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Abstract
Recent advances in the field of language
modeling have improved the state-of-the-
art in question answering (QA) and ques-
tion generation (QG). However, the devel-
opment of modern neural models, their
benchmarks, and datasets for training them
has mainly focused on English. Finnish,
like many other languages, faces a shortage
of large QA/QG model training resources,
which has prevented experimenting with
state-of-the-art QA/QG fine-tuning meth-
ods. We present the first neural QA and
QG models that work with Finnish. To
train the models, we automatically translate
the SQuAD dataset and then use normal-
ization methods to reduce the amount of
problematic data created during the trans-
lation. Using the synthetic data, together
with the Finnish partition of the TyDi-QA
dataset, we fine-tune several transformer-
based models to both QA and QG and eval-
uate their performance. To the best of our
knowledge, the resulting dataset is the first
large-scale QA/QG resource for Finnish.
This paper also sets the initial benchmarks
for Finnish-language QA and QG.

1 Introduction

The purpose of question answering (QA) systems
is to help users find information more efficiently.
QA systems come in many forms and offer help in
everything from database querying to complex in-
formation search from the entire World Wide Web.
Recently, much attention has been directed toward
developing extractive QA models that can draw
answers directly from spans of text. Popular ap-
proaches have emerged that integrate components
that first retrieve documents relevant to a question,
with models for reading comprehension that pin-
point the answers in the retrieved documents.

A task closely related to QA, yet less researched,
is question generation (QG), where the object is
to generate natural and grammatical questions that
can be answered by a specific answer using some
given context. QG can be used to, e.g., automat-
ically create reading comprehension tasks, or to
improve the interactivity of virtual assistants. It
can also be used as a data augmentation tool—to
create new training data for QA systems.

Recently, the focus for both tasks has moved to
neural language models utilizing transfer learning—
e.g., BERT (Devlin et al., 2019) or XLNet (Yang
et al., 2019), at least for languages such as English.
Despite the advances in QA and QG, the lack of
training datasets has hindered the use of state-of-
the-art deep learning methods to develop modern
QA and QG models for Finnish. Finnish, like many
languages, lacks the resources to train models for
the two tasks. In fact, no monolingual Finnish QA
or QG models have been reported to exist at all.

In order to fine-tune models for Finnish extrac-
tive QA and answer-aware QG, we first create a
Finnish QA dataset by automatically translating the
SQuAD—Stanford Question Answering Dataset
dataset (Rajpurkar et al., 2016), from English to
Finnish, and then use automatic normalization to
clean up problematic data. We use the synthetic
data to train several transformer-based models for
QA and QG and evaluate their performance. We re-
lease the data to the research community to support
future research.1

The paper is organized as follows: in Section (2)
we review prior work on QA, QG, and generation
of synthetic resources. In Section 3, we review the
dataset creation, and introduce additional datasets
used to train and evaluate the models. Section 4
reviews the fine-tuning methods, and Section 5
discusses the results of the experiments. Section 6
concludes and offers directions for future work.

1https://huggingface.co/datasets/
ilmariky/SQuAD_v2_fi
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2 Related Work

2.1 QA and QG for Other Languages
Approaches to both question answering and ques-
tion generation have significantly evolved through-
out their history. More recently, along with new
datasets and novel deep learning methods, neural
approaches have become the state of the art for
both tasks.

It has become popular for information retrieval-
based QA systems to incorporate a neural machine
reading comprehension (MRC) component that ex-
tracts answers from a set of retrieved documents.
After the introduction of the transformer architec-
ture, models like BERT (Devlin et al., 2019) have
become a popular tool for the answer extraction
task. Many models have already surpassed human
performance on the SQuAD1.1 dataset (Yamada
et al., 2020; Yang et al., 2019) and some models
can also predict whether the passage contains the
answer to the question at all (Zhang et al., 2020).
Lee et al. (2019) presented a unified end-to-end
architecture capable of both retrieving and reading.

Since the mid-2010s, many RNN-based ap-
proaches have been proposed to QG (Zhou et al.,
2017; Du et al., 2017; Zhao et al., 2018). How-
ever, the Transformer architecture (Vaswani et al.,
2017) solved many problems that RNNs have, and
has also become a popular architecture for QG
models. The QG system by Wang et al. (2020)
employs the encoder and the decoder from the
Transformer. They combine the question gener-
ation and answer selection process in a joint model
and treat the answers as a hidden pivot for ques-
tion generation. Durmus et al. (2020) fine-tune a
pre-trained BART model (Lewis et al., 2020) to
generate questions from sentences. Chan and Fan
(2019b) fine-tune a BERT model to work in a se-
quential manner to generate questions from para-
graphs of text. Their model achieved state-of-the-
art results in paragraph-level QG.

