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Abstract
Large language models show an emergent abil-
ity to learn a new task from a small number
of input-output demonstrations. However, re-
cent work shows that in-context learners largely
rely on their pre-trained knowledge, such as
the sentiment of the labels, instead of finding
new associations in the input. However, the
commonly-used few-shot evaluation settings
using a random selection of in-context demon-
strations can not disentangle models’ ability to
learn a new skill from demonstrations, as most
of the randomly-selected demonstrations do not
present relations informative for prediction be-
yond exposing the new task distribution.

To disentangle models’ in-context learning abil-
ity independent of models’ memory, we intro-
duce a Conceptual few-shot learning method
selecting the demonstrations sharing a possibly-
informative concept with the predicted sample.
We extract a set of such concepts from anno-
tated explanations and measure how much can
models benefit from presenting these concepts
in few-shot demonstrations.

We find that smaller models are more sensi-
tive to the presented concepts. While some of
the models are able to benefit from concept-
presenting demonstrations for each assessed
concept, we find that none of the assessed in-
context learners can benefit from all presented
reasoning concepts consistently, leaving the in-
context concept learning an open challenge.

1 Introduction

In-context learning (ICL) is the alternative to the
conventional training of Large Language Models
(LLMs) for specific task(s), where models are ex-
pected to learn a new task solely from the input text.
In few-shot in-context learning that we focus on,
the input text contains a set of demonstrations, i.e.
the input-output examples of the task to be learned
(Brown et al., 2020).

An ability to learn unseen tasks from natural in-
structions has practical and theoretical implications,

Does the following hypothesis ENTAIL or
NOT ENTAIL the premise?

Premise: "Writing Java is not too different
from programming with handcuffs."
Hypothesis: "Writing Java is similar to
programming with handcuffs."
Label: ENTAIL

Premise: "The market is about to get
harder, but not impossible to navigate."
Hypothesis: "The market is not about to
get harder, but impossible to navigate."
Label: NOT ENTAIL

Premise: "If the scheme does not
correspond, a negative impact on the
results would be expected."
Hypothesis: "If the scheme does not
correspond, it would not be unexpected for
it to negatively impact the results."
Label:

Does the following hypothesis ENTAIL or
NOT ENTAIL the premise?

Premise: "The cat sat on the mat"
Hypothesis: "The cat did not sit on the
mat"
Label: NOT ENTAIL

Premise: "Some dogs like to scratch their
ears."
Hypothesis: "Some animals like to
scratch their ears."
Label: ENTAIL

Premise: "If the scheme does not
correspond, a negative impact on the
results would be expected."
Hypothesis: "If the scheme does not
correspond, it would not be unexpected
for it to negatively impact the results."
Label:

In-context Learner
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Figure 1: In this work, we assess In-context learners’
ability to improve when presented with demonstrations
using a reasoning concept applicable in the prediction
(§2). We extract these concepts from human explana-
tions (§3.2) and assess models’ ability to learn to use
these concepts, as reflected in improving their predic-
tion quality.

both of which are of great significance; Understand-
ing free-form user requests allow applying LLMs in
applications of restricted, or limited data availabil-
ity without over-specialization (Goodfellow et al.,
2014). In-context learning can provide a handle
of models’ behaviour, enabling the model to avoid
specific erroneous predictions. In theory, a training
process resulting in accurate new-task learner de-
fines the sufficient conditions for the emergence of
a specific level of generalization.

Recent LLMs trained on vast mixtures of tasks
(Sanh et al., 2022a; Wang et al., 2022b; Chung
et al., 2022) show a certain level of new-task
ICL and gradually bring more attention and ex-
pectations in this direction. However, counter-
intuitively to the overall evaluations, in-context
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learners (ICLs) also expose surprising behavioural
artefacts; Liu et al. (2022) show ICLs’ sensitivity
to the ordering of in-context demonstrations. Simi-
larly, Lu et al. (2022) find surprising sensitivity of
ICLs to the specific wording of the prompts. Min
et al. (2022b) show that most of the model perfor-
mance is persisted even when the contents of the
demonstrations are randomly swapped. Contrary
to the ability to learn from input, Wei et al. (2023)
propose to attribute this to the over-reliance of in-
context learners on semantics of the label tokens,
especially in smaller models.

We find that the discrepancy in the perceived
abilities of ICLs might be attributed to their lim-
ited evaluation, commonly performed with a ran-
dom set of task demonstrations. However, for
many open-ended tasks, such as Question Answer-
ing, or Translation, randomly-chosen demonstra-
tions rarely present a reasoning pattern which can
help with the prediction of new input (Figure 1;
Right). We argue that the evaluation with mostly
non-informative contexts also can not reflect on
the ability of learning, as observed in humans1,
as the gain of extrapolating associations presented
in non-informative demonstrations can only bring
little benefit to the practice.

