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Abstract

Compositional generalisation refers to the
ability to understand and generate a po-
tentially infinite number of novel mean-
ings using a finite group of known prim-
itives and a set of rules to combine them.
The degree to which artificial neural net-
works can learn this ability is an open
question. Recently, some evaluation meth-
ods and benchmarks have been proposed
to test compositional generalisation, but
not many have focused on the morpho-
logical level of language. We propose
an application of the previously devel-
oped distribution-based compositionality
assessment method to assess morpholog-
ical generalisation in NLP tasks, such as
machine translation or paraphrase detec-
tion. We demonstrate the use of our
method by comparing translation systems
with different BPE vocabulary sizes. The
evaluation method we propose suggests
that small vocabularies help with morpho-
logical generalisation in NMT.1

1 Introduction

Natural languages usually adhere to the princi-
ple of compositionality, with the exception of id-
iomatic expressions. Partee et al. (1995) phrased
this principle as ”The meaning of a whole is a
function of the meanings of the parts and of the
way they are syntactically combined”. Deriving
from this principle, compositional generalisation

1Code and datasets available at https://github.
com/anmoisio/morphogen-dbca

(CG) refers to the capacity to understand and gen-
erate a potentially infinite number of novel mean-
ings using a finite group of known primitives and
a set of rules of how to combine them. In the case
of language, morphemes are combined into words
and words in turn into phrases and sentences, us-
ing the syntactical rules of the language.

Neural networks have long been argued to lack
the ability to generalise compositionally the way
humans do (Fodor and Pylyshyn, 1988; Marcus,
1998). After the rapid improvement of neural NLP
systems during the previous decade, this question
has gained renewed interest. Many new evaluation
methods have been developed to assess whether
the modern sequence-to-sequence (seq2seq) archi-
tectures such as Transformers exhibit CG, since
they certainly exhibit increasingly competent lin-
guistic behaviour. For instance, in one of the sem-
inal CG evaluation methods, called SCAN (Lake
and Baroni, 2018), a seq2seq system has seen cer-
tain natural language commands in training and
needs to combine them in novel ways in testing.

CG is a general capacity that can be seen as a
desideratum in many NLP tasks, and in machine
learning more generally. Furthermore, CG is a
multifaceted concept that can be, and should be,
decomposed into narrower, more manageable as-
pects that can be tested separately (Hupkes et al.,
2020). For example, NLP systems should be able
to generalise compositionally both on the level of
words and on the level of morphology.

Although many aspects of CG have recently
been evaluated in NLP (an extensive review is
offered by Hupkes et al. (2022)), some aspects
have remained without an evaluation method. We
identify (see Section 2) a lack of methods to
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evaluate compositional morphological generali-
sation using only natural, non-synthetic, data.
To fill this gap, we propose an application of
the distribution-based compositionality assess-
ment (DBCA) method (Keysers et al., 2020)
(henceforth Keysers) to generate adversarial data
splits to evaluate morphological generalisation in
NLP systems.

Specifically, we split natural language corpora
while controlling the distributions of lemmas and
morphological features (atoms in the terminology
of Keysers) on the one hand, and the distributions
of the combinations of atoms (compounds, not to
be confused with compound words) on the other
hand. By requiring a low divergence between the
atom distributions of the train and test sets, and a
high divergence between the compound distribu-
tions, we can evaluate how well a system is able to
generalise its morphological knowledge to unseen
word forms.

For example, if our corpus included as atoms
the lemmas ”cat” and ”dog”, and the morpho-
logical tags Number=Sing and Number=Plur,
a low divergence between the atom distributions
would mean that both the training and test sets in-
cluded all four of the atoms, and a high compound
divergence would mean that the sets include dif-
ferent combinations of them, for instance training
set {cat, dogs} and test set {cats, dog}.

Our main contributions are the following:
firstly, we describe an application of DBCA to
evaluate morphological generalisation in any NLP
task in which the train and test data consist of sen-
tences for which morphological tags are available.
Secondly, we demonstrate how by this method we
can evaluate morphological generalisation in ma-
chine translation without manual test design. And
thirdly, using our proposed method, we assess the
effect of the source language BPE (Sennrich et al.,
2016) vocabulary size in Finnish-English NMT
performance, and conclude that a smaller vocabu-
lary helps the NMT models in morphological gen-
eralisation.

2 Background

In the broader field of machine learning, CG has
been analysed in various domains besides that of
natural language, such as visual question answer-
ing (Bahdanau et al., 2018), visual reasoning (Zer-
roug et al., 2022) and mathematics (Saxton et al.,
2019), but in this work we focus on natural lan-

guage tasks. Two reviews have recently been pub-
lished about CG in NLP, of which Donatelli and
Koller (2023) focus on semantic parsing and the
aforementioned Hupkes et al. (2022) (henceforth
Hupkes) take a broader view, reviewing generali-
sation in general, not only the compositional type.

