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Abstract

Scientific Information Extraction (ScientificIE)
is a critical task that involves the identifica-
tion of scientific entities and their relationships.
The complexity of this task is compounded by
the necessity for domain-specific knowledge
and the limited availability of annotated data.
Two of the most popular datasets for Scienti-
ficIE are SemEval-2018 Task-7 and SciERC.
They have overlapping samples and differ in
their annotation schemes, which leads to con-
flicts. In this study, we first introduced a novel
approach based on multi-task learning to ad-
dress label variations. We then proposed a soft
labeling technique that converts inconsistent la-
bels into probabilistic distributions. The exper-
imental results demonstrated that the proposed
method can enhance the model robustness to
label noise and improve the end-to-end perfor-
mance in both ScientificIE tasks. The analysis
revealed that label variations can be particu-
larly effective in handling ambiguous instances.
Furthermore, the richness of the information
captured by label variations can potentially re-
duce data size requirements. The findings high-
light the importance of releasing variation la-
bels and promote future research on other tasks
in other domains. Overall, this study demon-
strates the effectiveness of multi-task learning
and the potential of label variations to enhance
the performance of ScientificIE.1

1 Introduction

Information extraction (IE) refers to the process
of automatically identifying the entities and rela-
tions from unstructured text. Extracting the infor-
mation from a scientific paper is more challeng-
ing than from open-domain data, given that scien-
tific texts require in-depth knowledge of the sub-
ject matter for accuracy; thus, labeling is costly
and the amount of labeled data is limited. Bassig-
nana and Plank (2022b) revealed that two well-

1Data and code are publicly available at: https://
github.com/dongpham120899/LabelVariation_SciIE

known datasets, namely, SemEval-2018 (Gábor
et al., 2018) and SciERC (Luan et al., 2018), con-
tain overlapped abstracts and directly correspon-
dent labels; however, they differ in their annota-
tions. In particular, there are 307 abstracts (out
of 500 abstracts) that are overlapped between the
two datasets. The number of annotated relations
in these abstracts differs significantly and includes
conflicting instances. The presence of conflicting
annotations raises concerns regarding the reliability
of these datasets; thus, the determination of trust-
worthiness is challenging, especially with limited
resources.

Labeling plays a crucial role in machine learn-
ing pipelines, as it involves assigning labels to data
points to train models effectively. However, human
labeling is generally subject to errors and inconsis-
tencies (Plank, 2022), and label aggregation cannot
capture the actual complexity of the world (Basile
et al., 2021). Using only high-agreement instances
for model training and testing can cause overfit-
ting and data redundancy (Jamison and Gurevych,
2015). Therefore, different annotated opinions
should be retained and “variation” should be con-
sidered over “disagreement”, given that disagree-
ment annotations imply that two (or more) views
involved are not all accurate (Plank, 2022).

Label variation occurs in ScientificIE when dif-
ferent annotators assign different labels to the same
entity or relationship. This variation can stem from
various factors, including differences in domain
knowledge or interpretations of annotation guide-
lines, in addition to the subjective understanding of
the underlying data. In response to the challenge of
label variations arising from overlapping datasets,
we developed a novel approach based on multi-task
learning. By jointly training the proposed model
on multiple perspectives, overlapping and conflict-
ing annotations can be effectively handled. We
released soft labels (a probability distribution gen-
erated by multi-level agreements) as an auxiliary

https://github.com/dongpham120899/LabelVariation_SciIE
https://github.com/dongpham120899/LabelVariation_SciIE


loss. Leveraging soft labels with several loss func-
tions can reduce the penalty for errors and enhance
the model robustness (Fornaciari et al., 2021).

To evaluate the effectiveness of the proposed
approach, we conducted experiments using over-
lapped data as the training set and non-overlapped
data as the testing set. We compared the perfor-
mances of models trained on these datasets using
traditional label aggregation methods and the pro-
posed multi-task learning approach. Additionally,
we conducted a cross-dataset evaluation on the
SciREX dataset (Jain et al., 2020) and performed
testing using the standard splitting of the SciERC
benchmark (Luan et al., 2018). The experimental
results revealed that the proposed approach effec-
tively mitigated the impact of label variation on
model performance, thus leading to improvements
in the accuracy and robustness of two of the tasks,
namely, name entity recognition (NER) and rela-
tion extraction (RE). In particular, we found that
label variation is particularly effective in handling
ambiguous instances, and the richness of informa-
tion captured by label variation can reduce data
size requirements.

