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Abstract

Argumentation is an important means of com-
munication. For describing especially argu-
ments about consequences, the notion of effect
relations has been introduced recently. We pro-
pose a method to extract effect relations from
large text resources and apply it on encyclope-
dic and argumentative texts. By connecting the
extracted relations, we generate a knowledge
graph which we call effect graph. For evalu-
ating the effect graph, we perform crowd and
expert annotations and create a novel dataset.
We demonstrate a possible use case of the effect
graph by proposing a method for explaining ar-
guments from consequences.

1 Introduction

Argumentation is a challenging task because its
goal is to convince an audience. One broadly used
type of arguments is the argument from conse-
quences, which has been specifically addressed
in recent literature (Reisert et al., 2018; Al-Khatib
et al., 2020; Kobbe et al., 2020). The premise of
an argument from consequences states that if A
is brought about, good or bad consequences will
plausibly occur, which leads to the conclusion that
A should or should not be brought about (Walton
et al., 2008). The following statement is such an
argument in favor of legal abortions:

Legal abortions protect women.

At the core of an argument from consequences is
what Al-Khatib et al. (2020) call effect relation:
A typically expresses either a positive or nega-
tive effect on an instance B, which we denote by
A

+−→ B or A −−→ B. In the example, the effect
relation is legal abortions +−→ women because of
the positive effect expressed by the verb protect.
Our main motivation is to further back up such
premises by generating structured explanations. Ta-
ble 1 shows some potential explanations.

1 Abortions protect women from the harm
caused by giving birth and being pregnant.

2 Abortions prevent long term damage caused
by complications during the pregnancy and
birth process.

3 Legal Abortions protect the women’s right
to self-determination.

4 Abortions protect women from the financial
burden of raising a child.

5 Abortions can protect girls from becoming
mothers too early.

Table 1: Some possible explanations.

First, we note that it is not possible to find the
one and only explanation for why legal abortions
protect women. As demonstrated, there exist multi-
ple different explanations and, from merely reading
the statement, we cannot know which of these ex-
planations the author had in mind. Thus, our goal
is not to reconstruct the original explanation, but
to propose meaningful ones.

For automatically generating possible explana-
tions, we propose an approach that is specific for
explaining effect relations. Given A→ B, we aim
to find an instance C such that A → C → B. Be-
cause of the structure of such an explanation, we
call it Effect-Effect-Explanation. Of course, this
way, we cannot capture all the details in the ex-
planations in table 1. But we can capture some
key aspects and describe the explanations in a well-
defined way that allows for further processing in
downstream tasks. Table 2 shows possible formal-
ized versions of explanations 1 to 4.

Effect-Effect-Explanations are, however, still
very limited in their nature. While we cannot fully
overcome this limitation, we show that it is possible
to expand upon them for instance by incorporating
lexical knowledge: Given A → B, an explanation
could also be (A → C, C instanceOf / hypernym
/ synonym B) or, vice versa, (A instanceOf / hy-
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1 Abortions −−→ harm −−→ women
2 Abortions −−→ long term damage −−→ women
3 Legal Abortions +−→ right to self-determi-

nation +−→ women
4 Abortions −−→ financial burden −−→ women

Table 2: Formalized Effect-Effect-Explanations.

pernym / synonym C, C → B). Analoguesly, we
call these Effect-Lexical-Explanation. An example
for explanation 5 in table 1 would be Abortions +−→
girls

hypernym−−−−−→ women.
The main challenge for both of the proposed

explanation schemes is to get the additional infor-
mation (i.e., C and its links to A and B). For
the lexical relations, we use WordNet (Fellbaum,
2010). For the effect relations, we propose a simple,
yet efficient, extraction method which we denote
by EREx (Effect Relation Extractor). We then
apply it on large text resources and connect the
extracted relations in a graph which we refer to as
effect graph1. While we build the graph having
explanation generation in mind, it might also be of
value for other tasks as it contains a widely used
type of knowledge.

In the following, we discuss related work (sec-
tion 2). In section 3, we describe the generation
of the effect graph which we evaluate in section 4.
Lastly, we showcase our envisioned explanation
generation (section 5) and conclude with a discus-
sion (section 6).