Hupkes categorised NLP generalisation experi-
ments along five dimensions, of which we discuss
two here to motivate our work. The first is the type
of generalisation along which the compositional
type is distinguished from the morphological type.
Hupkes define compositionality as ”the ability to
systematically recombine previously learned ele-
ments to map new inputs made up from these el-
ements to their correct output. In language, the
inputs are ‘forms’ (e.g. phrases, sentences, larger
pieces of discourse), and the output that they need
to be mapped to is their meaning ...”. In NMT,
the translation works as a proxy to meaning, so
that CG can be evaluated by evaluating the transla-
tion (Dankers et al., 2022) (other works that assess
CG in NMT include (Li et al., 2021; Raunak et al.,
2019)).

Hupkes contrast compositional with structural,
including morphological, generalisation where an
output space is not required but which focuses
on generation of the correct forms. These defini-
tions suggest a clear divide between the categories,
which is understandable when analysing the liter-
ature: morphological generalisation, specifically
inflection generation, has for decades been studied
in psycholinguistics (Berko, 1958; Marcus et al.,
1992) and computational linguistics (Rumelhart
and McClelland, 1986; Corkery et al., 2019; Kod-
ner et al., 2022). These studies do not address
the question of how the different inflections are
mapped to different meanings, hence they do not
address compositional generalisation. However,
inflections do bear meaning, of course, and so
compositional morphological generalisation is an
ability that humans possess, and NLP systems
ought to be tested on.

Although Hupkes do not categorise any exper-
iments as assessing compositional morphological
generalisation, there has been at least one that we
think could be so categorised: Burlot and Yvon
(2017) designed an NMT test suite in which a sin-
gle morphological feature is modified in a source
language sentence, creating a contrastive pair, and
the translations of the contrastive sentences are in-
spected for a corresponding change in the target
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language.

The other dimension of Hupkes relevant to the
motivation of our experiments is that of shift
source: the shift between train and test sets could
occur naturally (as in two natural corpora in differ-
ent domains), it can be created by generating syn-
thetic data, or an artificial partition of natural data
can be obtained. Most of the previous methods to
assess compositional generalisation in NMT (Bur-
lot and Yvon, 2017; Li et al., 2021; Dankers et al.,
2022) have synthetised data for the test sets. Gen-
erating synthetic data has its benefits: any mor-
phological form can occur in the data when it is
generated, and a single morphological feature can
be easily focused on and evaluated qualitatively as
well as quantitatively.

However, synthetic data has at least practical
disadvantages, leaving aside the more theoretical
question of how well the synthetic language ap-
proximates natural language, assuming the ulti-
mate goal is systems that process natural language.
In practice, synthetic test sets require manual de-
sign, which means it is difficult to come by a
method to generate an unlimited number of syn-
thetic sentences, or a method that could work in
arbitrary languages. Furthermore, when manu-
ally designing test suites to evaluate morpholog-
ical generalisation, as Burlot and Yvon (2017) de-
signed, the requirement for manual work restricts
the number of morphological phenomena we have
resources to test.

The other option is to create artificial data splits
of natural data. While natural data may be noisier
and it might be more difficult to focus on a spe-
cific phenomenon of the language by this method,
this method is easier to automate completely. Fur-
thermore, the method of automatically generating
data splits that we present in the next section is
also generalisable to other tasks (e.g. paraphrase
detection) and any corpus of sentences. Gener-
ating artificial data splits of natural data has pre-
viously been used to test CG in translation (Rau-
nak et al., 2019), as well as to assess the capacity
to capture long-distance dependencies in transla-
tion (Choshen and Abend, 2019), but not to as-
sess morphological generalisation, as far as we are
aware. (For a more general discussion of splitting
data into non-random testing and training sets, see
Søgaard et al. (2021).)

The method we describe in this paper is an
application of the DBCA method developed by

Keysers. Since this method is generic and task-
agnostic, it can be applied to any dataset for which
it is possible to define atom and compound distri-
butions. Although it is easier to define these dis-
tributions for synthetic data, as in the CFQ dataset
described by Keysers, it can also be applied to nat-
ural data, for example in semantic parsing (Shaw
et al., 2021). The next section describes how
DBCA can be used to assess morphological gener-
alisation in any task where the training and testing
corpora consist of natural language sentences.

3 Applying DBCA to assess
morphological generalisation in NLP

DBCA is a method to evaluate CG by splitting
a dataset into train/test sets with differing dis-
tributions, requiring some capacity to generalise
from the training distribution to the test distri-
bution. Specifically, the distributions of atoms
(known primitives) and compounds (combinations
of atoms) are controlled to get similar atom dis-
tributions but contrasting compound distributions
in the training and test sets. In our application of
DBCA to a corpus of natural language sentences,
the atom distributionFA of the corpus is the distri-
bution of the lemmas and morphological features
and the compound distribution FC is the distribu-
tion of their combinations. Table 1 presents exam-
ples of atoms and compounds in this work.

To determine the atom and compound distri-
butions, we first need to obtain the lemmas and
morphological tags of all words in the corpus,
which we accomplish for Finnish corpora using
the Turku Neural Parser Pipeline (Kanerva et al.,
2018). For the experiments presented in Section 4,
we use a corpus of 1M sentences. In practice, we
do not have resources to control the distribution of
all lemmas even in this relatively small corpus, so
we need to select some subset of the lemmas that
we include in our analysis.

