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Abstract

This paper introduces Bayesian uncer-
tainty modeling using Stochastic Weight
Averaging-Gaussian (SWAG) in Natural
Language Understanding (NLU) tasks.
We apply the approach to standard
tasks in natural language inference (NLI)
and demonstrate the effectiveness of the
method in terms of prediction accuracy
and correlation with human annotation
disagreements. We argue that the uncer-
tainty representations in SWAG better re-
flect subjective interpretation and the nat-
ural variation that is also present in human
language understanding. The results re-
veal the importance of uncertainty mod-
eling, an often neglected aspect of neural
language modeling, in NLU tasks.

1 Introduction

Arguably, human language understanding is not
objective nor deterministic. The same utterance or
text can be interpreted in different ways by differ-
ent people depending on their language standards,
background knowledge and world views, the lin-
guistic context, as well as the situation in which
the utterance or text appears. This uncertainty
about potential readings is typically not modeled
in Natural Language Understanding (NLU) re-
search and is often ignored in NLU benchmarks
and datasets. Instead, they usually assign a single
interpretation as a gold standard to be predicted
by an artificial system ignoring the inherent ambi-
guity of language and potential disagreements that
humans arrive at.

Some datasets like SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018) do, however,
contain information about different readings in the
form of annotation disagreement. These datasets

include the labels from five different rounds of an-
notation which show in some cases clear disagree-
ment about the correct label for the sentence pair.
Those labeling discrepancies can certainly be a re-
sult of annotation mistakes but more commonly
they arise from differences in understanding the
task, the given information and how it relates to
world knowledge and personal experience.

Moving towards uncertainty-aware neural lan-
guage models, we present our initial results us-
ing Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018) and SWA-Gaussian (SWAG) (Mad-
dox et al., 2019) on the task of Natural Language
Inference. SWAG provides a scalable approach to
calibrate neural networks and to model uncertainty
presentations and is straightforward to apply with
standard neural architectures. Our study addresses
the two main questions:

• How does uncertainty modeling using SWAG
influence prediction performance and gener-
alization in NLI tasks?

• How well does the calibrated model reflect
human disagreement and annotation vari-
ance?

In this paper, we first test the performance of
SWA and SWAG in SNLI and MNLI tasks. We
then study if adding weight averaging improves
the generalization power of NLI models as tested
through cross-dataset experiments. Finally, we
analyse the probability distributions from SWA
and SWAG to test how well the model uncertainty
corresponds to annotator disagreements.

2 Background and Related Work

2.1 Uncertainty in human annotations

In a recent position paper Plank (2022) argue that
instead of taking human label variation as a prob-
lem, we should embrace it as an opportunity and
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take it into consideration in all the steps of the ML
pipeline: data, modeling and evaluation. The pa-
per provides a comprehensive survey of research
on (i) reasons for human label variation, (ii) mod-
eling human label variation, and (iii) evaluating
with human label variation.

Pavlick and Kwiatkowski (2019) studied hu-
man disagreements in NLI tasks and argue that we
should move to an evaluation objective that more
closely corresponds to the natural interpretation
variance that exists in data. Such a move would
require that NLU models be properly calibrated to
reflect the distribution we can expect and, hence,
move to a more natural inference engine.

Chen et al. (2020) propose Uncertain NLI
(UNLI), a task that moves away from categorical
labels into probabilistic values. They use a scalar
regression model and show that the model predic-
tions correlate with human judgement.

2.2 Representing Model Uncertainty

The approach to uncertainty modeling that we
consider is related to the well-established tech-
nique of model ensembling. Stochastic optimiza-
tion procedures applied in training deep neural
networks are non-deterministic and depend on
hyper-parameters and initial seeds. Ensembles
have been used as a pragmatic solution to aver-
age over several solutions, and the positive impact
on model performance pushed ensembling into the
standard toolbox of deep learning. Related to en-
sembling is the technique of checkpoint averaging
(refer to e.g. Gao et al., 2022), which is also known
to improve performance.