2 Related Work

Our method to extract effect relations is most sim-
ilar to the one proposed by Kobbe et al. (2020).
They extract effect relations in order to classify
stances of arguments from consequences. Just as
ours, their extraction method is purely heuristic
and relies on dependency parsing. The main dif-
ferences we introduced are due to the following
reasons: First, the method of Kobbe et al. (2020)
relies on sentence-topic pairs to identify the effect
relation’s subject, instead of sentences only. Sec-
ond, it requires the effect relation’s object to have
a sentiment in order to calculate the stance which
is not necessary for our task. Because of this and
the first reason, the subjects and objects which are
derived by detecting patterns in the dependency

1The resources created for this paper are available at
https://github.com/dwslab/Effect-Graph.

parse are no longer controlled for by either linking
to the topic or a sentiment lexicon, so we pose other
restrictions on both of them. Third, it is designed
to extract an effect relation whenever possible, thus
emphasizing recall, in order to enable the stance
detection. In contrast, we want to rather focus on
precision.

Al-Khatib et al. (2020) also extract effect rela-
tions from argumentative text and, like ourselves,
use them to build a knowledge graph. Their graph
is then used as background knowledge by Al Khatib
et al. (2021) who use it to support neural argument
generation, and by Yuan et al. (2021) who try to
identify the correct response to an argument among
five possible options. However, in terms of method-
ology, there are only little similarities to our ap-
proach. While EREx is completely unsupervised,
Al-Khatib et al. (2020) divide the relation extrac-
tion task into several subtasks for which they train
specific classifiers, with one exception: For identi-
fying the effect relation’s subject and object, they
use the supervised OpenIE model of Stanovsky
et al. (2018).

OpenIE (Open Information Extraction) is the
task to extract relationships between entities from
text. In contrast to conventional information extrac-
tion, in OpenIE, the relationships are not predefined
(Etzioni et al., 2008). However, OpenIE can also be
applied for relation extraction with domain specific
relations by performing Relation Mapping (Soder-
land et al., 2010). While Soderland et al. (2010)
propose a supervised approach, in our case, we
consider it sufficient to filter and map the relations
using an effect lexicon. Similarly to Corro and
Gemulla (2013), Angeli et al. (2015), Gashteovski
et al. (2017), we base our relation extraction on
dependency parsing. In comparison to these works,
however, our effect relation extraction approach
is much less sophisticated. Evolving around ef-
fect verbs specifically, we use only a small set of
manually defined patterns, but are still able to gain
comparable or even better results when compared
to OpenIE with an effect lexicon based relation
mapping.

Similar to our effect graph which we build from
effect relations, Martinez-Rodriguez et al. (2018)
use ClausIE (Corro and Gemulla, 2013) for extract-
ing relations in order to build an OpenIE-based
knowledge graph. Before applying OpenIE, they
extract entities and link them to existing knowledge
graphs. We experiment with both, using only enti-
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ties which we can link to Wikipedia pages, or not
requiring any linking. Further, they annotate noun
phrases (NPs) and expand the extracted entities to
encompass the complete NP. Similarly, in EREx
we only consider NPs as entities.

Lastly, we want to mention another type of rela-
tions than effect relations, namely causal relations
(Davidson, 1967). Other than in effect relations,
A’s effect on B, if they are in a causal relation, is
clearly defined as A being the cause for B. Girju
and Moldovan (2002), Girju (2003) introduced the
task of automatically extracting causal relations
from text, and it has been a matter of research since
then (Yang et al., 2022).

Also for causal relations, there exists research on
using them for building a knowledge graph. Hein-
dorf et al. (2020) bootstrap dependency parse pat-
terns to extract claimed causal relations from text.
While their method to start with a small, very ac-
curate seed set of patterns and to extend it consec-
utively is very appealing, we find it to be rather
difficult to apply on our approach: Their patterns
involve very concrete words that all trigger causal
relations while we chose to keep our patterns gen-
eral in order to apply to a large set of different
effect words. Also like us, Heindorf et al. (2020)
do not fact check their extractions, but emphasize
that they merely collect claimed causal relations.