Selecting the lemma subset could be done in
many ways, but the following is a way we deemed
reasonable. To limit the number of lemmas, we
first filter out lemmas that do not appear in the
list of 94110 Finnish lemmas2 or, since this list
does not include proper names, in lists3 of names

2Available at https://kaino.kotus.fi/sanat/
nykysuomi/

3List of names of places: https://kaino.kotus.
fi/eksonyymit/?a=aineisto
English given names: https://en.wiktionary.org/
wiki/Appendix:English_given_names
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Atoms Compounds

Desc. lemmas and morphological tags combinations of atoms

E.g. tunturi, Case=Gen,
Case=Ade, Number=Sing,
Number=Plur

tunturi|Case=Gen|Number=Plur (tunturien, of mountains);
tunturi|Case=Ade|Number=Sing (tunturilla, on mountain)

Table 1: Description and examples of what we call ”atoms” and ”compounds”. The compounds are the
unique word forms, determined by the lemma and the morphological tags. The word form and its English
translation are written inside the brackets.

for places, or lists of Finnish and English given
names. This way, the lemmas that are filtered
out include most of the typos and other non-
words. Then we rank the remaining lemmas by
frequency in our corpus, and sample a fixed num-
ber of lemma occurrences from constant inter-
vals in the ranked list of lemmas. Specifically,
we take 40000 lemma occurrences at intervals of
1000 lemma types in the list of lemmas. For our
corpus of 1M sentences, this method subsamples
the lemmas with frequency ranks of 1000-1033,
2000-2083, 3000-3174, and so on, so that there
are fewer frequent lemma types than rare lemma
types, but the total number of occurrences of each
bucket is around 40k. Lemmas that occur fewer
than 10 times in the corpus are excluded. After
the filtering, we have 8720 lemma types that oc-
cur about 390k times in total in our corpus of 1M
sentences. We append the list of 48 morphological
tags4 (after filtering some that indicate uninterest-
ing words such as ’Typo’ and ’Abbr’) that these
lemmas appear with to the lemma list to complete
our list of atoms.

Keysers weighted the compounds to ”avoid
double-counting compounds that are highly corre-
lated with some of their super-compounds”. The
idea is to lessen the weight of those compounds
that only or often occur as a part of one certain
super-compound. We weight the compounds
analogously, but use only two levels in our
weighting, which makes the weighting simpler
than in Keysers: we consider the combinations
of morphological tags as the lower level of com-
pounds, and these combined with lemmas as the
higher level. Thus the motivation for weighting
in our case is not to use those morphological tag
combinations that only occur with some specific
lemma. Therefore, we look for the lemma with

and Finnish: https://tinyurl.com/3mn52ms6
https://tinyurl.com/mwjvaxkk

4See https://universaldependencies.org/
docs/fi/feat/ for the list of Finnish morphological tags.

which each morphological tag combination occurs
most often, and give the tag combination a weight
that is the complement of the empirical probability
that the tag combination occurs with this lemma.
For example, we found that the rare morph tag
combination Case=Ade | Degree=Pos
| Number=Plur | PartForm=Pres |
VerbForm=Part | Voice=Pass occurs
84% of the time with the lemma saada forming
the word ”saatavilla”, so it gets a weight of 0.16.
After weighting the tag combinations, we exclude
those that have a weight of 0.33 or less.

After the described filtering steps, we have 8322
atoms, which includes the lemmas and morpho-
logical tags. The atoms occur about 1.3M times
in 273k sentences in our corpus of 1M sentences.
There are 335 morphological tag combinations,
which create about 69k unique word forms with
the lemmas; i.e. we use 69k compounds in our
analysis. These compounds occur 352k times in
the corpus.

Calculating atom and compound divergences is
done the same way as in Keysers. Namely, diver-
gence D between distributions P and Q is calcu-
lated using the Chernoff coefficient Cα(P∥Q) =∑

k p
α
k q

1−α
k ∈ [0, 1] (Chung et al., 1989), with

α = 0.5 for the atom divergence and α = 0.1 for
the compound divergence. As described by Key-
sers, α = 0.5 for the atom divergence ”reflects the
desire of making the atom distributions in train and
test as similar as possible”, and α = 0.1 for the
compound divergence ”reflects the intuition that
it is more important whether a certain compound
occurs in P (train) than whether the probabilities
in P (train) and Q (test) match exactly”. Since
the Chernoff coefficient is a similarity metric, the
atom and compound divergences of a train set V
and a test set W are:

DA(V ∥W ) = 1 − C0.5(FA(V ) ∥FA(W ))

DC(V ∥W ) = 1 − C0.1(FC(V ) ∥FC(W )).
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Procedure 1 Data division algorithm.
Input: G ▷ Corpus of sentences
Input: N ▷ Use N sentences from G
Input: a ▷ Lower bound for |V |/|W |
Input: b ▷ Upper bound for |V |/|W |
Output: V,W ▷ Train set, test set
V ← {x ∈R G} ▷ A random sentence
W ← ∅
G← G\V
for i← 1 to N do

r ← |V |/|W |
sV ← maxx∈G score(V ∪ {x},W )
iV ← argmaxx∈G score(V ∪ {x},W )
sW ← maxx∈G score(V,W ∪ {x})
iW ← argmaxx∈G score(V,W ∪ {x})
if (sV > sW ∧ r < b) ∨ r < a then