Overall, the findings suggest that multi-task
learning and soft labels derived from inconsistent
annotations can be powerful tools for addressing
label variations in ScientificIE tasks. Moreover,
future research in this field should be promoted, to
comprehensively consider the potential benefits of
these approaches.

2 Label Variation in ScientificIE

Inconsistencies in annotations across different
datasets can result in label variation, which presents
a significant challenge for accurate and reliable ma-
chine learning models. The issue of label varia-
tion is exemplified in the overlap and annotation
divergence observed in the SemEval-2018 Task 7
(Gábor et al., 2018) and SciERC (Luan et al., 2018)
datasets, which has been discussed in previous re-
search (Bassignana and Plank, 2022b). In this sec-
tion, we delve deeper into the issue of inconsistent
labels and argue for the importance of releasing
variation labels in ScientificIE.

2.1 Datasets

SemEval-2018 Task 7 (Gábor et al., 2018) This
dataset2 comprises 500 abstracts from published re-

2To ensure a fair comparison with SciERC, we utilized
resources specific to sub-task 2 (Relation extraction and clas-

SemEval-2018 SciERC

Label mapping

Comparison Compare
Usage Used-for
Part-whole Part-of
Model Feature-of
Result Evaluate-for

Statistic on whole corpus

# Entities 7483 8089
# Relations 1583 4648
# Relations/Doc 3.2 9.3

Statistic on 307 overlapped abstracts

# Entities 4592 4252
# Relations 1087 2476
# Common Relations 1071 1922

Table 1: Label mapping between the two datasets and
statistics in both datasets.

search papers from the ACL Anthology. It focuses
on predicting relations between two entities with
six pre-defined relations (Usage, Result, Model,
Part-Whole, Topic, Comparison). The entity anno-
tations are first automatically identified and then
manually corrected by other annotators. The target
is to identify maximum noun phrases, abbrevia-
tions, and their context. The relation annotation
process is divided into three steps: defining, vali-
dation, and annotation. The domain experts only
annotate the semantic relations that are explicit and
relevant to comprehending the abstract.

SciERC (Luan et al., 2018) This corpus includes
annotations for scientific entities, their relations,
and coreference for 500 scientific abstracts from
the AI communities. They defined six types for
scientific annotation entities (Method, Metric, Task,
Material, Generic, OtherScientificTerm) and seven
relation types (Used-for, Evaluate-for, Feature-of,
Part-of, Compare, Hyponym-of, Conjunction). The
final annotations were obtained by greedy strategy
from multiple annotators. Their annotators were
preferred to indicate a longer span whenever ambi-
guity occurs and ignore negative relations.

2.2 Overlap of the Datasets

Bassignana and Plank (2022b) identified 307 ab-
stracts that were common to both the SemEval-
2018 Task 7 and SciERC datasets. This indicates
that there are 193 non-overlapped abstracts in each
dataset. In addition, most of the relationships in
both datasets have direct corresponding labels. To
clarify the correspondence, we computed the co-

sification on clean data) from SemEval-2018 Task 7.



Example 1: Overlapped relation

The system is based on a multi-component architecture .

Sem_Usage
Sci_Used-for

Example 2: Conflicted relation

semantics represented in a logical form language .

Sem_Model
Sci_Used-for

Example 3: Conflicted entity

SemEval-2018 This paper introduces a system for categorizing unknown words .

SciERC This paper introduces a system for categorizing unknown words .

Sci_Used-for

Example 4: Different entity and relation

SemEval-2018 We propose a detection method . for orthographic variants caused by transliteration . in a large corpus .

Sem_Parth-Whole

SciERC We propose a detection method . for orthographic variants . caused by transliteration . in a large copurs .

Sci_Used-for

Table 2: The noise samples occur in label variation. For the relation part, we use “Sem” [*blue] to denote relation
in the SemEval dataset, while “Sci” [*green] denotes the SciERC dataset.

occurrence score of relational labels between two
pairs of entity labels, which is detailed in the Ap-
pendix A.

