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Abstract

In this work we investigate the hypothe-
sis that enriching contextualized models
using fine-tuning tasks can improve their
capacity to detect lexical semantic change
(LSC). We include tasks aimed to capture
both low-level linguistic information like
part-of-speech tagging, as well as higher-
level (semantic) information.

Through a series of analyses we demon-
strate that certain combinations of fine-
tuning tasks, like sentiment, syntactic in-
formation, and logical inference, bring
large improvements to standard LSC mod-
els that are based only on standard lan-
guage modeling. We test on the bi-
nary classification and ranking tasks of
SemEval-2020 Task 1 and evaluate using
both permutation tests and under transfer-
learning scenarios.

1 Introduction

The last few years have seen a growing interest in
language change, specifically in lexical semantic
change (LSC), from the NLP community. LSC is
the linguistic phenomenon in which words’ mean-
ing may change over time (for example by adding
senses, or broadening/narrowing in their meaning
scope). Originally, the study of lexical seman-
tic change aspired to understand the phenomenon
from a linguistic perspective (Dubossarsky et al.,
2016; Schlechtweg et al., 2017; Keidar et al.,
2022). However, it was also motivated by the need
for better handling of semantic change in other
text-based research disciplines that work with his-
torical texts (e.g., lexicographers, historians).

In more recent times, the understanding that
general purpose NLP models also need to ac-
commodate for the fluidity of word meaning has
reached the greater NLP community, bringing

with it the realization that LSC plays a vital role
(Barbieri et al., 2022). It is particularly visible in
the deterioration of model performance over time
because the language on which models and other
algorithms are (pre-)trained, starts to drift as time
passes (Rosin and Radinsky, 2022; Alkhalifa et al.,
2023). When deployed, these models process text
from time periods they were not trained on, which
hinder their performance.

This wide, multi-disciplinary interest in LSC,
has driven the development of many computa-
tional models for language change (Kutuzov et al.,
2018; Tahmasebi et al., 2021). In addition, much
work has been devoted to supporting this progress
by curating evaluation datasets that provide ap-
propriate testing of these new models. Most of
these datasets are in the form of SemEval tasks and
contain high quality, humanly annotated lists of
words. Each word has either changed its meaning
between the considered time periods, or remained
stable in meaning, and each list is accompanied by
relevant historical corpora. This has become the
de-facto evaluation standard in the field.

When reviewing the different models that are
evaluated in SemEval, most of them use the same
suit of methods that rely on standard distribu-
tional models of meaning. These models are ei-
ther trained solely on historical text (e.g., SGNS
or other static models), or use contextualized mod-
els pre-trained on a large “general purpose” text.1

All of these models generate meaning represen-
tations in vector form for words from a histori-
cal corpus and compare them to vectors represent-
ing the modern meaning of the same word. Al-
though the models differ (e.g., in terms of data or
training objectives), they all share the same basic
trait - they rely on meaning representation based
on neighboring words without additional linguis-
tic information.

1Some contextualized models are also fine-tuned on his-
torical corpora.
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This state of affairs raises a question: do models
that are based solely on collocation statistics and
trained exclusively on a masked-word prediction
task suffice for our purpose? That is, are classic
distributional models able to capture the full reper-
toire of word meaning, and then access it when an-
alyzing meaning change? In this work, we inves-
tigate several concerns that we think a-priori sug-
gest that additional linguistic information is bene-
ficial for unsupervised lexical semantic change de-
tection.

One direct path forward is fine-tuning pre-
trained models on additional tasks or domains like
Question Answering and Sentiment Analysis. It
has been demonstrated that fine-tuning of models
helps even when the fine-tuned tasks are differ-
ent than the target task (for example, fine-tuning
on textual summarization and testing on Question-
Answering) in a sort of a zero/few-shot transfer
learning (Peters et al., 2019; Merchant et al., 2020;
Khashabi et al., 2020). Therefore, it is reasonable
to assume that enriching a contextualized model
with additional fine-tuning tasks would lead to im-
proved performance also for LSC detection.

