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Abstract
We describe work on enhancing the per-
formance of transformer-based encoder-
decoder models for OCR post-correction
on modern and historical Icelandic texts,
where OCRed data are scarce. We trained
six models, four from scratch and two fine-
tuned versions of Google’s ByT5, on a
combination of real data and texts pop-
ulated with artificially generated errors.
Our results show that the models trained
from scratch, as opposed to the fine-tuned
versions, benefited the most from the ad-
dition of artificially generated errors.

1 Introduction

Optical Character Recognition (OCR) is used to
digitize texts by converting scanned documents
into machine-readable text. Unfortunately, OCR
errors are prevalent, particularly when it comes
to old texts, where data tends to be scarce, and
post-correction is often required to improve the ex-
tracted texts’ accuracy (e.g. Nguyen et al. 2021).

Transformer-based encoder-decoder models
have been shown to be effective in various natural
language processing tasks, including machine
translation (Vaswani et al., 2017; Chen et al.,
2018) and text summarization (Garg et al., 2021).
In this study, we investigate the use of such
models for OCR post-correction under scarce data
condition, as a sequence-to-sequence problem,
similar to how neural machine translation (NMT)
systems approach the problem of translation. To
address the lack of resources available for training
models when dealing with OCRed texts, we
propose the use of artificially generated errors to
improve the performance of the models, which has
been shown to be an effective way of generating
data for text correction (Kasewa et al., 2018).
The main contribution of this study is an exam-
ination of the effectiveness of using artificially

generated errors to improve the performance of
transformer-based encoder-decoder models for
OCR post-correction when data scarcity is a
limiting factor. Furthermore, we publish our best
performing models under the Apache 2.0 license.1

The paper is structured as follows. Section 2
discusses related work while Section 3 describes
the dataset and error generation methods used in
this study. Section 4 presents the proposed mod-
els and training methods. Section 5 presents the
experimental results and analysis, Section 6 dis-
cusses limitations and future work, and finally
Section 7 concludes.

2 Related Work

Previously, Daðason et al. (2014) developed a tool
for post-processing Icelandic 19th century texts
based on an error model containing statistical in-
formation on word and character errors and an n-
gram language model. Their tool correctly identi-
fies and corrects 52.9% of errors in their evaluation
set.

Poncelas et al. (2020) report a 63% error cor-
rection rate with their OCR post-processing tool
on an English text from the 18th century. They
used a scoring system based on string-similarity to
find possible substitutions for perceived errors and
a language model to evaluate the edited sentences.

Richter et al. (2018) use a hidden Markov model
alongside a modified version of the Viterbi al-
gorithm and a dictionary to decode OCRed texts
in Faroese into a hypothetical corrected version.
They reduced the word error rate of 7.8% from the
OCR base process to 5.4%.

1Models available at the following
URLs: http://hdl.handle.net/20.500.12537/271,
http://hdl.handle.net/20.500.12537/309,
https://huggingface.co/atlijas/byt5-is-ocr-post-processing-
modern-texts, https://huggingface.co/atlijas/byt5-is-ocr-post-
processing-old-texts.
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Original Corrected Frequency
p þ 2,779
i í 1,141
li h 247
rn m 166
m rn 77

Table 1: Examples of the extracted errors.

3 Data

We used a combination of real OCRed texts, pro-
cessed by ABBYY FineReader,2 and digital texts
not scanned with OCR, the latter of which were
populated with artificially generated errors, for
training and evaluating our OCR post-correction
models. The evaluation data solely comprised real
OCRed texts, alongside their manually corrected
counterparts, which were used to ensure that the
models’ performance is reflective of real-world
OCR output. The ground truth (GT),3 i.e. the data
from which the errors were extracted, consists of
around 375k tokens from 80 texts published be-
tween 1874 and 1913, which were manually cor-
rected, while the data used in training and valida-
tion, which include the OCRed texts as well as the
texts populated with the artificial errors, amount to
roughly 9.2M tokens.

The data into which the artificial errors were
inserted were taken from the Icelandic Gigaword
Corpus (IGC; Steingrímsson et al. 2018) and the
Icelandic Text Archive (ITA).4 Their publication
dates range from the late 18th century to the early
21st century, with roughly 40% of them having
been published between 1830 and 1920.

Overall, the training data consist of 7.8M to-
kens, whereas the validation set, which is ap-
proximately 15% of the whole dataset, consists
of around 1.4M tokens. The evaluation set, to-
talling 44k tokens, is composed of manually cor-
rected texts. All datasets contain texts from dif-
ferent eras, including texts from the 19th century
and the early 20th century, as well as texts from
the last two decades of the 20th century. It should
be noted that none of the data are based on texts
printed in Gothic font, which has been reported to

2https://pdf.abbyy.com/
3The GT is a product of the project Language Change

and Linguistic Variation in 19th-Century Icelandic and the
Emergence of a National Standard, led by Ásta Svavarsdóttir
at the Árni Magnússon Institute for Icelandic Studies (e.g.
Svavarsdóttir et al. 2014).

