters that are close to samples in the validation
and test sets of CSN, HumanEval, and MBPP. Addi-
tionally, during dataset partitioning, we prevented
content from the same repository from appearing in
multiple sets, thereby avoiding any potential inter-
nal data leakage. A more detailed analysis of The
Vault’s data samples at the class and code block
levels can be found in Appendix A.4.

4.2 Experiment Setup

Data splitting: During the experiment phase, The
Vault (Dpaired) was split into three distinct datasets:
training, validating, and testing sets. To avoid data
leakage, we reinforced a policy where code sam-
ples from the same repository must all be in the
same set. In the splitting algorithm, we also in-
cluded as a goal the preservation of the token length
distribution from The Vault’s dataset in each subset.

For richer comparisons, the training set was fur-
ther branched off to two smaller sets, the small and
medium training sets, sampling 5% and 20% of
the full training set, respectively. Details about ex-
periment data can be found in Table 12. Note that
TheVault/small has a comparable size with CSN,
making it fair to assess and compare the quality of
these two datasets.

224

Model Dataset Python Java JavaScript Go PHP Ruby Total/Avg
CODESEARCHNET TESTSET (BLEU-4)

CodeT5
raw-TheStack 16.18 9.06 6.23 19.05 7.07 5.78 11.84/10.56
CodeSearchNet 19.55 20.38 16.15 19.83 26.26 15.38 21.24/19.59
TheVault/small 18.94 17.72 13.96 19.92 20.43 15.22 18.83/17.70

PLBART
raw-TheStack 0.86 3.06 0.59 10.91 2.29 0.47 3.23/3.03
CodeSearchNet 17.99 17.38 14.84 17.98 22.54 14.08 18.78/17.47
TheVault/small 14.93 15.66 11.95 17.03 18.00 11.49 15.95/14.84

THEVAULT TESTSET (BLEU-4)

CodeT5
raw-TheStack 16.18 9.06 6.23 19.05 7.07 5.78 11.84/10.56
CodeSearchNet 10.86 8.00 8.42 17.87 17.85 10.26 16.11/12.21
TheVault/small 12.26 11.13 9.68 31.64 38.86 11.23 25.12/19.13

PLBART
raw-TheStack 1.69 4.02 0.43 24.60 4.83 0.49 7.19/6.01
CodeSearchNet 10.24 7.26 7.64 16.90 13.83 9.60 14.39/10.91
TheVault/small 10.23 9.28 8.95 22.78 34.32 9.74 20.29/15.88

Table 5: Smoothed BLEU-4 results for code summarization. The “Total” column demonstrates combined data in
all languages to calculate BLEU, while “Avg” is the average BLEU score on the language level.

Model Fine-tune data
Python Java JavaScript Go PHP Ruby Avg

CODESEARCHNET TESTSET (MRR)

CodeBERT
raw-TheStack 0.3713 0.3492 0.3148 0.5519 0.2731 0.2748 0.3559
CodeSearchNet 0.3793 0.4636 0.4437 0.6201 0.4741 0.5219 0.4838
TheVault/small 0.4074 0.4857 0.4466 0.6578 0.6578 0.5251 0.5301

RoBERTa
CodeSearchNet 0.3479 0.448 0.4254 0.5684 0.4623 0.5147 0.6952
TheVault/small 0.4849 0.5581 0.4962 0.7446 0.5166 0.59 0.5651

UniXCoder
CodeSearchNet 0.3935 0.4549 0.4459 0.5861 0.489 0.5446 0.4857
TheVault/small 0.4427 0.4909 0.4506 0.6416 0.4515 0.5702 0.5079

THEVAULT TESTSET (MRR)

CodeBERT
raw-TheStack 0.318 0.3245 0.1837 0.4194 0.1718 0.0878 0.2509
CodeSearchNet 0.2881 0.3213 0.2409 0.4123 0.1854 0.2579 0.2843
TheVault/small 0.3501 0.4214 0.3216 0.4864 0.2351 0.2904 0.3165

RoBERTa
CodeSearchNet 0.2644 0.3329 0.2371 0.2375 0.1577 0.2574 0.2478
TheVault/small 0.4533 0.5519 0.4386 0.5021 0.2876 0.3717 0.4342

UniXCoder
CodeSearchNet 0.2959 0.344 0.2508 0.185 0.1646 0.2669 0.2512
TheVault/small 0.3852 0.4279 0.3491 0.4628 0.238 0.3201 0.3639

Table 6: Comparison between the models fine-tuned on the CODESEARCHNET and on different THEVAULT training
subsets on code search task.

Infrastructure: All experiments are conducted
on 4 NVIDIA A100 GPUs.

Code search: We select CodeBERT [Feng et al.,
2020a], RoBERTa [Liu et al., 2019] and UniX-
Coder [Guo et al., 2022] as the encoder for embed-
ding source code and natural query, for all exper-
iments. We train 10 epochs for each model with
a sequence max length of 512, and a learning rate
2−5.

Code summarization: CodeT5-base [Wang
et al., 2021] is employed for the summarization
task. We set the max input tokens to 512 and the
max output tokens to 400. We train for 5 epochs
with batch size of 512, the learning rate of 2−4.

Code generation: We use CodeGen 350M and
2B Multi [Nijkamp et al., 2023] to evaluate code
generation. We use the same configuration as in
the code summarization task.

Additionally, we present supplementary re-

225

sults to demonstrate the efficiency of our process
pipeline and offer a thorough evaluation of the
dataset’s versatility and adaptability with various
architectures and frameworks in the Appendix A.8.

4.3 Evaluation Results
4.3.1 Code Summarization
For this task, we utilize the Vault and CSN to fine-
tune CodeT5 [Wang et al., 2023] for the task of
code summarization. The Vault and CSN exhibit
significant differences in docstring format. The
Vault retains the complete docstring format, offer-
ing comprehensive descriptions of core logic, pa-
rameters, arguments, and return types. This feature
enables versatile applications in code documen-
tation and various downstream tasks. Addition-
ally, we save the first sentence of each complete
docstring as metadata, termed as short docstring.
To facilitate fair comparison between The Vault
and CSN, we apply post-processing to our full
docstrings and short docstrings training sets,
thereby reducing format distribution disparity.

Table 5 shows the results when comparing
CodeT5 trained on CSN and The Vault for the
code summarization task. Usage of full doc-
strings and short docstrings are signified by “-L”
and “-S” respectively. We use smoothed BLEU-4
score as the evaluation metric. We present fur-
ther experimental outcomes using the Rouge-L
and BERTScore metrics in Appendix, Table 14.
The results show that CodeT5 fine-tuned on The
Vault yields significantly better performance than
on CSN. Although the performance gain when eval-
uated using the CSN test set is marginal (20.49
versus 19.59), it is worth noting that, despite the
intermediary processing, CSN is a considerably
smaller dataset with more consistent docstring pat-
terns. In contrast, our dataset is substantially larger
and exhibits greater diversity, thereby encouraging
broader generalization. When evaluated against
The Vault’s test set, the model fine-tuned on CSN
lags behind by over 10%.

4.3.2 Code Search
We utilize CodeBERT, RoBERTa and UniXCoder
to fine-tune both The Vault and CodeSearchNet for
the purpose of the code search task. The results
of this task, when fine-tuning the model on The
Vault and CodeSearchNet, are illustrated in Table 6.
Remarkably, we attain superior results in most lan-
guages when fine-tund using the smallest dataset,
TheVault/small, in contrast to solely fine-tuning on

Model Fine-tune dataset pass@1 pass@10 pass@100

HUMANEVAL

CodeGen 350M

- 6.67 10.61 16.84
Py/CodeSearchNet 2.76 8.76 14.72
(250k) Py/TheVault 3.74 10.57 16.26
raw/PyTheVault 6.64 15.42 24.80
Py/TheVault 8.14 18.12 30.07

CodeGen 2B
- 14.51 24.67 38.56
Py/TheVault 14.00 25.74 41.72

MBPP

CodeGen 350M
- 7.46 24.18 46.37
Py/TheVault 10.13 33.96 53.20

CodeGen 2B
- 18.06 45.80 65.34
Py/TheVault 27.82 50.06 65.06

Table 7: Result on code generation benchmarks using
CodeGen Multi 350M and 2B model.

the CodeSearchNet corpus. We also furnish a base-
line Mean Reciprocal Rank (MRR) score. MRR
is a widely used metric for evaluating code search
tasks, and in our case, it is trained on 10 different
programming languages and assessed using the test
set from CodeSearchNet and The Vault.

4.4 Code Generation

We experiment with the CodeGen Multi-350M
model [Nijkamp et al., 2023] on the HumanEval
and MBPP datasets to generate code. The scope
of our experiment was limited because the bench-
marks only support Python. We use this checkpoint
and continue fine-tuning this model on The Vault
because CodeGen Multi-350M is trained on the
dataset with multiple languages.

To create Multi-PyCSN and Multi-PyTheVault
models, we fine-tuned the CodeGen pretrained
model on Python subsets of CSN and TheVault.
We sampled the training Python set of TheVault to
match the size of the Python subset in CSN with
250K samples in the first round of fine-tuning. Ad-
ditionally, raw-PyTheStack is a subset of Python
data from The Stack mirroring the size of Python
data present in The Vault dataset, which helps us
to demonstrate the advancements achieved in our
pipeline.