V ← V ∪ {iV }
G← G\{iV }

else
W ←W ∪ {iW }
G← G\{iW }

end if
end for

Once the divergences are defined, we can split a
corpus of natural language sentences into training
and testing sets with an arbitrary compound and
atom divergence values. For this, we use a simple
greedy algorithm, sketched in Algorithm 1. For a
maximum compound divergence split, the score is
calculated as

score(Q,P ) = DC(Q∥P )−DA(Q∥P ),

and in general, for any desired compound diver-
gence value c:

score(Q,P ) = −|c−DC(Q∥P )| − DA(Q∥P ).

In practice, we do not have resources to calculate
the maxx∈G score. Instead, at each iteration we
take a subset G′ ⊂ G, say 1000 sentences, and
calculate maxx∈G′ score.

As mentioned above, this method can be used
for any corpus that consists of natural language
sentences for which the morphological tags can be
obtained. In the next section we use this method
to assess morphological generalisation in machine
translation.

4 Experiments and results

4.1 NMT model training setup and data

We chose Finnish as the language we analyse be-
cause of its rich morphology and because there is
a good morphological tagger available for Finnish.
We use the English-Finnish parallel corpus from
the Tatoeba challenge data release (Tiedemann,
2020). We first apply some heuristics provided by
Aulamo et al. (2020) to remove noisy data, and re-
strict the maximum sentence length to 100 words,
after which we take a random sample of 1 million
sentence pairs.

We use the OpenNMT-py (Klein et al., 2017) li-
brary to train Finnish-English Transformer NMT
models using the hyperparameters provided in the
example config file5, which includes the standard
6 transformer layers with 8 heads and a hidden di-
mension of 512, as in (Vaswani et al., 2017). We
train the models until convergence or until a maxi-
mum of 33000 steps with 2000 warm-up steps and
a batch size of 4096 tokens.

For more details about the setup, see the Github
repository linked on the first page.

4.2 The effect of compound divergence on
translation performance

The basic experiment we propose is to make at
least two different train/test splits of a corpus, us-
ing DC values of 0 and 1, respectively, (keeping
DA = 0) and assess the change in translation
performance (for which we use BLEU (Papineni
et al., 2002) and chrF2++ (Popović, 2017) as met-
rics). Since with DC = 1 there are more unseen
word forms in the test set, we expect a decrease in
translation performance from DC = 0 to DC = 1
that is caused by the DC = 1 test set requiring
more morphological generalisation capacity.

We show empirically the decrease in perfor-
mance in Section 4.3, but the cause of this de-
crease is of course more difficult to verify exactly.
The atom and compound distributions are the only
things we explicitly control when splitting the cor-
pus, and we only require the compound divergence
to differ between different data splits. Therefore,
we assume the differing compound divergence to
be the cause of this effect, but to be more certain,
we conduct two simple checks to look for con-
founding factors.

5https://github.com/OpenNMT/
OpenNMT-py/blob/9d617b8b/config/
config-transformer-base-1GPU.yml
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Firstly, an increase in the average sentence
length could be another factor that makes one test
set more difficult than another. Increasing the se-
quence length from training to test set is actually
a method that has been proposed to test a certain
type of compositional generalisation, sometimes
called productivity (Hupkes et al., 2020; Raunak
et al., 2019). We calculated the average sentence
lengths of the train and test sets of the 8 different
data splits that we obtained using 8 different ran-
dom seeds for the data split algorithm. What we
found is that for DC = 1 the average lengths in
test sets are actually shorter (ranging from 11.35 to
11.66 words) than those forDC = 0 (ranging from
12.27 to 13.72 words). The average training set
sentence lengths are similar for both DC values,
ranging from 8.66 to 8.79 for DC = 0 and from
8.65 to 8.73 for DC = 1. Thus we know that an
increased difference between train and test set sen-
tence lengths cannot explain the decrease in NMT
performance from DC = 0 to DC = 1 since the
difference is actually larger for DC = 0. The fact
that the average sentence length in training sets is
always significantly shorter than in test sets is an
interesting unintended artefact of the data division
algorithm that deserves further investigation in the
future, but it does not confound our analysis.

As the second sanity check, we evaluated the
NMT models on a neutral test set to see if, for
any reason, the training set would be in general
worse with DC = 1 than with DC = 0, instead
of only being worse for the specific test set that
we have created. For this we used the Tatoeba
challenge test set, which we did not use to train
or tune the hyperparameters of any models. The
results for the vocabulary size 1000 are presented
in Figure 1. We used the models trained on the
training sets from the data splits with compound
divergences 0.0, 0.5 and 1.0. The compound diver-
gences between these training sets and the Tatoeba
challenge test set do correlate with the target DC

of the data split, but they range only from about
0.4 to 0.6.