Table 1 provides an overview of the label map-
ping and the quantities of entities and relations in
each dataset. Both datasets contain an equal num-
ber of abstracts; however, there is a minor disparity
in the number of entities. The significant distinc-
tion arises from the amount of annotated relations,
i.e., SemEval-2018 has 3.2 relations per abstract
while SciERC has 9.3 relations per abstract. We
further highlighted their distinctiveness in the distri-
bution of common relations, as shown in Figure 3
in Appendix B. This inconsistency can be attributed
to the different interpretations of annotation guide-
lines, where SemEval-2018 is focused on explicit
relationships while SciERC on broader coverage

2.3 Release the Label Variation

The presence of label variation introduces inconsis-
tency and ambiguity into the labeled data, which
poses significant challenges for the training of ac-
curate and reliable scientific extraction systems. Ta-
ble 2 presents four noise scenarios between the two
datasets. These examples illustrate the difficulties
associated with resolving significant disagreements
and the limitations of dependence on the gold label.
The actual world is excessively complex to be repre-

sented by an independent perspective. Nonetheless,
incorporating labels from both datasets to train a
single model poses a significant challenge. Sec-
tion 3 presents our proposed method that leverages
multi-task learning to effectively address label in-
consistencies arising from dataset overlaps.

3 Multi-Task Learning to Handle with
Label Variation

In this section, we first present a summary of the
architecture of the end-to-end model for IE. We
then introduce our proposed method for the multi-
task learning of multi-perspectives. Finally, we
developed the soft label with multi-level agree-
ments from inconsistent annotations to enhance
the model’s robustness.

3.1 SpERT
Eberts and Ulges (2019) introduced a span-based
joint entity and relation extraction model referred
to as SpERT, which is built upon the transformer
pre-training framework. The authors highlighted
the significance of localized context representation
between entity pairs, which contributes to the ef-
fectiveness of their model. Furthermore, SpERT
efficiently extracted a sufficient number of strong
negative samples in a single BERT (Devlin et al.,
2019) pass during training. Finally, SpERT out-



performed previous approaches on several datasets
for the joint entity and relation extraction tasks.
By employing joint modeling, SpERT effectively
captured dependencies between entities and their
relations, thus resulting in improved performance
and reduced processing time.

3.2 Learning with Multi-Perspectives
We propose an approach that utilizes two output
heads in the SpERT architecture, i.e., two in NER
and two in RE, where each represents a single per-
spective in variation annotation. This extension
allows our model to address challenges such as
overlapping and conflicting instances within the
same input text, enabling it to learn inconsisten-
cies in an end-to-end manner for both NER and RE
tasks. To achieve this multi-perspective learning,
we introduce a unified loss function that jointly
optimizes entity classification and relation classi-
fication. The joint loss function is expressed as
follows:

Li = Ls
i + Lr

i (1)

Lmulti = L1 + L2 (2)

where Li denotes the main loss trained with the
i-th perspective annotation, Ls denotes the span
classifier loss (cross-entropy over the entity classes
including none), and Lr denotes the binary cross-
entropy over the relation classes.3 The multi-
perspective loss is calculated by the sum of the
single perspective loss, which encompasses both
the NER and RE. To put it briefly, we used SpERT
as the backbone to compute multi-perspectives, il-
lustrated in Figure 1.

SpERT Architecture

NER 1 NER 2

RE 1 RE 2

SciERC SemEval

Figure 1: Illustration of Multi-Task Learning based on
SpERT architecture to handle label variation.

3In this context, the loss function used by SciERC is de-
noted by L1, while the loss function used by SemEval is
denoted by L2.

3.3 Soft Label from Multi-level Agreements

Unlike most existing models that rely on one-hot
encoded gold distributions, Fornaciari et al. (2021)
was based on a different approach, in that prob-
ability distributions were collected over the la-
bels provided by annotators. This allowed for a
more nuanced notion of truth by comparing it with
soft labels. In the overlapping examples between
SemEval-2018 and SciERC, we observed both con-
sistent and inconsistent relations, which were con-
sidered as multi-level agreements. Example 1 in
Table 2 demonstrates a high level agreement in
annotations between the two datasets, whereas Ex-
ample 2 illustrates conflicting relations with a low
level of agreement. Several instances exhibited
no similarities in entity pairs, thus resulting in dif-
ferent relations, as shown in Example 3. We uti-
lized soft labels as probability distributions over
the labels provided by the multi-level agreements
to address these variations.