The results of this experiment are shown in table
7. We can see that fine-tuning the CodeGen Multi
350M on The Vault causes the model to improve
significantly in terms of pass@1, pass@10, and
pass@100 on the HumanEval and MBPP bench-
marks. Additionally, CodeGen 2B is used to as-
sess The Vault on larger scale models. Similar to
experiments on small models, table 7 shows that
The Vault can improve the performance of pre-
trained large-scale models. These results validate
The Vault’s ability to improve the performance of
pre-existing pretrained models. In the future, we

226

will expand our evaluation to even larger scale mod-
els and assess The Vault’s impact on them.

5 Conclusion

In this paper, we have presented The Vault, a large
dataset of high-quality code-text pairs from 10 pro-
gramming languages, totaling more than 41 million
samples. The Vault was carefully curated to ensure
that each pair meets quality standards, with de-
tailed and informative descriptions and consistent
coding styles. Our analysis has observed various
intriguing patterns and trends that shed light on
the characteristics of programming languages and
coding practices. We are confident that The Vault
will be a valuable resource for researchers and prac-
titioners in this rapidly evolving field, providing
a solid foundation for developing innovative ap-
proaches and advancing the state-of-the-art code
large language models.

Limitations

In our approach, we employed 13 heuristic and
context-specific rule-based filters, curated from
manual data observations. While these filters effec-
tively mitigated noisy patterns, their deterministic
nature precluded comprehensive generalizability.
To address this, we supplemented these rules with
a deep learning approach as described in Section
3.2.2. However, the absence of labeled training
data necessitated pseudo-random sample genera-
tion, which could compromise model soundness
and potentially eliminate quality code-text pairs.
Although cross-validation with GPT 3.5-turbo oc-
casionally revealed scoring inconsistencies, we be-
lieve that human labeling and model fine-tuning
could further refine the dataset.

Compared to The Stack and The Pile, our dataset
is smaller, mainly due to our rigorous quality con-
trol procedures. Moreover, creating AST parsers
for each programming language is a non-trivial
task, limiting our dataset to 10 popular program-
ming languages compared to The Stack’s 300.
Nonetheless, our framework’s codebase is publicly
available, encouraging future contributions to ex-
tend our parsers and rules to additional languages.

The current study primarily utilized small mod-
els with less than 2 billion parameters to illustrate
the value of The Vault. These models effectively
demonstrated the dataset’s potential, but further
research with larger models would shed light on
its robustness and scalability across more complex
tasks. In future work, we plan to conduct experi-
ments using large-scale language models to further
assess the impact of our dataset.

227

References
W. U. Ahmad, S. Chakraborty, B. Ray, and

K. Chang. Unified pre-training for program un-
derstanding and generation. In K. Toutanova,
A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür,
I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty,
and Y. Zhou, editors, Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pages 2655–2668. Association for Com-
putational Linguistics, 2021a.

W. U. Ahmad, S. Chakraborty, B. Ray, and
K. Chang. Unified Pre-training for Program Un-
derstanding and Generation. In K. Toutanova,
A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tür,
I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty,
and Y. Zhou, editors, Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pages 2655–2668. Association for Com-
putational Linguistics, 2021b.

T. Ahmed and P. Devanbu. Multilingual training for
software engineering. In Proceedings of the 44th
International Conference on Software Engineering,
pages 1443–1455, 2022.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

N. D. Bui, Y. Yu, and L. Jiang. Self-supervised con-
trastive learning for code retrieval and summarization
via semantic-preserving transformations. In Proceed-
ings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 511–521, 2021.

S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and
B. Ray. Natgen: generative pre-training by “natu-
ralizing” source code. In Proceedings of the 30th
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, pages 18–30, 2022.

A. Ciurumelea, S. Proksch, and H. C. Gall. Suggesting
comment completions for python using neural lan-
guage models. In 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 456–467, 2020.

C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy,
and N. Sundaresan. Pymt5: multi-mode translation
of natural language and python code with transform-
ers. In B. Webber, T. Cohn, Y. He, and Y. Liu, ed-
itors, Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
9052–9065. Association for Computational Linguis-
tics, 2020.

A. T. V. Dau, N. D. Q. Bui, T. Nguyen-Duc, and
H. Thanh-Tung. Towards using data-influence meth-
ods to detect noisy samples in source code corpora.
In 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022, pages 148:1–148:3.
ACM, 2022.

A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher,
C. Angerer, S. Severini, F. Matthes, and B. Rost.
Codetrans: Towards cracking the language of sil-
icon’s code through self-supervised deep learning
and high performance computing. arXiv preprint
arXiv:2104.02443, 2021.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou. Code-
bert: A pre-trained model for programming and natu-
ral languages. In T. Cohn, Y. He, and Y. Liu, editors,
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online Event, 16-20 Novem-
ber 2020, volume EMNLP 2020 of Findings of ACL,
pages 1536–1547. Association for Computational
Linguistics, 2020a.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou.
CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 1536–1547, Online, Nov. 2020b. Association
for Computational Linguistics.

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe,
C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima,
et al. The pile: An 800gb dataset of di-
verse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020a.

Z. Gao, X. Xia, J. Grundy, D. Lo, and Y. Li. Generating
question titles for stack overflow from mined code
snippets. ACM Trans. Softw. Eng. Methodol., 29(4):
26:1–26:37, 2020b.

M. A. Gordon, K. Duh, and J. Kaplan. Data and pa-
rameter scaling laws for neural machine translation.
In M. Moens, X. Huang, L. Specia, and S. W. Yih,
editors, Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 5915–
5922. Association for Computational Linguistics,
2021.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K.

228

Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin,
D. Jiang, and M. Zhou. Graphcodebert: Pre-training
code representations with data flow. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and
J. Yin. Unixcoder: Unified cross-modal pre-training
for code representation. In S. Muresan, P. Nakov, and
A. Villavicencio, editors, Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 7212–7225.
Association for Computational Linguistics, 2022.

M. Hasan, T. Muttaqueen, A. A. Ishtiaq, K. S. Mehrab,
M. M. A. Haque, T. Hasan, W. U. Ahmad, A. Iqbal,
and R. Shahriyar. Codesc: A large code-description
parallel dataset. In C. Zong, F. Xia, W. Li, and
R. Navigli, editors, Findings of the Association for
Computational Linguistics: ACL/IJCNLP 2021, On-
line Event, August 1-6, 2021, volume ACL/IJCNLP
2021 of Findings of ACL, pages 210–218. Associa-
tion for Computational Linguistics, 2021.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika,
A. Arora, E. Guo, C. Burns, S. Puranik, H. He,
D. Song, and J. Steinhardt. Measuring coding chal-
lenge competence with APPS. In J. Vanschoren and
S. Yeung, editors, Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, 2021.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. Deep code com-
ment generation with hybrid lexical and syntactical
information. Empir. Softw. Eng., 25(3):2179–2217,
2020.

H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt. Codesearchnet challenge: Eval-
uating the state of semantic code search. arXiv
preprint arXiv:1909.09436, 2019.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Map-
ping language to code in programmatic context. In
E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsu-
jii, editors, Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 1643–1652. Association for Computational
Linguistics, 2018a.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer.
Mapping language to code in programmatic context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1643–1652, Brussels, Belgium, Oct.-Nov. 2018b. As-
sociation for Computational Linguistics.

A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi.
Learning and evaluating contextual embedding of
source code. In International Conference on Ma-
chine Learning, pages 5110–5121. PMLR, 2020.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,
B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

S. S. Khan, N. T. Niloy, M. A. Azmain, and A. Kabir.
Impact of label noise and efficacy of noise filters in
software defect prediction. In R. Garcı́a-Castro, edi-
tor, The 32nd International Conference on Software
Engineering and Knowledge Engineering, SEKE
2020, KSIR Virtual Conference Center, USA, July
9-19, 2020, pages 347–352. KSI Research Inc., 2020.

D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M.
Ferrandis, Y. Jernite, M. Mitchell, S. Hughes, T. Wolf,
et al. The stack: 3 tb of permissively licensed source
code. arXiv preprint arXiv:2211.15533, 2022.

H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. V.
del Moral, T. L. Scao, L. V. Werra, C. Mou, E. G.
Ponferrada, H. Nguyen, J. Frohberg, M. Šaško,
Q. Lhoest, A. McMillan-Major, G. Dupont, S. Bi-
derman, A. Rogers, L. B. allal, F. D. Toni, G. Pistilli,
O. Nguyen, S. Nikpoor, M. Masoud, P. Colombo,
J. de la Rosa, P. Villegas, T. Thrush, S. Longpre,
S. Nagel, L. Weber, M. Muñoz, J. Zhu, D. V. Strien,
Z. Alyafeai, K. Almubarak, M. C. Vu, I. Gonzalez-
Dios, A. Soroa, K. Lo, M. Dey, P. O. Suarez,
A. Gokaslan, S. Bose, D. Adelani, L. Phan, H. Tran,
I. Yu, S. Pai, J. Chim, V. Lepercq, S. Ilic, M. Mitchell,
S. A. Luccioni, and Y. Jernite. The bigscience
roots corpus: A 1.6tb composite multilingual dataset,
2023.