3 Effect Graph Generation

Our aim is to generate a graph where the nodes
are entities such as global warming, CO2 emis-
sions, solar panel. The edges represent the effect
relations and indicate either a negative or positive
effect from the source to the target node, e.g., (so-
lar panel) −−→ (CO2 emissions). We also store the
concrete word indicating the effect. In the previ-
ous example, this could be for instance reduce or
prevent.

3.1 Effect Relation Extraction

We use a subset of the dependency parse patterns
presented in Kobbe et al. (2020) in order to identify
subject and object relations as well as negations.
The patterns are presented in table 3.

Using these patterns, we look for triples
(S, P,O) such that the predicate P has subject S
and object O. In order for the triple to qualify as
effect relation, P has to express a positive or nega-
tive effect on its object. We identify such effects by
applying the Connotation Frame lexicon (Rashkin

Pattern Interpretation
1 P

∗−→ O P has object O
3 P

⋄−→ S P has subject S

5 NegP
pobj−−→ X X is negated

6 X −→ NegP ∧
∄NegP pobj−−→

X is negated

7 X
neg−−→ X is negated

∗ ∈ {dobj, cobj, nsubjpass, csubjpass};
⋄ ∈ {nsubj, csubj};

NegP stands for negative preposition

Table 3: Dependency graph patterns, adapted from
Kobbe et al. (2020).

et al., 2016) with a threshold of ±0.2, expanded
using WordNet as proposed in Kobbe et al. (2020).
The effect relation’s subject, which we denote by
A, is then the statement’s substring which is rep-
resented by the dependency parse’s subtree whose
root is S. Analoguesly, the object B is the state-
ment’s substring represented by the subtree whose
root is O. Thereby, leading articles are ignored and
A and B have to be non-stopwords and NPs. To
ensure that they are meaningful entities in different
contexts, we check whether A and B link to an
entry in Wikipedia. Only if they both do, and if
neither A nor B nor P are negated, we consider A
P−→ B to be an effect relation.

3.2 Graph Construction

For building the effect graph, we extract effect re-
lations from the following three datasets:

Debatepedia Debatepedia was an online portal
where users could add pro and contra arguments
to a variety of topics. We use the featured debates
which overall have high quality.

Debate.org As Debatepedia is rather small, we
also use Debate.org (Durmus and Cardie, 2018,
2019) to extract effect relations from a large ar-
gumentative text basis. In Debate.org, two users
engage in a debate about a certain topic and present
their arguments and counter arguments over three
rounds.

Simple Wiki Lastly, we use an encyclopedic text
resource to also capture non-argumentative knowl-
edge which can be relevant for explaining argu-
ments. To save computational resources and in-
crease the accuracy of the extraction process, we
use the Wikipedia version in simple English.
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Subtask Measure Al-Khatib EREx
Relation Classification macro F1 0.79 0.65
Relation Type Classification macro F1 0.77 0.77
Identification of Concept 1 accuracy 0.69 0.71
Identification of Concept 2 accuracy 0.28 0.35

Table 4: Effect relation extraction evaluation.

Both argumentative text resources mainly con-
tain defeasible arguments. Thus, the effect relations
which we extract from them and, consequentially,
the effect graph should not be treated as facts.

After extracting the effect relations from text, we
remove duplicates. We only consider an effect rela-
tion to be a duplicate, if it was extracted from the
same sentence in the same resources twice, which
most often happens because of citations. We in-
tentionally keep effect relations that are identical
except for the sentence they were extracted from
because this might indicate that the effect relation
is especially relevant.

For building the effect graph, we connect the ex-
tracted effect relations as follows: The lemmas of
the subjects S and the objects O become nodes. We
add one edge between S and O for every respec-
tive effect relation we extracted. Since we do not
collapse the edges to not lose any information, the
resulting graph is expected to contain multi-edges.