In this study, we introduced soft labels at three
levels of agreement (high, medium, and low). The
soft labels were manually computed based on the
degree of agreement between the two sets of data.
To provide a clearer illustration, consider the label
“Sci_Used-for” in the first three examples in Table
2. In the first example, with high agreement, the
label was assigned soft labels as distributions [0.9,
0.025, 0.025, 0.025, 0.025]. In the second exam-
ple, with low agreement, the label was assigned
[0.6, 0.1, 0.1, 0.1, 0.1]. Lastly, in the third ex-
ample, with the medium agreement, the label was
assigned probability distributions [0.8, 0.05, 0.05,
0.05, 0.05].4

To measure the difference between the predicted
distribution Q and distribution of soft labels P,
we used the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951). The standard KL-
divergence is expressed as follows:

DKL(P ||Q) =
∑
x

P (x) log(
P (x)

Q(x)
) (3)

The DKL describes the amount of information
lost when the distribution Q is used to approx-
imate distribution P. Moreover, the inverse KL-
divergence (Fornaciari et al., 2021) was introduced
to encourage a narrow Q distribution, which causes

4In this case, we only consider five types of relationship
labels, with the encoding order being [Use-for, Compare,
Feature-of, Part-of, Evaluate-for].



the model to learn a distribution that directs atten-
tion toward the classes wherein annotations exhibit
potential agreement. We also attempted to compute
the soft label with cross-entropy or binary cross-
entropy loss, as experimentally demonstrated.

We incorporated a soft label as an auxiliary task
to mitigate overfitting. Each individual perspec-
tive was assigned its own soft label, and we in-
cluded two auxiliary losses in addition to the multi-
perspective loss. By considering the soft label be-
tween the two perspectives, closer alignment and
facilitate learning were achieved. The final loss can
be expressed as follows:

Lsoft = DKL(P1||Q1) +DKL(P2||Q2) (4)

Lmulti_with_soft = Lmulti + Lsoft (5)

To avoid underflow issues during computation, we
applied logarithmic normalization to the soft label.
Additionally, we utilized the LogSoftmax activa-
tion function for the auxiliary loss, thus ensuring
that the probabilities of the individual labels did
not approach zero.

4 Experiments

To assess the effectiveness of the proposed method,
we applied three main experimental scenarios to
three datasets. In the first setup, we utilized the
overlaps between two datasets as a training set and
evaluated two of the non-overlaps as testing sets
in the RE task. We then performed a cross-dataset
evaluation on the SciREX dataset (Jain et al., 2020)
for the NER task. Finally, we evaluated the pro-
posed method on the SciERC leaderboard (Luan
et al., 2018) in both tasks.

For all the experiments, we leveraged the SciB-
ERT (cased) model (Beltagy et al., 2019) as a sen-
tence encoder, i.e., a BERT model pre-trained on
a large corpus of scientific papers. We used the
SpERT architecture as a baseline model to run
other training sets with the same hyper-parameters
reported in Eberts and Ulges (2019). We utilized
the spaCy toolkit (Honnibal and Montani, 2017)
to split abstracts into sentences because both Se-
mEval and SciERC datasets only have relations
within sentences, and SpERT requires a single sen-
tence as input. It is noted that the reported score is
the average score from five runs that use different
seeds.

4.1 Overlap and Non-overlap
4.1.1 Deal with Label Variation
Two datasets with two annotation perspectives lead
to inconsistencies in ScientificIE. In this experi-
mental setup, we utilized 307 overlapped abstracts
with multiple annotation perspectives to train the
model, and the two non-overlapped sets in SemEval
and SciERC were used as two testing sets. How-
ever, it is important to note that SemEval-2018 did
not provide entity types in their dataset. Conse-
quently, we removed all entity types from SciERC
and focused only on the RE task with five common
relationships, as shown in Table 1. A performance
evaluation was conducted in both sets using the
micro F1-score metric, and the final score was ob-
tained by averaging the results.

By leveraging the corresponding labels, our pri-
mary objective was to investigate the adaptive capa-
bilities of the two datasets through cross-evaluation
(1.1 and 1.2). With the overlap, we attempted to
implement other means to handle label variations
in accordance with training configurations:

• concat: We employed concatenation by in-
cluding each abstract twice: once from each
dataset (2.1). This technique allowed for the
incorporation of sentence inputs with different
annotations, thus providing a simple method
to address variations in annotation (Sheng
et al., 2008; Uma et al., 2021b). Addition-
ally, to increase the amount of training data,
we leveraged the non-overlapping exclusions
in the respective testing sets (2.2 and 2.3).