A. LeClair and C. McMillan. Recommendations for
datasets for source code summarization. pages 3931–
3937. Association for Computational Linguistics,
2019.

A. LeClair, S. Jiang, and C. McMillan. A neural model
for generating natural language summaries of pro-
gram subroutines. In J. M. Atlee, T. Bultan, and
J. Whittle, editors, Proceedings of the 41st Interna-
tional Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019,
pages 795–806. IEEE / ACM, 2019.

K. Liu, G. Yang, X. Chen, and C. Yu. Sotitle: A
transformer-based post title generation approach for
stack overflow. In IEEE International Conference
on Software Analysis, Evolution and Reengineer-
ing, SANER 2022, Honolulu, HI, USA, March 15-18,
2022, pages 577–588. IEEE, 2022.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: a robustly optimized bert pretraining ap-
proach (2019). arXiv preprint arXiv:1907.11692,
364, 1907.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

229

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. B. Clement, D. Drain, D. Jiang,
D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tu-
fano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine
learning benchmark dataset for code understanding
and generation. In J. Vanschoren and S. Yeung, edi-
tors, Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, 2021.

J. Mahmud, F. Faisal, R. I. Arnob, A. Anastasopoulos,
and K. Moran. Code to comment translation: A
comparative study on model effectiveness & errors,
2021.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong. Code-
gen: An open large language model for code with
multi-turn program synthesis. In The Eleventh
International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/
forum?id=iaYcJKpY2B_.

C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo. Spt-
code: sequence-to-sequence pre-training for learning
source code representations. In Proceedings of the
44th International Conference on Software Engineer-
ing, pages 2006–2018, 2022.

D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu.
How could neural networks understand programs?
In International Conference on Machine Learning,
pages 8476–8486. PMLR, 2021.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-
text transformer. arXiv preprint arXiv:1910.10683,
2019.

B. Roziere, M.-A. Lachaux, L. Chanussot, and G. Lam-
ple. Unsupervised translation of programming lan-
guages. Advances in Neural Information Processing
Systems, 33:20601–20611, 2020.

T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić,
D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon,
M. Gallé, et al. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022.

B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and
A. Morcos. Beyond neural scaling laws: beating
power law scaling via data pruning. Advances in
Neural Information Processing Systems, 35:19523–
19536, 2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and
G. Lample. Llama: Open and efficient foundation
language models, 2023.

L. Tunstall, L. Von Werra, and T. Wolf. Natural lan-
guage processing with transformers. ” O’Reilly Me-
dia, Inc.”, 2022.

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5:
Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In
M. Moens, X. Huang, L. Specia, and S. W. Yih, ed-
itors, Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 8696–
8708. Association for Computational Linguistics,
2021.

Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and
S. C. H. Hoi. Codet5+: Open code large language
models for code understanding and generation, 2023.

C. S. Xia, Y. Wei, and L. Zhang. Practical program
repair in the era of large pre-trained language models.
arXiv preprint arXiv:2210.14179, 2022.

C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma,
A. Efrat, P. Yu, L. Yu, et al. Lima: Less is more for
alignment. arXiv preprint arXiv:2305.11206, 2023.

230

https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_

A Appendix

A.1 Rule-based filters
While some datasets eliminate all special characters
(!@#$%&*() -+=/.,’— ‘) and keep only the first
sentence or the paragraph preceding the first double
endline symbol [Hasan et al., 2021, Mahmud et al.,
2021], our heuristic rules take a different approach.
Instead of discarding such characters outright, we
selectively remove the noisy elements while aiming
to capture as many informative sections as possible.

We analyze each docstring block individually
and retain the sections that meet our quality crite-
ria. Table 8 provides comprehensive descriptions
of our 13 rule-based filters, accompanied by illus-
trative examples. Additionally, table 9 presents the
corresponding percentages of code-text pairs gen-
erated through the application of these rule-based
filters.

A.2 Deep learning-based refinement method
To detect semantic inconsistency between code-text
pairs, we considered fine-tuning on large founda-
tional models such as CodeGen [Nijkamp et al.,
2023], BLOOM [Scao et al., 2022] or leverage
GPT 3.5-turbo APIs. However, these approaches
would incur very high costs in terms of financial
resources, time, and computational power. We de-
cided to train a dedicated model to deal with this
specific task and use GPT 3.5-turbo to cross-check
the predictions.

Training: We trained our model based on Code-
BERT, [Feng et al., 2020a]. The model assigns a
score for semantic correspondence between code
and text, before passing through binary classifi-
cation into Consistent and Inconsistent categories.
We randomly chose 5M samples (500K for each
language in The Vault) and divided them into train-
ing, validation, and testing sets at a ratio of 3:1:1.
The input to the model is the concatenation of the
docstring and the code together with the < /s >
token used to separate them (Figure 3). We use the
representation of the < s > token and feed it into
a linear layer to obtain the output logit.

Since labeled data was unavailable, we utilized
self-supervised learning. We created negative sam-
ples by randomly pairing a function with a doc-
string from the same programming language (Fig-
ure 3).

Cross-check: We used GPT 3.5-turbo to per-
form similar classifications for semantic consis-
tency of code-text pairs. We used a prompting

template to ask GPT 3.5-turbo to score each pair
of code-text on a scale of 1 to 10 for semantic cor-
respondence with a detailed explanation and ran
this prompting template on systematically selected
300 data points from each language with 100 data
points in each of the following groups:

• Consistency group: Examples that the model
gives high confidence prediction to class Con-
sistent. We select the top 100 based on the
output probability for class 1.

• Inconsistency group: Examples that the model
gives high confidence prediction to class In-
consistent. We select the top 100 based on the
output probability for class 0.

• Uncertainty group: Examples that the model
gives uncertain predictions. We select the low-
est top 50 examples for each class.

The systematic sampling scheme helped us se-
lect 2994 samples in function level to be scored out
of millions, reducing the cost of requesting GPT
3.5-turbo API while enabling meaningful analysis.
The prompt input to GPT 3.5-turbo is as follow:
I want you to act as an unbiased

docstring evaluator for code. I will
give you a docstring along with a

source code, and you will give me a
score for the consistency between
them. The score will be on a scale
of 1 to 10, 10 means the docstring
can effectively summarize the code
while 1 means they are inconsistent.
The response answers must contain

the score and the explanation that
follows the format in the response
format.

- Response format:
Score: X
Explanation: Y

- Docstring:
"{docstring}"

- Code:
"{code}"

Empirical Evaluation Results: Table 10
presents the performance of our model with GPT
3.5 turbo’s scores as a reference, along with the
scoring result for each group. In groups with high
confidence, we witness a strong correlation be-
tween our model and GPT 3.5-turbo, with a high
score for Consistency (7.81) and a low score for
Inconsistency (3.15). A similar pattern is observed
in the Uncertainty group, where the average score
is close to the middle of the scale at 5.74.

231

Categories Syntax Feature Action Docstring

Comment
Delimiter

Unnecessary comment delimiter Update

/**
* Lexical essentially tokenizer.

*
*/

→ Lexical essentially tokenizer.

Hyperlink URL Link Update

Deletes a Mux asset
@see

https://docs.mux.com/v1/reference#deletean-asset

→ Deletes a Mux asset

Embedded
Code

Inline or embedded code snippets,
command lines, or script excerpts Update

Set the trust level for a key in GPG keychain.
code-block:: bash
salt ’*’ gpg.trust-key key-id=’3FAD9F1E’
trust-level=’marginally’

→ Set the trust level for a key in GPG keychain.
code-block:: bash

Question Question: Why? How?, . . . Update
isup <url> - Is it down for everyone, or just you?

→ isup <url>

Math
formula

\sqrt(), \exp(), \mathbf, . . . Update

Recursive filter design using a least-squares
method.

{[}B,A{]} = YULEWALK(N,F,M) finds the N-th order
recursive filter coefficients B and A.

→ Recursive filter design using a least-squares
method.

Metadata
Tag

Metadata tags or annotations Update

Creates a slice of ‘array’ with ‘n’ elements
dropped

from the end.
@static
@memberOf
@since 3.0.0

→ Creates a slice of ‘array’ with ‘n’ elements
dropped from the end.

HTML Tags HTML tags: <p>... </p>, . . .
Special tags. Update

Constructs a <code>GeneralStoresProductModel</code>
from a plain JavaScript object.

→ Constructs a GeneralStoresProductModel from a
plain JavaScript object.

Example
and note

Code example, note from developers Update

Pull packages data dir.
note: Uses su to access package’s data dir.

→ Pull packages data dir.

Unsuitable
Length

Length < 5, length > 500 Remove Write objects

Non-
English

Not written in English Remove
Retorna uma estrutura com os argumentos
passados para o programa.

Auto-gen Auto-generated Remove
*<!-begin-user-doc->
<!-end-user-doc->
@generated

Under-dev Under-development Remove
Deprecate this build, so that it will be rebuilt if
any other test run wants to use it.

No com-
ment

No docstring/comment in function Remove null

Table 8: Rule-based filters and examples.