We note that in the absolute numbers, the
random-demonstrations evaluation also favours
very large LLMs with a capacity to remember
a wider variety of input distributions from pre-
training; Conditioned by the capacity, very large
LLMs can better modulate the behaviour based on
demonstrations’ distribution, instead of learning
new association(s) from the context.

Hence, in Section 2, we propose to evaluate
models’ in-context learning ability primed with
the demonstrations that exhibit a reasoning analog-
ical to the one required for a robust prediction of
the predicted sample (Fig. 1). We measure how
well can the recent few-shot learners utilize iden-
tified concepts for more accurate predictions (§3)
and find large discrepancies among the models and
concepts.

Our main contributions are following: (i) We
introduce a task of Conceptual Few-shot Learning,
disentangling models’ ability to learn a new rea-
soning concept from other aspects of prediction
quality. We show how such reasoning concepts can
be extracted from human explanations. (ii) For a

1We restrain from discussing a concept of learning in the
psychological scope, but we note that Concept learning fits
well into a definition of Associative learning (Plotnik, 2012).

wide variety of recent in-context learners, we mea-
sure the ability to benefit from presented reasoning
concepts. We show that while some models are
better at learning concepts on average, this ability
can not be attributed to the models’ size or training
strategy.

Problem Definition Given a dataset D : {(x1 →
Y1), .., (xi → Yi)} ∈ D containing pairs of input
xj with associated label Yj , an in-context few-shot
learner Θ(x) → y aims to predict a correct label
yk+1 = Yk+1 given a sequence of k input-output
demonstrations, and the predicted input xk+1:

Θ([x1 → Y1, .., xk → Yk], xk+1) → yk+1 (1)

We expect in-context few-shot learner Θ to model
the relation of xi and yi by (i) identifying and (ii)
extrapolating the relations of input and output pre-
sented in demonstrations. Each such relation is
modelled by one or more latent concepts C:

∀ (xi, Yi) ∈ D : ∃ C : C(xi, Yi) = 1 (2)

We broadly define a concept C as any function
C(x, y) → {0, 1}, constraining a space of valid
outputs y to the ones where C(x, y) = 1. Thus, if
Θ learns a concept C, it will never predict for x
such y that C(x, y) = 0. In a composition {C}=
{C1, .., Cj}, all Ci∈{C} must evaluate to 1.

Given that modelling of each C valid for the task
of D restrain a set of possible predictions of Θ ex-
clusively from incorrect predictions, extending a
set of concepts learned in-context with complemen-
tary one(s) should never decrease the performance
of the model Θ on D.

2 Conceptual Few-shot Learning

We reformulate in-context few-shot learning (1) to
a conceptual few-shot learning, evaluating the abil-
ity of a few-shot learner Θ to identify and apply a
user-chosen reasoning concept C shown in demon-
strations. First, we classify evaluation samples such
that the samples of the same category Xi require
the concept Ci to map x to Y . Subsequently, in
conceptual few-shot learning, we let the learner
to infer a prediction for input xk+1 by presenting
it with demonstrations (xj → Yj)1..k ∈ Xi, thus
sharing the reasoning concept Ci with the predicted
input xk+1:

Θ([x1 → Y1, .., xk → Yk], xk+1)

where ∀(x1..k, Y1..k) ∈ Xi and xk+1 ∈ Xi
(3)
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We note that Θ can rely on other features than
Ci, and such reliance is not easy to disentangle.
Therefore, we propose to contextualize the results
of Conceptual few-shot learning on a concept Ci a
difference to the performance obtained in a random
selection of demonstrations.

Additionally, to make the predictions based on
two different sets of demonstrations mutually com-
parable without systematic bias (e.g. in samples’
complexity), we perform both random and concept-
sharing evaluations with the same predicted sam-
ples xk+1, and only change the demonstrations2.

Informative Concepts Extraction Constructing
a scaled evaluation with annotated reasoning con-
cepts C is challenging since the annotations of such
concepts in associated with the datasets are rare.

However, we find such reasoning inherently cap-
tured in human explanations of some datasets,
where annotators are asked to collect answers
to a question “why is [input] assigned [output]?”
(Wiegreffe and Marasović, 2021).