In this paper, we test this hypothesis with one
of the top-performing models of LSC detection in
English and explore the potential to improve it by
enriching it through a set of fine-tuning tasks. We
provide our code here.2

2 Related literature

2.1 Models of LSC and their evaluation
In the past years, we have seen an increas-
ing amount of models for unsupervised detec-
tion of lexical semantic change, almost exclu-
sively focused on distributional semantic models.
SemEval-2020 Task 1 was the first attempt at a
large-scale evaluation and comparison of methods
on four different languages. Two main classes
of methods were evaluated by the participating
teams. The first was based on type embeddings, ei-
ther those that require alignment between indepen-
dently trained models, (e.g., SGNS with Orthog-
onal Procrustes alignment (Arefyev and Zhikov,
2020)) or static embeddings without the require-
ment of alignment (Zamora-Reina and Bravo-
Marquez, 2020). The second class was based
on contextualized embeddings and combined with
e.g., a clustering algorithm to derive sense in-
formation (e.g., XLM-R with K-means clustering

2https://github.com/ChangeIsKey/LSC-AGG

(Gyllensten et al., 2020)) or other means of com-
paring vectors in each time period with each other
(Kutuzov and Giulianelli, 2020). The models were
evaluated on two tasks, binary classification and
ranking.

For the four SemEval datasets, the trend was
that type-based models outperformed contextual-
ized (token) models. It was also clear that good
performance on binary classification does not nec-
essarily indicate good performance on the rank-
ing task. Since SemEval-2020, more evaluation
tasks have been curated for Russian (Kutuzov
et al., 2021), Italian (Basile et al., 2020), Norwe-
gian (Kutuzov et al., 2022a) and Spanish (Zamora-
Reina et al., 2022), where we see stronger indi-
cations that contextualized models perform better
than type-based ones.

2.2 Contextualized models training

Training contextualized models requires a massive
amount of textual data, prolonged training time,
and considerable computational power. All these
have made the training of new models a compli-
cated procedure available only to selected research
labs over the world, as oftentimes researchers lack
the necessary resources to train their own models
(our interest in historical language poses a partic-
ular challenge in this regard, as historical texts are
usually much smaller in size).

To mitigate these requirements, speed up the
training process, and increase the usability of
these models, fine-tuning was developed. Us-
ing fine-tuning, models that were already trained
(now called pre-trained models) are continued
to be trained, albeit on much smaller data and
sometimes on a different task (pre-trained models
are usually trained on standard masked-word and
next-sentence prediction tasks).

This two-step training setup was found to
greatly improve the state-of-the-art performance
in many tasks and today, the use of fine-tuning
in contextualized models has become the domi-
nant paradigm in NLP (Howard and Ruder, 2018;
Devlin et al., 2019; Merchant et al., 2020). Im-
portantly, it was found that fine-tuning, henceforth
FT, can transfer to other tasks and languages and
thus improve performance on tasks and datasets it
was not trained on (Peters et al., 2019; Khashabi
et al., 2020), presumably because of shared infor-
mation that is required to process these different
tasks. In this paper, we aim to leverage the trans-
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fer capabilities and test whether FT a contextual-
ized model on a range of NLP tasks improves its
performance to detect LSC.

3 Method

Our aim is to test whether a state-of-the-art
method for detecting lexical semantic change,
based on pre-trained contextual embeddings, can
be improved by adding fine-tuned layers. There-
fore, we start with a BERT model and detect se-
mantic change following Kutuzov and Giulianelli
(2020). We chose their model as it was the
best-performing system in English in the post-
evaluation stage of SemEval-2020 Task 1. Next,
we add information from fine-tuning for tasks that
go beyond a masked language model objective.
We include tasks aimed to capture both low-level
linguistic information like part-of-speech tagging,
as well as higher-level (semantic) information
such as sentiment analysis, linguistic inference,
and machine reading comprehension.

3.1 LSC method
The task of detecting lexical semantic change can
be described as the following: given two corpora
C1 and C2 from time periods T1 and T2, as well
as a set of target words, detect which words have
changed between T1 and T2 as evidenced in C1

and C2. This is a special case of the general LSC
problem which includes arbitrarily many time pe-
riods T1, . . . , TN .

Following Kutuzov and Giulianelli (2020), we
use a pre-trained BERT base model to generate
the contextualized embeddings of each occurrence
of the target words in C1 in C2, resulting in two
corresponding embedding matrices U t1

w and U t2
w .