4 Evaluation

We evaluate the effect graph as follows: In sec-
tion 4.1, we evaluate the effect relation extraction
process using the subtasks defined by Al-Khatib
et al. (2020). Then, we evaluate the extracted graph
itself. In section 4.2, we compare the graph statis-
tics. Afterwards, we evaluate both precision (sec-
tion 4.3) and recall (section 4.4). In this context,
precision expresses the chance that a randomly se-
lected edge of the graph is correct. We consider a
statement to be correct if it is in accordance with
the statement it was extracted from. Recall on the
other hand is meant to measure the chance that a
given effect relation is contained in the graph.

Baselines For the evaluation of the extraction
subtasks defined by Al-Khatib et al. (2020), we use
their models as a baseline, denoted by Al-Khatib.
For evaluating the effect graph as a whole, we
build the effect graph as described in section 3.2,
but using different extraction methods. We use
the OpenIE implementation which is part of Stan-
ford CoreNLP (Manning et al., 2014; Angeli et al.,

2015) to extract subject-verb-object triples, apply-
ing a confidence threshold of 0.9. We accept such
triples as effect relations where the verb is an effect
word and the subject and object link to Wikipedia
pages. Further, we use a version of EREx where
we do not require the subject and object to link
to Wikipedia, denoted by EREx*. We expect this
version to have a higher recall, but also more noise.

4.1 Extraction Subtasks

Al-Khatib et al. (2020) propose several subtasks for
effect relation extraction. These subtasks include:

• Relation Classification: Classify whether a
statement does contain an effect relation;

• Relation Type Classification: Predict the ef-
fect relation’s polarity;

• Identification of Concept 1: Identify the ef-
fect relation’s subject;

• Identification of Concept 2: Identify the ef-
fect relation’s object.

For the first two subtasks, Al-Khatib et al. (2020)
propose a supervised model, while for the last two
they rely on the OpenIE approach of Stanovsky
et al. (2018). To make the comparison fair, we
slightly adopt EREx such that it predicts a relation
type and identifies concepts even if it does not de-
tect an effect relation. For the evaluation, we use
the dataset published by Al-Khatib et al. (2020),
which contains crowd annotations for the different
subtasks, and compare our results to the results re-
ported in their paper.2 The results are presented in
table 4.

Concerning Relation Classification, EREx
misses effect relations considerably more often
than it wrongly predicts one (1582 vs 174 in-
stances), which fits our focus on precision rather
than recall. When counting only such instances

2As the train-test-split used by Al-Khatib et al. (2020) is
unknown to us, we use the full dataset for the evaluation. Thus,
unfortunately, the results are not directly comparable.
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Number of effect relations
Dataset EREx EREx* OpenIE
Debatepedia 1.6k 8.8k 9.9k
Debate.org 150.3k 669.9k 1173.8k
Simple Wiki 43.6k 193.9k 290.3k

Table 5: Effect relation extraction statistics

EREx EREx* OpenIE
# Nodes 53k 734k 129k
# Edges 195k 872k 1474k
# Positive edges 157k 729k 1250k
# Negative edges 38k 142k 223k
# Connected node pairs 126k 733k 603k

Table 6: Effect graph statistics.

where EREx extracts a relation, it correctly detects
its polarity in 85%, the subject in 80% and the ob-
ject in 41% of the instances. While both models’
scores of identifying the object are low, this can
be explained at least partly by the measure: The
object is considered to be wrong if it is off by one
word, even if it is an article. In the dataset, it is
inconsistent whether articles are part of the object
or not.

4.2 Graph Statistics

Table 5 shows the number of edges, i.e., extracted
effect relations, per dataset. Table 6 contains some
basic statistics of the effect graph. The number of
connected node pairs is included because of the
high ratio of multi-edges. We consider (A,B) and
(B,A) as the same node pair. Table 7 shows the
number of overlapping nodes between the different
effect graph versions.

Overall, using OpenIE results in the largest
graph and using EREx in the smallest. That Ope-
nIE extracts fewer nodes than EREx* is likely due
to the required linking to Wikipedia. For all three
methods, there are considerably more positive than
negative effect relations.

