
Proceedings of the NoDaLiDa 2023 Workshop on Constraint Grammar - Methods, Tools and Applications, pages 10–14
May 22, 2023 c©2023 Association for Computational Linguistics

WITH Context: Adding Rule-Grouping to VISL CG-3

Daniel Swanson
Department of Linguistics

Indiana University
dangswan@iu.edu

Tino Didriksen
Institute of Language
and Communication

University of Southern Denmark
tinod@sdu.dk

Francis Tyers
Department of Linguistics

Indiana University
ftyers@iu.edu

Abstract

This paper presents an extension to the
VISL CG-3 compiler and processor which
enables complex contexts to be shared be-
tween rules. This sharing substantially im-
proves the readability and maintainability
of sets of rules performing multi-step op-
erations.

1 Introduction

When writing constraint grammars for more com-
plex tasks, such as parsing or translation, situa-
tions often arise in which a particular context trig-
gers multiple operations. For example, when writ-
ing a dependency parser, the head of a word and its
grammatical function label are often determined
jointly. Similarly, for tasks such as translation that
involve modifying either the syntactic structure or
the linear order of the words, a change in one word
will typically necessitate changes to its dependents
as well.

One way to handle such cases in CG is to have
each operation repeat the entire set of contextual
tests, which is tedious to write, difficult to read,
and error-prone to maintain. Another way is to
add an initial rule which checks the conditions
and adds a label to the target word and then have
each other rule simply check for the appropriate
label. This, however, leads to a proliferation of
single-use tags in the grammar (which may need
to be documented), and does not solve the problem
that rules which operate on relationships between
words, such as SETPARENT or ADDRELATION
still need to duplicate contextual tests in order to
locate the second cohort.

To address these difficulties, we extend the
VISL CG-3 processor (Bick and Didriksen, 2015)
with the operator WITH, which matches a context
and then runs multiple rules, all with that same
context. This new operator has been released as

part of VISL CG-3 version 1.4.0. Section 2 de-
scribes the syntax of this operator, Section 3 pro-
vides examples of its application in various do-
mains, Section 4 discusses its performance impli-
cations, and Section 5 concludes.

2 Syntax

An example of the WITH operator in use is given
in (1).

(1)

WITH (n) IF (-1* (det)) {
SETCHILD (*) TO (jC1 (*)) ;
SETCHILD REPEAT (*) TO
(-1*A (adj) LINK -1* _C1_) ;

} ;

Here the context being matched is a noun pre-
ceded at any distance by a determiner. The sub-
sequent rules are then run with the noun as their
target, so the target can be the any set (if a rule
specifies a target set, then it will only be run if
that set matches the target of the WITH). The rules
can refer to the cohorts matched by the contextual
tests of the WITH using either the position speci-
fiers jC1, jC2, ... jC9 for the first through ninth
tests, respectively, or using the magic sets C1 ,
C2 , ... C9 .

Thus the first SETCHILD attaches the deter-
miner (here matched with jC1 (*)) to the noun
and the second one finds any adjectives which
are between the noun and the determiner (here
matched with -1* C1) and attaches them to the
noun. By default, rules inside a WITH are run once
when the WITH, but REPEAT has the usual effect
of causing the rule to be repeated until it has no
effect.

As this example and those in the next section
show, the WITH operator, while not strictly in-
creasing the expressivity of CG, does allow many

10

sets of rules to be written in a much more readable
and maintainable manner.

3 Examples

The following subsections give examples of appli-
cations of WITH to particular domains.

3.1 Dependency Parsing

A set of rules for dealing with numbers and de-
terminers found in the parser from Swanson and
Tyers (2022) is presented in Figure 1.

3.2 Translation

Multi-step transformations are also relevant in ma-
chine translation. For instance, transforming the
dependency tree in (2) for the Hebrew phrase ראשׁ
השׁנה! to the appropriate tree for the English “the
head (or beginning) of the year”, given in (3).

(2)

שׁנה! ה! ראשׁ!
year the head

compound:smixut

det

(3)

שׁנה! ה! (of) ראשׁ! (the)
year the of head the

compound:smixut

det

case

det

This can be accomplished using the rules in (4).