2.2 QA and QG for Finnish
Very little research on Finnish QA exists to date.
Aunimo et al. (2004) presented two cross-lingual
QA systems, Tikka and Varis, that took Finnish
questions as input and found answers to them
from a collection of English-language documents.
Tikka is a simple baseline model, while Varis
is more sophisticated. The pipelines of both sys-
tems start with defining the question type with the
use of syntactic information and then translating

the question into English. Varis also tries to ex-
tract the answer type of the question using a named
entity recognizer. Tikka and Varis could cor-
rectly answer 22.5% and 29.0% of the questions
presented to them, respectively.

No previous work is found on monolingual or
cross-lingual QG systems that work with Finnish.
Therefore, to the best of our knowledge, the results
reported in this paper are the first ones for Finnish-
language question generation.

2.3 Generation of Synthetic QA Corpora

Large annotated corpora are essential for fine-
tuning pre-trained deep architecture but, unfortu-
nately, they are also scarce for Finnish. In the
context of QA, generation of synthetic corpora
often means creation of a dataset via, e.g., auto-
matic or semiautomatic translation of an existing
QA dataset, or automatic data extraction from raw
unlabeled data.

Recently, there have been several attempts to cre-
ate synthetic datasets for QA. Carrino et al. (2020)
translated an English QA dataset automatically to
Spanish using a method called Translate-Align-
Retrieve. The method is based on MT and an
unsupervised alignment algorithm. Alberti et al.
(2019) combined QG and answer extraction mod-
els with a technique they refer to as roundtrip
consistency-ensuring filtering to automatically cre-
ate a synthetic English QA dataset from unlabeled
text passages. Abadani et al. (2021) translated the
SQuAD2.0 QA dataset (Rajpurkar et al., 2018) au-
tomatically into Persian, and then finalized the data
into two datasets, of which one is corrected manu-
ally and the other automatically. The automatically
corrected one is many times bigger and also yielded
better results. The SQuAD dataset has also been au-
tomatically translated to Swedish (Okazawa, 2021)
and French (Kabbadj, 2018).

3 Data

3.1 SQuAD

SQuAD is a large English QA dataset created for
training machine learning models for the extractive
QA task. It is one of the most popular QA datasets,
and many other QA datasets have followed its
methodology (Clark et al., 2020; d’Hoffschmidt
et al., 2020; Lim et al., 2019). SQuAD has also
been a popular resource for answer-aware neural
question generation (NQG) (Chan and Fan, 2019a;
Du et al., 2017; Klein and Nabi, 2019).
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English Finnish translation
Passage The capital, Brazzaville, is located on the Congo

River, in the south of the country, immediately
across from Kinshasa, the capital of the Demo-
cratic Republic of the Congo.

Pääkaupunki Brazzaville sijaitsee Kongo-joen
varrella maan eteläosassa, vastapäätä
Kongon demokraattisen tasavallan

pääkaupunkia Kinshasaa.

Question What country does Kinshasa serve as capital of? Minkä maan pääkaupunki Kinshasa on?

Answer Democratic Republic of the Congo Kongon demokraattinen tasavalta

Table 1: An example of problematic data resulting from translating passages and answers separately. The
translated answer (in the nominative case) is not found within the translated passage (where it appears in
the genitive case) which is required for extractive QA.

The first version of SQuAD (SQuAD1.1) con-
tains over 100K passage-question-answer triplets
that crowdworkers extracted from 536 Wikipedia
articles. Each article is divided into several pas-
sages, and each passage has several questions re-
lated to its contents. Each question is linked with
an answer (a substring of the passage) and the posi-
tion of the answer’s first character in the passage.
The second version of the dataset, SQuAD2.0, con-
tains additional 50K questions, similar to the first
version’s questions but impossible to answer with
the given passage. The extension’s idea was to en-
able the development of models that can identify
unanswerable questions.

