
Improving Zero-Shot Dependency Parsing by Unsupervised Learning

Jiannan Mao†‡∗, Chenchen Ding‡, Hour Kaing‡,
Hideki Tanaka‡, Masao Utiyama‡, Tadahiro Matsumoto†

†Gifu University, Gifu, Japan
‡National Institute of Information and Communications Technology, Kyoto, Japan

†{mao, tad}@mat.info.gifu-u.ac.jp
‡{chenchen.ding, hour_kaing, hideki.tanaka, mutiyama}@nict.go.jp

Abstract

UDify (Kondratyuk and Straka, 2019) is a mul-
tilingual and multi-task parser fine-tuned on
mBERT. It has demonstrated notable perfor-
mance, even on few-shot languages. However,
its performance saturates early and decreases
gradually as training progresses with zero-shot
languages. This work focuses on this phe-
nomenon, which has not yet been sufficiently
studied. Data augmentation methods based
on unsupervised learning on monolingual data
were designed to transform a zero-shot case
into an artificial few-shot case. Experiments
were conducted on the Breton language as a
typical case study. For the Breton language, the
unlabeled attachment score and other evalua-
tion metrics were significantly improved. The
parsing accuracies for other languages were not
noticeably affected.

1 Introduction

A dependency parser can be efficiently trained on
large treebanks when available (Dozat and Man-
ning, 2017; Qi et al., 2020; Straka and Straková,
2020). For low-resource languages with limited
treebanks, multilingual modeling has emerged as
an efficient solution in which cross-lingual informa-
tion is leveraged to compensate for the lack of data
on specific languages. Ammar et al. (2016); Scho-
livet et al. (2019); Üstün et al. (2022) have demon-
strated that the performance on part-of-speech
(POS) or dependency parsing can be boosted by
pairing languages with similarities. This multilin-
gualism also cuts down the expense when training
several models for a group of languages (Johnson
et al., 2017; Aharoni et al., 2019).

UDify (Kondratyuk and Straka, 2019) is a multi-
task self-attention network finetuned on multilin-
gual BERT (mBERT) (Devlin et al., 2019) pre-
trained embeddings, capable of producing annota-

∗ This work was done during the first author’s intern-
ship at National Institute of Information and Communications
Technology, Kyoto, Japan.

Figure 1: Change in the UAS of a model during the train-
ing process on the Breton test set for both the baselines
(Baseline and Self) and the proposed method (Unsup).

tions for any treebank from Universal Dependen-
cies 2.3 (Zeman et al., 2018). UDify exhibits strong
and consistent performance across a wide range of
languages and tasks such as lemmatization, POS
tagging, and dependency parsing. In addition to
UDify, there are several comparable state-of-the-art
methods, such as Choudhary (2021); Üstün et al.
(2022); Langedijk et al. (2022); Effland and Collins
(2023). A problem highlighted by several related
studies is the substantial discrepancy in the per-
formance of these methods in zero-shot learning
scenarios, even with identical training strategies,
datasets, models, and evaluation methods (Üstün
et al., 2020; Langedijk et al., 2022).

This work investigates the underlying reason
for the phenomenon regarding zero-shot cases by
exhaustively examining the epochs during model
training. To resolve this problem, a data augmen-
tation strategy is proposed to improve the perfor-
mance and stability of UDify. Specifically, the
original UDify provides an initialization based on
unsupervised learning for a zero-shot language; the
generated results by unsupervised learning are then
incorporated into UDify’s training set so that the
zero-shot language is converted into an artificial
few-shot language.

Experiments on the Breton language are taken
as a case study. The data augmentation, based



on unsupervised learning, efficiently boosted the
unlabeled attachment score (UAS) from 68.4% to
76.1%. Furthermore, the parsing accuracy for other
languages did not decrease, which suggests that the
overall robustness of multilingualism processing is
still retained.

This paper is organized as follows. In Section 2,
we first introduce UDify and unsupervised learning
algorithms as the background of this study. Sec-
tion 3 describes the performance of UDify in low-
resource language scenarios, particularly in zero-
shot languages, as well as the data augmentation
method based on UDify and unsupervised learning
algorithms. The experimental results of the case
study, with discussions, are provided in Sections 4
and 5. Section 6 concludes the paper and discusses
work scheduled for the near future.