4.3 Precision

As the effect graph is generated by extraction from
large text resources, we do not have a ground truth
of whether or not a statement was extracted cor-
rectly. Thus, we evaluate precision a posteriori.
For this purpose, we randomly select 250 edges per
graph. For each, we annotate whether it was ex-
tracted correctly, given the original statement (yes,
rather yes, unsure, rather no, no). We both do an
expert annotation by one of the authors and crowd

EREx EREx* OpenIE
EREx – 52,821 43,527
EREx* 52,821 – 63,827
OpenIE 43,527 63,827 –

Table 7: Effect graph: Node overlap.

annotations via mturk.

Instructions

We require the crowd workers to successfully pass
an instruction before working on the task. The
instruction consists of a short description of the
task, two examples with comments, three instances
which had to be annotated correctly, and an op-
tional field where the workers could write com-
ments. The description, examples and the first in-
stance are provided in appendix A.

Overall, the task should be as intuitive as possi-
ble. For this purpose, we did not show the concrete
verb of the effect relation, but just the effect’s polar-
ity. Instead of explaining that we are not interested
in modality, we framed the polarity as "(may) neg-
atively affect". We addressed the risk of confusion
with sentiment by addressing it in the instructions:
Though most would likely agree that ending war is
desirable, we highlight that the effect which is ex-
pressed on war is a negative one. The workers then
have to correctly identify two further such effects
as negative (coal power reducing CO2-emissions)
respectively positive (current EU policy leading to
a financial crisis). Similarly, we exemplify and con-
trol that the subject and object have to be identified
correctly.

Annotation Process

We only accept workers who live in the US and
have a HIT approval rate greater than 98% and
more than 10,000 approved HITs in total. Addi-
tionally, they have to have passed the instructions
with three correct answers out of three. As the
cases in the instructions were not ambiguous, we
count rather yes and rather no as wrong answers,
as well as unsure. Overall, only 9 out of 50 workers
passed the instructions.

We have a total of 750 instances to be annotated.
Each instance is annotated by three crowd workers
and one expert. Overall, seven of the nine qualified
workers did actually address the task. Of these
seven workers, three did annotate the vast majority
of the instances (747, 739 and 650 respectively).

120



categorial label value
yes 2

rather yes 1
unsure 0

rather no −1
no −2

Table 8: Mapping categorial answers to values.

crowd expert
polarities Fleiss 0.15 0.26

Randolph 0.47 0.44
scalar Krippendorff 0.20 0.34

Pearson 0.57
Spearman 0.56

Table 9: Agreement scores for effect relation evaluation.

Agreement

We treat the five labels either as polarities, map-
ping rather yes to yes and rather no to no. Or we
treat them as scalars as indicated in table 8. The
mapping allows us to intuitively combine multiple
labels by computing their mean. This is relevant
later for generating the label to ultimately measur-
ing the precision. But it also enables us to mea-
sure the agreement between the combined label
and the expert annotator (expert). Additionally, we
compute the agreement among the crowd workers
(crowd). For mapping back from numbers to la-
bels, we always round up positive values and round
down negative values. This way, the labels yes and
no are only provided if there are no opposing po-
larities and the label unsure is given as rarely as
possible.

We use the following agreement scores: Fleiss
Kappa for categorial agreement respecting the
label distribution; Randolph Kappa (Randolph,
2005) for categorial agreement without respecting
the label distribution; Krippendorff Alpha (Krip-
pendorff, 2011) for scalar agreement, especially in
the crowd setup as it allows for multiple annota-
tors; Pearson Correlation for scalar agreement in
the expert setup, using the mean as is; Spearman
Correlation for rank agreement in the expert setup,
mapping the mean to labels.

The scores are presented in table 9. Overall, the
agreement is rather weak. Concerning polarities,
we note two things: First, there is a big difference
between Fleiss and Randolph which can be ex-
plained by the fact that the crowd workers tended

to annotate yes or rather yes way more often than
no or rather no . Second, for Fleiss, the involve-
ment of the expert leads to higher scores, while
for Randolph it is vice versa. This tendency might
be explained by the fact that the expert annotated
yes or rather yes even less often than no or rather
no. So the expert reduces the imbalance between
these two labels which in turn causes Fleiss and
Randolph to approach each other.