3.2 Dataset Translation and Normalization

We translated all the text data in the SQuAD2.0 into
Finnish using Google NMT (Wu et al., 2016) with
the Google Translate API. The passage, questions,
and answers were translated separately, which led
to many of the translated answers not being sub-
strings of the translated passage. That was some-
times caused by translation errors, but one ma-
jor factor was that the data was translated from
a weakly inflected, analytic language to a highly
inflected, agglutinative language. In other words,
the MT system has no way of knowing how to
inflect the words in the translation without any con-
text. The SQuAD format requires the answer to
be a substring of the passage as it is an extrac-
tive QA dataset. The problem is illustrated in Ta-
ble 1. Okazawa (2021) used a simple highlighting
technique to tackle this problem when translating
SQuAD2.0 into Swedish. Rather than translating
the passage and the answer separately, they put spe-
cial markers ([0]) around the answer substring be-
fore the translation and afterward simply extracted
the translated answer span between the markers
and then removed the markers. However, using it

would have required translating the same passages
multiple times with different answers marked since
passages are linked with several questions. This
was not feasible solely because using Google NMT
via API is not free.

After translation, we used simple normaliza-
tion methods to identify the answer substring in
the translated passage whenever it did not contain
the separately translated answer. In total, there
were four normalization steps: regular expressions,
lemmatization, stemming, and using the English
answer.. The script started with the first one and
moved to the next one if necessary.

In the first step, a set of regular expressions was
used to fix some inconsistencies (in, e.g., white
spaces and punctuation) that were found to occa-
sionally occur in the translations. In the next step,
both the passage and the answer were lemmatized,
and the script checked whether the now lemmatized
answer was included in the lemmatized passage. If
lemmatization did not lead to a match, the script
moved to the next step: stemming. Stemming was
done because the lemmatizer was observed to not
recognize many of the passage words as they were
often proper nouns. If no match was found after
stemming, the last step was to check whether the
English answer was included in the translated pas-
sage; if it was, it was used as the answer with the
assumption that the English answer was mistak-
enly translated. This was often the case with, e.g.,
English song and movie names when they were
translated with no context. If no match was found
after all normalization, the question-answer pair
was discarded from the final dataset.

If there was a match at any normalization step,
the script proceeded to search its location in the
passage. The answer search started from the En-
glish answer’s relative position in the translated
passage and continued to neighboring positions un-
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til the answer was found. This was done to reduce
the chance of choosing the starting position of a
wrong occurrence, as some passages contain the
answer string multiple times in different positions.
After finding the answer start position, the question-
answer pair was added to the final dataset.

With the normalization procedure, roughly 32K
answers were modified to match the passage strings.
The data consists of 101,120 passage-question-
answer triplets that are valid in the sense that the an-
swers are included in the passages. 66K of them are
answerable (from SQuAD1.1), and 34K are unan-
swerable with the given passage (from SQuAD2.0).
This means that roughly 28% of the data included
in the publicly available partition of SQuAD1.1
(92K questions) had to be discarded. The amount
is approximately the same when taking into account
also the “unanswerable” questions of SQuAD2.0.

3.3 Finnish TyDi-QA Corpus
TyDi-QA—Typologically Diverse Question
Answering (Clark et al., 2020), consists of two
QA datasets, covering 11 typologically diverse
languages with 204K question-answer pairs.
The data was collected from Wikipedia articles
by human annotators. Unlike with SQuAD,
the question writers formed questions without
knowing the answers to them. The authors chose
this strategy to reduce lexical overlapping between
questions and passages, which could be exploited
by machine learning systems.

One of the two datasets TyDi-QA consists of is
in the SQuAD data format, which makes it ideal to
combine with the SQuAD data. In total, it contains
7,635 Finnish questions. It is not much compared
to SQuAD, but to the best of our knowledge, it is
the only dataset that contains any Finnish data for
extractive QA purposes. Consequently, we decided
to include the Finnish partition of the TyDi-QA
dataset in our experimental dataset.

3.4 The QA100-fi Corpus
Because most of the data used to train, validate, and
test the models are synthetically generated, we de-
cided to also create an additional small Finnish
dataset for evaluation purposes only, QA100-fi.
One option would have been to simply use the
Finnish TyDi-QA data for evaluation. However, it
would not have been feasible due to the possible
differences with SQuAD questions caused by the
TyDi-QA annotators not knowing the answers to
their formed questions.

The QA100-fi dataset contains 100 questions
related to Finnish Wikipedia articles. It is in the
SQuAD format, and there are 10 questions for each
category identified by Rajpurkar et al. (2016). We
did not use any popularity-based ranking method to
select the articles, like the authors of SQuAD did.
Instead, we simply selected articles that appeared
to be of good quality and had a length of at least
three paragraphs. The dataset is tiny compared to
actual QA test sets, but it still gives an impression
of the models’ performance on purely native text
data collected by a native speaker.