(4)

WITH (n @compound:smixut)
IF (p (n))
(NEGATE c (@compound:smixut))

{
ADDCOHORT
("<the>" "the" det def @det)
BEFORE (*)
IF (c (@det)) (jC1A (*)) ;

ADDCOHORT
("<of>" "of" pr @case)
BEFORE WITHCHILD (*) (*) ;

UNMAP (@compound:smixut) (*) ;
MAP (@nmod) (*) ;

} ;

Note, particularly, the UNMAP followed by the
MAP, which would otherwise be extremely diffi-
cult to do correctly, since the MAP would other-
wise need some way of finding the cohort it was
supposed to replace the tag of, when that cohort
no longer has that tag.

3.3 Morphological Disambiguation

Even in tasks that typically do not require com-
posite operations, such as disambiguation, there
is often a high degree of duplication in contextual
tests which can benefit from the use of WITH. For
example, in the Apertium morphological disam-
biguator for Norwegian Nynorsk (Unhammer and
Trosterud, 2009) 1504 (38.5%) of the 3903 rules
have at least 2 tests and share at least 90% of those
tests with another rule in the file. The rules in (5)
are given as an example of such overlap.

(5)

SELECT:4144 (adj pl) IF
(NOT 0 fv)
(NOT 0 subst)
(NOT 0 det)
(1 komma/konj)
(-1C fl-det)
(NOT 1 subst/adj)
(NOT 2 adj)

;
SELECT:4145 (adj pl) IF

(NOT 0 fv)
(NOT 0 subst)
(NOT 0 det)
(NOT 0 pos)
(-1C fl-det)
(NOT 1 subst/adj)

;

The duplicate tests can be extracted, as in (6).

(6)

WITH (adj pl) IF
(NOT 0 fv)
(NOT 0 subst)
(NOT 0 det)
(-1C fl-det)
(NOT 1 subst/adj)

{
SELECT (adj pl) IF

(1 komma/konj)
(NOT 2 adj) ;

11

Original rules

MAP @flat BigNumber + Number IF (-1 Number) ;
SETPARENT @flat + Number (NOT p (*)) TO (-1 Number) ;

MAP @conj Number
IF (-1 @cc LINK -1* Number BARRIER (*) - @flat) ;

SETPARENT @cc (NOT p (*)) TO (1 Number + @conj) ;
SETPARENT Number + @conj (NOT p (*))

TO (-1* Number - @flat BARRIER (*) - @cc - @flat) ;
REMCOHORT IGNORED WITHCHILD (*)

Number + @conj OR Number + @flat
IF (p Number) ;

Rules rewritten using WITH

WITH BigNumber + Number (-1 Number) (NOT p (*)) {
MAP @flat (*) ;
SETPARENT (*) TO (jC1 (*)) ;
REMCOHORT IGNORED (*) ;

} ;

WITH Number (-1 @cc) (-2 Number) (NOT p (*)) {
MAP @conj (*) ;
SETCHILD (*) TO (jC1 (*)) ;
SETPARENT (*) TO (jC2 (*)) ;
REMCOHORT IGNORED WITHCHILD (*) (*) ;

} ;

Figure 1: A set of rules for parsing Hebrew number phrases according to Universal Dependencies (Nivre
et al., 2020), with and without the WITH operator. The original set of rules is taken from the parser
described in Swanson and Tyers (2022). In each set, the first group of rules matches a phrase such as
מאה! שׁלושׁ “three hundreds” and makes the second word dependent on the first with the label flat. Then
the second group matches a phrase like וערבע! תשׁע “nine and four” and attaches the conjunction to the
second number and the second number to the first, giving the second number the label conj. Finally the
dependent words are ignored (treated as deleted for the remainder of parsing, but included in the output).