From Figure 1 we can see that the NMT mod-
els trained with different data sets, from data splits
with different DC values, do not show similar de-
crease in performance on the neutral-ish Tatoeba
challenge test set as on the test sets obtained from
the data split algorithm. We take this to mean that
the models trained on DC = 1 data splits are not
in general worse than those trained with DC = 0

Figure 1: Results on the Tatoeba challenge test
set. The x-axis labels denote the compound diver-
gences between the training sets and the test sets
analysed later in Figure 2. That is, the divergence
is not between the training sets and the Tatoeba
challenge test set.

data splits, but only worse on the high-divergence
test set.

4.3 The effect of BPE vocabulary size on
morphological generalisation in NMT

Next, we make the assumption, based on the anal-
ysis in Section 4.2, that we can measure mor-
phological generalisation by measuring the de-
crease of NMT performance between train/test
splits of DC = 0 and DC = 1. Previous stud-
ies have suggested the hypothesis that NMT mod-
els with smaller BPE vocabularies are more capa-
ble of modelling morphological phenomena than
those with larger vocabularies (for example Li-
bovickỳ and Fraser (2020)). In this section, we
compare the morphological generalisation capac-
ities of NMT models with different source-side
(Finnish) vocabulary sizes, using the method we
have proposed.

As a preliminary experiment, we tuned the BPE
vocabulary size for our setup (see Section 4.1) on
the Tatoeba challenge development set, and found
the optimal size to be around 3000 BPE tokens for
both the source and target languages. Since we
are interested in the Finnish morphology, next we
kept the target (English) vocabulary size constant
and varied only the source-side vocabulary size.

One thing to note about the vocabulary size is
that when we train an NMT system keeping the
number of tokens in each batch constant, the num-
ber of steps until convergence usually decreases
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when the vocabulary size increases, since one
epoch takes fewer steps. This reduction in com-
pute, when using a larger vocabulary, is to some
extent compensated by the increase of the input
layer size (and output layer size, if target language
vocabulary is increased too).

We chose 7 different vocabulary sizes, 3 larger
and 3 smaller than the optimal 3000, and evaluated
them with target compound divergence values of
0.0, 0.25, 0.5, 0.75 and 1.0. The sizes of the test
sets are in the order of a few tens of thousands, or a
little over a hundred thousand, sentences. The rel-
atively large test set size leads to statistical signifi-
cance even for small BLEU differences (see Table
3 for details).

From the BLEU results for DC = 0 and DC =
1 in Figure 2 we can see that the BLEU results
drop, as expected, when the test set demands
(more) capacity to generalise to unseen morpho-
logical forms. Furthermore, when comparing the
different vocabulary sizes, we can notice that as
we either increase or decrease the vocab size from
3000, the performance drops, but it drops slightly
differently w.r.t DC . This effect is most conspicu-
ous for the pair of sizes 500 and 18000. The larger
vocabulary performs slightly better when there is
less need for morphological generalisation, but the
small vocabulary performs better when it is needed
more. In general, from this figure we can see that
the vocabulary size roughly correlates with the an-
gle of the downward slope, suggesting that the
larger the vocabulary, the poorer the capacity for
morphological generalisation.

To investigate the effect of the initialisation of
the data split algorithm on the results, we split the
same corpus starting from 8 different random ini-
tialisations, and trained NMT models for each data
split. For this, we chose two pairs of vocabulary
sizes that showed most clearly contrasting per-
formance w.r.t DC : 500&18000 and 1000&6000.
The main results are presented in Table 2. For
these results, the test sets of the 8 random seeds
are concatenated together to create exceptionally
large test sets of around 400k-500k sentences. The
results for the individual data splits are presented
in Appendix A in Table 4.

From these results we can see the same contrast-
ing performance of the small and large vocabular-
ies w.r.t the different compound divergence values.
The difference is small but statistically significant.
The models with small vocabularies show better

Figure 2: Different source vocabulary sizes evalu-
ated with minimum and maximum (0 and 1) com-
pound divergence data splits. Compound diver-
gence value 1 requires more morphological gen-
eralisation. The larger the vocabulary the steeper
the slope, suggesting poorer ability to generalise.
For more details, see Table 3 in Appendix A.

performance than those with large ones when mor-
phological generalisation is needed, and vice versa
when morphological generalisation is not needed
as much.

5 Discussion and future work

In Section 3, we proposed an application of DBCA
to divide any corpus of sentences, for which mor-
phological tags are available, into training and
test sets with similar distributions of lemmas and
morphological tags but contrasting distributions of
word forms, in order to assess morphological gen-
eralisation. By this method, we can take a large
proportion of the morphological phenomena of a
selected language into consideration, in our exper-
iments 335 different morphological categories that
together with about 8k lemmas create 69k unique
Finnish word forms, and evaluate the effects of
the contrasting train/test distributions of the word
forms in machine translation. This enables a dif-
ferent, complementing type of assessment of mor-
phological generalisation than previous synthetic
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chrF2++ BLEU
Vocab DC = 0 DC = 1 DC = 0 DC = 1

500 51.20 (51.20 ± 0.05) 49.33 (49.33 ± 0.05) 27.50 (27.50 ± 0.07) 25.4 (25.40 ± 0.07)
18000 51.29 (51.29 ± 0.05) 49.04 (49.05 ± 0.05) 27.69 (27.69 ± 0.07) 25.18 (25.18 ± 0.07)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