232

Categories Python PHP JavaScript Java C# C++ C Rust Ruby Go Total
Comment Delimiter 12.02 33.38 9.94 11.98 16.7 6.92 13.28 8.43 9.13 4.95 13.43
Hyperlink 0.95 0.44 0.66 0.25 0.71 0.15 0.11 0.59 1.11 0.65 0.51
Embedded Code 31.65 1.09 1.38 1.41 1.39 6.51 6.16 0.67 3.18 2.41 12.68
Question 0.03 0 0.02 0.02 0.01 0.03 0.02 0.06 0.13 0.02 0.02
Math formula 0.1 0 0.01 0.01 0.01 0.02 0.02 0.01 0 0 0.021
Metadata Tag 0.62 6.81 1.86 2.69 2.15 4.35 6.14 0.83 1.69 0.46 5.26
HTML Tags 0.79 0.68 0.8 2.7 17.15 0.31 0.45 1.13 1.56 0.13 3.18
Example and note 1.4 0.26 0.36 0.34 0.22 0.18 0.4 0.45 0.79 0.3 0.46
Unsuitable Length 5.11 8.79 3.90 2.20 2.75 4.58 3.86 2.26 5.19 4.37 4.10
Non-English 1.69 5.72 3.26 4.16 2.62 4.1 1.94 0.42 1.53 1.77 3.23
Auto-gen 0.01 0 0 0.2 0 0 0 0 0 0 0.05
Under-dev 0.02 0 0 0 0 0 0 0 0 0 0.002
No comment 60.54 49.0 78.5 77.15 76.16 80.95 72.28 80.43 71.55 69.75 71.47

Table 9: The percentage of constructed code-text pairs from The Stack caught by each rule-based filter, by
programming language.

<s> </s>
...

...

Positive example

<s> </s>

Negative example

Java

random
select

</s>

</s>

Figure 3: Input representation and Negative sample generation for code-docstring inconsistency detection.

In addition, we use GPT 3.5-turbo’s scores to
generate pseudo-labels and calculate accuracy and
AUC for our model. We set a relative threshold of
5 to determine the labels. It can be witnessed that
our model performs well in high-confidence groups
but struggles in the uncertainty group. However,
the accuracy is influenced by the choice of rela-
tive threshold, we consider Area Under the Curve
(AUC) to measure the false positive and true pos-
itive rates. The metric shows a convincing result
averaging 0.89, enabling us to effectively reduce a
high amount of noise in our dataset while avoiding
excluding too many informative examples. Finally,
after removing noisy data using the proposed deep
learning method, we notice a decrease of 1.3% in
the dataset.

We use our model to find noisy examples in the
rule-based noise-remove version of CodeSearch-
Net in CodeXGlue. Table 15 illustrates some exam-
ples found in 6 programming languages. It can be
observed that detected pairs show strong inconsis-
tency between docstring and code. For instance, the
docstring of the first example in Python does not
give much insight into what the code does or its pur-

pose. The code defines a method named ‘has url’
which checks if the attributes have a non-empty
value; however, the docstring mentions templates
which does not provide enough context to fully un-
derstand how this code relates to templates or its
broader purpose. A similar pattern also presents
in the remaining examples. An example that pro-
vides more clarity is the second example in Ruby.
The docstring describes a function with a ‘YAML
filePath’ parameter, but the function itself does not
actually have this parameter. Besides, our model
is able to identify non-English samples (the sec-
ond example in PHP) that are not captured by the
rule-based method.

A.3 Analysis of Function-Level Data in The
Vault

Detailed description of function level data in The
Vault can be found in Figure 4.

A.3.1 Code and Docstring Analysis
Token Length Distribution: When training seq-
to-seq LLMs, maximum input and output lengths
are typically required. By understanding the distri-
bution of sequence lengths in the corpus, we can

233

Language GPT 3.5-turbo score (accuracy) Accuracy (%) AUCConsistency Inconsistency Uncertainty
Python 8.19 ± 1.15 (99%) 3.76 ± 1.96 (69%) 6.20 ± 2.12 (44%) 70.67 0.8559
PHP 7.73 ± 1.32 (96%) 3.01 ± 1.45 (90%) 4.90 ± 2.23 (49%) 78.33 0.8863
JavaScript 7.73 ± 1.25 (99%) 2.95 ± 1.40 (89%) 5.58 ± 2.29 (49%) 79.00 0.8984
Java 7.65 ± 1.71 (94%) 2.73 ± 1.32 (93%) 5.83 ± 2.12 (53%) 80.00 0.9014
C# 7.70 ± 1.35 (97%) 3.31 ± 1.56 (82%) 5.35 ± 2.09 (46%) 75.00 0.8606
C++ 7.51 ± 1.64 (92%) 2.82 ± 1.46 (89%) 5.80 ± 2.33 (57%) 79.33 0.8787
C 7.79 ± 1.10 (98%) 2.99 ± 1.48 (88%) 5.81 ± 2.08 (47%) 77.67 0.9108
Go 8.08 ± 1.21 (99%) 3.68 ± 1.67 (74%) 6.09 ± 2.06 (50%) 74.83 0.8819
Rust 8.03 ± 1.20 (99%) 3.72 ± 1.77 (75%) 6.83 ± 1.62 (50%) 74.67 0.9051
Ruby 7.72 ± 1.03 (98%) 2.51 ± 1.04 (96%) 5.01 ± 2.23 (49%) 81.00 0.9203
All 7.81 ± 1.33 (97%) 3.15 ± 1.59 (84%) 5.74 ± 2.19 (49%) 77.05 0.8874

Table 10: Evaluate CodeBERT using the consistency score provided by GPT 3.5-turbo. We report the mean ± the
standard deviation for the score in each subset.

13.7%

10.6%

11.5%

24.3%

12.5%

2.9%
1.5%
4.8%

10.0%

8.3%

Python

PHP

JavaScript

Java

C#

Rust
Ruby
C

C++

Go

0 1 2 3 4 5 6 7
Number of functions 1e7

Python

PHP

JavaScript

Java

C#

Rust

Ruby

C

C++

Go

w/docstring-filtered w/docstring-noise wo/docstring

Figure 4: Distribution and the number of functions by the presence of docstrings. Functions with docstrings are
further divided into two categories: functions removed by rule-based filters and functions in the final code-text
dataset.

0 100 200 300 400

Python

PHP

JavaScript

Java

C#

C

C++

Ruby

Rust

Go

Code_tokens

20 40 60 80

Docstring_tokens

Figure 5: Code and Docstring tokens length distribution.
The plot shows the lower to upper quartile values of the
number of tokens in the data. The orange solid line |
indicates the median and the green triangle ▲ presents
the mean.

choose appropriate input and output lengths for
training. This can help improve the performance of
training a language model and prevent the resulting
LLMs from producing outcomes too short or too
long for the intended use cases [Kaplan et al., 2020,
Brown et al., 2020].

Our tokenization process utilizes the tree-sitter
framework to parse source code into nodes on an
abstract syntax tree; each node is considered a to-
ken. For docstring tokenization, we tokenize by
word and punctuation. The code and docstring
tokens length distribution for each programming
language is illustrated in Figure 5. The number of
tokens present in a function (average of around 100
tokens) is considerably more than the number of
tokens found in the docstrings (average of 15-30
tokens) that describe it. In particular, among the

234

10 programming languages, C and C++ have the
highest number of tokens in a function. This can
be attributed to the fact that these languages are
low-level languages, which typically require more
code to perform a task when compared to higher-
level languages. In the case of docstrings, their
number of tokens is determined not only by the
naturalness of the description in practice but also
by cleaning rules outlined in Section 3.2.1. From
Figure 5-Right and Table 9, it can be observed
that the docstrings in Java and C are lengthy but
are slightly cleaned by update-action rules, indicat-
ing that the docstrings in these two languages are
typically long and more detailed in practice. Mean-
while, the number of tokens of docstrings in C# is
the lowest. The cleaning rules may have played a
role, as a significant proportion of the samples in
C# has been updated based on Comment Delimite
(16,7%) and HTML Tags (17,15%) rules.

Table 2 depicts the overall number of distinct
tokens for each programming language. As our
dataset contains extensive unique tokens, we be-
lieve that model training on The Vault can effec-
tively handle unseen tokens. Besides, we find that
multiple function names are reused due to the rela-
tively small number of unique identifiers compared
to the total number of functions in the dataset. This
finding implies that even for humans, naming func-
tions might be a difficult task.

Docstring Styles: Alongside typical docstrings
that provide brief descriptions of the source code,
many adhere to formatting and style conventions
like Google, Jsdoc, and reST styles, among others.
Our toolkit, designed to parse docstrings and ex-
tract metadata into a dictionary, supports 11 preva-
lent docstring styles. The styles we support and
the information we aim to extract are depicted in
figures 10 and 8 in Appendix A.5. This rich dataset
could inspire research on advanced problems, such
as controlling docstring style during generation or
crafting explanations for function parameters.

Figure 9 provides statistics on the number of
docstrings following a standard style. The data
suggests that styled docstrings constitute a small
fraction of the overall code-text dataset. One pos-
sible explanation is that our style detection rules
are stringent, excluding docstrings with even mi-
nor syntax deviations, which might result in un-
derestimating the number of docstrings adhering
to a specific format. For styled docstrings, Figure
9-bottom presents the distribution of the number

of extracted attributes for each programming lan-
guage, with most having between 1 to 5 elements.
We make our docstring-style parser available to
the community to facilitate easy customization and
enhancement.