4https://clarin.is/en/resources/textarchive/

Model 1 Model 2
embeddings size 512 512
ffn embeddings 2,048 2,048
attention heads 4 4
encoder layers 5 5
decoder layer 5 5
tokenizer WordPiece SentencePiece
vocab. size 3,000 3,000

Table 2: The architecture of the two models
trained from scratch.

be harder to recognize than other fonts (Furrer and
Volk, 2011; Drobac et al., 2017). The evaluation
set is divided into two parts, with 26k tokens being
from modern texts and 18k tokens from texts from
the 19th century and the early 20th century. This al-
lows for an evaluation of the model’s performance
on different types of texts and OCR errors, which
is crucial to ensure that the model is robust and
generalizable.

It is important to note that the dataset used
in this study is relatively small in size. One of
the reasons is the scarcity of available corrected
OCRed texts. Additionally, we observed that too
large a proportion of modern texts in the training
set resulted in the models over-generalizing and
changing historical spellings to modern spellings.
However, we aim for diplomatic transcription, pre-
serving the original spelling. Therefore, we en-
sured that the dataset included texts from differ-
ent eras while also avoiding over-generalization
and alteration of historical spellings by limiting
the amount of modern texts into which we inserted
artificial errors.

3.1 Extracting the Errors

The extraction of errors from the manually cor-
rected OCRed texts was performed by analysing
the 375k token dataset. The data were man-
ually aligned, and then a line-by-line compari-
son was conducted between the OCRed texts and
their corresponding manually corrected texts us-
ing Python’s SequenceMatcher. In the process of
extracting errors, tokens were considered to be the
same if they shared the same index in a given line
and had a similarity score greater than 0.66.5 This
twofold restriction, taking into account both index

5Calculated by finding “[...] the longest continuous
matching subsequence that contains no “junk” elements”,
see: https://docs.python.org/3/library/difflib.html.
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Older texts Modern texts
OCR Model 1 Model 2 ByT5 (5 ep.) OCR Model 1 Model 2 ByT5 (1 ep.)

chrF 94.79 94.80 96.00 96.22 95.27 95.52 95.75 96.09
BLEU 97.19 97.19 98.24 98.54 97.73 97.63 98.06 98.24
WER 6.49% 7.56% 4.22% 3.25% 5.52% 5.73% 4.58% 4.56%
WERR Ø -16.37% 35.04% 49.96% Ø -3.80% 17.02% 17.37%
CER 1.39% 1.79% 1.14% 0.92% 1.17% 1.63% 1.43% 1.41%
CERR Ø -28.53% 18.34% 33.83% Ø -38.58% -21.34% -20.34%

Table 3: Our models trained on the GT compared to the base output from the OCR process.
WER(R) = Word Error Rate (Reduction), CER(R) = Character Error Rate (Reduction).

and similarity, acted as a confidence threshold to
ensure that the identified tokens were different ver-
sions of the same intended token.

The differences between the tokens, specifically
focusing on character or character n-gram substi-
tutions, such as rn→m and þ→p, were extracted
as OCR errors. In total, 2,644 such error types
were extracted, which were then filtered down to
the 600 errors that occurred more than three times
in the dataset. In addition, the frequency of each
error was recorded, which allowed for the imple-
mentation of a weighting system during the arti-
ficial error generation process, ensuring that the
errors were distributed in a way that somewhat re-
flected their real-world frequency. Examples of
extracted errors are shown in Table 1.

Error pairs that consist of an original and cor-
rected string length 1 (character count) comprise
around 40% of the error set. An example of this
is the erroneous pessi for þessi ‘this’. In 30% of
error pairs the original has a length of 2 and the
corrected a length of 1, such as rnaður for maður
‘man’, and in about 15% of them the length of both
is 2, e.g. gdbur for góður ‘good’. The total num-
ber of errors in the dataset amounts to 27,369.

3.2 Inserting the errors

To create the training dataset, we gathered texts
from IGC and the ITA. Texts ranging from the late
18th century to the 21st century were collected to
provide a diverse set of texts for model training.

Error types, as extracted and described in Sec-
tion 3.1, were then inserted into the training
dataset by randomly replacing characters or char-
acter n-grams via a lookup table. Whitespace was
also removed from between tokens and added into
the tokens at random. The artificial errors were in-
serted randomly, with the frequency of error types

based on the frequency in the GT in order to mimic
the distribution of errors that occur in OCR out-
put. This way, more frequent errors in the GT
were made to appear more frequently than other
errors in the training dataset. However, to prevent
the same errors from appearing excessively often
in the dataset, we used the log10 frequency of the
errors.

4 Models

In total, six models were trained. Two of them fol-
low the architecture of model 1, laid out in table 2,
two of them follow the architecture of model 2 in
the same table, and the others are a fine-tuned ver-
sion of ByT5-base6 (Xue et al., 2022), a token-free
transformer model that operates directly on UTF-
8 encoded bytes and is trained on mC4, a multi-
lingual corpus, which consists of texts in 101 lan-
guages, including Icelandic (Xue et al., 2021). The
models are all encoder-decoder transformer mod-
els.

For every pair of the models, one was trained
on the 375k tokens in the GT, and the other one on
the whole dataset, around 7.8M tokens. This was
done to study the artificially generated errors’ im-
pact on the models’ output. We experimented with
various hyperparameter configurations, evaluating
the models we trained from scratch on the valida-
tion sets, and these specific configurations resulted
in the highest performance.

It is well established that transformer models
require large amounts of data to be trained effec-
tively. In this study, our GT had a limited num-
ber of examples, which likely contributed to the

6Note that the ByT5 model was trained for five epochs, re-
sulting in five different models. The one trained for one epoch
performed the best on modern texts while the one trained for
five epochs performed the best on older texts. We report on
these two ByT5 models in Table 3.
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poorer performance of the models trained from
scratch on the smaller dataset, in some instances
even performing worse than the base OCR pro-
cess.

4.1 Tokenizers

As seen in Table 2, the two models trained from
scratch use different tokenizers, both of which are
based on subword tokenization algorithms. Model
1 uses WordPiece (Song et al., 2021) and model 2
uses SentencePiece (Kudo and Richardson, 2018).
As mentioned before, the ByT5 model operates di-
rectly on UTF-8 encoded bytes.

Different tokenization algorithms can have an
impact on a given task. SentencePiece and Word-
Piece can produce different subword units for the
same text, which might affect the models’ ability
to capture language-specific nuances and patterns.
It is possible that the choice of tokenizer had some
impact on their performance. However, further re-
search would be needed to determine the specific
effects of the tokenizer choice on OCR error cor-
rection.

5 Results

The six models we trained for post-processing of
OCRed texts were applied to modern and histori-
cal texts to measure the impact and viability of us-
ing artificial errors to improve such models when
available data are scarce. The results of these mod-
els were compared to the base output from the
OCR process using four metrics: chrF (Popović,
2015) and BLEU (Papineni et al., 2002), charac-
ter error rate (CER) and word error rate (WER).
BLEU score is calculated by comparing texts on
a word-level, while chrF score is calculated on a
character-level and can be more accurate for in-
flected languages (Dowling et al., 2020).

Table 3 shows the results of our models trained
on the GT compared to the base OCR output.
Model 2 and the ByT5 model show moderate im-
provements for older texts, while model 1 per-
forms similarly or worse than the base OCR out-
put. Generally, the models do worse on the mod-
ern texts, as opposed to the historical ones, when
only trained on the GT, which is to be expected as
the GT solely consists of historical texts.

Table 4 shows the results of our models trained
on the whole dataset compared to the base OCR
output. The models all show substantial improve-
ments compared to the models only trained on the

GT, which suggests that the artificial errors have
something to offer. Furthermore, the difference
between word error rate reduction (WERR) for the
different text types was less than for the models
only trained on the GT.

Note that while the models generally perform
better on the historical texts, the addition of artifi-
cial errors improve their performance proportion-
ally more on the modern ones. This could stem
from the fact that the artificially-erroneous dataset
includes modern texts, while the GT does not.

When evaluating the models on modern texts,
we found that they were less capable in reducing
errors in modern texts than in historical texts. This
could be due to the fact that the GT only comprised
historical data, suggesting that using solely histor-
ical OCRed texts is not a viable approach when
designing an OCR post-processing tool for mod-
ern texts. The lower error rate reduction (ERR) on
the modern texts presumably also stems from the
higher base score on the modern texts, as opposed
to the base score of the historical ones, leaving less
room for improvement.

6 Limitations and Future Work

The cost of manually correcting OCR output is
high, making it difficult to obtain a larger dataset
for training. This has a direct impact on the ability
of the models to perform well on a wider range of
texts and OCR errors.

The models have the unwanted tendency to
adapt to modern spellings when using a large
amount of modern texts populated with artificial
errors. This could lead to the alteration of his-
torical spellings, which is not in line with our ob-
jectives, to produce diplomatic transcriptions. To
mitigate this risk, more corrected texts are needed
for the period of texts being OCRed.

Moreover, the use of artificially generated errors
to enhance the performance of the models may
not fully capture the complexity and diversity of
real-world OCR errors. Future studies may benefit
from incorporating a more diverse range of error
types and more realistic error generation methods.