2 Background

2.1 UDify
The UDify model jointly predicts lemmas, POS
tags, morphological features, and dependency struc-
tures. The pre-trained mBERT model1 is a self-
attention network with 12 transformer encoder lay-
ers. It is used in the UDify model for cross-lingual
learning. Specifically, mBERT’s subword tokeniza-
tion scheme is directly adopted in UDify without
additional tags to distinguish the original languages.
The tokens are then embedded and passed to the
self-attention layers. A strategy similar to that of
ELMo (Peters et al., 2018) is adopted, where a
weighted sum of the outputs of all layers is com-
puted as follows and fed to a task-specific classifier.

etaskj = η
∑

imBERTij · softmax(w)i

Here, etask denotes the contextual output embed-
dings for the tasks. In the case of UDify, the tasks
include lemmas, POS tags, morphological features,
and dependency structures. The term mBERTij

represents the mBERT representation for layer
i = 1, · · · , 12 at token position j. The terms w
and η denote trainable scalars, where the former
applies to mBERT and the latter scales the normal-
ized averages. For words that have been tokenized
into multiple subword units, only the first subword
unit is fed to the dependency parsing classifier.

The dependency parsing classifier is a graph-
based bi-affine attention classifier (Dozat and Man-
ning, 2017). It projects the embeddings etaskj

1github.com/google-research/bert/multilingual.md

through arc-head and arc-dep feedforward layers.
The resulting outputs are combined using bi-affine
attention to produce a probability distribution of
the arc heads for each word. Finally, the depen-
dency tree is decoded using the Chu–Liu/Edmonds
algorithm (Chu, 1965; Edmonds et al., 1967).

2.2 Unsupervised Dependency Learning

Adhering to the properties of dependency syntax
(Robinson, 1970), a general unsupervised algo-
rithm for projective N-gram dependency learning
(Unsupervised-Dep) was described in Ding and
Yamamoto (2013, 2014). This method constructs
the best dependency tree with a dynamic program-
ming method using a CYK style chart and is based
on the complete-link and complete-sequence non-
constituent concepts. However, considering the
time complexity of this approach for arbitrary N-
gram dependency learning, which may not be ideal
for practical applications, we chose to focus in this
study on the case of the bi-gram.

When considering the bi-gram, the directionality
of a complete-link is set by the outermost depen-
dency relation, with (wi → wj) indicating a right-
ward link and (wi ← wj) indicating a leftward
one. A basic complete-link is an adjacent word
dependency link.

A complete-sequence represents a null or se-
quential set of adjacent complete-links with iden-
tical directionality. It begins as a null sequence of
complete-links based on a single word, its smallest
constituent. The direction of a complete-sequence
matches that of its component complete-links.

The unsupervised learning firstly constructs the
complete-links and complete-sequences for a sub-
string, and then incrementally merges the complete-
links into larger complete-sequences and complete-
sequences into larger complete-links, recursively
defined as follows.

Linkr(i, j) ≡ {(wi → wj), Seqr(i, k), Seql(k + 1, j)}

Linkl(i, j) ≡ {(wi ← wj), Seqr(i, k), Seql(k + 1, j)}

Seqr(i, j) ≡ {Seqr(i, k), Linkr(k, j)}

Seql(i, j) ≡ {Linkl(i, k), Seql(k, j)}

In these equations, Link and Seq denote a
complete-link and complete-sequence respectively,
whereas r and l indicate the direction (right or left).
Furthermore, i and j respectively represent the
starting and ending indices of a word sequence
in the sentence.

https://github.com/google-research/bert/blob/master/multilingual.md


This process continues until the Linkr(1, n)
with the maximum probability has been con-
structed, where n is the index of the last word in
the sentence. These probabilities are calculated us-
ing the Inside–Outside algorithm (Lari and Young,
1990). Finally, the Viterbi algorithm (Forney, 1973)
is employed to determine the tree construction in
the calculated Inside portion with the maximum
probability, thus generating the optimal structure.

3 Proposed Method

3.1 Motivation

In this work, we adopt the classification of low-
resource languages such as Yang et al. (2022), di-
viding them into two types: few-shot languages,
which only contain a small number of training data,
and zero-shot languages, which do not contain any
training data. This categorization enables a more
systematic examination of UDify’s performance,
providing the insights that guide our research.