A.4 Analyzing for Class and Inline Comment
Set

In Table 11, we provide a statistical analysis of the
number of classes and inline comments in both the
raw set and the filtered set. Since the class structure
is not defined in C and Go, we do not have their
information to give in this table.

Initially, we excluded a substantial number of
class samples from the raw dataset that lacked doc-
strings. The remaining class-docstring pairs un-
derwent additional processing. Since the nature
of classes and functions is similar, their function-
alities can be meaningfully defined by pairs of a
code snippet and a docstring. However, one of the
problems when constructing paired data for class-
comment samples is the large code snippet length
of the class structure. As a result, we set the maxi-
mum number of code tokens that a class can have
to 5000. On average, the code-token length of the
class set is approximately 500, which is around five
times longer compared to the average token length
in the function set, while the number of docstring-
token lengths is similar between the two sets, as
shown in Figure 6. Each pair of class-docstring
is also examined via a rule-based filtering process,
as described in Section 3.2.1, serving as a sample
point in Dpair dataset.

In the Dblock analysis, we initiate the initial for-
mation of the sub-dataset by identifying and extract-
ing inline comments within code functions. The ex-
tracted comments undergo a series of cleaning pro-
cedures similar to those applied to the docstrings
(as discussed in Section 3.2.1). After eliminating
noisy samples, we proceed to establish various in-
tervals for the number of comment tokens, aiming
to determine the optimal upper and lower bounds
that yield high-quality collected comments. Our
observations reveal that inline comments exceed-
ing 15 tokens typically incorporate code snippets,
while comments containing fewer than 3 tokens
lack substantial meaningful information. Conse-
quently, this interval serves as a filtering criterion
to generate the final version of Dblock. Figure 7
shows the distribution of code-token length and
docstring-token length in Dblock set.

235

Language
Number of raw classes Number of classes

after filtering
Number of raw

inline comments
Number of inline comments

after filteringw/ comment wo/ comment
Python 497,550 1,440,539 422,187 24,066,884 14,013,238
PHP 2,223,472 6,232,180 1,173,916 9,892,486 5,873,744
JavaScript 494,819 2,409,932 291,479 4,426,086 1,438,110
Java 8,438,772 11,997,783 4,872,485 24,982,298 17,062,277
C# 2,378,379 9,097,968 1,437,800 10,130,704 6,274,389
C++ 285,184 791,355 174,370 20,770,494 10,343,650
Rust 188,517 3,591,465 93,311 2,998,368 2,063,784
Ruby 721,338 2,903,507 353,859 1,236,143 767,563
C - - - 16,009,812 6,778,239
Go - - - 7,574,542 4,390,342
Total 15,228,031 38,464,729 8,819,407 122,087,817 69,005,336

Table 11: The number of classes and inline comments associated with the class and inline set. The symbol ‘-’
indicates that this information is unavailable due to the nonexistence of traditional classes in C and Go.

0 200 400 600 800 1000 1200 1400

Python

PHP

JavaScript

Java

C#

C++

Ruby

Rust

Code_token

10 20 30 40 50 60

Python

PHP

JavaScript

Java

C#

C++

Ruby

Rust

Docstring_token

Figure 6: Code and Docstring tokens length distribution of the Class set after filtering.

0 100 200 300 400 500

Python

PHP

JavaScript

Java

C

C_sharp

Cpp

Ruby

Rust

Go

Code_token

4 6 8 10 12 14

Python

PHP

JavaScript

Java

C

C_sharp

Cpp

Ruby

Rust

Go

Comment_token

Figure 7: Code and Docstring tokens length distribution of Dblock set after filtering.

A.5 Docstring Styling

A docstring is a string literal used as a form of docu-
mentation for a module, function, class, or method

definition in programming languages. It is usu-
ally placed as the first statement in the code block
(which can be inside or outside the code block it-
self) and enclosed by a comment delimiter (e.g.,

236

triple quotes (“‘) or a star slash (*)). Depending on
developer comment habit or docstring style format,
docstrings can form two types: one-line docstrings
and multi-line (or block) docstrings. A docstring
can provide a concise summary of the functionality
while also providing a detailed description of the
code block, including its parameters, return val-
ues, exceptions, and other relevant information (as
illustrated in Figure 8)

The primary purpose of a docstring is to provide
clear, concise, and easily accessible documenta-
tion for a code block. Docstring styles are conven-
tions followed while writing docstrings to ensure
consistency, readability, and ease of understanding
throughout a codebase. This has become a standard
for clean code in the industry and has developers
saving tons of time when it comes to understanding
or (auto-)generating documentation (using Sphinx,
Doxygen, etc).

There are several popular docstring styles, such
as Google Style, NumPy Style, reStructuredText
(reST) Style for Python programmers, JavaDoc
Style or Doxygen for Java users, each with its own
formatting rules, structure and target programming
language (docstring style examples and preferred
language are listed in Figure 10). The statistic for
docstring style corresponding to function level is
presented in Figure 9. We believe that information
inside a docstring is extremely useful and can pro-
vide numerous advantages for various applications
in the fields of AI for source code, such as pro-
viding more precise and relevant search results for
code search and retrieval tasks, or the performance
of code analysis or refactoring can be significantly
improved while the identifier of a parameter and its
corresponding docstring information is available.

A.6 Experiment setup

Data splitting: During the experiment phase, The
Vault (Dpaired) was split into three distinct datasets:
training, validating, and testing sets. To avoid data
leakage, we reinforced a policy where code sam-
ples from the same repository must all be in the
same set. In the splitting algorithm, we also in-
cluded as a goal the preservation of the token length
distribution from The Vault’s dataset in each subset.

For richer comparisons, the training set was fur-
ther branched off to two smaller sets, the small
and medium training sets, sampling 5% and 20%
of the full training set, respectively. Details about
experiment data can be found in 12.

Language
Training set

Valid set Test set
Small Medium Full

Python 370,657 1,952,110 7,772,647 30,992 21,652
Java 351,213 1,612,366 6,629,193 22,677 15,552
JavaScript 82,931 404,729 1,640,416 22,044 21,108
PHP 236,638 1,155,476 4,656,371 21,375 19,010
C 105,978 381,207 1,639,319 27,525 19,122
C# 141,090 783,166 3,305,891 24,787 19,638
C++ 87,420 410,907 1,671,268 20,011 18,169
Go 267,535 1,319,547 5,109,020 19,102 25,314
Ruby 23,921 112,574 424,339 17,338 19,908
Rust 35,367 224,015 825,130 16,716 23,141
Total 1,702,750 8,356,097 33,673,594 222,567 202,614

Table 12: The proportion of training, validation, and
test set of THEVAULT.

Infrastructure: All experiments are conducted
on 4 NVIDIA A100 GPUs.

Code search: We select CodeBERT, as the en-
coder for embedding source code and natural query,
for all experiments. We train 10 epochs for each
model with a sequence max length of 512, and a
learning rate 2−5.

Code summarization: Codet5-base is em-
ployed for the summarization task. We set the
max input tokens to 512 and the max output tokens
to 400. The training batch size is set to 512, the
learning rate is 2−4, and training for 5 epochs.

Code generation: We use 350M parameters of
CodeGen to evaluate code generation. We use the
same configuration as in the code summarization
task.

A.7 Experimental results on code
summarization

We report Rouge-L, BERTScore, and BLEU-4 met-
rics on test sets of CSN and The Vault in Table 14.
The results obtained from the experiments clearly
indicate that models trained on our dataset con-
sistently outperform CSN on all three evaluation
metrics. This notable improvement across the met-
rics serves as strong evidence for the syntactic and
semantic richness embedded within our dataset for
code summarization. This highlights the effective-
ness of our dataset in enabling models to grasp
contextual information and generate high-quality
summaries that accurately represent the underlying
code functionality.

A.8 Ablation study
In this section, we assess TheVault’s versatility
and adaptability by providing additional experi-
mental results on several architectures (RoBERTa
[Liu et al., 1907], UniXcoder [Guo et al., 2022],
PLBART [Ahmad et al., 2021a]) for code search

237

Model Fine-tune data Python Java JavaScript Go PHP Ruby Rust C C++ C# Avg
CODESEARCHNET TESTSET (MRR)

CodeBERT

CodeSearchNet 0.3793 0.4636 0.4437 0.6201 0.4741 0.5219 - - - - 0.4838
TheVault/small 0.4074 0.4857 0.4466 0.6578 0.6578 0.5251 - - - - 0.5301
TheVault/medium 0.6585 0.6945 0.6197 0.8571 0.638 0.7096 - - - 0.6962
TheVault 0.6952 0.7242 0.6562 0.8789 0.6646 0.7474 - - - - 0.7278

RoBERTa CodeSearchNet 0.3479 0.448 0.4254 0.5684 0.4623 0.5147 - - - - 0.6952
TheVault/small 0.4849 0.5581 0.4962 0.7446 0.5166 0.59 - - - - 0.5651

UniXCoder CodeSearchNet 0.3935 0.4549 0.4459 0.5861 0.489 0.5446 - - - - 0.4857
TheVault/small 0.4427 0.4909 0.4506 0.6416 0.4515 0.5702 - - - - 0.5079