1000 51.78 (51.78 ± 0.05) 49.79 (49.79 ± 0.05) 28.17 (28.17 ± 0.07) 25.89 (25.89 ± 0.07)
6000 51.83 (51.83 ± 0.05) 49.67 (49.67 ± 0.05) 28.24 (28.24 ± 0.07) 25.80 (25.80 ± 0.07)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

Table 2: Pairwise comparisons of the source vocabulary sizes 500 and 18000; 1000 and 6000. The
results are calculated for the concatenated test sets generated with 8 random seeds. Inside brackets is
the true mean estimated from bootstrap resampling and the 95% confidence interval. The results for the
individual seeds are presented in Appendix A in Table 4 and Figure 3.

benchmarks (mainly Burlot and Yvon (2017)) that
focus on a smaller number of morphological phe-
nomena. One benefit of our method is its compre-
hensiveness, focusing on the corpus-wide distribu-
tions of word forms.

Using only corpus-wide metrics such as BLEU,
as we used, does not discriminate between the
morphological errors, which we are interested in,
and other kinds of translation errors. In the ter-
minology of Burlot and Yvon (2017), this holis-
tic, document-level evaluation can be contrasted
with analytic evaluation that focuses more specif-
ically on difficulties in morphology. A trick that
could enable a more analytic assessment of the
translations of the unseen word forms would be
to align the words in the source sentences with the
words in the reference translations and the words
in the predicted translations, and evaluate only the
translations of the parts of the sentences that corre-
spond to the unseen word forms. Similar method
has been used previously for example by Bau et al.
(2019); Stanovsky et al. (2019).

Especially combined with this word-alignment
trick, we could also make our evaluation more
fine-grained (this concept also from Burlot and
Yvon (2017)), that is, our evaluation could differ-
entiate between different types of mistakes. Since
we have the morphological tags, we could sort the
words by morphological category and compare the
translation accuracies to look for any especially
difficult categories for the translation models.

To demonstrate the use of our proposed method,
we compared NMT models with different BPE vo-
cabulary sizes, since vocabulary size has been hy-
pothesised to affect the capacity to model mor-
phology in translation. Besides vocabulary size,

there are many other model design choices that
have been proposed to help either in generalisa-
tion or in capturing morphological phenomena.
Tokenisation methods that are more linguistically
motivated than BPE, such as the Morfessor meth-
ods (Creutz and Lagus, 2002; Virpioja et al., 2013)
or LMVR (Ataman et al., 2017), should help with
morphological generalisation since the tokens pro-
duced by these methods approximate the linguistic
morphemes more closely. Factored NMT systems
(Garcı́a-Martı́nez et al., 2016) can cover more
of the target side vocabulary than subword-based
NMT systems, which can also help in modelling
the morphology of the target language. We hope
our evaluation method will help assessing alterna-
tive NMT methods, such as these, from the per-
spective of morphological generalisation.

The DBCA method is general, and could be
applied to a wide variety of tasks and datasets.
Our application of DBCA is more specific, but it
still inherits some of the generality of the original
method. Our method is directly applicable to any
machine learning task in which the dataset consists
of sentences for which the morphological tags are
available. In the future, we intend to extend our as-
sessment of morphological generalisation to other
languages, as well as to other NLP tasks, such as
paraphrase detection.

6 Conclusion

We proposed a method to assess morphological
generalisation by distribution-based composition-
ality assessment. Because this method is fully au-
tomated, it enables more comprehensive assess-
ment of morphological generalisation than pre-
viously proposed synthetic benchmarks, in terms
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of the number of inflection types we can evalu-
ate. We used our method to assess NMT mod-
els with different BPE vocabulary sizes and found
that models with smaller vocabularies are better
at morphological generalisation than those with
larger vocabularies. Lastly, we discussed the var-
ied future directions that our generalisable method
offers, such as assessing morphological generali-
sation in other NLP tasks besides NMT.

7 Acknowledgements

We thank Jörg Tiedemann, Eetu Sjöblom and
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A Detailed results

Table 3 lists the results for the different source-
side (Finnish) BPE vocabulary sizes and different
compound divergence values. Table 4 includes the
pairwise comparisons of vocabulary sizes 500 and
18000 and 1000 and 6000 for all random seeds.
Figure 3 presents in a graph the pairwise compar-
isons of vocabulary sizes 500 and 18000, with all
compound divergence values.
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Vocab
size