For the scalar agreement, the scores are a bit
better which makes sense as only in this scenario
the labels’ ranks are considered properly. However,
we still conclude that the agreement is weak which
we have to consider when interpreting the results.

Results
The precision scores are calculated by dividing the
number of correctly extracted effect relations by
the sum of the numbers of correctly and incorrectly
extracted ones. As for what we consider a correctly
extracted effect relation, we again consider differ-
ent settings to provide a full picture. For one, we
use either the expert label or the aggregated crowd
label. Further, we either consider only the labels
we are confident about, namely yes and no (denoted
by exclusive), or we again aggregate yes and rather
yes as well as no and rather no (denoted by inclu-
sive). We never consider the relatively few cases
where the (aggregated) label is unsure. The results
are shown in table 10.

The expert’s tendency to annotate yes consider-
ably less often than the crowd workers is reflected
by the overall lower precision scores. Despite this
large difference of the scores, the tendency among
the datasets is consistent for the crowd workers’
and the expert’s annotations: EREx and EREx*
clearly outperform OpenIE, while EREx seams to
be at least slightly better than EREx*. This was to
be expected as EREx is more restrictive in selecting
subjects and objects than EREx*.

We conclude that EREx and EREx* are most
likely more precise than the OpenIE baseline, but
whether or not they are precise enough for our
envisioned use case is yet to be shown.

4.4 Recall

For evaluating recall, we check whether the graph
does contain such effect relations which we would
expect it to contain. In order to do so, we build
an evaluation dataset. We choose one random ar-
gumentative claim per topic from the Debatepe-
dia dataset of arguments related to consequences
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Crowd Annotations Expert Annotations
exclusive inclusive exclusive inclusive

total precision total precision total precision total precision
OpenIE 115 0.83 237 0.70 186 0.38 241 0.34
EREx 132 0.98 246 0.80 174 0.54 243 0.54
EREx* 130 0.95 242 0.79 175 0.48 248 0.46

Table 10: Effect graph precision.

(Kobbe et al., 2020). This results in 180 claims.
From each claim, we manually extract all effect re-
lations which we consider reasonable. This results
in 308 effect relations. If there is more than one
possible effect relation for a claim, we annotate
whether they are either equivalent to (≡), disjoint
to (̸≡), or part of (⊃) the other ones. Table 11
shows some examples which we will briefly dis-
cuss.

In example 1, there exist three reasonable effect
relations which differ only in the concreteness of
the object, a being the most concrete and c the least.
Note that the effect verb eliminate is only correct
when mentioning the ability of restaurants. Still,
the statement indirectly also expresses that calorie
counts negatively effect restaurants, which is why
in effect relation c, there is no effect verb annotated.
Example 2 briefly shows a case where there exist
two effect relations which are roughly equivalent in
terms of the information they contain. In contrast,
in example 3 exist two completely distinct effect
relations, though the second one is rather implicit.
Example 4 is a bit more complex: a is as concrete
as possible, but it can be split in b and c which
together are equivalent to a.

For calculating recall, we use two straightfor-
ward formulas: We either divide the number of the
ground truth effect relations which are contained
in the effect graph by the total number of ground
truth effect relations (total), or we divide the num-
ber of claims for which at least one ground truth
effect relation is contained in the effect graph by
the number of claims in the dataset (per statement).
Further, we optionally exclude the effect relations
which were extracted from Debatepedia from the
effect graph (w/o DP). Though it is unclear what
results one can expect this way, we consider it to
be a purer way of calculating recall.

The results (see table 12) show a clear trend:
EREx has lower recall than OpenIE, while EREx*
has a significantly higher recall than OpenIE only
when Debatepedia is included in the graph. Im-

portantly, we note that EREx* is only better than
EREx in the full graph setting. This fits our obser-
vation that the effect relations extracted by EREx*
tend to be overly specific oftentimes, which is one
reason why we proposed the linking to Wikipedia
as an additional requirement.