THEVAULT TESTSET (MRR)

CodeBERT

CodeSearchNet 0.2881 0.3213 0.2409 0.4123 0.1854 0.2579 - - - - 0.2843
TheVault/small 0.3501 0.4214 0.3216 0.4864 0.2351 0.2904 0.326 0.2996 0.3015 0.3483 0.3165
TheVault/medium 0.5929 0.6215 0.549 0.6862 0.3642 0.514 0.5705 0.5362 0.5264 0.5268 0.5488
TheVault 0.6448 0.6633 0.592 0.7111 0.3891 0.5607 0.6243 0.5947 0.5932 0.5616 0.5935

RoBERTa CodeSearchNet 0.2644 0.3329 0.2371 0.2375 0.1577 0.2574 - - - - 0.2478
TheVault/small 0.4533 0.5519 0.4386 0.5021 0.2876 0.3717 0.4195 0.3805 0.37 0.4099 0.4342

UniXCoder CodeSearchNet 0.2959 0.344 0.2508 0.185 0.1646 0.2669 - - - - 0.2512
TheVault/small 0.3852 0.4279 0.3491 0.4628 0.238 0.3201 0.363 0.2934 0.2861 0.3473 0.3639

Table 13: Code search results of various architectures and training dataset.

and code summarization tasks. Besides, in order to
validate the efficiency of our processing pipeline,
we conduct a comparison between the performance
of models trained on The Stack (raw data) and The
Vault (processed data). Specifically, we established
three function-level subsets, each approximately
the size of TheVault/small (≈1.7M code-text in-
stances). These subsets were created by randomly
sampling the raw function-level dataset extracted
from The Stack, without applying any filtering (re-
ferred to as raw-TheStack). We use three different
seeds to sample raw-TheStack and report the aver-
age result. Tables 13 and 14 illustrate the results
for code search and code summarization, corre-
spondingly. As a result, in the code search task,
models trained on The Vault consistently outper-
form all baseline models, underscoring both the ef-
ficiency of our processing pipeline and the dataset’s
ability to generalize across different architectures.
For code summarization, our pipeline has simi-
larly witnessed strong effectiveness compared to
raw-TheStack. Particularly, during training on the
raw-TheStack dataset for the code summarization
task, we found that the PLBART and CodeT5 gen-
erate outputs with substantial noise. These outputs
are characterized by a prevalence of special tokens
like // and *. This finding strongly underscores the
efficacy of our filtering process in enhancing the
quality of the dataset. However, the result using
CSN shows superior performance on CSN’s testset
than using The Vault. The reason for this is our
mention of the post-processing step (section 4.3.1)
to reduce the difference between the CSN and The
Vault filtering methods, where the syntactic distri-
bution can still exhibit nonidentical characteristics,

which can affect the BLEU score. However, this
gap could be reduced by using the full version of
The Vault as shown in Table 5.

238

Language Finetune dataset CodeSearchNet The Vault
Rouge-L BERTScore BLEU-4 Rouge-L BERTScore BLEU-4

Python

CodeSearchNet 34.000 88.827 19.55 (20.36) 26.798 87.055 10.86
TheVault/medium-S 34.676 88.905 19.74 30.335 87.633 13.06
TheVault-S 36.499 89.211 21.15 31.786 87.929 14.14
TheVault/medium-L 33.848 88.734 18.88 30.947 87.716 13.36
TheVault-L 35.024 88.921 19.83 32.251 87.954 14.33

Java

CodeSearchNet 35.625 89.132 20.38 (20.46) 27.297 87.385 8.00
TheVault/medium-S 33.385 88.490 18.62 31.320 87.897 11.17
TheVault-S 35.495 88.907 20.43 33.137 88.268 12.00
TheVault/medium-L 32.561 88.161 18.29 30.773 87.596 11.50
TheVault-L 35.221 88.782 20.37 32.882 88.000 12.47

JavaScript

CodeSearchNet 28.330 87.568 16.15 (16.24) 24.895 86.519 8.42
TheVault/medium-S 26.528 87.017 14.88 27.891 86.846 10.58
TheVault-S 28.345 87.384 16.30 29.817 87.320 11.71
TheVault/medium-L 27.062 87.057 14.95 28.290 86.936 10.83
TheVault-L 27.869 87.276 15.63 30.572 87.391 12.38

PHP

CodeSearchNet 41.346 89.981 26.26 (26.09) 39.960 89.281 17.85
TheVault/medium-S 34.802 88.125 21.78 63.984 93.287 37.72
TheVault-S 37.297 88.676 23.53 65.401 93.580 38.30
TheVault/medium-L 33.325 87.963 20.27 65.195 93.679 39.13
TheVault-L 36.478 88.641 23.21 67.089 94.012 40.13

Go

CodeSearchNet 40.076 90.487 19.83 (19.76) 38.189 89.994 17.87
TheVault/medium-S 42.011 90.816 21.38 54.030 92.372 34.47
TheVault-S 44.649 91.188 24.37 54.889 92.541 35.44
TheVault/medium-L 41.480 90.731 21.22 56.721 92.994 39.27
TheVault-L 44.063 91.108 23.96 57.681 93.130 40.38

Ruby

CodeSearchNet 28.196 87.371 15.38 (15.69) 24.500 86.417 10.26
TheVault/medium-S 29.680 87.559 16.09 26.904 86.964 12.26
TheVault-S 31.133 87.830 17.15 28.535 87.280 13.79
TheVault/medium-L 29.389 87.565 15.42 27.485 87.044 12.63
TheVault-L 30.634 87.759 16.53 29.141 87.223 14.24

Total

CodeSearchNet 36.739 89.341 21.24 30.563 87.853 16.11
TheVault/medium-S 34.935 88.755 19.91 39.589 89.278 26.02
TheVault-S 37.120 89.163 21.73 41.079 89.591 27.41
TheVault/medium-L 34.086 88.585 19.16 40.544 89.473 27.71
TheVault-L 36.305 89.024 21.14 42.187 89.753 29.32

C

TheVault/medium-S - - - 28.132 86.277 10.21
TheVault-S - - - 33.275 87.353 13.39
TheVault/medium-L - - - 29.151 86.566 11.32
TheVault-L - - - 35.009 87.807 14.86

C#

TheVault/medium-S - - - 39.480 89.616 23.88
TheVault-S - - - 46.854 90.819 31.11
TheVault/medium-L - - - 39.720 89.652 24.30
TheVault-L - - - 46.594 90.788 31.05

C++

TheVault/medium-S - - - 28.029 86.719 14.55
TheVault-S - - - 29.942 87.116 16.18
TheVault/medium-L - - - 28.815 86.827 14.85
TheVault-L - - - 30.754 87.163 16.65

Rust

TheVault/medium-S - - - 30.416 87.758 13.30
TheVault-S - - - 32.535 88.126 14.72
TheVault/medium-L - - - 30.999 87.862 13.75
TheVault-L - - - 32.857 88.142 15.18

Table 14: Experimental results for code summarization. For models that are finetuned on The Vault, “-S” annotation
refers to finetuning process using short docstring field as summarization, while “-L” represents the docstring field.

239

Languages Inconsistent pairs

Python

// Handy for templates.
def has_urls(self):

if self.isbn_uk or self.isbn_us or self.official_url or self.
notes_url:

return True
else:

return False

// compresses the waveform horizontally; one of
// ‘‘"normal"‘‘, ‘‘"resync"‘‘, ‘‘"resync2"‘‘
def phase_type(self, value):

self._params.phase_type = value
self._overwrite_lock.disable()

Go

// InWithTags, OutWithTags, Both, BothWithTags
func Predicates(from Shape, in bool) Shape {

dir := quad.Subject
if in {

dir = quad.Object
}
return Unique{NodesFrom{

Quads: Quads{
{Dir: dir, Values: from},

},
Dir: quad.Predicate,

}}
}

// select Surf ro PhomtomJS
func (self *DefaultRequest) GetDownloaderID() int {

self.once.Do(self.prepare)
return self.DownloaderID

}

Java

// supplied callback function.
public boolean rm(Pipe pipe, IMtrieHandler func, XPub pub)

{
assert (pipe != null);
assert (func != null);
return rmHelper(pipe, new byte[0], 0, 0, func, pub);

}

// only for change appenders
public MapContentType getMapContentType(ContainerType

containerType){
JaversType keyType = getJaversType(Integer.class);
JaversType valueType = getJaversType(containerType.

getItemType());
return new MapContentType(keyType, valueType);

}

240

Languages Inconsistent pairs

JavaScript

// we do not need Buffer pollyfill for now
function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);

}

// WeakMap works in IE11, node 0.12
function (fn, name) {
function proxiedFn() {
’use strict’;
var fields = privates.get(this); // jshint ignore:line
return fn.apply(fields, arguments);

}

Object.defineProperty(proxiedFn, ’name’, {
value: name,
configurable: true

});

return proxiedFn;
}

PHP

// -> NEW
public function consumerId()

{
if (isset($this->session->data[’customer_id’]) === true) {

return $this->session->data[’customer_id’];
}
return null;

}

// disini mo ba atur akan apa mo kamana
private function _parse_routes()

{
$uri=implode(’/’, $this->uri->segments());

if (isset($this->router[$uri])) {
return $this->_set_request(explode(’/’, $this->router