Intuitively, ensembles and checkpoint averages
also reflect the idea of different views and interpre-
tations of the data and, therefore, provide a frame-
work for uncertainty modeling. Stochastic Weight
Averaging (SWA, Izmailov et al. (2018)) and
SWA-Gaussian (SWAG, Maddox et al. (2019))
both build on this idea. SWA proposes using the
first moments of the parameters of the solutions
traversed by the optimizer during the optimiza-
tion process, as mean estimates of the model pa-
rameters. Using such mean values have been ar-
gued to result in finding wider optima, providing
better generalization to unseen data. On top of
these mean estimations procured by SWA, SWAG
then adds a low-rank plus diagonal approxima-
tion of covariances, which, when combined with
the aforementioned mean estimations, provide us

with corresponding Gaussian posterior approxi-
mations over model parameters. Posterior distri-
bution approximations learned this way then rep-
resent our epistemic uncertainty about the model
(Kiureghian and Ditlevsen, 2009), meaning the
uncertainty stemming from not knowing the per-
fect values of the model parameters, since we do
not have infinite data to train on. During test time,
instead of making estimates from a single model
with deterministic parameters, we sample N dif-
ferent models from the approximated posteriors
for each model parameter, and use the average
of their prediction distributions as the model re-
sponse.

Note that as both of these methods use the opti-
mizer trajectory for the respective approximations,
they provide significant computational efficiency
as compared to the vanilla ensembling baseline. In
this paper, we use SWA mainly as another baseline
for SWAG, which needs to outperform SWA in or-
der to justify the additional computation required
for the covariance approximation.

SWA (Izmailov et al., 2018) is a checkpoint av-
eraging method that tracks the optimization trajec-
tory for a model during training, using the average
of encountered values as the eventual parameters:

θSWA =
1

T

T∑

i=1

θi, (1)

with θSWA denoting the SWA solution for parame-
ter θ after T steps of training.1

SWAG (Maddox et al., 2019) extends this
method to estimate Gaussian posteriors for model
parameters, by also estimating a covariance matrix
for the parameters, using a low-rank plus diagonal
posterior approximation. The diagonal part is ob-
tained by keeping a running average of the second
uncentered moment of each parameter, and then at
the end of the training calculating:

Σdiag = diag(
1

T

T∑

i=1

θ2i − θ2SWA) (2)

while the diagonal part is approximated by keep-
ing a matrix DDT with columns Di = (θi − θ̂i),
θ̂i standing for the running estimate of the param-
eters’ mean obtained from the first i samples. The
rank of the approximation is restricted by keeping
only the final K-many of the Di vectors, and drop-
ping the previous, with K being a hyperparameter

1In this work, we use one sample from each epoch.
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of the method:

Σlow-rank ≈ 1

K − 1
DDT (3)

=
1

K − 1

T∑

i=T−K+1

(θi − θ̂i)(θi − θ̂i)
T

(4)

The overall posterior approximation is given by:

θSWAG ∼ N (θSWA,
1

2
(Σdiag +Σlow-rank)). (5)

Once the posteriors are thus approximated, in test
time, the model is utilized by sampling from the
approximated posteriors for N times, and tak-
ing the average of the predicted distributions from
these samples as the answer of the model.

One of the advantages of SWAG is the possi-
bility to seamlessly start with any pre-trained so-
lution. Approximating the posterior is then done
during fine-tuning without the need to change the
underlying model.

2.3 Stochastic Weight Averaging in NLP

Previous work on Stochastic Weight Averaging
in the context of NLP is very limited. Lu et al.
(2022) adapt SWA for pre-trained language mod-
els and show that it works on par with state-of-the-
art knowledge distillation methods. Khurana et al.
(2021) study pre-trained language model robust-
ness on a sentiment analysis task using SWA and
conclude that SWA provides improved robustness
to small changes in the training pipeline. Kaddour
et al. (2022) test SWA on multiple GLUE bench-
mark tasks (Wang et al., 2018) and find that the
method does not provide clear improvement over
the baseline.

Maddox et al. (2019) test SWAG in lan-
guage modeling tasks using Penn Treebank and
WikiText-2 datasets and show that SWAG im-
proves test perplexities over a SWA baseline. To
the best of our knowledge our work is the first to
apply SWAG to NLU tasks.