• mix: We doubled the annotation of the ab-
stracts from two datasets. In the presence of
overlapped relations, the consistent relation
was retained. With the conflicting annotations,
we filtered out the SemEval-2018 relation in
(3.2) and the SciERC relation in (3.3).

Results Table 3 reports the micro F1-scores ob-
tained from the testing sets, including SemEval,
SciERC, and their average. Training on indepen-
dent datasets, (1.1) and (1.2) yielded satisfactory
results on only one of the sets, indicating limited
adaptability. The concatenation approach (2.1) to
increase training data led to decreased performance
due to inconsistency in the data. Further testing
with non-overlapping portions of the datasets, (2.2)
and (2.3) resulted in a further drop in performance.
With respect to the mixed labeling approach, we



No.
Test set SemEval-2018 SciERC Average

Train set Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1.1 SemEval 21.39 22.93 22.13 27.30 9.33 13.91 24.35 16.13 18.02

1.2 SciERC 6.24 13.84 8.60 43.02 35.83 39.10 24.63 24.84 23.85

2.1 Concat set 11.73 23.35 15.62 41.87 27.99 33.55 26.80 25.67 24.59

2.2 Concat set + Sci 10.22 23.55 14.25 - - - - - -

2.3 Concat set + Sem - - - 39.80 27.36 32.43 - - -

3.1 Mixed set 9.76 29.13 14.62 35.14 35.20 35.17 22.45 32.17 24.89

3.2 Mixed-Sci set 9.44 28.10 14.69 36.35 36.35 36.35 22.90 32.23 25.52

3.3 Mixed-Sem set 10.10 28.72 14.95 34.99 33.68 33.80 22.54 31.20 24.28

4.1 *MTL 23.97 19.90 21.74 44.62 34.00 38.60 34.27 26.95 30.17

4.2 *MTL with soft label 24.69 20.75 22.37 44.33 35.46 39.66 34.51 28.11 31.02

Table 3: Micro F1-scores of the experimental training on the overlap data and testing on the non-overlap data. 1.1
and 1.2 refer to independent training data. 2.1, 2.2, and 2.3 represent the cases where we repeat abstracts from two
datasets. 3.1, 3.2, and 3.3 indicate double annotation. 4.1 and 4.2 represent our proposed model.

found that the mixed dataset achieved the highest
recall score. Combining the two types of anno-
tations increased the number of predictions, thus
resulting in a small number of false negatives. This
led to an increase in the recall score and a decrease
in the precision score, which impacted the overall
F1-score. Additionally, by removing conflicting
relations from the mixed dataset, such as prioritiz-
ing either SciERC or SemEval annotations (3.2)
or (3.3), we observed a slight improvement in per-
formance. This emphasized the inherent limitation
of traditional models in effectively capturing and
incorporating multiple perspectives. In contrast,
the proposed method that utilizes multi-task learn-
ing with soft labels, achieved the optimal F1-score
and precision score. It should be noted that when
using multi-task learning without soft labels (4.1),
the performance in individual testing sets was not
superior to that when training on independent sets
(Sem: 21.74 vs. 22.13 and Sci: 38.60 vs. 39.10).
However, the incorporation of soft labels (4.2) im-
proved the performance, particularly in addressing
label variations and enhancing the model robust-
ness to inconsistencies (Sem: 21.74 → 22.37 and
Sci: 38.60 → 39.66). When comparing the average
scores, the multi-task learning approach outper-
formed other methods in handling label variations
within overlapped datasets.

4.1.2 Impact of Data Quantity

The success of training a deep learning model re-
lies significantly on the availability of sufficient
training data. In the context of ScientificIE, the
limited availability of data can be attributed to the
requirement of expert labeling. Obtaining a size-
able amount of such variations in label data is in-
creasingly challenging (1400 sentences in 307 over-
lapped abstracts). In a previous study (Zhang et al.,
2021), new annotation distribution schemes were
investigated with respect to the learning of multiple
labels per example for a small subset of training
examples, which can lead to novel architectures.
Moreover, Plank (2022) revealed the potential of
label variations to reduce data size. Thus, we con-
ducted a comparison within the SciERC testing set
between the gold and variation labels when decreas-
ing data quantity.