3.5 Data Split

To train and evaluate models, we use data consist-
ing of the answerable questions of the translated
SQuAD1.1 data and the Finnish TyDi-QA data.
Mimicking the methodology of Du et al. (2017),
who used SQuAD data for English QG, we shuffled
and split the data on article level into training, vali-
dation, and testing partitions. We call the resulting
dataset SQuADTyDi-fi. The same SQuADTyDi-fi
splits were used to train, validate, and evaluate both
QA and QG models. We also use QA100-fi as an
additional evaluation dataset. The split sizes are
illustrated in Table 2.

Dataset Split Q-A Pairs Articles

Train 64,604 6,977

SQuADTyDi-fi Dev 4,903 567

Test 4,822 567

QA100-fi Test 100 67

Table 2: Dataset splits. Q-A Pairs refers to
the number of question-answer pairs in the cor-
responding split, and Articles tells how many
Wikipedia articles the split has data from.

4 Model Fine-tuning

We train three models for QA and four models for
QG. As the base models for fine-tuning, we use the
Finnish GPT-22 (Radford et al., 2019), FinBERT3

(Virtanen et al., 2019), and multilingual M-BERT,
(Devlin et al., 2019).

2https://huggingface.co/Finnish-NLP/
gpt2-medium-finnish

3We use bert-base-finnish-cased-v1, the cased
variant.
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4.1 BERT Question Answering
To use BERT for extractive QA, we employ the
method described in Devlin et al., 2019. BERT is
fine-tuned to “highlight” the answer when given
a question and a passage that contains the answer
as input. In practice, the model’s task is to output
two types of probabilities for each input token: 1)
being the answer span start 2) being the last token
of the answer span.

The input consists of a passage and a question,
separated with the [SEP] token:

X = ([CLS], ⟨P⟩, [SEP], ⟨Q⟩) (1)

where ⟨P⟩ is the input passage sequence and ⟨Q⟩ is
the question sequence.

4.2 BERT Question Generation
The BERT models are fine-tuned for QG using
the BERT-HLSQG (Highlight Sequential Question
Generation) method originally presented by Chan
and Fan, 2019b. In BERT-HLSQG, the previous
decoding results are considered when decoding
the next token. Tokens are generated one by one
using a strategy to modify BERT into generating
text in an autoregressive manner. Another key idea
in HLSQG is to highlight the answer in the input
passage with special tokens to tackle any ambiguity
caused by the answer appearing multiple times in
the passage.

At inference, the input X for an HLSQG model
is in the following format:

X = ([CLS], PHL,[SEP], Q̂,[MASK]) (2)

where PHL is the highlighted passage sequence
and Q̂ is the predicted question sequence.

At the first inference step, the highlighted pas-
sage is followed only by a [MASK] token, as the
predicted question sequence Q̂ = [q̂1, q̂2, ..., q̂|Q̂|]
is empty at the start. The passage highlighting is
done by placing special [HL] tokens around the
answer in the passage:

PHL = (p1, ...,[HL], ps, ..., pe,[HL], ..., p|P |)
(3)

where pn is the nth passage token, ps and pe
are the answer start and end tokens, and |P | is the
passage length.

During each step, the whole input is fed to the
model, and it outputs a prediction for the [MASK]
token. That prediction is considered the next token
in the question sequence, and a new [MASK] token

is placed after it. The same procedure goes on with
inputs updated with the newly predicted question
tokens until a [SEP] token is predicted. At that
point, the question is considered ready.

4.3 GPT-2 Question Answering
To fine-tune a GPT-2 model for QA (GPT-2-QA),
we use a prompt to encourage the model to generate
answers relevant to the given passage and question.
The model should learn the pattern of the prompt
and also the relation between the two input sections
(passage and question) in the prompt.

During fine-tuning, the prompt consists of three
lines. Each line starts with a word that describes the
content of the line and is followed by a matching
sequence. For example, the first two lines start
with Context: and Question: and continue with the
passage and question sequences. During training,
language modeling loss is computed only on the
section where the model should output the answer.
The fine-tuning prompt is:

X =

Context:⟨P⟩ Question:⟨Q⟩ Answer:⟨A⟩
where ⟨P⟩ is the passage sequence, ⟨Q⟩ is the ques-
tion sequence, and ⟨A⟩ is the answer sequence. Dur-
ing inference, the answer sequence is omitted from
the prompt, as the model’s task is to fill it in.