BLEU per compound divergence
0.0 0.25 0.5 0.75 1.0

500 27.32 (27.32 ± 0.17) 26.57 (26.57 ± 0.20) 25.36 (25.35 ± 0.17) 24.77 (24.76 ± 0.18) 25.46 (25.46 ± 0.17)
1000 27.86 (27.87 ± 0.18) 27.33 (27.33 ± 0.20) 25.87 (25.87 ± 0.18) 25.56 (25.55 ± 0.18) 25.87 (25.87 ± 0.18)
2000 27.91 (27.92 ± 0.18) 27.58 (27.58 ± 0.20) 26.07 (26.07 ± 0.18) 25.53 (25.53 ± 0.18) 25.87 (25.88 ± 0.17)
3000 28.09 (28.09 ± 0.18) 27.54 (27.54 ± 0.20) 25.98 (25.97 ± 0.17) 25.69 (25.69 ± 0.18) 25.92 (25.92 ± 0.18)
6000 28.03 (28.03 ± 0.18) 27.37 (27.36 ± 0.20) 25.98 (25.98 ± 0.18) 25.44 (25.44 ± 0.19) 25.70 (25.70 ± 0.17)
9000 27.82 (27.82 ± 0.19) 27.26 (27.26 ± 0.21) 25.73 (25.73 ± 0.17) 25.36 (25.36 ± 0.19) 25.59 (25.59 ± 0.18)
18000 27.43 (27.43 ± 0.18) 26.81 (26.81 ± 0.21) 25.36 (25.35 ± 0.17) 24.74 (24.74 ± 0.19) 25.06 (25.06 ± 0.17)

chrF2++ per compound divergence

500 51.01 (51.01 ± 0.14) 50.58 (50.58 ± 0.16) 49.75 (49.75 ± 0.14) 49.24 (49.24 ± 0.16) 49.19 (49.19 ± 0.14)
1000 51.53 (51.53 ± 0.14) 51.33 (51.33 ± 0.16) 50.30 (50.30 ± 0.14) 49.98 (49.98 ± 0.15) 49.59 (49.59 ± 0.14)
2000 51.54 (51.54 ± 0.14) 51.52 (51.52 ± 0.16) 50.40 (50.40 ± 0.14) 49.91 (49.91 ± 0.15) 49.68 (49.68 ± 0.14)
3000 51.68 (51.69 ± 0.14) 51.47 (51.47 ± 0.16) 50.40 (50.40 ± 0.14) 50.04 (50.04 ± 0.15) 49.62 (49.62 ± 0.14)
6000 51.66 (51.66 ± 0.14) 51.33 (51.33 ± 0.16) 50.32 (50.32 ± 0.14) 49.79 (49.79 ± 0.16) 49.48 (49.48 ± 0.14)
9000 51.37 (51.37 ± 0.14) 51.09 (51.09 ± 0.16) 50.07 (50.07 ± 0.14) 49.78 (49.77 ± 0.16) 49.36 (49.36 ± 0.14)
18000 51.02 (51.03 ± 0.14) 50.78 (50.78 ± 0.16) 49.74 (49.74 ± 0.14) 49.23 (49.23 ± 0.15) 48.78 (48.78 ± 0.14)

Table 3: The BLEU and chrF2++ results for the different source-side (Finnish) BPE vocabulary sizes
and different compound divergence values. Inside brackets is the true mean estimated from bootstrap
resampling and the 95% confidence interval.
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chrF2++ BLEU
Seed Vocab DC = 0 DC = 1 DC = 0 DC = 1

11 500 51.01 (51.01 ± 0.14) 49.19 (49.19 ± 0.14) 27.32 (27.32 ± 0.17) 25.46 (25.46 ± 0.17)
18000 51.02 (51.03 ± 0.14) 48.78 (48.78 ± 0.14) 27.43 (27.43 ± 0.18) 25.06 (25.06 ± 0.17)

p = 0.2439 p = 0.0003 p = 0.0243 p = 0.0003

22 500 51.01 (51.01 ± 0.14) 49.08 (49.08 ± 0.15) 27.3 (27.3 ± 0.18) 25.2 (25.2 ± 0.18)
18000 50.85 (50.85 ± 0.14) 49.05 (49.05 ± 0.15) 27.17 (27.17 ± 0.18) 25.1 (25.1 ± 0.18)

p = 0.0003 p = 0.1913 p = 0.0107 p = 0.053

33 500 51.07 (51.07 ± 0.14) 49.37 (49.37 ± 0.17) 27.37 (27.37 ± 0.18) 25.09 (25.09 ± 0.2)
18000 50.97 (50.97 ± 0.14) 49.04 (49.04 ± 0.17) 27.3 (27.3 ± 0.18) 24.83 (24.83 ± 0.2)

p = 0.0047 p = 0.0003 p = 0.092 p = 0.0003

44 500 52.02 (52.02 ± 0.17) 49.7 (49.7 ± 0.18) 28.3 (28.3 ± 0.21) 25.8 (25.8 ± 0.22)
18000 52.44 (52.44 ± 0.17) 49.43 (49.43 ± 0.17) 28.72 (28.72 ± 0.21) 25.63 (25.63 ± 0.22)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0077

55 500 52.33 (52.34 ± 0.18) 49.34 (49.34 ± 0.16) 29.04 (29.04 ± 0.23) 25.29 (25.29 ± 0.2)
18000 52.76 (52.76 ± 0.18) 49.04 (49.04 ± 0.16) 29.58 (29.58 ± 0.24) 25.08 (25.08 ± 0.2)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.001