Given these embedding matrices, we calculate the
change scores of each target word in one of two
ways: inverted cosine similarity over word proto-
types (PRT); and average pairwise cosine distance
between token embeddings (APD).

PRT (U t1
w , U t2

w ) =
1

d(

∑
xi∈Ut1

w
xi

Nt1
w

,

∑
xj∈Ut2

w
xj

Nt2
w

)

(1)
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w , U t2
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1
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w N t2

w

∑

xi∈Ut1
w ,xj∈Ut2

w

d(xi, xj) (2)

N t1
w , N t2

w stands for the number of occurrences of
w in T1 and T2. d is the cosine distance. For both
methods, higher values suggest a larger semantic
change.

3.2 Fine-tuning

The main contribution of this paper is the injec-
tion of richer meanings into contextualized em-
beddings using fine-tuning. Our fine-tuned models
are derived mostly from adapters (Pfeiffer et al.,
2020; Poth et al., 2021), which are trained lay-
ers that can be integrated directly into transformer-
based models (the most popular type of contextu-
alized models) in order to perform different tasks.
Using adapters enabled us to speed up our exper-
iments as they are readily available3 and can be
seamlessly integrated into the tested models.

In addition to using adapters, we also fine-tune
two models locally on sentiment classification and
part-of-speech tagging in order to compare the
performance of fine-tuned models with adapter-
based models. For sentiment classification, we
use the sst2 dataset (Pang and Lee, 2004) while
for part-of-speech tagging we use CoNLL2003
(Tjong Kim Sang and De Meulder, 2003). Since
there is no test set with gold labels for sst2, we
randomly sample 30% of the data from the valida-
tion set as a test set. The accuracy of the fine-tuned
models on the test set is 0.908 for sentiment anal-
ysis and 0.931 for part-of-speech tagging. We use
the BERT-base-uncased model for all our exper-
iments, both with adaptors and local FT. Table 1
details the FT tasks we used.

Task/Model Type

natural language inference (nli) pf
machine reading comprehension (reading compre) pf
sentiment (sst2) pf
sentiment (sst2-pfeiffer) pfeiffer
sentiment (sst2-hously) hously
semantic textual similarity pf
linguistic acceptability pf
grammatical error correction (error detect) pf
semantic tagging pf
named entity recognition (ner) pf
part-of-speech tagging (pos) pf
phrase chunking pf

sentiment (sst2-fine-tune) fine-tuned
part-of-speech tagging (pos-fine-tune) fine-tuned

Table 1: Fine-tuned models & tasks for adapters
(upper) and locally trained FT (lower). Type refers
to adaptors trained by Poth et al. (2021)(pf), Peif-
fer and Hously. Task abbreviations in parentheses.

3https://adapterhub.ml/
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4 Evaluation

For our experiments, we use a standard evaluation
dataset for LSC.

4.1 Evaluation data

We use the English dataset of SemEval-2020 Task
1 (Schlechtweg et al., 2020) for unsupervised lex-
ical semantic change detection. The task was the
first of its kind to provide manually annotated gold
data for the purpose of fair and comparable eval-
uation of methods for LSC. The task consists of
two sub-tasks aimed to measure change between
two time-specific corpora C1 and C2:

Binary Classification: for a set of target words,
decide which words lost or gained sense(s)
between C1 and C2, and which did not.

Ranking: rank a set of target words according to
their degree of LSC between C1 and C2.

These tasks are related but complementary. The
ranking task measures the degree of change and
takes into consideration lost or gained senses, but
also includes changes in existing senses (e.g., by
means of broadening or narrowing) which the bi-
nary classification task does not consider.

The English dataset of SemEval consists of 37
target words derived from the Clean Corpus of
Historical American English (CCOHA) (Davies,
2012; Alatrash et al., 2020). The two 50-year pe-
riods are C1 = 1810−1860 and C2 = 1960−2010
from which each target word has a set of 100 ran-
domly sampled sentences. These sentences have
been compared by human annotators and ranked
on a scale for lexical semantic change. Based on
the outcome of the roughly 29,000 human judg-
ments, words are classified as changing or stable
and assigned a change degree. The process is de-
scribed in detail by Schlechtweg et al. (2021)

4.2 Evaluation Metrics

We use two evaluation metrics.