As the recall is particularly low for the settings
without Debatepedia, we take a brief look at the
few successes in table 13: It is noticeable though
unsurprising that the graphs generated with EREx
and EREx* contain the exact same test instances.
Further, two of them (7,8) are not identified by Ope-
nIE which in turn contains seven instances which
EREx and EREx* do not (9-15). One of the latter
instances cannot be included in EREx or EREx*
because it contains a non-nounphrase as subject
(14) – but considering the unspecificity of instance
14, this restriction seems to be justifiable.

5 Explanation Generation

For generating explanations, we use the effect
graph generated by EREx. As outlined in the intro-
ductory section, we envision two different types of
explanations which we will describe separately in
the sections 5.1 and 5.2. Afterwards, we introduce
a measure to rank the potential explanations (5.3).

5.1 Effect-Effect-Explanation

For an Effect-Effect-Explanation to be meaningful,
the polarities have to fit the relation we aim to ex-
plain. Concretely, we explain a positive relation
either by two positive or two negative relations, and
a negative relation by combining a positive and a
negative one. To generate explanation candidates ,
we use the effect graph in a straight forward way
by querying for paths of length two between the in-
stances of interest with appropriate edge polarities.
As a result, we get a list of explanation candidates.

For explaining how abortions protect women,
this list includes 370 explanation candidates,
though many of them are similar to each other
because of our loose definition of duplicates. In-
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Ex. 1 Calorie counts eliminate ability of restaurants to be spontaneous.
a (Calorie counts) [-eliminate] (ability of restaurants to be spontaneous)
b ⊃ (Calorie counts) [-eliminate] (ability of restaurants)
c ⊃ (Calorie counts) [-] (restaurants)
Ex. 2 Circumcision creates risk of infections in infants
a (Circumcision) [+creates] (risk of infections)
b ≡ (Circumcision) [+creates] (infections)
Ex. 3 Assassinations protect publics from terrorism; even while it’s hard to measure
a (Assassinations) [+protect] (publics)
b ̸≡ (Assassinations) [-protect from] (terrorism)
Ex. 4 Network neutrality damages competition and niche suppliers
a (Network neutrality) [-damages] (competition and niche suppliers)
b ≡[ (Network neutrality) [-damages] (competition)
c ̸≡ (Network neutrality) [-damages] (niche suppliers)]

Table 11: Examples: Effect relation annotation for recall evaluation.

total per statement
full w/o DP full w/o DP

OpenIE 0.07 0.04 0.14 0.09
EREx 0.05 0.03 0.09 0.06
EREx* 0.14 0.03 0.28 0.06

Table 12: Effect graph recall.

stead of listing all candidates, we list all the interim
nodes C used within the explanation candidates:
*, choice, country, fetus, god, man, nothing, order,
people, person, pregnancy, right, sex, society, t, un-
wanted pregnancy, woman ’s rights. One can easily
imagine that some of the concepts mentioned are
useful for explaining why abortions protect women,
while others are non-sense.

5.2 Effect-Lexical-Explanation

Sometimes, we need additional lexical knowledge
for explaining an effect relation. As mentioned
previously, we use WordNet to incorporate some
of the potentially relevant lexical knowledge. Con-
cretely, this includes hyperonymy, meronymy and
synonymity.

To extract explanation candidates for A ±−→ B,
we again look for instances C, considering the fol-
lowing cases: A ±−→ C

WN−−→ B and A
WN−−→ C

±−→ B.
The polarities have to be identical and WN−−→ indi-
cates one of the lexical relations mentioned above.

For the example, we find 10 different explana-
tion candidates. Half of them argue that abortions
are good for mothers in some way, and mother is
a hyponym for woman. While being trivial, we

EREx + EREx* + OpenIE
1 icc −−→ crimes
2 abortion +−→ women
3 eating meat −−→ animals
4 marijuana −−→ productivity
5 war −−→ civilians
6 affirmative action −−→ meritocracy

EREx + EREx*
7 two-state solution +−→ stability
8 gay marriage −−→ procreation

OpenIE
9 elections +−→ judges

10 government +−→ public transport
11 stimulus +−→ debt
12 circumcision +−→ infections
13 primaries +−→ candidates
14 they +−→ headaches
15 rights +−→ contracts

Table 13: Effect graph recall (w/o DP): Successes.