3 Experiments

We test the performance of SWA and SWAG on
the natural language inference task using three
NLI datasets, including cross-dataset experiments,
and study the effect on both hard and soft labeling.
Code for replicating the experiments is available

on GitHub: https://github.com/Helsi
nki-NLP/uncertainty-aware-nli

3.1 Datasets

We use Stanford Natural Language Inference cor-
pus (SNLI) (Bowman et al., 2015) and Multi-
Genre Natural Language Inference (MNLI) cor-
pus (Williams et al., 2018) as the datasets in our
experiments. We also study cross-dataset gener-
alisation capability of the model with and without
weight averaging. For those experiments we also
include SICK (Marelli et al., 2014) as a test set. In
cross-dataset generalization experiments we first
fine-tune the model with a training data from one
NLI dataset (e.g. SNLI) and then test with a test
set from another NLI dataset (e.g. MNLI-mm).

SNLI The Stanford Natural Language Inference
(SNLI) corpus is a dataset of 570k sentence pairs
which have been manually labeled with entail-
ment, contradiction, and neutral labels. The
source for the premise sentences in SNLI were
image captions from the Flickr30k corpus (Young
et al., 2014).

MNLI The Multi-Genre Natural Language In-
ference (MNLI) corpus is made of 433k sentence
pairs labeled with entailment, contradiction and
neutral, containing examples from ten genres of
written and spoken English. Five of the genres are
included in the training set. The development and
test sets have been split into matched (MNLI-m)
and mismatched (MNLI-mm) sets, where the for-
mer includes only sentences from the same genres
as the training data, and the latter includes gen-
res not present in the training data.2 The MNLI
dataset was annotated using very similar instruc-
tions as for the SNLI dataset and, therefore it is
safe to assume that the definitions of entailment,
contradiction and neutral are the same across these
two datasets.

SICK SICK is a dataset that was originally de-
signed to test compositional distributional seman-
tics models. The dataset includes 9,840 examples
with logical inference (negation, conjunction, dis-
junction, apposition, relative clauses, etc.). The

2As the test data for MNLI have not been made publicly
available, we use the development sets when reporting the
results for MNLI.
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dataset was constructed automatically by taking
pairs of sentences from a random subset of the
8K ImageFlickr (Young et al., 2014) and the Se-
mEval 2012 STS MSRVideo Description (Agirre
et al., 2012) datasets by using rule-based approach
to construct examples for the different logical in-
ference types.

3.2 Methods

In all the experiments we fine tune a pre-trained
RoBERTa-base model (Liu et al., 2019) from the
Hugging Face Transformers library (Wolf et al.,
2020). As a common practice in the NLI tasks, we
use the majority-vote gold labels for training.

We add stochastic weight averaging to the
RoBERTa model by using the SWA implementa-
tion from PyTorch 1.123 and the SWAG imple-
mentation by (Maddox et al., 2019)4. To study
how well SWA and SWAG perform in NLI as
compared to a baseline model, we ran the same
fine-tuning with SNLI and MNLI datasets, while
utilizing SWA and SWAG for mean and variance
estimations of parameters undergoing fine-tuning.

3.3 Results

The standard evaluation for the NLI task is the ac-
curacy on aggregated gold labels. However, as two
of the test data sets (from SNLI and MNLI) also
contains multiple human annotations, we also use
those for measuring the cross entropy of the pre-
dicted distribution on the human label distribution
(soft labeling, e.g. Peterson et al., 2019; Pavlick
and Kwiatkowski, 2019).

3.3.1 Accuracy

The basic classification results are in Table 1. We
report average accuracies and standard deviation
over 5 runs with different random seeds.

Both SWA and SWAG provide clear improve-
ments over the baseline without weight averaging.
SWAG performs slightly better than SWA across
all the three experiments.

In order to test if weight averaging improves the
generalization capability of NLI models, we fur-
ther performed cross-dataset generalization tests

3https://pytorch.org/docs/1.12/optim.
html#stochastic-weight-averaging

4https://github.com/wjmaddox/swa_gaus
sian

Dataset Method Acc (%) SD ∆
SNLI base 90.80 0.26 -
SNLI SWA 91.47 0.24 +0.67
SNLI SWAG 91.59 0.14 +0.79
MNLI-m base 86.53 0.20 -
MNLI-m SWA 87.60 0.19 +1.07
MNLI-m SWAG 87.76 0.12 +1.23
MNLI-mm base 86.31 0.26 -
MNLI-mm SWA 87.34 0.29 +1.03
MNLI-mm SWAG 87.51 0.19 +1.20

Table 1: Comparison of SWA and SWAG perfor-
mance on NLI benchmarks (mean accuracy and
standard deviation over 5 runs). ∆ is the differ-
ence to the baseline result (base) with no weight
averaging.

Dataset Method Acc (%) SD ∆
SNLI → MNLI-m base 77.31 0.57
SNLI → MNLI-m SWA 79.67 0.37 2.36
SNLI → MNLI-m SWAG 79.33 0.21 2.02
SNLI → MNLI-mm base 77.40 0.78
SNLI → MNLI-mm SWA 79.44 0.19 2.04
SNLI → MNLI-mm SWAG 79.24 0.29 1.84
SNLI → SICK base 57.08 0.77
SNLI → SICK SWA 57.09 0.32 0.01
SNLI → SICK SWAG 57.17 0.37 0.08
MNLI → SNLI base 82.84 0.74
MNLI → SNLI SWA 84.15 0.35 1.31
MNLI → SNLI SWAG 84.45 0.27 1.61
MNLI → SICK base 56.63 0.94
MNLI → SICK SWA 56.17 0.60 -0.46
MNLI → SICK SWAG 56.53 0.91 -0.10

Table 2: Cross-dataset experiments with and with-
out weight averaging (mean accuracy and standard
deviation over 5 runs with different random seeds),
where the left hand side of the arrow is the training
set and the right hand side is the testing set.

following (Talman and Chatzikyriakidis, 2019).
The results are reported in Table 2.

The results of cross-dataset experiments are
slightly mixed: We do not notice a clear advan-
tage of SWAG over SWA, but with the exception
of training with MNLI and testing with SICK, we
do notice improvement for weight averaging ap-
proaches as compared to the baseline. The perfor-
mance on SICK drops significantly in all cases and
the difference between the approaches is minimal,
showing that the NLI training data is not a good
fit for that benchmark. The other cross-dataset re-
sults highlight the advantage of stochastic weight
averaging, which is in line with the findings of (Iz-
mailov et al., 2018) that the method is able to lo-
cate wider optima regions with better generaliza-
tion capabilities.
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Dataset Method Cross Entropy ∆
SNLI base 0.83
SNLI SWA 0.75 -0.08
SNLI SWAG 0.69 -0.14
MNLI-m base 0.87
MNLI-m SWA 0.80 -0.07
MNLI-m SWAG 0.73 -0.14
MNLI-mm base 0.84
MNLI-mm SWA 0.77 -0.07
MNLI-mm SWAG 0.69 -0.15
SNLI → MNLI-m base 1.13
SNLI → MNLI-m SWA 0.90 -0.23
SNLI → MNLI-m SWAG 0.80 -0.33
SNLI → MNLI-mm base 1.12
SNLI → MNLI-mm SWA 0.88 -0.24
SNLI → MNLI-mm SWAG 0.79 -0.33
MNLI → SNLI base 1.04
MNLI → SNLI SWA 0.97 -0.07
MNLI → SNLI SWAG 0.89 -0.15

Table 3: Comparison of cross entropies between
data annotation distributions using base, SWA and
SWAG methods. ∆ is the difference to the base-
line cross entropy values.

3.3.2 Cross Entropy

We also test how well these weight averaging and
covariance estimating methods help towards bet-
ter modeling annotator disagreement and annota-
tion uncertainty in the NLI testsets of SNLI and
MNLI. These two datasets come with five differ-
ent annotation labels for every data point, often
with high disagreement between human annota-
tors, indicating inherently confusing data points
with high aleatoric uncertainty (Kiureghian and
Ditlevsen, 2009). For quantifying the goodness of
fit of the model predictions, we calculate the cross
entropy between the predicted and annotation dis-
tributions.5

Table 3 depicts the resulting cross entropy val-
ues, with lower values denoting more faithful pre-
dictions. SWA and SWAG result in consistently
more similar distributions with that of annotations,
complementing their overall better accuracy re-
sults (Section 3.3). In contrast to the accuracy re-
sults, here SWAG outperforms SWA in all cases,
indicating that the modeling uncertainty through
the approximation of Gaussian posteriors helps to
model annotator disagreements more accurately.
The results also carry over to the cross-dataset ex-
periments as shown on the table.

The comparison between system predictions

5Note that for the Baseline and SWA models, we consider
the output from the eventual softmax function as the predicted
distribution, while for the SWAG model, we use the average
output distribution from N = 20 sampled models.

and annotator variation deserves some further
analysis. Preliminary study (refer to examples
in Appendix A) indicates that the prediction un-
certainty in SWAG for individual instances very
well follows human annotation confusion. Fur-
thermore, we identified cases with a larger mis-
match between system predictions and human dis-
agreement where the latter is mainly caused by er-
roneous or at least questionable decisions. This
points to the use of SWAG in an active learning
scenario, where annotation noise can be identified
using a well calibrated prediction model.

4 Conclusions

Our results show that weight averaging provides
consistent and clear improvement for both SNLI
and MNLI datasets. The cross-dataset results are
slightly mixed but also show the trend of improved
cross-domain generalization. Finally, we demon-
strate a clear increase in the correlation with hu-
man annotation variance when comparing SWAG
with non-Bayesian approaches.

For future work we consider making use of mul-
tiple annotations also during training and exten-
sions of SWAG such as MultiSWAG (Wilson and
Izmailov, 2020). We also plan to test the methods
on different NLU datasets, especially those with a
high number of annotations (e.g. Nie et al., 2020),
and compare the annotation variation and system
predictions in more detail. Finally, in our future
work we will explore other uncertainty modeling
techniques, like MC dropout (Gal and Ghahra-
mani, 2016), in NLU and see how they compare
with stochastic weight averaging techniques.
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A Appendix

Here we showcase and discuss three randomly
selected data points from the SNLI dataset, and
compare the predictions of the N = 20 samples
from the SWAG model with the annotation distri-
butions for each of these points. Table 4 presents
two cases (left and middle) in which the SWAG
model makes the correct prediction, and another
case (right) in which the model makes an incorrect
prediction. In the high agreement cases, indicated
by lower cross entropies between the annotations

and prediction, the SWAG model not only selects
the correct label for the instance, but also predicts
the annotator disagreement correctly when such a
disagreement exists (middle) versus when it does
not (left).

The third figure presents a case where the pre-
dictions of the SWAG samples are more certain
than expected: Annotators disagree on whether
the hypothesis is entailment or neutral, whereas
the model predictions place all probability mass
to the neutral class. The corresponding cross en-
tropy is high, which reflects this disagreement. It
should be noted that this is also a fairly contro-
versial and difficult data point, and to conclude
Entailment requires making some strong assump-
tions. Ideally, such disagreements between system
predictions and annotator distributions may also
be used as cues within the training process itself.
Two potential venues are (1) using the incongru-
ence between the two distributions as the loss sig-
nal to drive the optimization process directly (as
opposed to using only the gold label and the pre-
dicted class label), and (2) using the incongruence
in predictions in an active learning scenario.
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Correct Prediction Incorrect Prediction

Premise
Two female martial artists demon-

strate a kick for an audience.

A group of boys playing street soc-

cer.

People shopping at an outside mar-

ket.

Hypothesis
Two martial artists demonstrate

moves for the audience.
A team is playing street soccer.

People are enjoying the sunny day

at the market.

Annotations E-E-E-E-E E-E-N-N-N E-E-E-N-N

Cross-Ent 0.02 0.69 3.88

Table 4: Comparison of probability distributions of human annotations vs. SWAG model predictions,
for three randomly selected data points from the SNLI dataset. (Left and middle) Correctly predicted
cases, as indicated by low cross entropy, (Right) A incorrectly predicted case, as indicated by high cross
entropy. SWAG points indicate the outputted probability distributions from N = 20 samples.
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