Although the number of training epochs in the
original UDify was set to 80, the reported exper-
imental results in our reproduction could only be
reached after around 200 epochs.2 Therefore, we
monitored the changes in the test sets of few-shot
and zero-shot languages during these 200 epochs,
which we detail in the following.

Few-Shot Languages UDify performs well
even on few-shot languages that were not included
in the mBERT training set. For instance, the Up-
per Sorbian language, which was not included in
mBERT’s training data, is very low-resourced, with
the Upper_Sorbian-UFAL treebank consisting of
a training set of only 23 sentences and no devel-
opment set. Nevertheless, UDify still manages to
demonstrate impressive parsing accuracy in Upper
Sorbian and other few-shot languages. During the
course of training, the parsing accuracy on the test
set increases steadily, as illustrated in Figure 2.

Zero-Shot Languages In the Universal De-
pendencies 2.3 used for UDify’s training, treebanks
of 13 languages have no training or development
sets. Among these languages, three3 are included
in mBERT’s training data, and their dependency
structures are learned by UDify through transfer
learning. Unlike high-resource and few-shot lan-
guages, a decrease in the accuracy of dependency

2lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-
3042

3i.e., Breton, Tagalog, and Yoruba

Figure 2: Changes in the UAS of few-shot languages
during the training process.

Figure 3: Changes in the UAS of zero-shot languages
during the training process.

parsing is exhibited during the learning process
of all of these zero-shot languages. The best per-
formance typically was reached after 8 epochs of
training, as shown in Figure 3.

This phenomenon has been noticed (Üstün et al.,
2020; Choudhary, 2021; Langedijk et al., 2022;
Üstün et al., 2022) but not yet systematically inves-
tigated to the best of our knowledge. Given that
the accuracy of dependency parsing for zero-shot
languages tends to decrease as training progresses,
the number of epochs becomes a crucial factor in
the inconsistency observed in related work.

Considering the observed positive correlation be-
tween parsing accuracy and the number of training
epochs for high-resource and few-shot languages, it
is somewhat unexpected to encounter a substantial
discrepancy between the optimal and final testing
results for zero-shot tasks. This calls for special-
ized strategies to bridge this gap. In the following
text, we introduce a data augmentation technique
based on Unsupervised-Dep. This technique aims
to reduce the performance gap and thus improve
the effectiveness of UDify in parsing dependency
arc-heads for zero-shot languages.

3.2 UDify with Unsupervised Augmentation

When applying Unsupervised-Dep to data augmen-
tation, it is essential to ensure the generated data

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3042
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3042


Figure 4: Integration of the parsing results from UDify with the training outcomes from the Unsupervised-Dep for
new UDify model training. Models/algorithms are represented by dashed line boxes, whereas data/parameters are
depicted within solid line boxes. Additionally, all processes associated with the construction of UD

′
are indicated

by gold and blue lines.

aligns with the original data format. Therefore, in
addition to dependency arc-heads, other types of
data must be generated and combined with the re-
sults from Unsupervised-Dep. This ensures that
the generated data conforms to the Universal De-
pendencies (UD) treebank format. The entire data
augmentation process, as depicted in Figure 4, is
described in the following paragraphs.

Unsupervised-Dep has a high time complexity
of O(n3), which makes the common practice in
the original methods, which start training from a
random probability, somewhat inefficient. To cir-
cumvent this, we decided to leverage the parsing
results from UDify to initialize the probabilities.
Despite the potential decrease in UDify’s accuracy
on zero-shot languages during its training, the final
results consistently outperform those from other
parsing models (Qi et al., 2018; Zeman et al., 2018;
Tran and Bisazza, 2019), providing a robust foun-
dation for our initialization approach.

Our approach commences by feeding the raw
corpus, denoted as Dtrain, into trained-UDify,
generating the dependency arc-head, represented
by DEParc. Next, statistical computations are per-
formed specifically on the DEParc elements. The
results, P (wi → wj) and P (wi ← wj), serve
as the initial probabilities for Unsupervised-Dep.
Note that although the UDify parsing results do
include other types of information such as POS and
lemma (denoted as others), these are disregarded
in the parsing results of Dtrain because they do not
participate in our subsequent computations.