12

Grammar Rules WITH Groups Runtime Cohorts Cohorts/s Speedup

Hebrew Original 346 0 5.58 s 65K 11,756 0%
Hebrew safe-setparent 346 0 4.80 s 65K 13,690 14%
Hebrew WITH 349 9 4.93 s 65K 13,310 12%

Norwegian Original 3903 0 142.26 s 174K 1,225 0%
Norwegian WITH 3903 180 79.43 s 174K 2,194 44%

Table 1: Performance comparison of the rewrite of the Ancient Hebrew dependency parser from Swanson
and Tyers (2022) and an automated refactoring of the Norwegian Nynorsk morphological disambiguator
from Unhammer and Trosterud (2009). “Hebrew Original” is the parser presented in the first paper,
“Hebrew safe-setparent” is the same parser, but with safe-setparent flag enabled, and “Hebrew
WITH” is a version that has been partially refactored to use WITH groups and also slightly expanded. The
parser using WITH also uses safe-setparent. “Norwegian Original” is the disambiguation grammar
distributed by Apertium as of April 2023 and “Norwegian WITH” is an automated transformation of that
grammar. In neither language is the grammar using WITH perfectly identical to the original in terms of
output.

SELECT (adj pl) IF
(NOT 0 pos) ;

} ;

Here the 5 contexts that are shared between the
two rules are written only once and each rule need
only specify the part that differs, substantially clar-
ifying the purpose of having distinct rules in this
instance.

4 Performance

The performance impact of adding a WITH group
to a grammar is generally small, though mea-
surable. In this section we present the effects
on two grammars: the Ancient Hebrew depen-
dency parser from Swanson and Tyers (2022) and
the Apertium Norwegian Nynorsk morphological
disambiguator (Unhammer and Trosterud, 2009).
The results are listed in Table 1.

When WITH improves performance, it is gener-
ally due to a reduction in the number of contextual
tests that need to be evaluated. However, the dedu-
plication of tests is balanced by the fact that WITH
must evaluate them sequentially in order to pop-
ulate the Cn magic sets whereas for most rules
the VISL CG-3 processor will internally update
the order so as to start with the test that is most
likely to fail.

Thus, when refactoring a complex grammar by
hand where the total number of WITH groups
added is likely to be small, the potential speedup
is relatively small and is easily overwhelmed by
the impact of new rules. In the Hebrew parser,

for example, the effect of rearranging the contex-
tual tests of roughly 30 rules (9% of the grammar)
into 9 WITH groups was negated by adding half
a dozen new ones (overall a 2% slowdown), and
both of these effects are minor compared to the ef-
fect of an unrelated change that removed one test
from each of 135 rules (a 14% speedup).

On the other hand, in the Norwegian grammar,
the relationships between rules are generally quite
simple and we were thus able to write a script that
automatically merged adjacent rules which shared
the same target and had at least 5 contextual tests
in common into a WITH group. The results of
this conversion are not perfect (just over 5% of the
10K sentences in our test data have different out-
put), but they are good enough for an approximate
comparison. The script grouped 1636 rules (42%
of the grammar) into 180 WITH groups, increasing
the speed of the disambiguator by 44%.

5 Conclusion

In this paper we have presented the WITH opera-
tor, an extension of VISL CG-3 to allow collec-
tions of rules to be grouped into composite opera-
tions. As shown in the examples, this addition is
likely to be useful to grammar authors approach-
ing a wide variety of tasks and can even have a
significant impact on grammar performance if de-
ployed on a large scale.

13

References
Eckhard Bick and Tino Didriksen. 2015. Cg-

3—beyond classical constraint grammar. In Pro-
ceedings of the 20th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2015), pages 31–39.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Daniel Swanson and Francis Tyers. 2022. A Univer-
sal Dependencies treebank of Ancient Hebrew. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 2353–2361, Mar-
seille, France. European Language Resources Asso-
ciation.

Kevin Unhammer and Trond Trosterud. 2009. Reuse
of free resources in machine translation between
nynorsk and bokmål. In Proceedings of the First
International Workshop on Free/Open-Source Rule-
Based Machine Translation, pages 35–42.

14

https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2022.lrec-1.252
https://aclanthology.org/2022.lrec-1.252