4.4 GPT-2 Question Generation
We train two GPT-2-based QG models,
GPT-2-QG and GPT-2-HLQG. The train-
ing and inference prompts of the GPT-2-QG
model are the same as the GPT-2-QA, but the
order of the last two rows is reversed. The
QG models should learn to use the passage to
generate a question that the second line’s sequence
answers. The training procedure is the same as
with GPT-2-QA, but instead of answers, the
training loss is computed on the generated ques-
tions. The two QG models differ in the prompts.
GPT-2-HLQG also highlights the answer in the
passage with [HL] tokens. The motivation for that
is the same as with BERT-HLSQG: to reduce the
possible ambiguity caused by the answer appearing
multiple times in the passage.

4.5 Implementation
All the pre-trained models were accessed via the
transformers4 Python package by Hugging

4https://github.com/huggingface/
transformers. Version 3.0.2 for BERT-HLSQG
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Face (Wolf et al., 2020). The fine-tuning scripts
were implemented using the same package along
with PyTorch.5. For fine-tuning BERT-HLSQG
models, we modified and used open-source code
by Lin (2020).6

We fine-tune the models using two Nvidia Volta
v100 GPUs and AdamW optimization with initial
learning rate 5× 10−5. The batch size varied from
2 to 24, depending on the task and the model ar-
chitecture. All the models were trained for six
epochs, and a validation set was used to keep track
of the training performance and thus select the best
model for evaluation on the test sets. QA BERT
models (FinBERT-QA and M-BERT-QA) had the
best validation results after two epochs, whereas
all the other models had the best validation perfor-
mance after six epochs. More details regarding the
fine-tuning are included in Appendix A.

5 Results

5.1 QA Results
The evaluation results for the QA models are in
Table 3. The scores are multiplied by 100 to mimic
the style of the official SQuAD leaderboard.7 With
both testing datasets, FinBERT-QA obtains the
best results. However, the fine-tuned M-BERT
model comes close, with EM scores 2-3% worse
and F1 scores 2.8-4.5 points behind FinBERT-QA.
The GPT-2 -based QA model achieves moderately
good results also, but both EM and F1 scores are at
least 20 points worse with both test sets.

Dataset Model Exact Match F1 score

FinBERT-QA 58.0 69.9

SQuADTyDi-fi M-BERT-QA 56.0 67.1

GPT-2-QA 37.2 46.9

FinBERT-QA 67.0 83.7

QA100-fi M-BERT-QA 64.0 79.2

GPT-2-QA 43.0 56.0

Table 3: Evaluation of QA models on two test sets.

GPT-2-QA model obtained the worst results on
both datasets. With an EM score of 37.2 and an F1
models and 4.8.1 for other models.

5Version 1.5.0+cu101 for BERT-HLSQG models and
1.9.0+cu111 for other models.

6https://github.com/chris4540/
StudyMaskedLMForQG

7https://rajpurkar.github.io/
SQuAD-explorer/

score of 46.9 on SQuADTyDi-fi data, it is appar-
ent that fine-tuning has contributed to the model’s
ability to answer questions. The model outputs rel-
atively short answers as expected, and it also seems
to have quite well learned the expected answer type
for each interrogative in the question. For exam-
ple, the model mostly seems to answer questions
starting with kuka (“who”) with names/people and
questions starting with montako (“how many”) with
numeral phrases. However, the results are still far
behind the best-performing models.

When the question contains very different vocab-
ulary than the passage (e.g., synonyms or idiomatic
expressions), GPT-2-QA seems to perform partic-
ularly poorly. A closer look at the results shows
that the GPT-2-QA model’s outputs occasionally
contain words that are slightly modified versions
of the ones in the passage. This problem is unique
to GPT-2 in the experiments as it is the only au-
toregressive model. Some other examples of such
errors are shown in Table 4. However, most of
the answers seem to be substrings of the input pas-
sages, as expected. GPT-2-QA seems to often fail
to “understand” what specifically is being asked.
Even when it seems to understand that the question
should be answered with a date and the answer
should be a substring of the passage, it often seems
to pick just any date. And sometimes, it even mod-
ifies the date, as seen in Table 4.