The input for Unsupervised-Dep consists of
Dtrain and the initial probabilities P (wi → wj)
and P (wi ← wj). After undergoing a set number
of epochs, we obtain the re-estimated probabili-
ties P (wi → wj)

′
and P (wi ← wj)

′
. This pro-

Algorithm 1 Unsupervised-Dep

1: Input: P (wi → wj), P (wi ← wj),
2: Dtrain = s1, ..., sn
3: Output: P (wi → wj)

′
, P (wi ← wj)

′

4: for each s ∈ Dtrain do
5: for i = 1 to length(s) do
6: for j = 1 to length(s) do
7: αLink

r (i, j), αLink
l (i, j) = inside

(i, j, P (wi → wj), P (wi ← wj))

8: for i = 1 to length(s) do
9: for j = 1 to length(s) do

10: βLink
r (i, j), βLink

l (i, j) = outside
(i, j, P (wi → wj), P (wi ← wj))

11: for i = 1 to length(s) do
12: for j = 1 to length(s) do
13: P (wi→wj)

′
= αLink

r (i,j)βLink
r (i,j)

P (Linkr(1,n))

P (wi←wj)
′
=

αLink
l (i,j)βLink

l (i,j)

P (Linkr(1,n))

cess adheres to the principles of the Expectation–
Maximization algorithm, as Algorithm 1 confirms.
Notably, in the algorithm, the inside probability
of Link/Seq is denoted as α, whereas the out-
side probability of Link/Seq is represented as β.
These re-estimated probabilities serve as parame-
ters for the inside part and are later integrated with
the Viterbi algorithm, denoted as V iterbi. The
implementation of V iterbi allows the optimal de-
pendency arc-head structure to be discovered.

To construct the data in the UD treebank format,
the parse results of Dtest from trained-UDify are
required. However, we need to retain information
other than DEParc, denoted as others

′
. This infor-

mation is used along with DEP
′
arc, which is gener-

ated by parsing Dtest with the trained V iterbi al-
gorithm and searching for the optimal dependency



arc-head structure. At this point, all the elements
required for constructing the new data in the UD
format, denoted as UD

′
, have been assembled. The

constructed UD
′

is then combined with the exist-
ing UD treebank for the subsequent UDify training.
Notably, the dependency arc-dep is only changed
when the word is linked to changes to the root; in
all other cases, it remains unchanged.

4 Experiments

4.1 Dataset

We selected Breton from OPUS (Lison and Tiede-
mann, 2016) as our target low-resource language
for the implementation of Unsupervised-Dep. Bre-
ton, which is most often tokenized using spaces,
is classified as a language facing serious risk of
extinction (Parliament et al., 2014; Tyers and Rav-
ishankar, 2018). After cleaning the collected data
using the MOSES tool (Koehn et al., 2007), we
obtained 99.5k sentences.

From this collection, we first identified a subset
of 300 sentences, referred to as test300. To conduct
more detailed testing of the sentence structures gen-
erated by Unsupervised-Dep, we later expanded
this subset by incorporating an additional 200 sen-
tences, resulting in a total of 500 sentences, referred
to as test500. The division of the collected data in
the experiment is summarized in Table 1. The train-
ing set is referred to as Dtrain in Section 3.2 and
is used for obtaining and updating the probabilities
P (wi → wj) and P (wi ← wj). The validation set
is applied to validate the results of Unsupervised-
Dep learning. The test set, referred to as Dtest in
Section 3.2, demonstrates the results of our data
augmentation. In subsequent sections, we refer to
these collected data as OPUS-br.

To evaluate our proposed method, we used the
same version of the UD treebank that UDify uses
for our experiments. During training, we concate-
nated all training sets, mirroring the approach of
McDonald et al. (2011). We shuffled all sentences
before each epoch and fed the mixed batch of
sentences into the network, including sentences
from any language or treebank, whether they were
original UD treebank sentences or those generated
through Unsupervised-Dep.

4.2 Setup

To minimize the impact of potential experimental
environmental variations (Popel and Bojar, 2018),

data set #sentence #word
train 90,000 1,023,292
valid 9,000 113,066
test300 300 2,663
test500 500 4,469

Table 1: Division of the OPUS-br into training, valida-
tion, and test sets, and the number of words in each set.