Results Figure 2 illustrates the downward trend
in performance in accordance with a decrease in the
quantity of data in intervals of 100 training samples.
The performance of the gold labels (shown in red)
exhibited a rapid decrease when the data amount
was reduced from 1400 to 1100. In contrast, the
variation labels trained using the proposed method
(shown in blue) exhibited minimal changes within
the same range. Both methods exhibited a simi-
lar decline in performance when the dataset size
was excessively small (from 400–1000 samples).
This observation demonstrated that the richness of
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Figure 2: The impact of data quantity on the perfor-
mance (SciERC testing). The gold label was trained on
SciERC annotations with the SpERT baseline model,
and the variation label was trained using the proposed
model.

Model RE

Precision Recall F1-score

MTL 44.62 34.00 38.60

MTL + BCE 41.94 34.74 38.01

MTL + CrossEntropy 42.65 34.86 38.36

MTL + KL-inverse 45.76 34.97 39.65

MTL + KL-standard 44.33 35.46 39.66

Table 4: The performance of multi-task learning with
(MTL row) and without soft labels (the rest). We com-
pared the effects of different loss functions for soft la-
bels, including the following: BCE, cross-entropy, KL-
inverse (Fornaciari et al., 2021), and KL-standard. All
the scores in this table are obtained by evaluating the
model on the SciERC testing set.

information captured by label variations remained
stable, even with smaller datasets. Achieving a
tradeoff between the data quantity and label diver-
sity is a critical consideration for maximizing the
effectiveness of machine learning models in vari-
ous tasks.

4.1.3 Impact of Soft Label

We presented the soft labeling developed from
multi-level agreements, as shown in Section 3.3,
and used other loss functions to capture the soft
loss. Fornaciari et al. (2021) proposed an inverse
version of the KL-divergence, which was unsuc-
cessful when we applied the logarithmic norm;
thus, we computed the inverse version without nor-
malization. Moreover, we attempted a standard
cross-entropy with a softmax activation function at

the final output head and a standard Binary-Cross-
Entropy (BCE) with a sigmoid layer at the output
head.

Results Table 4 reports the micro-F1 scores on
the SciERC testing set of the MLT model with and
without soft label. Using BCE and cross-entropy
to measure the difference between the prediction
distribution and the distribution of soft labels re-
duced the performance when compared with the
case wherein soft labels were not used (only MTL).
In this study, the inverse version of KL-divergence
was not superior to the standard version with loga-
rithmic normalization. There were few differences
between the two versions. Overall, KL led to con-
sistent performance improvements in soft labels.

4.2 Cross-Dataset Evaluation on SciREX

SciREX (Jain et al., 2020) is a document-level IE
dataset for scientific articles, which covers tasks
such as entity identification and N-ary relation ex-
traction. In particular, it combines automatic and
human annotations, thus leveraging existing scien-
tific knowledge resources.

In the Table 1, there are still differences in en-
tity annotations between the two datasets. SciERC
annotators indicate the long span, including prepo-
sitions. While entity annotations in SemEval-2018
are indicated maximal noun phrases, abbreviations,
etc., they often are shorter (Example 3 or 4 in Ta-
ble 2). To evaluate the cross-dataset, we selected
368 abstracts from full-text papers in the SciREX
dataset and investigated the NER task on four en-
tity types (Method, Task, Metric, and Material)
released by the SciREX dataset. We only used
the abstract section, given that the SemEval or Sci-
ERC dataset only uses the abstract. We trained
the SpERT model on gold labels with SciERC an-
notations. With variations, we retained the entity
annotations of SciERC (six entity types) and re-
leased a new entity type denoted as “OtherScien-
tificTerm_2”5 for SemEval-2018 annotations. En-
tity prediction results were obtatined at the head of
the SciERC prediction, and the final scores were
calculated by micro-averaging four entity types.

Results We compared the performances between
the gold labels and variation labels of SciERC anno-
tations, and the results revealed in Table 5. The two
models trained on label variations outperformed
the model trained on the gold labels (>1%). This

5SemEval-2018 didn’t release entity types in their dataset.



Model Train set
NER

F1-score

SpERT SciERC’s gold label 43.31

SpERT_MTL Variation label 44.37

SpERT_MTL + soft label Variation label 44.64

Table 5: Micro F1-score of cross-dataset evaluation in
the NER task.

highlights the effectiveness of combining two types
of annotations from the overlap, as it leads to im-
proved performance compared with using a single
annotation. