@inproceedings{holmer-etal-2023-said,
title = "Who said what? Speaker Identification from Anonymous Minutes of Meetings",
author = {Holmer, Daniel and
Ahrenberg, Lars and
Monsen, Julius and
J{\"o}nsson, Arne and
Apel, Mikael and
Grimaldi, Marianna},
editor = {Alum{\"a}e, Tanel and
Fishel, Mark},
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may,
year = "2023",
address = "T{\'o}rshavn, Faroe Islands",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2023.nodalida-1.14/",
pages = "124--134",
abstract = "We study the performance of machine learning techniques to the problem of identifying speakers at meetings from anonymous minutes issued afterwards. The data comes from board meetings of Sveriges Riksbank (Sweden`s Central Bank). The data is split in two ways, one where each reported contribution to the discussion is treated as a data point, and another where all contributions from a single speaker have been aggregated. Using interpretable models we find that lexical features and topic models generated from speeches held by the board members outside of board meetings are good predictors of speaker identity. Combining topic models with other features gives prediction accuracies close to 80{\%} on aggregated data, though there is still a sizeable gap in performance compared to a not easily interpreted BERT-based transformer model that we offer as a benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="holmer-etal-2023-said">
<titleInfo>
<title>Who said what? Speaker Identification from Anonymous Minutes of Meetings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Holmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lars</namePart>
<namePart type="family">Ahrenberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julius</namePart>
<namePart type="family">Monsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arne</namePart>
<namePart type="family">Jönsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikael</namePart>
<namePart type="family">Apel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Grimaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanel</namePart>
<namePart type="family">Alumäe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>University of Tartu Library</publisher>
<place>
<placeTerm type="text">Tórshavn, Faroe Islands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the performance of machine learning techniques to the problem of identifying speakers at meetings from anonymous minutes issued afterwards. The data comes from board meetings of Sveriges Riksbank (Sweden‘s Central Bank). The data is split in two ways, one where each reported contribution to the discussion is treated as a data point, and another where all contributions from a single speaker have been aggregated. Using interpretable models we find that lexical features and topic models generated from speeches held by the board members outside of board meetings are good predictors of speaker identity. Combining topic models with other features gives prediction accuracies close to 80% on aggregated data, though there is still a sizeable gap in performance compared to a not easily interpreted BERT-based transformer model that we offer as a benchmark.</abstract>
<identifier type="citekey">holmer-etal-2023-said</identifier>
<location>
<url>https://aclanthology.org/2023.nodalida-1.14/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>124</start>
<end>134</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Who said what? Speaker Identification from Anonymous Minutes of Meetings
%A Holmer, Daniel
%A Ahrenberg, Lars
%A Monsen, Julius
%A Jönsson, Arne
%A Apel, Mikael
%A Grimaldi, Marianna
%Y Alumäe, Tanel
%Y Fishel, Mark
%S Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)
%D 2023
%8 May
%I University of Tartu Library
%C Tórshavn, Faroe Islands
%F holmer-etal-2023-said
%X We study the performance of machine learning techniques to the problem of identifying speakers at meetings from anonymous minutes issued afterwards. The data comes from board meetings of Sveriges Riksbank (Sweden‘s Central Bank). The data is split in two ways, one where each reported contribution to the discussion is treated as a data point, and another where all contributions from a single speaker have been aggregated. Using interpretable models we find that lexical features and topic models generated from speeches held by the board members outside of board meetings are good predictors of speaker identity. Combining topic models with other features gives prediction accuracies close to 80% on aggregated data, though there is still a sizeable gap in performance compared to a not easily interpreted BERT-based transformer model that we offer as a benchmark.
%U https://aclanthology.org/2023.nodalida-1.14/
%P 124-134
Markdown (Informal)
[Who said what? Speaker Identification from Anonymous Minutes of Meetings](https://aclanthology.org/2023.nodalida-1.14/) (Holmer et al., NoDaLiDa 2023)
ACL