Hyper-parameters Value
Dependency arc-dep dimension 256
Dependency arc-head dimension 768
Optimizer AdamW
b1,b2 0.9,0.99
Dropout 0.5
Bert Dropout 0.2
Mask probability 0.2
Layer dropout 0.1
Batch size 32
Epochs 200
Base learning rate 7e−3

mBERT learning rate 5e−5

Learning rate warmup steps 8000
Gradient clipping 5.0

Table 2: Hyperparameter settings

Figure 5: Training and validation set perplexity after
each epoch.

we re-implemented the model provided by UDify.4

To expedite the experiment, we implemented multi-
GPU parallel training5 by modifying UDify using
Horovod (Sergeev and Balso, 2018). This mod-
ification also led to changes in the experimental
parameters, which are detailed in Table 2. Fur-
thermore, we divided the learning rate into two
categories of base and mBERT, and set the learn-

4github.com/Hyperparticle/udify
5When parallelizing across seven V100s, replicating UDify

requires close to 12 days.

https://github.com/Hyperparticle/udify


Breton Other Languages
UPOS UFeats Lemma UAS LAS UPOS UFeat Lemma UAS LAS

Baseline 68.6 47.8 44.7 68.4 48.5 83.6 83.2 91.7 77.7 70.6
Self300 72.3 47.3 50.5 70.1 51.0 83.6 83.2 92.0 77.7 70.5
Unsup300 74.3 51.0 57.6 75.4 60.5 83.6 83.2 92.0 77.7 70.6
Unsup500 74.7 50.5 57.7 76.1 61.5 83.6 83.2 91.9 77.7 70.6

Table 3: Full UD scores on Breton and other languages obtained by different methods.

UAS
last best

gap

UDify 63.5 - -
Baseline 68.4 76.2 -7.8
Self300 70.1 76.2 -6.1
Unsup300 75.4 76.5 -1.1
Unsup500 76.1 76.9 -0.8

Table 4: UAS on Breton obtained using different meth-
ods. The UDify result was reported in Kondratyuk and
Straka (2019).

ing rate for mBERT to 5e−5. This approach was
proven effective by Kondratyuk and Straka (2019).

We initially computed the parsing results of
the training data from OPUS-br using the re-
implemented UDify model. These results served
as the initial probabilities for P (wi → wj) and
P (wi ← wj). These probabilities were contin-
uously re-estimated throughout the learning pro-
cess of OPUS-br. To monitor the progression,
we used the perplexity to observe the changes in
P (Linkr(1, n)) using these re-estimated probabil-
ities for both the training and validation set, as
shown in Figure 5. After the 10th training epoch,
we employed the re-estimated probabilities to parse
the test set from OPUS-br.

In our multilingual parser experiments, we uti-
lized a replicated UDify model, which we refer
to as the Baseline. Our methods, Unsup300 and
Unsup500, integrate the refined dependency arc-
heads generated by Unsupervised-Dep into the UD
treebank. Unsup300 incorporates sentences from
OPUS-br test300, generated by Unsupervised-Dep,
into the UDify training set. For Unsup500, we used
the sentences from OPUS-br test500.

Inspired by the work of Rybak and Wróblewska
(2018), we conducted an experiment with a com-
parative method referred to as Self300. Within this
approach, we used the test300 data, diverging from
the use of Unsupervised-Dep for sentence refine-
ment. The sentences were directly parsed with the

replicated UDify model instead. The parsing re-
sults were then converted into UD treebank format,
merged with the original training set, and used for
a new round of UDify model training.

4.3 Result

A comparison with the experimental results re-
ported in the original UDify study confirms that
UDify was re-implemented successfully, as demon-
strated in Table 4. The results in this table not
only indicate a significant improvement in UDify’s
ability to avoid the decrease in dependency arc-
head accuracy for the Breton language at the end
of the training, regardless of the proposed method
that was implemented but also indicate that while
self300 causes only a minor increase in the UAS
score, Unsup300 and Unsup500, which incorporate
data generated from Unsupervised-Dep, signifi-
cantly augment the accuracy of the dependency
arc-head. In addition, the changes in UAS for the
Breton during the training process of UDify under
different methods are shown in Figure 1.

Given UDify’s role as a multilingual and multi-
task parser, it is vital to consider the influence of
our proposed methods on other tasks and languages.
For a comprehensive comparison, the remaining
UD scores of Breton and other languages have been
compiled in Table 3.