Predicted answer Target answer

Kenji Vatanabe Kenji Watanabe

20. lokakuuta 2000 21. lokakuuta 2000

Kypylän Midnan kypärän

3 vuotta kolme vuotta

Table 4: Examples of GPT-2-QA outputs that are
not substrings of the input passage.

The other QA models, FinBERT-QA and
M-BERT-QA, perform much better. They come in
quite close to each other as FinBERT-QA outper-
forms M-BERT-QA by 2-3 points on SQuADTyDi-
fi data with its EM and F1 scores of 58.0 and 69.9,
respectively. The difference between the scores
of FinBERT-QA and M-BERT-QA is slightly
bigger with the QA100-fi test data, with which
FinBERT-QA obtains an EM score of 67.0 and
an F1 score of 83.7. Using only Finnish data
and a lot larger amount of it in pre-training seems
to have been beneficial for FinBERT-QA. Like
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GPT-2-QA, also M-BERT-QA seems to occasion-
ally struggle when the question is phrased very
differently compared to the input passage.

As with GPT-2-QA, the longer the ground truth
answer, the more likely the BERT-based models
seem to predict it incorrectly. However, rather than
choosing a completely wrong span, FinBERT-QA
and M-BERT-QA often seemed only to pick too
few words. This is also reflected in the bigger
differences between EM and F1 scores of the other
two models, compared to GPT-2-QA. Other than
questions with longer answers, it is challenging to
identify any specific question/answer types with
which FinBERT-QA and M-BERT-QA have the
most difficulties. Additional examples of outputs
of the QA models are included in Appendix A.

The results of all QA models are better with the
QA100-fi test dataset. It is possible that because the
passages, questions, and answers in QA100-fi are
not machine-translated, they could be closer to the
Finnish language with which the models were pre-
trained. Another factor might be the lengths of the
passages, questions, and answers. Their average
lengths are shown in Table 5. The passages and
questions in the test partition of SQuADTyDi-fi are
longer on average, but the answers are longer in
QA100-fi. Longer passages are more challenging
for the models as there are more tokens from which
to choose the answer span start and end tokens.
However, the test sets are so different in size that it
is hard to say how much that affects the results.

Passage Question Answer
SQuADTyDi-fi (test) 74.5 6.6 2.5
QA100-fi 62.2 5.9 3.2

Table 5: Average word counts in the test partition
of SQuADTyDi-fi and QA100-fi.

As there are no other Finnish QA models to
compare with, we can gain some perspective by
comparing the results with English models trained
on a similar dataset. The top EM and F1 scores
for single BERT models in the English SQuAD1.1
leaderboard8 are around 85 and 90, respectively.
The overall best single model results are from
other transformer-based models, like LUKE (Ya-
mada et al., 2020) and XLNet (Yang et al., 2019),
which both obtain EM and F1 scores over 90

8Webpage mirroring SQuAD1.1 leaderboard:
https://paperswithcode.com/sota/
question-answering-on-squad11

and 95, respectively. The best Finnish results
(by FinBERT-QA) are quite far from the best-
performing English models. However, it is worth
noting that the Finnish models were fine-tuned us-
ing a smaller dataset which is probably of poorer
quality, as it has been automatically translated.
Finnish being a highly inflective language might
also make the QA task generally more challenging.

5.2 QG Results
The evaluation results for the QG models are in Ta-
ble 6. The FinBERT-based models obtain the best
results. As in the QA task, the results of the Fin-
BERT and M-BERT-based models are quite close
to each other, whereas the GPT-2 models are much
worse.

Dataset Model BLEU-4 METEOR

SQuADTyDi-fi FinBERT-HLSQG 0.11 0.17

M-BERT-HLSQG 0.10 0.16

GPT-2-QG 0.04 0.10

GPT-2-HLQG 0.04 0.10

QA100-fi FinBERT-HLSQG 0.18 0.22

M-BERT-HLSQG 0.13 0.20

GPT-2-QG 0.04 0.13

GPT-2-HLQG 0.04 0.11

Table 6: BLEU-4 and METEOR scores of QG mod-
els. Results on additional metrics in Appendix A.

Both GPT-2-QG and GPT-2-HLQG achieve a
BLEU-4 score of 0.04 on both datasets. Unlike in
Chan and Fan (2019b), using an answer highlight
technique in the passage did not lead to an increase
in the performance as the results of the two models
are nearly identical. This indicates that ambiguity
was not the root cause of the inferior performance
of the models.

