@inproceedings{laursen-etal-2023-danish,
title = "{D}anish Clinical Named Entity Recognition and Relation Extraction",
author = "Laursen, Martin and
Pedersen, Jannik and
Hansen, Rasmus and
Savarimuthu, Thiusius Rajeeth and
Vinholt, Pernille",
editor = {Alum{\"a}e, Tanel and
Fishel, Mark},
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may,
year = "2023",
address = "T{\'o}rshavn, Faroe Islands",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2023.nodalida-1.65/",
pages = "655--666",
abstract = "Electronic health records contain important information regarding the patients' medical history but much of this information is stored in unstructured narrative text. This paper presents the first Danish clinical named entity recognition and relation extraction dataset for extraction of six types of clinical events, six types of attributes, and three types of relations. The dataset contains 11,607 paragraphs from Danish electronic health records containing 54,631 clinical events, 41,954 attributes, and 14,604 relations. We detail the methodology of developing the annotation scheme, and train a transformer-based architecture on the developed dataset with macro F1 performance of 60.05{\%}, 44.85{\%}, and 70.64{\%} for clinical events, attributes, and relations, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="laursen-etal-2023-danish">
<titleInfo>
<title>Danish Clinical Named Entity Recognition and Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Laursen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jannik</namePart>
<namePart type="family">Pedersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rasmus</namePart>
<namePart type="family">Hansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiusius</namePart>
<namePart type="given">Rajeeth</namePart>
<namePart type="family">Savarimuthu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pernille</namePart>
<namePart type="family">Vinholt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanel</namePart>
<namePart type="family">Alumäe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>University of Tartu Library</publisher>
<place>
<placeTerm type="text">Tórshavn, Faroe Islands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Electronic health records contain important information regarding the patients’ medical history but much of this information is stored in unstructured narrative text. This paper presents the first Danish clinical named entity recognition and relation extraction dataset for extraction of six types of clinical events, six types of attributes, and three types of relations. The dataset contains 11,607 paragraphs from Danish electronic health records containing 54,631 clinical events, 41,954 attributes, and 14,604 relations. We detail the methodology of developing the annotation scheme, and train a transformer-based architecture on the developed dataset with macro F1 performance of 60.05%, 44.85%, and 70.64% for clinical events, attributes, and relations, respectively.</abstract>
<identifier type="citekey">laursen-etal-2023-danish</identifier>
<location>
<url>https://aclanthology.org/2023.nodalida-1.65/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>655</start>
<end>666</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Danish Clinical Named Entity Recognition and Relation Extraction
%A Laursen, Martin
%A Pedersen, Jannik
%A Hansen, Rasmus
%A Savarimuthu, Thiusius Rajeeth
%A Vinholt, Pernille
%Y Alumäe, Tanel
%Y Fishel, Mark
%S Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)
%D 2023
%8 May
%I University of Tartu Library
%C Tórshavn, Faroe Islands
%F laursen-etal-2023-danish
%X Electronic health records contain important information regarding the patients’ medical history but much of this information is stored in unstructured narrative text. This paper presents the first Danish clinical named entity recognition and relation extraction dataset for extraction of six types of clinical events, six types of attributes, and three types of relations. The dataset contains 11,607 paragraphs from Danish electronic health records containing 54,631 clinical events, 41,954 attributes, and 14,604 relations. We detail the methodology of developing the annotation scheme, and train a transformer-based architecture on the developed dataset with macro F1 performance of 60.05%, 44.85%, and 70.64% for clinical events, attributes, and relations, respectively.
%U https://aclanthology.org/2023.nodalida-1.65/
%P 655-666
Markdown (Informal)
[Danish Clinical Named Entity Recognition and Relation Extraction](https://aclanthology.org/2023.nodalida-1.65/) (Laursen et al., NoDaLiDa 2023)
ACL
- Martin Laursen, Jannik Pedersen, Rasmus Hansen, Thiusius Rajeeth Savarimuthu, and Pernille Vinholt. 2023. Danish Clinical Named Entity Recognition and Relation Extraction. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 655–666, Tórshavn, Faroe Islands. University of Tartu Library.