The form of these explanations ranges from
free-text explanations, including annotator-specific
slang and stylistics, to semi-structured and struc-
tured explanations, cast to a pre-defined format,
often consisting of a set of relations in a form “[sub-
ject1] [relation] [subject2]” that transitively maps
[input] to [output] (Jansen et al., 2018). We focus
on extracting the concepts from the subset of the
semi-structured and structured explanations where
the format consistency and non-ambiguity of the
operands are reassured.

3 Evaluations

This section introduces few-shot learners that we
evaluate for Conceptual few-shot learning and the
datasets allowing us to extract reasoning concepts.

3.1 Few-shot Learners

T0 (Sanh et al., 2022b) introduce a set of in-
context learning models fine-tuned from a T5
model (Raffel et al., 2020) on a variety of tasks
in zero-shot settings, aiming to perform well on a
task of previously-unseen categories. T0 is trained
for seq2seq generation over a large set of diverse
tasks cast to a unified input-output format provided
by task-specific templates of Promptsource project
(Bach et al., 2022).

2The implementation of Conceptual few-shot learning is
available on https://github.com/MIR-MU/CoAT.

TK-INSTRUCT (Wang et al., 2022a) is a set of
models trained for comprehension of annotator-
like instructions, consisting of a free-text task de-
scription and a set of input-output pairs, collected
for more than 1,400 tasks of NATURALINSTRUC-
TIONS collection (Mishra et al., 2022). Note that,
in contrary to T0, TK-INSTRUCT models can ad-
vance from being trained in the few-shot learning
format, where the model was exposed to the for-
mat of a few input-output examples already in the
fine-tuning.

FLAN (Chung et al., 2022) scales the approach
of fine-tuning in a few-shot learning format to
over 1,800 tasks of 146 categories including all
resources of T0 and TK-INSTRUCT. Contrary to
the former models, the training data mixture in-
cludes several datasets with chain-of-thought la-
bels, where the model is trained to follow the an-
notated reasoning chain explicitly. We evaluate all
publicly available T5-based FLAN models.

GPT3 (Brown et al., 2020) is a well-known
causal language model that has first shown that
in-context few-shot learning ability can emerge
solely from vast amounts of unsupervised training
data and parametrization, without fine-tuning. Al-
ternatively to other approaches, INSTRUCTGPT
(Ouyang et al., 2022) fine-tunes GPT3 to follow
human instructions using obtained user feedback.
We evaluate both these models through OpenAI
APIs3.

3.2 Datasets

Following is a description of datasets that we use
in Conceptual few-shot evaluation. Note that for
each dataset, we highlight a single concept that
we use in Conceptual few-shot evaluation as the C
(§2). In the case of each model and dataset, we first
evaluate all templates available in Promptsource
and report the gain of utilising the chosen concept
for the best-performing template.

WorldTree (Jansen et al., 2018; Xie et al., 2020)
is a collection of 5,114 science exam questions with
the explanations in the form of 9,216 shared facts
supporting the assignment of the correct answer.

We use the shared facts as the concepts C and
evaluate with the demonstrations of a maximal
facts’ intersection with the predicted sample. Con-
trary to the other datasets, in WorldTree evaluation,

3https://beta.openai.com
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Figure 2: Conceptual few-shot evaluation: Relative performance change of the assessed in-context learners
between using random demonstrations (k=3) and concept-sharing demonstrations (§2), with concepts of the datasets
described in §3.2. Models are ordered by a number of parameters. Error bars show a 95% confidence interval of the
bootstrapped results (100 samples, 200 repeats). Absolute results for both selection strategies are in Figure 4.
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Figure 3: Conceptual few-shot evaluation: all con-
cepts: Error change of the assessed in-context learners
between random demonstrations and concept-sharing
demonstrations (§2) aggregated over all assessed con-
cepts. Experimental setup is consistent with Figure 2.

we prepend the facts for all the demonstrations in
the context before the demonstrations.

OpenBookQA (Mihaylov et al., 2018) is a collec-
tion of elementary-grade single-choice questions re-
quiring common sense knowledge about the world.
A set of 4,957 explanations take the form of a triple
of (object, relation, object), such as “a stove gener-
ates heat” for a question “Which one of these can
help a person cook their food? [four options]” and
a correct option “a counter cooker appliance”.

To extract informative concepts C, we perform
syntactic analysis of the explanation and extract

the relation, identified as a root of the sentence’s
parse tree. Hence, in conceptual few-shot learning,
we prime the aforementioned question with other
question-options-answer pairs of the questions an-
swerable by relating the input to output through the
“generate” relation.