Considering all results, we argue that the conver-
sion of zero-shot language learning into a few-shot
language learning scenario is both essential and
effective in multilingual modeling contexts.

5 Discussion

5.1 Dependency on the Zero-Shot Task

As shown in Table 4, transforming zero-shot lan-
guages into few-shot languages demonstrated a sig-
nificant decrease in the performance disparity be-
tween the peak and final performance during the
training of UDify. It is evident that our proposed
method of data augmentation, Unsupervised-Dep,



a)-1. Standard
a)-2. Generation results of 

baseline and proposed 
b). Example of sentence-ending 
punctuation with non-root parent 

Figure 6: Examples of dependency structures in the Breton language.

can effectively mitigate the decline in accuracy dur-
ing the training process.

Initially, considering that our data were manually
created from raw data collected from OPUS, and
because we had concerns about the quality of such
data and constraints related to training time, we
used test300. After observing a positive impact on
the experimental results from the sentences gener-
ated by Unsupervised-Dep, we expanded our exper-
iment to use test500. Because of time constraints,
our current study did not definitively establish a
correlation between the volume of data generated
by Unsupervised-Dep and improved performance
on zero-shot languages. We anticipate that future
research will explore this potential relationship.

We now turn our attention to an analysis of spe-
cific instances within the parsing results. In a de-
pendency structure, the terminus of an arc is re-
ferred to as the parent node, while the origin is
deemed the child node. As illustrated in Figure 6a)-
1, the parent node of "." is designated as "ra." In the
majority of cases, the parent node of a sentence’s
terminal punctuation is the root of the sentence it-
self, as demonstrated in Figure 6a)-1. However, ex-
ceptions do exist, as exemplified in Figure 6b). An
examination of the Breton-KEB test set revealed
that such exceptions occurred 11 times under the
standard method, 60 times under the Baseline, and
34 times under Unsup500. When compared with
those of the Baseline, the reduced number of ex-
ceptions in the Unsup500 test set signifies that our
proposed method mitigates these irregularities.

In the parsing results, both the Baseline and
Unsup500 correctly classified the UPOS of the key-
words ("ra" as VERB, "glav" as NOUN). Here, "ra"
translates to "do" and "glav" translates to "rain"
in English, signifying "Do not rain" in Breton.
However, the Baseline made an error in selecting
the root, which was completely resolved in the
Unsup500 results, as depicted in Figure 6a)-2.

Figure 7: Percentage of child nodes connected to erro-
neous parent nodes under different methods, with the
x-axis sorted by the count of child node errors in the
Baseline.

Figure 8: Percentage of arc-dep misclassifications under
different methods, with the x-axis sorted by the count
of arc-dep errors in the Baseline.

The status of child node connections also shows
significant improvement. We display the propor-
tion of child nodes incorrectly linked to parent
nodes by both the Baseline and Unsup500 in Figure
7. Evidently, Unsup500 has made significant strides
in the parsing outcomes of dependency arcs when
compared with the Baseline. The labeled attach-
ment score (LAS) is computed based on the UAS,
and for Unsup500, the LAS is 13 points higher than
it is for the Baseline. Thus, we also display the
proportion of incorrectly labeled arc-dep in the
Baseline and Unsup500 in Figure 8.

As shown in Figure 8, two types of arc-deps, dep
and nmod:gen, have an error rate of 100%, albeit



Figure 9: Changes in the UAS changes for the Baseline
and Unsup500 models on all test treebanks. The x-axis
sorts the UD treebanks by the ascending improvement
of the proposed method over the Baseline.

for different reasons. For dep, which only accounts
for 0.3% of all arc-deps in all UD treebanks, it
can be regarded as a tagging error.6 By contrast,
nmod:gen is an arc-dep type that only exists in
Breton.7 As our model is trained using existing
data from UDify and raw Breton corpora collected
from OPUS, it is incapable of correctly identifying
the arc-dep type as nmod:gen.

5.2 Tasks on Other Languages

Considering UDify’s role as a multilingual and
multi-task parser, it is necessary to evaluate the
impact of the proposed method on other tasks and
languages. To observe in detail the differences
and changes in the UAS and LAS between the
Baseline and Unsup500, we conducted tests across
all treebanks and display the results in Figures 9
and 10. From these figures, it is evident that while
Unsup500 has improved the UAS and LAS accuracy
for Breton, it has had virtually no impact on the
parsing precision of dependency constructions in
other languages.