Spearman correlation is used to compute
the rank correlation between model predic-
tions and gold labels in the ranking task.

AUC & ROC are used to evaluate the impact
of different thresholds on the model perfor-
mance in the binary classification task.

4.3 Validation through permutation

The work presented in this paper suggests that cer-
tain combinations of FT tasks improve LSC detec-
tion for both ranking and classification tasks. Im-
portantly, these combinations are chosen based on
improved performance in the SemEval tasks. Ide-
ally, we would consider this as the training set and
then test the chosen combinations on a held-out
dataset to examine if similar gains are acquired.
However, such a test set is lacking, and cannot be
constructed via standard train-test splits from the
37 words, from which only 16 have changed.4 We
propose permutation tests to mitigate this short-
coming, and to enable us to draw reliable conclu-
sions from our study despite this limitation.

For both tasks, we evaluate the probability that
the best combinations we report were found by
chance. We conduct a permutation analysis and
generate artificial FT task scores that are based on
the distributions of the existing FT values from the
14 FT models (Table 1). We then compute the
relevant evaluation metric (Spearman or AUC) for
each artificial FT, and repeat the process 100,000
times, creating a distribution of ranking or classi-
fication performance scores. We then compute the
proportion of times that the artificial random FT
combinations performed better than our best com-
binations, in the form of a p-value for our chosen
combinations. Ultimately, this allows us to test the
statistical significance of our results, and evaluate
how likely it is that our best combinations were
found by chance.

5 Experiments

Two models are used as baselines, relative to
which we test if adding FT (either adaptors or lo-
cal FT) improves performance. One of the base-
line models was used as the basis on top of which
the different FT combinations were tested.

We choose the best combination of FT tasks
by analyzing the results of the ranking task and
then test it on the binary classification task using
a modified decision criterion (i.e., ROC analysis).
Because the two tasks are different, this allows us
to use the latter as an ad-hoc evaluation test.

4Under these conditions it was also not feasible to conduct
a systematic regression analysis, which would have lacked
the statistical rigor to reach reliable results.

521



5.1 Baselines

We make use of two rather different baseline mod-
els that are used together with the fine-tuning. Ku-
tuzov and Giulianelli (2020) whose model scored
the highest in the English part of SemEval (hence-
forth BERT), and HistBERT (Qiu and Xu, 2022)
which provides a contextualized model pre-trained
on historical English.5 Together, they provide
complementing baselines to test our research hy-
pothesis. All FT combinations where made on top
of the BERT baseline.

We also compute p-values from the permutation
tests for the two tasks (see Section 4.3), and for
each method (APD and PRT).

5.2 Ranking task

Given a fine-tuning task FTi, we obtain two em-
bedding matrices U t1

w and U t2
w for each target

word. We use these embedding matrices to calcu-
late the semantic change score of a target word by
means of APD and PRT. Once we have the change
scores for all target words, we produce a ranking
of the words. We then measure the performance
as Spearman correlation of the change score ranks
compared to the gold ranking. This is illustrated in
the following formula, where Pind stands for the
performance of the individual task. Score is the
scoring function (AUC or Spearman correlation).

Pind = Score(FTi, gold) (3)

There are in total FT1, . . . ,FT14 fine-tuning
tasks. In addition to their individual performance,
we are interested if they add complementary infor-
mation, and therefore want to measure their com-
bined performance. We thus enumerate all the
possible combinations of the tasks. For each com-
bination, we average the change scores produced
by each participating FTi. For instance, we can
combine change scores derived from Natural Lan-
guage Inference and Named Entity Recognition by
averaging the scores for each target. There are in
total FT1

14 + FT2
14 + . . .+ FT13

14 + FT14
14 combi-

nations. We measured the performance of each
combination by means of its Spearman correla-
tion. This is illustrated in the following formula,
where c is the combination of different tasks.

5There are four versions: HistBERT-prototype,
HistBERT-5, HistBERT-10, and HistBERT-full. They
differ in the size and time period of the training data. In this
study, we report the averaged scores of the four models.