[$uri]));
}

foreach ($this->router as $key → $val) {
$key = str_replace(’:any’, ’.+’, str_replace(’:num’,

’[0-9]+’, $key));

if (preg_match(’#ˆ’.$key.’$#’, $uri)) {
if (strpos($val, ’$’) !== FALSE AND strpos($key,

’(’) !== FALSE) {
$val = preg_replace(’#ˆ’.$key.’$#’, $val,

$uri);
}

return $this->_set_request(explode(’/’, $val));
}

}

$this->_set_request($this->uri->segments());
}

241

Languages Inconsistent pairs

Ruby

// Initialize a new page, which can be simply rendered or
// persisted to the filesystem.
def method_missing(name, *args, &block)

return meta[name.to_s] if meta.key?(name.to_s)
super

end

// Accepts the path of the YAML file to be parsed into
// commands - will throw a CommandException should it have
// invalid parameters
// @param filePath [String] Path for YAML file
def action_options

Attempt resolution to outputs of monitor
return @action_options unless @monitor_class.outputs.length >

0
action_options = @action_options.clone
@monitor_class.outputs.each do |output, _type|
action_options.each do |option_key, option_value|
action_options[option_key] =
option_value.gsub("{{#{output}}}", @monitor.send(output).

to_s)
end

end
action_options

end

Table 15: Inconsistent pairs in CodeSearchNet found by our model. “//” represents for docstring section.

def x_intercept (m, b):
"""

Return the x intercept of the line M{y=m*x+b}.

The X{x intercept} of a line is the point at which it crosses

the x axis (M{y=0}).

This function can be used in conjuction with L{z_transform}

to find an arbitrary function's zeros.

@type m: number

@param m: The slope of the line.

@type b: number

@param b: The y intercept of the line. The X{y intercept} of

a line is the point at which it crosses the y axis (M{x=0}).

@type count: string

@param count: The outlier param

@rtype: number

@return: the x intercept of the line M{y=m*x+b}.

@author: Epydoc's Documents
@see: https://epydoc.sourceforge.net/manual-epytext.html

"""

pass

Docstring Style:
Epytext

5. Return's docstring
and type

3. Param's docstring
and type

1. Short docstring

2. Docstring

6. Others

Identifier Parameter list

4. Outlier param's
docstring and type

Figure 8: Structure of a docstring and its metadata.

242

Python PHP JavaScript Java C# C++ C Rust Ruby
0.00

0.25

0.50

0.75

1.00
1e7

w/style
all

Languages Python PHP JavaScript Java C# C++ C Rust Ruby
w/style 2853520 8271 39295 14432 2754629 32517 25233 84427 156286
all 9893858 5455989 2562158 7886299 4011467 1934958 1978551 1076588 544867

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 9: Number of docstrings follows a specific style over all extracted code-text pairs. Upper figure and Middle
table illustrate statistics for docstrings with style. Lower figures present the histogram of extracted attributes in the
range of 1-20 for docstrings in each language. Golang does not have a supported style.

243

Google Style

Python"""
Test function.
Args:
 param1 (int): Description of param1.
 param2 (str): Description of param2.
Returns:
 bool: Description of the return value.
"""

/**
* Test function.
*
* @param param1 Description of param1.
* @param param2 Description of param2.
* @return Description of the return value.
*/

JavaDoc

Java C C++ C#Java C C++ C#

Jsdoc

JavaScript/**
* Test function.
*
* @param {int} param1 - Description of param1.
* @param {string} param2 - Description of param2.
* @return {bool} Description of the return value.
*/

reST

Python

reST

Python"""Test function.
:param param1: Description of param1.
:type param1: int
:param param2: Description of param2.
:type param2: str
:return: Description of the return value.
:rtype: bool
"""

Rdoc

Ruby

Rdoc

=begin
Test method.

@param param1 [Integer] Description of param1.
@param param2 [String] Description of param2.
@return [Boolean] Description of the return value.
=end

RustDoc

Rust

RustDoc

Rust/**
* Test function.
** # Arguments
* `param1`: Description of param1.
* `param2`: Description of param2.
* # Returns
* Description of the return value.
*/

PHPdoc

PHP

PHPdoc

PHP/**
* Test function.
*
* @param int $param1 Description of param1.
* @param string $param2 Description of param2.
* @return bool Description of the return value.
*/

Doxygen

C C++ C#C C++ C#/**
* Test function.
* @brief Constructor.
* @param param1 Description of param1
* @param param2 Description of param2
* @see Test()
*/

XML

C#/// <summary>
/// Test function.
/// </summary>
/// <param name="param1">Description of param1.
</param>
/// <param name="param2">Description of param1.
</param>
/// <returns>
/// Description of the return value.
/// </returns>

Epytext

PythonPython"""
Test function.
@type param1: int
@param param1: Description of param1
@type param2: string
@param param2: Description of param2
@rtype: bool
@return: Description of the return value.
"""

NumPy Style

Python

NumPy Style

Python"""
Test function.
Parameters

param1 : int
Description of param1.
param2 : str
Description of param2.
Returns

bool
Description of the return value.
"""

Figure 10: Supported docstring styles.

244

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 245–245
December 6, 2023 ©2023 Association for Computational Linguistics

trlX: A Framework for Large Scale Open Source RLHF

Louis Castricato
EleutherAI

Abstract

Reinforcement learning from human feedback
(RLHF) utilizes human feedback to better align
large language models with human preferences
via online optimization against a learned re-
ward model. Current RLHF paradigms rely on
Proximal Policy Optimization (PPO), which
quickly becomes a challenge to implement and
scale up to large architectures. To address this
difficulty we created the trlX library (Havrilla
et al., 2023) as a feature-complete open-source
framework for RLHF fine-tuning of models up
to and exceeding 70 billion parameters. We
implemented support for multiple types of dis-
tributed training including distributed data par-
allel, model sharded, as well as tensor, sequen-
tial, and pipeline parallelism.

Biography

Louis Castricato is a research scientist at
EleutherAI, working on RLHF infrastructure and
engineering. Previously, Louis was head of LLMs
at Stability AI and team lead at CarperAI, the
largest open source RLHF group, as well as a PhD
student at Brown University.

References
Alexander Havrilla, Duy Van Phung, Maksym Zhuravin-

skyi, Aman Tiwari, Jonathan Tow, Shivanshu Purohit,
Stella Biderman, Quentin Anthony, Ethan Kim, and
Louis Castricato. 2023. trlx: A framework for large
scale reinforcement learning from human feedback.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

245

https://github.com/CarperAI/trlx
https://github.com/CarperAI/trlx

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 246–246
December 6, 2023 ©2023 Association for Computational Linguistics

Southeast Asia LLMs: SEA-LION and Wangchan-LION

David Tat-Wee Ong,
AI Singapore

Peerat Limkonchotiwat
Vidyasirimedhi Institute of
Science and Technology,

Thailand

Abstract

SEA-LION (Southeast Asian Languages In
One Network) (Singapore, 2023) is a fam-
ily of multilingual LLMs that is specifically
pre-trained and instruct-tuned for the South-
east Asian (SEA) region, incorporating a cus-
tom SEABPETokenizer which is specially
tailored for SEA languages. The first part
of this talk will cover our design philoso-
phy and pre-training methodology for SEA-
LION. The second part of this talk will cover
PyThaiNLP’s (Phatthiyaphaibun et al., 2023)
work on Wangchan-LION, an instruct-tuned
version of SEA-LION for the Thai community.

Biography

David Tat-Wee holds a M.Sc in Computer Science
and a M.Sc in Financial Engineering from NUS. He
started his career by spending a decade in tech as a
software engineer, building early Internet applica-
tions and working in partnership with Apple, NEC,
Siemens and the National Institute of Education.
He spent the next decade in finance as a quanti-
tative hedge fund manager with Octagon Capital
Management, a Singapore quant fund, starting as
a quant research analyst to managing global equi-
ties as a portfolio manager to becoming the Chief
Investment Officer. He also developed Octagon’s
in-house financial applications and managed their
IT systems.

He joined AI Singapore’s (AISG) as an AI Engi-
neer after graduating from its AIAP programme in
2021 and became the Head of the Computer Vsion
Hub in 2022. David is presently the Head of Engi-
neering in AISG’s Products pillar, managing a team
of software engineers to support AISG’s Products
research implementation.

Peerat Limkonchotiwat is pursuing a Ph.D. student
in information science and technology (IST) at VIS-
TEC, Thailand. His research experiences involve
Natural Language Processing (NLP) and Informa-
tion Retrieval (IR), including large language mod-
els, dense retrievals, semantic understanding, repre-
sentation learning, question answering, and entity
linking. He is currently working with Dr. Sarana
Nutanong (VISTEC, Thailand) and Dr. Ekapol
Chuangsuwanich (CU, Thailand).

Currently, he is a subject matter expert in a
WangchanX project, a Thai NLP group develop-
ing applications based on research. His projects in
WangchanX are Thai sentence embedding bench-
marks, Thai text processing datasets (VISTEC-TP-
TH-2021 and NNER-TH), and generative models,
i.e. WangchanGLM (Polpanumas et al., 2023) and
Wangchan-Sealion).