66 500 50.98 (50.98 ± 0.14) 49.24 (49.24 ± 0.14) 27.12 (27.12 ± 0.18) 25.31 (25.31 ± 0.18)
18000 51.06 (51.06 ± 0.14) 48.87 (48.87 ± 0.14) 27.4 (27.4 ± 0.18) 25.04 (25.04 ± 0.17)

p = 0.0183 p = 0.0003 p = 0.0003 p = 0.0003

77 500 50.84 (50.83 ± 0.14) 49.46 (49.46 ± 0.14) 27.12 (27.12 ± 0.18) 25.41 (25.4 ± 0.16)
18000 50.68 (50.68 ± 0.14) 49.22 (49.22 ± 0.14) 27.06 (27.06 ± 0.18) 25.25 (25.25 ± 0.17)

p = 0.0007 p = 0.0003 p = 0.1186 p = 0.0023

88 500 50.97 (50.97 ± 0.14) 49.38 (49.38 ± 0.14) 27.22 (27.22 ± 0.18) 25.61 (25.61 ± 0.17)
18000 51.37 (51.37 ± 0.14) 49.05 (49.05 ± 0.14) 27.81 (27.81 ± 0.18) 25.43 (25.43 ± 0.18)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

11 1000 51.53 (51.53 ± 0.14) 49.59 (49.59 ± 0.14) 27.86 (27.87 ± 0.18) 25.87 (25.87 ± 0.18)
6000 51.66 (51.66 ± 0.14) 49.48 (49.48 ± 0.14) 28.03 (28.03 ± 0.18) 25.7 (25.7 ± 0.17)

p = 0.0003 p = 0.0017 p = 0.0013 p = 0.001

22 1000 51.46 (51.46 ± 0.14) 49.64 (49.64 ± 0.15) 27.9 (27.9 ± 0.18) 25.69 (25.69 ± 0.18)
6000 51.47 (51.47 ± 0.14) 49.61 (49.61 ± 0.15) 27.94 (27.94 ± 0.19) 25.64 (25.64 ± 0.18)

p = 0.3059 p = 0.1786 p = 0.1519 p = 0.1383

33 1000 51.59 (51.59 ± 0.14) 49.7 (49.7 ± 0.17) 27.89 (27.88 ± 0.18) 25.45 (25.45 ± 0.2)
6000 51.63 (51.63 ± 0.14) 49.67 (49.68 ± 0.17) 28.02 (28.02 ± 0.18) 25.51 (25.51 ± 0.21)

p = 0.117 p = 0.2073 p = 0.0047 p = 0.1276

44 1000 52.67 (52.67 ± 0.16) 50.32 (50.32 ± 0.17) 29.01 (29.01 ± 0.21) 26.53 (26.53 ± 0.22)
6000 52.68 (52.68 ± 0.16) 50.06 (50.06 ± 0.18) 29.01 (29.01 ± 0.22) 26.33 (26.33 ± 0.22)

p = 0.2809 p = 0.0003 p = 0.3949 p = 0.0037

55 1000 52.8 (52.8 ± 0.18) 49.92 (49.92 ± 0.16) 29.66 (29.66 ± 0.24) 25.92 (25.92 ± 0.2)
6000 53.02 (53.03 ± 0.18) 49.72 (49.73 ± 0.16) 29.84 (29.85 ± 0.24) 25.73 (25.73 ± 0.2)

p = 0.0003 p = 0.0003 p = 0.0017 p = 0.0003

66 1000 51.39 (51.39 ± 0.14) 49.57 (49.57 ± 0.14) 27.64 (27.64 ± 0.18) 25.71 (25.71 ± 0.18)
6000 51.5 (51.49 ± 0.14) 49.37 (49.37 ± 0.14) 27.79 (27.79 ± 0.19) 25.54 (25.54 ± 0.18)

p = 0.0013 p = 0.0003 p = 0.0017 p = 0.0017

77 1000 51.51 (51.51 ± 0.15) 49.8 (49.8 ± 0.13) 27.86 (27.86 ± 0.18) 25.84 (25.84 ± 0.17)
6000 51.76 (51.76 ± 0.14) 49.74 (49.74 ± 0.14) 28.09 (28.09 ± 0.19) 25.74 (25.74 ± 0.17)

p = 0.0003 p = 0.0453 p = 0.0003 p = 0.022

88 1000 51.9 (51.9 ± 0.14) 49.95 (49.95 ± 0.14) 28.29 (28.29 ± 0.18) 26.2 (26.2 ± 0.18)
6000 51.6 (51.6 ± 0.14) 49.84 (49.84 ± 0.14) 28.01 (28.01 ± 0.18) 26.23 (26.23 ± 0.18)

p = 0.0003 p = 0.0007 p = 0.0003 p = 0.2209

Table 4: Pairwise comparisons of the source vocabulary sizes 500 and 18000; 1000 and 6000 on the
minimum and maximum compound divergence data splits. For 8 data split algorithm random seeds.
Inside brackets is the true mean estimated from bootstrap resampling and the 95% confidence interval.
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Figure 3: Comparison of vocabulary sizes 500 and 18000 with compound divergence values 0.0, 0.25,
0.5, 0.75 and 1.0. For 8 data split algorithm random seeds. The same results are partly in Table 4.
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