still think that there is a benefit in this explana-
tion. It states correctly that the positive effect of
the abortion is on the mother (and not on the fetus,
for instance) and finds the relation between mother
and woman. The other five explanation candidates
use the interim nodes people, action, failure, man
and none of these explanations seems useful to us.
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5.3 Explanation Candidate Ranking

Since the proposed methods to generate explana-
tions often result in a list of explanation candidates
of varying quality, we further propose a simple
means of ranking them which is inspired by tf-
idf. The idea is to measure the importance of the
interim node C based on its degree in the effect
graph (denoted by dege), where we assume a lower
degree to be better as it indicates specificity, and
its degree in the subgraph connecting A and B (de-
noted by degs), where we consider a higher degree
to indicate relevance. The core idea for measuring
importance is the quotient of these two quantities.
This quotient, however, does not respect the ab-
solute quantities and will thus lead to the same
score for C having degree 1 in both graphs and
having degree 5 in both graphs, though we con-
sider the latter to be considerably better. In order
to account for that, we apply the idea of additive
smoothing and increment the denominator by 1.
Further considering that we rather prefer medium
in- and out-degree rather than a high (low) in- and
low (high) out-degree, we calculate C’s importance
for Effect-Effect-Explanations as follows:

indegs(C)

indege(C) + 1
· outdegs(C)

outdege(C) + 1

Considering Effect-Lexical-Explanations, we
are only interested in either C’s out- or in-degree.
For better comparability, we use the square of the
relevant quotient to measure the importance.

When applying the importance measure on the
example, the five most important nodes are in de-
scending order: unwanted pregnancy, woman ’s
rights, mother, fetus, pregnancy. The correspond-
ing explanation via unwanted pregnancy unfortu-
nately does not make sense due to an extraction
mistake, although the concept seems to be ranked
that high for good reason. We already discussed
the one via mother in section 5.2. The others sug-
gest that abortions kill fetuses which in turn harm,
damage or endanger the woman; that abortions end
pregnancies which also harms the woman; and that
abortions support women’s rights which in turn are
good for women.

6 Conclusion

We propose a method to extract effect relations
from text and use it to build an effect graph. We
further propose a method to use the effect graph

as background knowledge for automatically gen-
erating structured explanations, for example for
arguments from consequences. However, the effect
graph’s precision remains unclear while its recall is
low. The latter issue might be addressed by either
improving the extraction method or, to a certain
degree, by running the method on larger text re-
sources. The effect graph can be seen as a valuable
resource on its own, as it can potentially be used
to also address other tasks than explanation genera-
tion, like identifying (counter-) arguments for a spe-
cific topic or extending common sense knowledge
graphs such as ConceptNet (Speer et al., 2017).

Limitations

While the proposed methods are attractive due
to their efficiency, explainability and not needing
training data, the limitations are also manifold: The
pipeline nature propagates all errors that occur. For
instance, the dependency parser in use performs
rather poorly on informal texts such as tweets. Fur-
ther, our definition of positive and negative effect
relations is quite shallow and does not always live
up to the real world’s complexity. We only capture
effect relations that are formulated explicitly within
one sentence, and only one effect relation per sen-
tence. Requiring the nodes to link to Wikipedia
might be too restrictive while not even truly solving
the problem of filtering non-sense nodes. Both the
low inter-annotator-agreement in our effect graph
evaluation as well as the discrepancy of the crowds’
and the expert’s annotations make it hard to as-
sess the correctness of the extracted effect relations.
And lastly, while we showcase some generated
explanations, we did not properly evaluate how
reliable the approach is in finding reasonable ex-
planations. Indeed, first results suggest that this
approach of generating explanations works rather
inconsistently, though the ranking helps to a certain
degree.

What one might consider another limitation is
that we do not check the effect relations for factual
correctness, which ultimately leads to contradic-
tions and inconsistencies in the effect graph. While
fact checking is a difficult and controversial task,
we also purposefully decided against any form of
fact or consistency checking. Each edge in the ef-
fect graph is meant to represent one effect relation
exactly as it was expressed. Including critical ef-
fect relations in the graph allows for identifying,
analyzing, and potentially disproving them.
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