References
Wannaphong Phatthiyaphaibun, Korakot Chaovavanich,

Charin Polpanumas, Arthit Suriyawongkul, Lalita
Lowphansirikul, Pattarawat Chormai, Peerat Limkon-
chotiwat, Thanathip Suntorntip, and Can Udom-
charoenchaikit. 2023. PyThaiNLP: Thai Natural
Language Processing in Python. In Proceedings of
Second Workshop for NLP Open Source Software
(NLP-OSS), Online. Association for Computational
Linguistics.

Charin Polpanumas, Wannaphong Phatthiyaphaibun,
Patomporn Payoungkhamdee, Peerat Limkon-
chotiwat, Lalita Lowphansirikul, Can Udom-
charoenchaikit, Titipat Achakulwisut, Ekapol
Chuangsuwanich, and Sarana Nutanong. 2023.
WangChanGLM — The Multilingual Instruction-
Following Model.

AI Singapore. 2023. Sea-lion (southeast asian lan-
guages in one network): A family of large language
models for southeast asia. https://github.com/
aisingapore/sealion.

246

https://openreview.net/forum?id=6HiK8jSnnB
https://openreview.net/forum?id=6HiK8jSnnB
https://doi.org/10.5281/zenodo.7878101
https://doi.org/10.5281/zenodo.7878101
https://github.com/aisingapore/sealion
https://github.com/aisingapore/sealion

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 247–247
December 6, 2023 ©2023 Association for Computational Linguistics

Towards Explainable and Accessible AI

Brandon Duderstadt
Nomic AI

Yuvanesh Anand
Virginia Institute of Technology &

Nomic AI

Abstract

Large language models (LLMs) have recently
achieved human-level performance on a range
of professional and academic benchmarks. Un-
fortunately, the explainability and accessibil-
ity of these models has lagged behind their
performance. State-of-the-art LLMs require
costly infrastructure, are only accessible via
rate-limited, geo-locked, and censored web in-
terfaces, and lack publicly available code and
technical reports. Moreover, the lack of tooling
for understanding the massive datasets used to
train and produced by LLMs presents a critical
challenge for explainability research. This talk
will be an overview of Nomic AI’s efforts to
address these challenges through its two core
initiatives: GPT4All (Anand et al., 2023) and
Atlas.

References
Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron

Miller, Richard Guo, Ben Schmidt, GPT4All Com-
munity, Brandon Duderstadt, and Andriy Mulyar.
2023. GPT4All: An Ecosystem of Open Source
Compressed Language Models. In Proceedings of
Second Workshop for NLP Open Source Software
(NLP-OSS), Online. Association for Computational
Linguistics.

Biography

Brandon Duderstadt is the founder and CEO of
Nomic AI, a series A startup whose mission is to
improve the explainability and accessibility of AI.
In 2018, Brandon dropped out of his biomedical
engineering Ph.D. at Johns Hopkins to join Rad AI,
a seed-stage medical generative AI startup. While
at Rad AI, he built and deployed transformers that
exceeded radiologist performance on a variety of
medical summarization tasks. His experiences at
Rad AI convinced him of both the profound impact
that this new wave of AI technology would have as
well as the need to improve the explainability and
accessibility of AI models.

Yuvanesh Anand is a freshman computer
science student at the Virginia Institute of Tech-
nology with broad interests in natural language
processing and open-source software development.
While still in high school, Yuvanesh joined Nomic
AI as a software engineering intern, where he led
the data collection and early development of the
gpt4all project. He aspires to have an impact at the
intersection of industrial AI R&D and open source.

Nomic AI was founded in 2022 by Brandon
Duderstadt and Andriy Mulyar with the goal of
improving the explainability and accessibility
of AI. Nomic currently has two major projects:
GPT4All and Atlas. GPT4All is an open-source
ecosystem that enables anyone to run open-source
language models on any machine. Atlas is a data
visualization tool that enables anyone to interact
with massive unstructured datasets, like those
consumed and produced by AI models, using only
their web browser.

247

https://openreview.net/forum?id=ex8iI838YE
https://openreview.net/forum?id=ex8iI838YE

Author Index

Anand, Yuvanesh, 59, 247

Bang, Fu, 212
Beauchemin, David, 19
Bellew, Douglas, 102
Bhattacharya, Arnab, 199
Bollmann, Marcel, 83
Bui, Nghi D. Q., 219

Callison-Burch, Chris, 65
Caragea, Cornelia, 141
Castricato, Louis, 246
Chaovavanich, Korakot, 25
Chormai, Pattarawat, 25
Curtis, Brenda, 102

Dau, Anh T. V., 219
Di Eugenio, Barbara, 141
Diesner, Jana, 190
Duderstadt, Brandon, 59, 247
Dugan, Liam, 65

Garcia-Olano, Diego, 165
Geuter, Jonathan, 8
Ghaffari, Parsa, 179
Ghalandari, Demian Gholipour, 179
Giorgi, Salvatore, 102
Gowda, Thamme, 110
Grobol, Loı̈c, 54
Grundkiewicz, Roman, 110
Grypari, Ioanna, 37
Guntuku, Sharath Chandra, 102
Guo, Jin, 219
Guo, Richard, 59
Günther, Michael, 8

Hai, Nam Le, 219
Hokamp, Chris, 179
Hwang, Alyssa, 65

Jain, Rohit, 110
Jovanovic, Andrej, 130
Junczys-Dowmunt, Marcin, 110

Kashyap, Sanjna, 78
Khayrallah, Huda, 110
Kokhlikyan, Narine, 165
Kruse, Maya, 147

Kumar, Ritesh, 120
Köhn, Arne, 83

Landes, Paul, 141
Lignos, Constantine, 147
Limkonchotiwat, Peerat, 25, 245
Lowphansirikul, Lalita, 25
Lyris, Ioannis, 37

Madnani, Nitin, 78
Manh, Dung Nguyen, 219
Manola, Natalia, 37
Markosyan, Aram H., 165
Mastrapas, Georgios, 8
Mathur, Neerav, 120
Matsubara, Yoshitomo, 153
Miglani, Vivek, 165
Miller, Aaron, 59
Miranda, Lester James Validad, 1
Mishra, Shubhanshu, 190
Mulyar, Andriy, 59

Nawrot, Piotr, 95
Nghiem, Khanh, 219
Nguyen, Anh Minh, 219
Nussbaum, Zach, 59

Ong, David, 245

Papageorgiou, Haris, 37
Phatthiyaphaibun, Wannaphong, 25
Polpanumas, Charin, 25
Post, Matt, 83, 110

Ratan, Shyam, 120
Ross, Björn, 130
Rueda, Andrew, 147

Schmidt, Benjamin M, 59
Schneider, Nathan, 83
Sherman, Garrick, 102
Singh, Siddharth, 120
Stavropoulos, Petros, 37
Steimel, Kenneth, 78
Stollenwerk, Felix, 174
Suntorntip, Thanathip, 25
Suriyawongkul, Arthit, 25

248

Terdalkar, Hrishikesh, 199
Tjhi, William, 245
Treat, Adam, 59

Udomcharoenchaikit, Can, 25
Ungar, Lyle, 102

Wang, Bo, 8

Xiao, Han, 8
Xie, Zhaoyang, 78

Yang, Aobo, 165

Zhu, Andrew, 65

249

	Title page
	Copyright
	Program Committee
	Table of Contents
	Program
	calamanCy: A Tagalog Natural Language Processing Toolkit
	Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models
	Deepparse : An Extendable, and Fine-Tunable State-Of-The-Art Library for Parsing Multinational Street Addresses
	PyThaiNLP: Thai Natural Language Processing in Python
	Empowering Knowledge Discovery from Scientific Literature: A novel approach to Research Artifact Analysis
	Zelda Rose: a tool for hassle-free training of transformer models
	GPT4All: An Ecosystem of Open Source Compressed Language Models
	Kani: A Lightweight and Highly Hackable Framework for Building Language Model Applications
	Beyond the Repo: A Case Study on Open Source Integration with GECToR
	Two Decades of the ACL Anthology: Development, Impact, and Open Challenges
	nanoT5: Fast & Simple Pre-training and Fine-tuning of T5 Models with Limited Resources
	AWARE-TEXT: An Android Package for Mobile Phone Based Text Collection and On-Device Processing
	SOTASTREAM: A Streaming Approach to Machine Translation Training
	An Open-source Web-based Application for Development of Resources and Technologies in Underresourced Languages
	Rumour Detection in the Wild: A Browser Extension for Twitter
	DeepZensols: A Deep Learning Natural Language Processing Framework for Experimentation and Reproducibility
	Improving NER Research Workflows with SeqScore
	torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP
	Using Captum to Explain Generative Language Models
	nerblackbox: A High-level Library for Named Entity Recognition in Python
	News Signals: An NLP Library for Text and Time Series
	PyTAIL: An Open Source Tool for Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data
	Antarlekhaka: A Comprehensive Tool for Multi-task Natural Language Annotation
	GPTCache: An Open-Source Semantic Cache for LLM Applications Enabling Faster Answers and Cost Savings
	The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
	SEA-LION (Southeast Asian Languages In One Network): A Family of Southeast Asian Language Models
	trlX: A Framework for Large Scale Open Source RLHF
	Towards Explainable and Accessible AI