Pc = Score

(
1

|c|
∑

i∈c
(FTi), gold

)
(4)

Method Rank-PRT Rank-APD

ner 0.218 0.285
nli 0.427** 0.634
pos 0.205 0.205
error detect 0.352 0.593
linguistic acceptability 0.364 0.622
phrase chunking 0.076 0.185
pos-fine-tune 0.277 0.087
reading compre 0.416 0.636
semantic tagging 0.265 0.255
sst2 0.422 0.608
sst2-hously 0.435** 0.627
sst2-fine-tune 0.123 0.210
sst2-pfeiffer 0.391 0.459
textual similarity 0.378 0.694

BERT 0.423 0.706
HistBERT-ave 0.264 0.441

Table 2: Spearman correlations for different FTs
on the ranking tasks. Best FTs in bold. Statistical
significance marks *, **, ***: for p-values<.05,
.01, .001, respectively.

5.3 Binary Classification task

For the binary classification task, we calculate the
AUC score of each FTi. One advantage of the
AUC score over accuracy is that we do not need to
define the threshold to determine a word changes
or not, given the change scores derived from PRT
and APD are continuous values

We carry out two experiments here: 1) testing
the best models found in the ranking task on the bi-
nary classification task, and 2) examining the per-
formance of individual FTi as well as combined
models. Our motivation for the first experiment is
that we want to evaluate our best models from a
new perspective given that the ranking and clas-
sification tasks feature different task profiles. In
the second experiment, we focus on the combina-
tion effect, and take the more challenging case, ex-
amining the FTs with the highest as individual FT
tasks.

6 Results

6.1 Ranking task results

We begin by reporting the results of individual
FTi. The results are presented in Table 2. For
PRT, the range of correlation between (the rank-
ing produced by) each FTi and the gold rank is
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Method Combination(s) Correlation

APD best 5

BERT, nli, textual similarity, error detect , pos-fine-tune 0.723***
BERT, sst2, error detect, pos-fine-tune 0.722***
sst2, textual similarity, error detect 0.722***
BERT, sst2, textual similarity, error detect 0.721***
BERT, textual similarity, error detect 0.721***

APD baseline
BERT 0.706
BERT, random scores 0.462
HistBERT (averaged) 0.441

PRT best 5

nli, pos-fine-tune, sst2-fine-tune 0.531**
nli, sst2-pfeiffer, pos-fine-tune, ner, sst2-fine-tune 0.515*
BERT, nli, sst2-pfeiffer, ner, sst2-fine-tune 0.503*
nli, sst2-pfeiffer, pos-fine-tune, sst2-fine-tune 0.503*
nli, reading compre, sst2-pfeiffer, histBERT-10, pos-fine-tune, sst2-fine-tune 0.502*

PRT baseline
BERT 0.423
BERT, random scores 0.336
HistBERT (averaged) 0.264

Table 3: Ranking results for 5 best FT combinations, APD and PRT. p-values as reported in Table 2.

0.427 – 0.076. We find that most fine-tuned mod-
els do not beat the BERT baseline, with only 2 ex-
ceptions (nli and sst2-hously). For APD, individ-
ual FTis range from 0.694 to 0.086, with one FT
having a negative correlation of 0.211. Here, the
maximum baseline (BERT) is marginally higher
than any individual FT with a correlation value of
0.706. Overall, the results from Table 2 show that
most individual FTs do not improve task perfor-
mance further for both PRT and APD.

We now turn to combining different FT for the
ranking task, shown in Table 3. For PRT, the five
best models (0.531 – 0.502) all rank higher than
the baseline models (0.423 – 0.264). For APD, the
five best models (0.723 – 0.721) also rank higher
than the baseline models (0.706 – 0.441).

We note that although the performance gains
are statistically significant for both PRT and APD,
they are much more prominent for PRT. We also
note that not every combination leads to an im-
provement. Some tasks (or task combinations) can
yield lower performance. For instance, combing
part-of-speech and sentiment in APD actually de-
teriorates task performance. More details can be
found in the appendix.

The random permutations, where we average
BERT with scores sampled from the overall score
distribution, over 100,000 runs, corroborate our
findings. For PRT we get a mean correlation of
0.336 (s.d. of 0.107), and less than 1 per 100 ran-
domly sampled scores perform better than the best
PRT (0.531) (p-value<0.01). For APD, the corre-
sponding values are 0.462 (s.d. of 0.147), and less

than 2 per 1000 randomly sampled scores perform
better (p-value<0.01).