HotpotQA (Yang et al., 2018) is a QA dataset
composed of questions requiring the QA model
to jointly reason over multiple passages of multi-
document contexts. Inoue et al. (2020) enrich the
dataset with explanations from three human an-
notators. The explanations are structured in the
form of triples (e1, r, e2), associating two entities
(e1 and e2) through a relation r, such as (“Scott
Derrickson”, “is”, “an American director”).

We extract the shared concepts C as pairs of
(r, e2); Hence, Conceptual few-shot will prime the
prediction with questions and contexts presenting
the same entities in analogical relations to the ones
the model should understand for correct prediction.

GLUE Diagnostic (Wang et al., 2018) contains
approximately 1,100 diagnostic samples of Natural
Language Inference intended to fool a simple sta-
tistical model. While the concepts are heuristically
extracted in other cases, GLUE diagnostic directly
annotates 30 distinct logical concepts needed in
prediction, such as double negation, conjunction,
or existential quantification. We directly use these
logical concepts as the reasoning concepts C.
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3.3 Baseline model (BASELINE-TK-QA-1B)

To contextualize the results of existing In-context
learners, we additionally evaluate a simple newly-
created few-shot in-context learner trained on a
single QA dataset. Similarly to TK-INSTRUCT,
we construct the training examples of the meta-
learning task in the explicit few-shot learning for-
mat, as initially proposed by Min et al. (2022a),
where the model is updated to predict correct la-
bels with a set of randomly-selected demonstra-
tions included in the input (Eq. (1)). This way, we
fine-tune a T5-LARGE model (Raffel et al., 2020)
on AdversarialQA dataset (Bartolo et al., 2021) un-
til convergence on a validation split. We assess the
resulting model on Conceptual few-shot learning
together with other in-context learners, denoting its
results as BASELINE-TK-QA-1B.

4 Results and Discussion

Figure 2 shows the change of models’ error be-
tween a random selection of demonstrations and
Conceptual few-shot learning, i.e. with demonstra-
tions sharing a selected concept (§2), ordered by
models’ size.

For each of the assessed concepts, we observe
statistically significant improvement for at least
one of the models, which confirms our initial as-
sumption on the informativeness of the extracted
concepts in prediction.

However, we can see that the selection of demon-
strations makes a large difference in many cases,
and the difference also largely depends on the in-
spected concept. Following the results of specific
models, we see many cases where the model is
able to utilise one concept but fails to utilise, or
even worsen the prediction then exposed to the
other. The variance is larger for instruction-tuned
TK-INSTRUCT models, excelling in utilising shared
reasoning logic of GLUE, but to the contrary, de-
grading when being exposed to demonstrations sup-
ported by the shared facts in WorldTree. Contrary
to these results is the case of InstructGPT that is
agnostic to concepts except for GLUE.

Figure 3 shows the average of changes of Con-
ceptual few-shot evaluation over the inspected
four concepts. The aggregation uncovers that the
gain from providing informative demonstrations
largely varies among models, with T0 and smaller
models (≤3B) benefiting from the presented con-
cepts slightly more often; This could be caused by
larger models’ increasing reliance on their memo-

rized knowledge. However, within the model-type
groups, we also note that this trend is disputed by
T0 and FLAN models.

5 Conclusion

This work introduces a task of conceptual few-shot
learning that reflects on in-context learners’ ability
to learn to apply a specific reasoning concept that
can be informative for prediction. We assess a set
of recent in-context learners for this ability over a
set of concepts extracted from human explanations.

We find that none of the learners can benefit
consistently from all concepts, even though at least
one of the other models proves the concept to bear
an informative value. Despite that, we still observe
some interesting trends, such as the models of T0
are able to benefit from the concepts more often
than others or that the concept-learning ability does
not appear to relate to the model size.

We believe the future work can inspire in identi-
fying possibly complex reasoning concepts in the
explanations of human annotators and will scale
the conceptual evaluation to a wider variety of con-
cepts. We trust that an evaluation with a compre-
hensive selection of the concepts will allow us to
more realistically assess the abilities of the newly-
designed language models in the fast-progressing
development of new in-context learners.

Limitations

Concepts In this work, we extract the concepts
from semi-structured explanations whose format
reassures consistency and non-ambiguity of the ex-
ploited concept(s). The selection of datasets and
corresponding concepts is primarily conditioned
by data availability, as the semi-structured explana-
tions are available merely for a small set of datasets.

We acknowledge that our selection of concepts
is not representative for a vast variance of concepts
that users might expect models to learn from con-
text in interaction. Some important concepts’ fea-
tures that we identify are following: (i) a number
of premises or reasoning inference steps needed to
map the input to output, (ii) the granularity of the
reasoning steps, (iii) a type of the premises; For
instance, whether the familiarity with a given con-
cept requires a memorization of an entity property
(such as “sun emits light”), or a reasoning mechan-
ics such as analogical reasoning (“if animals can
run and cat is an animal, then a cat can run”).