Looking at the outputs of the GPT-2-based QG
models, it is clear that the models learn the gen-
eral structure of a question. The outputs mostly
start with the correct interrogative word and end
with a question mark. The questions also seem
mostly grammatical. The biggest problems seem
to be related to semantic validity and generating
questions that can be answered using the input an-
swer. However, the models occasionally seem to
generate questions that can be answered with the
input answer, but they are very different from the
ground-truth questions. They are good examples
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of why using automatic, n-gram-based evaluation
metrics to assess QG systems can be problematic.

Compared to the GPT-2-based QG models, the
BERT-based QG models perform roughly twice
as well on every metric. FinBERT-HLSQG and
M-BERT-HLSQG seem to output questions that
make more sense and have more common words
with the target question. For example, with tar-
get question Kuinka korkeaksi puu yleensä kasvaa
avoimilla alueilla? (“How tall does the tree usu-
ally grow in open areas?”), FinBERT-HLSQG out-
puts Minkä korkuinen on jousisoihtupuu avoimilla
alueilla? (“How tall is the pink trumpet tree
in open areas?”) and GPT-2-HLQG outputs
Minkä kokoisia puutalot ovat metsäalueiden ko-
rkeilta tasoilta? (“What size are the wooden
houses from the high levels of the forest areas?”).
GPT-2-HLQG’s output is nonsensical yet gram-
matical, whereas FinBERT-HLSQG’s output can
be considered correct, though the phrasing is quite
different from the target question. All models per-
form better with shorter passages and struggle at
inflecting rare words. Additional examples of the
outputs of all QG models are shown in Appendix A.

As on the QA task, the FinBERT-based model
achieves slightly better scores on the SQuADTyDi-
fi test set than the multilingual variant. How-
ever, in QG, the difference between the perfor-
mance of BERT-based models is bigger when
evaluating on the QA100-fi dataset. For ex-
ample, FinBERT-HLSQG obtains a BLEU-4
score of 0.18, while M-BERT-HLSQG yields 0.13.
Checking the outputs on QA100-fi, it seems that
M-BERT-HLSQG has more problems inflecting
words, and it occasionally uses word order and
phrasings that sound a bit unnatural in Finnish. It
is possible that these problems were exacerbated
when the model was tested on QA100-fi, which
consists of data collected by a native speaker.

Chan and Fan (2019b), who initially presented
the BERT-HLSQG method, report a BLEU-4 score
of 0.20 for their English QG model that was
fine-tuned on roughly 73K question-answer pairs.
FinBERT-HLSQG’s BLEU-4 score (0.11) on the
SQuADTyDi-fi test set is quite far from that,
whereas the BLEU-4 score on the smaller QA100-fi
test set (0.18) is a lot closer. It is likely that the pas-
sages and questions in QA100-fi being shorter on
average has a positive effect on the model’s perfor-
mance on the dataset. Chan and Fan (2019a) also
conclude that their BERT-HLSQG model works

better with shorter passages. As with the QA task,
it is possible that the smaller amount of training
data and its poorer quality, together with the more
complex Finnish morphology, partly explain the
differences that occur when compared to the En-
glish models.

6 Conclusion and Future Work

We have proposed an MT-based method for creat-
ing a Finnish QA dataset, and used it to train and
evaluate several transformer-based QA and QG
models. On both tasks, fine-tuned monolingual
BERT models obtain the best results. The multi-
lingual variants came close, while the fine-tuned
GPT-2 models were found to underperform. Pre-
training with only Finnish data seems to give the
models an edge in both QA and QG.

To the best of our knowledge, these are the first
monolingual Finnish QA and QG models. They
set a fair baseline for further research in Finnish
QA and QG. All data used in the experiments is re-
leased to the research community, to support future
research, and the models are released as bench-
marks. We believe that this is a valuable contri-
bution, since suitable datasets created by native
Finnish speakers are not yet available.

Given the promising initial results, we plan to
pursue several directions. (1) As the SQuAD2.0
data with the unanswerable questions was also
translated, it could be used to train the first Finnish
QA models that can also identify unanswerable
questions. (2) Lower-level natural language pro-
cessing (NLP) components can be employed to
study and improve performance. For example,
we can use syntactic parsing to check for ungram-
matical questions, to analyze the created synthetic
dataset; we can use name recognition to improve
QA results (Yadav and Bethard, 2019; Piskorski
et al., 2019), etc. (3) Real-world applications, such
as language learning systems, e.g., (Katinskaia
et al., 2018, 2017), can benefit from QA and QG—
by automatically generating reading comprehen-
sion questions from arbitrary authentic text. To in-
tegrate QG into such applications, a separate model
should be developed for choosing the appropriate
input answers. (4) To support (3), it is important
to study in detail on what types questions and an-
swers the QA and QG models do especially well or
especially poorly.
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Model Epochs
(best model)

Batch size

FinBERT-QA 2 16
M-BERT-QA 2 16
GPT-2-QA 6 2
FinBERT-HLSQG 6 24
M-BERT-HLSQG 6 16
GPT-2-QG 6 2
GPT-2-HLQG 6 2

Table 7: Training hyperparameters. With all models, we use the AdamW optimization algorithm with an
initial learning rate of 5× 10−5.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
FinBERT-HLSQG 0.29 0.21 0.15 0.11 0.17 0.33
M-BERT-HLSQG 0.29 0.20 0.14 0.10 0.16 0.31SQuADTyDi-fi
GPT-2-QG 0.18 0.11 0.06 0.04 0.10 0.20
GPT-2-HLQG 0.18 0.10 0.06 0.04 0.10 0.20
FinBERT-HLSQG 0.39 0.30 0.22 0.18 0.22 0.41
M-BERT-HLSQG 0.36 0.25 0.18 0.13 0.20 0.36QA100-fi
GPT-2-QG 0.22 0.12 0.07 0.04 0.13 0.22
GPT-2-HLQG 0.19 0.11 0.07 0.04 0.11 0.20

Table 8: All evaluation results of the QG models.

Input passage Ulkomuodoltaan hylkeet ovat sileitä ja pulleita. Ruumiinrakenne soveltuu
sulavaan vedessä liikkumiseen. Ranteesta ja kämmenestä ovat muodostuneet
etuevät ja nilkasta ja jalkaterästä takaevät. Evät ovat heikot eikä niitä voi käyttää
apuna maalla liikkumiseen . Hylkeet liikkuvatkin maalla siten, että ne siirtävät
painoa rinnan ja vatsan varaan. Erotuksena lähisukulaisistaan korvahylkeistä,
joihin kuuluvat muun muassa merileijonat, varsinaisilla hylkeillä ei ole ulkoisia
korvalehtiä. Varsinaisten hylkeiden uiminen tapahtuu evien ja ruumiin takaosan
sivuttaissuuntaista liikettä apuna käyttäen.

Input question Mihin hylkeiden evät eivät sovellu? (What are seal fins not suitable for?)

Target answer maalla liikkumiseen (to move on land)

Model Predicted Answer

FinBERT-QA maalla liikkumiseen. (to move on land.)

M-BERT-QA vedessä (in the water)

GPT-2-QA ui maalla (swim/swims on land)

Table 9: Output examples of the QA models. The ground truth answer is highlighted in the input passage.
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Input passage Jättiläismetsäkarju eli jättiläismetsäsika eli jättisika (Hylochoerus meinertzha-
geni) on keskisen ja läntisen Afrikan metsissä elävä elinvoimainen sorkkaeläin-
laji. Se on sukunsa Hylochoerus ainoa laji. Jättiläismetsäkarjut ovat suurimpia
luonnonvaraisia sikoja. Ne voivat kasvaa jopa 210 senttimetriä pitkiksi ja
painaa 275 kilogrammaa. Niiden ruumis on tanakka ja pää leveä, mutta jalat
ovat lyhyet. Nahkaa peittävät pitkät ja karkeat karvat, jotka nousevat pystyyn
eläimen kiihtyessä.

Input answer 210 senttimetriä

(210 centimeters)

Target question Kuinka pitkiksi jättiläismetsäkarjut voivat kasvaa?

(How long can giant forest hogs grow?)

Model Generated question

FinBERT-HLSQG Kuinka pitkäksi jättiläismetsäkarju voi kasvaa?

(How long can a giant forest hog grow?)

M-BERT-HLSQG Kuinka pitkiä jättiläismetsäkarjat voivat kasvaa? *

(How long can giant forest cattles grow?)

GPT-2-QG Miten pitkäksi afrikkalainen jättiläismetsäkarju voi kasvaa?

(How long can an African giant forest hog grow?)

GPT-2-HLQG Kuinka pitkä on jättiläismetsäkarjun pituus?

(How long is the length of a giant forest hog?)

Table 10: Output examples from the QG models. The input answer is highlighted in the input passage.
Outputs marked with * contain inflection errors, but they are ignored in the translation.
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