6.2 Classification task results

Method AUC-PRT AUC-APD

ner 0.688* 0.604
nli 0.646 0.714
pos 0.634 0.536
error detect 0.634 0.670
linguistic acceptability 0.628 0.676
phrase chunking 0.622 0.622
pos-fine-tune 0.634 0.643
reading compre 0.670 0.696
semantic tagging 0.649 0.631
sst2 0.658 0.664
sst2-hously 0.682* 0.685
sst2-fine-tune 0.673* 0.417
sst2-pfeiffer 0.631 0.613
textual similarity 0.661 0.741**

BERT 0.673 0.717
HistBERT-ave 0.657 0.659

Table 4: AUC scores for different FTs on the clas-
sification task. Best FTs in bold. p-values as re-
ported in Table 2.

We begin by reporting the results of individual
FTi, shown in Table 4. We report the AUC scores
to avoid threshold selection. We observe more
variance in APD than in PRT in terms of model
performance. For PRT, we observe that named en-
tity recognition provides the highest AUC score
(0.688) while phrase chunking generates the low-
est performance (0.622). As for APD, textual sim-
ilarity was the only FT to surpass the baseline and
achieve statistical significance with AUC score of
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Method Combination(s) AUC

APD best 3 nli, textual similarity 0.741*
textual similarity, nli, BERT 0.738*
textual similarity, BERT 0.735*

APD ind best textual similarity 0.741*

PRT best 3
ner sst2-hously, sst2-fine-tune (p-value = 0.054) 0.732
ner, sst2-fine-tune, reading compre (p-value = 0.090) 0.720
ner, sst2-hously, sst2-fine-tune, reading compre (p-value = 0.161) 0.714

PRT ind best ner (p-value = 0.161) 0.688

Table 5: Results of combining different FTs on the classification task. We present the best individual task
performance (APD/PRT individual best) for comparisons. * means statistically significant improvement
over the BERT baseline.

0.741. Similar to what we found for the ranking
task, it seems that most individual FTs do not im-
prove task performance neither for PRT or APD.

To test the performance of combinations, we
take the top 5 best-performing models for PRT and
APD separately. We then enumerate all possible
combinations from them and report the results in
Table 5. We find that combining different FTs im-
proves task performance in PRT but not in APD.
In PRT, we see a five percentage of AUC increase
when we combine Name Entity Recognition, sst2-
hously and sst2-fine-tune (from 0.688 to 0.732). In
APD, we do not observe performance gains over
the individual FTs.

6.3 Transferability scenario

As the ranking and classification tasks are curated
differently (see Section 4.1), we see this as an op-
portunity to use the latter as an ad-hoc evaluation
set by testing the transferability between the two
tasks. We ask: are the best combinations that we
found for ranking also useful (i.e., can be trans-
ferred) for the purpose of classification? We apply
the three best combinations found in Section 6.1
to the classification task, plot their ROC curves
and calculate their AUC scores. The results are
shown in Figure 1. We find that the best mod-
els found in the ranking task outperform BERT
baseline in the classification task. In PRT, the best
model achieves an AUC score of 0.774 compared
with the base model (0.673). In APD, though less
obvious, the best model still performs better than
the baseline (0.744 v.s. 0.717). While the ranking
and classification tasks are designed for different
purposes, this experiment suggests that the anal-
ysis of ranking results can guide the choice, and
thus transfer, of models for the classification task.

7 Discussion and Conclusion

In this paper, we investigate our hypothesis that
adding linguistic information to pre-trained lan-
guage models by means of fine-tuning can lead
to improved performance on unsupervised Lexical
Semantic Change detection. We chose two clas-
sic LSC tasks, ranking and binary classification,
from SemEval-2020 Task 1 (Schlechtweg et al.,
2020). To simplify and speed up the process of
fine-tuning we used adaptors (Pfeiffer et al., 2020),
which are pre-trained fine-tuning modules that can
augment existing contextualized models and are
readily and freely available for English.