While our primary research objective was to
improve the parsing accuracy of dependency arc-
heads, we have also enhanced UDify’s performance
in other tasks for Breton, as evidenced by the data
in Table 3. Given that UDify must balance the loss
produced by multiple decoders during training and
the work of Rybak and Wróblewska (2018), these
variations in evaluation metrics are considered rea-
sonable. From a broader perspective, our method
has not had any adverse impact on other languages
and tasks, maintaining their performance levels.

6universaldependencies.org/u/dep/dep.html
7universaldependencies.org/br/dep/nmod-gen.html

Figure 10: Changes in the LAS for the Baseline and
Unsup500 models on all test treebanks. The x-axis sorts
the UD treebanks by the ascending improvement of the
proposed method over the Baseline.

6 Conclusion and Future Work

This study investigated the issue of decreased pars-
ing accuracy exhibited by UDify in zero-shot lan-
guage scenarios, despite its generally outstanding
performance in few-shot language scenarios. To
address this problem, we proposed a method that
applies an unsupervised algorithm to transition a
zero-shot language into a few-shot language con-
text, thereby effectively expanding the dataset and
enhancing the model’s learning capability.

The efficacy of our approach has been substan-
tiated through our experimental results. By incor-
porating sentence dependency arc-head structures
produced by Unsupervised-Dep into UDify’s train-
ing data, we achieved a substantial improvement
in UDify’s performance with zero-shot languages.
This improvement was significant even when only
a limited number of sentences, such as 300 or 500,
were used. Although our constraints did not allow
for a definitive demonstration of a positive correla-
tion between the number of sentences generated by
Unsupervised-Dep incorporated into the training
data and the improvement of UDify in zero-shot
languages, this correlation remains a possibility.

In terms of future endeavors, our research objec-
tives include: 1) investigating further the potential
positive correlation between the volume of unsu-
pervised generated data included in the training set
and the subsequent improvement in UDify’s per-
formance on zero-shot languages and 2) exploring
other contributing factors and considerations that
may further enhance the performance of UDify in
zero-shot language scenarios.

https://universaldependencies.org/u/dep/dep.html
https://universaldependencies.org/br/dep/nmod-gen.html


References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3874–3884,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Chinmay Choudhary. 2021. Improving the performance
of UDify with linguistic typology knowledge. In
Proceedings of the Third Workshop on Computational
Typology and Multilingual NLP, pages 38–60, Online.
Association for Computational Linguistics.

Yoeng-Jin Chu. 1965. On the shortest arborescence of a
directed graph. Scientia Sinica, 14:1396–1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chenchen Ding and Mikio Yamamoto. 2013. An unsu-
pervised parameter estimation algorithm for a gen-
erative dependency n-gram language model. In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 516–524,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

Chenchen Ding and Mikio Yamamoto. 2014. A genera-
tive dependency n-gram language model: Unsuper-
vised parameter estimation and application. Informa-
tion and Media Technologies, 9(4):857–885.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jack Edmonds et al. 1967. Optimum branchings. Jour-
nal of Research of the national Bureau of Standards
B, 71(4):233–240.

Thomas Effland and Michael Collins. 2023. Improv-
ing low-resource cross-lingual parsing with expected
statistic regularization. Transactions of the Associa-
tion for Computational Linguistics, 11:122–138.

G David Forney. 1973. The viterbi algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Dan Kondratyuk and Milan Straka. 2019. 75 languages,
1 model: Parsing Universal Dependencies univer-
sally. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2779–2795, Hong Kong, China. Association for Com-
putational Linguistics.