We are interested in investigating optimal meth-
ods for generating realistic errors to use in training
the models. As previously mentioned, the artificial
errors used in this study were generated by ran-
domly inserting errors that were extracted from the
GT into other texts. However, there may be more
effective methods for generating errors that better
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Older texts Modern texts
OCR Model 1 Model 2 ByT5 (5 ep.) OCR Model 1 Model 2 ByT5 (1 ep.)

chrF 94.79 96.84 96.84 96.73 95.27 96.83 96.86 96.7
BLEU 97.19 98.45 98.79 98.65 97.73 98.45 98.64 98.57
WER 6.49% 4.95% 3.08% 2.92% 5.52% 4.52% 3.60% 3.15%
WERR Ø 23.79% 52.60% 55.07% Ø 18.00% 34.67% 42.97%
CER 1.39% 1.03% 0.73% 0.90% 1.17% 1.06% 1.0% 1.15%
CERR Ø 26.29% 47.55% 35.12% Ø 10.01% 15.20% 1.93%

Table 4: Our models trained on the whole dataset compared to the base output from the OCR process.

simulate real-world OCR errors. By finding and
implementing these methods, the performance of
OCR error correction models could be further im-
proved. Furthermore, it could be beneficial to ex-
plore different architectures or different data aug-
mentation techniques, such as including multiple
versions of the same texts. It should also be noted
that our evaluation dataset was rather small, and
further testing on larger datasets may provide a
more robust evaluation of the models.

7 Conclusion

Our findings demonstrate that while fine-tuning
pre-trained models on smaller datasets is an ef-
fective approach to improving the performance
of OCR error correction models, it is possible to
achieve comparable results by training an encoder-
decoder transformer model from scratch. Model
2, which was trained from scratch, emerged as the
best performer in our study, achieving a 52.60%
word error rate reduction (WERR) and a 47.55%
character error rate reduction (CERR) on the his-
torical texts, and a word error rate reduction of
34.67% and a character error rate reduction of
15.20% on the modern texts, see Table 4.

These results indicate that with proper architec-
tural design, it is possible to train effective OCR
error correction models without relying on pre-
trained models or large datasets.

However, the use of artificially generated errors
in the training process was found to be effective in
countering the challenges posed by data scarcity.

The fact that the models’ performance improved
proportionally more on the modern texts after the
introduction of the artificial errors, which were by
and large inserted into modern texts, indicates that
in order to train a designated OCR post-processing
tool for modern texts, a dataset consisting of mod-
ern texts is needed.
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Maja Popović. 2015. CHRF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal.

Caitlin Richter, Matthew Wickes, Deniz Beser, and
Mitch Marcus. 2018. Low-resource Post Processing
of Noisy OCR Output for Historical Corpus Digiti-
sation. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), pages 2331–2339, Miyazaki, Japan.

Xinying Song, Alex Salcianu, Yang Song, Dave Dop-
son, and Denny Zhou. 2021. Fast WordPiece Tok-
enization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2089–2103, Online and Punta Cana, Do-
minican Republic.

Steinþór Steingrímsson, Sigrún Helgadóttir, Eiríkur
Rögnvaldsson, Starkaður Barkarson, and Jón
Guðnason. 2018. Risamálheild: A Very Large Ice-
landic Text Corpus. In Proceedings of the Eleventh

International Conference on Language Resources
and Evaluation, LREC 2018, pages 4361–4366,
Miyazaki, Japan.

Ásta Svavarsdóttir, Sigrún Helgadóttir, and Guðrún
Kvaran. 2014. Language resources for early Mod-
ern Icelandic. In Proceedings of Language Re-
sources and Technologies for Processing and Link-
ing Historical Documents and Archives – Deploying
Linked Open Data in Cultural Heritage, pages 19–
25, Reykjavik, Iceland.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017), pages 5999–6009,
Long Beach, California.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a Token-
Free Future with Pre-trained Byte-to-Byte Models.
Transactions of the Association for Computational
Linguistics, 10:291–306.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A Massively
Multilingual Pre-trained Text-to-Text Transformer.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online.

291

https://doi.org/10.1007/978-981-16-0401-0_15
https://doi.org/10.1007/978-981-16-0401-0_15
https://doi.org/10.18653/v1/D18-1541
https://doi.org/10.18653/v1/D18-1541
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1145/3453476
https://doi.org/10.1145/3453476
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/2020.lt4hala-1.7
https://aclanthology.org/2020.lt4hala-1.7
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/L18-1369
https://aclanthology.org/L18-1369
https://aclanthology.org/L18-1369
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://aclanthology.org/L18-1690
https://aclanthology.org/L18-1690
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-LRT4HDA%20Proceedings.pdf
http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-LRT4HDA%20Proceedings.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