First, we tried single FT tasks, which showed
little or no improvement over the BERT baseline.
Then we combined several FT tasks together by
means of simple averaging and found considerable
improvements.

Adding linguistic information, like part-of-
speech, to a standard (masked) language model
can offer additional information that improves the
ability of the models to detect lexical semantic
change. However, some kinds of information are
adjacent to semantic change and therefore make
the models capture change, but not necessarily se-
mantic change. In future work, we will conduct in-
depth analysis of the worst models, to see what in-
formation they capture instead and why this infor-
mation seems to hurt the performance of the LSC
model.

Our work is not the first to introduce linguis-
tically augmented contextualized models for the
task of LSC. Giulianelli et al. (2022) used an en-
semble method to inject linguistic information,
and reported performance gains in LSC tasks.
However, they focus on “low-level” morpho-
syntactic information. Our approach, in addi-
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Figure 1: ROC curves of the best 3 models in the ranking task as they perform on the classification task.
Left: PRT, right: APD. See Table 3 for combinations details.

tion to using a completely different ML method
for linguistic augmentation, spans both ends of
the linguistic-informative spectrum, ranging from
part-of-speech, to sentiment to logical inference.

One deficiency of our results is that they are
based on a small evaluation dataset, which means
that the improvements we report could be at-
tributed to chance (or model over-fitting). To mit-
igate this concern, and add scientific rigour to
our analyses, all results were tested in permu-
tation tests and are reported with their p-values.
Evaluation is also done with comparison to two
strong baseline models, each of which provides
different perspective to test our research hypoth-
esis. Outperforming the Kutuzov and Giulianelli
(2020) model suggests that enriching models with
additional linguistic information is highly bene-
ficial, and outperforming HistBERT supports the
idea that this information cannot be gained even
when a model is exclusively (pre-) trained on his-
torical text. Overall our results clearly suggest that
LSC models can be improved dramatically with
relatively simple steps of fine-tuning on a range of
standard linguistic tasks.

We note that there are differences between the
best performing FTs for the PRT and APD meth-
ods. Although certain FTs are shared (e.g., NLI
and POS), others appear more systematically in
PRT or APD. We interpret these inconsistencies as
stemming from differences between the PRT and
APD methods themselves, and do not view them
as negative. Instead, each method enriches the
baseline with different types of information and
hence allows the model to capture slightly differ-
ent aspects of LSC. Combined with the FTs, the
final results can be quite different. This comple-

menting view of the two LSC methods is sup-
ported by the results of Kutuzov et al. (2022b),
who recently reported that joining PRT and APD
improves LSC detection results. The most proba-
ble explanation for this is that the two LSC meth-
ods are sensitive to different aspects of change.

From a theoretical point of view, our con-
clusions are inline with how linguists describe
the phenomenon of LSC. Linguistic theory dis-
tinguishes between different types of LSC, and
emphasizes that changes are never “general” but
pertinent to certain aspects of meaning. There-
fore, computationally analyzing words’ meaning
change using a “single ruler” as is done by current
state-of-the-art LSC models, may be insufficient to
describe the richness and diversity of change. We
believe our findings provide an inroad for extend-
ing the capacity of LSC models and encouraging
future research in this direction.

This is but the first step in exploring the poten-
tial of using FT to enrich and improve contextual-
ized models of LSC. In our future work we will
corroborate these findings more rigorously: ex-
tending these to other languages, testing the gener-
alizability of the chosen FT tasks across LSC mod-
els, and test our approach in the discovery of new
cases of words that change their meaning to go be-
yond a small set of examples.
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A Appendix

Method Combination(s) Correlation

APD worst 3
pos-fine-tune, sst2-fine-tune -0.214
sst2-fine-tune -0.210
pos-fine-tune 0.087

APD baseline
BERT 0.706
BERT, random scores 0.462
HistBERT (averaged) 0.441

PRT worst 3
sst2-fine-tune, histBERT (full) 0.012
pos-fine-tune, sst2-fine-tune, histBERT (full) 0.014
pos-fine-tune, histBERT (full) 0.038

PRT baseline
BERT 0.423
BERT, random scores 0.336
HistBERT (averaged) 0.264

Table 6: Ranking results for 3 worst FT combinations
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