We invite future work to identify or propose a
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taxonomy that would better reflect the wide vari-
ance of reasoning concepts that models are ex-
pected to comprehend in order to serve a wide
scope of unseen tasks. Such taxonomy can moti-
vate a more targeted collection of concepts from
explanations, or annotation of new explanations
demonstrating new concepts.

Models We acknowledge the limitation in a vari-
ance of evaluated models given by their availability
and our computational possibilities. We evaluate
only two models of the GPT family due to the us-
age limits of OpenAI API. Outside GPT models,
we do not evaluate models over 20B parameters,
given the infrastructure requirements of such set-
tings. Nevertheless, we argue that the relevance
of the models with constrained access, or resource
requirements exceeding the limits of most organi-
zations also remains a subject of open question.

Datasets One should note that the sizes of our
evaluation datasets, for which we are able to extract
concepts from explanations (Fig. 2), are too small
to compare concept sensitivity between models.
The sizes of our sensitivity evaluation datasets are
the following: WorldTree: 2,204 samples, Open-
BookQA: 792, GLUE Diagnostics: 282 samples,
HotpotQA: 182 samples.

Ethical Considerations & Broader Impact

As outlined in Section 1, in-context learning re-
cently presents a research direction of broad pub-
lic interest, where the outstanding results on NLP
benchmarks often do not meet the users’ expec-
tations. It is understandable that the focus of de-
velopment in in-context learning LLMs goes to
measurable improvements on existing benchmarks,
as ecologically-valid evaluations (de Vries et al.,
2020) on end use-cases are timely and challenging
to compare to related work.

Nevertheless, in this highly-exposed and fast-
paced direction, we identify the necessity for the
emergence of fast proxy measures that can shed
light on the decision-making of the LLMs as ex-
pected by their end users.

The presented evaluation of models’ sensitivity
to demonstrated reasoning concepts introduces a
technical framework for quickly assessing models’
compliance with our expected functioning; How-
ever, a selection of a comprehensive set of concepts
that we can agree our models should be able to
learn remains a subject of open discussion.
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A Details of Concept-aware Evaluations

Unless stated otherwise, we evaluate all models
over all datasets and both demonstrations selec-
tion strategies consistently for ROUGE-L in default
settings of Lin (2004), using a number of demon-
strations k = 3 and contexts constructed in the
following format:

“Input: x1 Prediction: Y1 Input: x2 Prediction: Y2
Input: x3 Prediction: Y3 Input: xpred”

Among both random and concept-sharing evalu-
ations, we share the same xpred and only permute
the demonstrations; We find cases where the filter-
ing of predicted samples (xpred) to the ones sharing
a concept with sufficient amount of (3) different
samples needed for demonstrations makes the task
systematically easier.

We diverge from the stated configuration only in
the following cases:

• TK-INSTRUCT-11B and HotpotQA: we limit
the evaluation contexts to at most 3.500
unique words, as we can not fit longer con-
texts into the memory. This might make the
absolute results in this configuration overly op-
timistic, but still comparable within the Con-
ceptual few-shot evaluation.

• GPT and HotpotQA: We completely exclude
these evaluations given the fixed context win-
dow size of these models will exclude the
xpred from prediction input in too many cases.

We choose evaluated GPT APIs based on Ope-
nAI documentation4, picking for GPT and IN-
STRUCTGPT models marked as DAVINCI and
TEXT-DAVINCI-003. Note that these identifiers
might change in time, thus disallowing us to guar-
antee the reproducibility of their evaluations.
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Figure 4: Conceptual few-shot evaluation: ROUGE-L of models using random demonstrations (left) and
demonstrations exploiting a concept of prediction (§3.2; right). Boxes and confidence intervals cover 50% and 95%
of the bootstrapped results, respectively (100 samples, 200 repeats). Models marked with ∗ were exposed to the
evaluation task (but not samples) in training. Training datasets of GPT∗ models are unknown.

B Computational Requirements

We run both training and evaluation experiments us-
ing single NVIDIA A100-SXM-80GB. The time
and computational requirements of evaluation de-
pend largely on the size of the evaluated model;
We can evaluate the models up to 11B parame-
ters on a single NVIDIA A100-SXM-80GB. The
evaluation of Concept Few-shot learning on all our
datasets, together with the Random reference eval-
uation takes approximately 2 hours for a 1B model.

4https://beta.openai.com/docs/
model-index-for-researchers
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