Anna Langedijk, Verna Dankers, Phillip Lippe, Sander
Bos, Bryan Cardenas Guevara, Helen Yannakoudakis,
and Ekaterina Shutova. 2022. Meta-learning for fast
cross-lingual adaptation in dependency parsing. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 8503–8520, Dublin, Ireland. As-
sociation for Computational Linguistics.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 62–72, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

European Parliament, Directorate-General for Internal
Policies of the Union, and M Prys Jones. 2014. En-
dangered languages and linguistic diversity in the
European Union. Publications Office.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.1162/tacl_a_00109
https://doi.org/10.1162/tacl_a_00109
https://doi.org/10.18653/v1/2021.sigtyp-1.5
https://doi.org/10.18653/v1/2021.sigtyp-1.5
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I13-1059
https://aclanthology.org/I13-1059
https://aclanthology.org/I13-1059
https://doi.org/10.1162/tacl_a_00537
https://doi.org/10.1162/tacl_a_00537
https://doi.org/10.1162/tacl_a_00537
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2022.acl-long.582
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/D11-1006
https://aclanthology.org/D11-1006
https://op.europa.eu/en/publication-detail/-/publication/2d55cd0d-f2e6-4857-8878-2715be02dc62/language-en/format-PDF/source-289889182
https://op.europa.eu/en/publication-detail/-/publication/2d55cd0d-f2e6-4857-8878-2715be02dc62/language-en/format-PDF/source-289889182
https://op.europa.eu/en/publication-detail/-/publication/2d55cd0d-f2e6-4857-8878-2715be02dc62/language-en/format-PDF/source-289889182


Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Martin Popel and Ondrej Bojar. 2018. Training tips for
the transformer model. Prague Bull. Math. Linguis-
tics, 110:43–70.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160–170, Brussels,
Belgium. Association for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Jane J. Robinson. 1970. Dependency structures and
transformational rules. Language, 46(2):259–285.

Piotr Rybak and Alina Wróblewska. 2018. Semi-
supervised neural system for tagging, parsing and
lematization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 45–54, Brussels,
Belgium. Association for Computational Linguistics.

Manon Scholivet, Franck Dary, Alexis Nasr, Benoit
Favre, and Carlos Ramisch. 2019. Typological fea-
tures for multilingual delexicalised dependency pars-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 3919–
3930, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Alexander Sergeev and Mike Del Balso. 2018. Horovod:
Fast and easy distributed deep learning in TensorFlow.
arXiv preprint arXiv:1802.05799.

Milan Straka and Jana Straková. 2020. UDPipe at
EvaLatin 2020: Contextualized embeddings and tree-
bank embeddings. In Proceedings of LT4HALA 2020
- 1st Workshop on Language Technologies for Histor-
ical and Ancient Languages, pages 124–129, Mar-
seille, France. European Language Resources Asso-
ciation (ELRA).

Ke Tran and Arianna Bisazza. 2019. Zero-shot depen-
dency parsing with pre-trained multilingual sentence
representations. In Proceedings of the 2nd Workshop
on Deep Learning Approaches for Low-Resource
NLP (DeepLo 2019), pages 281–288, Hong Kong,
China. Association for Computational Linguistics.

Francis M Tyers and Vinit Ravishankar. 2018. A pro-
totype dependency treebank for Breton. In Actes de
la Conférence TALN. Volume 1 - Articles longs, arti-
cles courts de TALN, pages 197–204, Rennes, France.
ATALA.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2022. UDapter: Typology-based lan-
guage adapters for multilingual dependency parsing
and sequence labeling. Computational Linguistics,
48(3):555–592.

Zhe Yang, Qingkai Fang, and Yang Feng. 2022. Low-
resource neural machine translation with cross-modal
alignment. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10134–10146, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. CoNLL 2018 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–21, Brussels, Belgium. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf
http://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://www.jstor.org/stable/412278
http://www.jstor.org/stable/412278
https://doi.org/10.18653/v1/K18-2004
https://doi.org/10.18653/v1/K18-2004
https://doi.org/10.18653/v1/K18-2004
https://doi.org/10.18653/v1/N19-1393
https://doi.org/10.18653/v1/N19-1393
https://doi.org/10.18653/v1/N19-1393
https://aclanthology.org/2020.lt4hala-1.20
https://aclanthology.org/2020.lt4hala-1.20
https://aclanthology.org/2020.lt4hala-1.20
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/D19-6132
https://aclanthology.org/2018.jeptalnrecital-court.1
https://aclanthology.org/2018.jeptalnrecital-court.1
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.1162/coli_a_00443
https://doi.org/10.1162/coli_a_00443
https://doi.org/10.1162/coli_a_00443
https://aclanthology.org/2022.emnlp-main.689
https://aclanthology.org/2022.emnlp-main.689
https://aclanthology.org/2022.emnlp-main.689
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001

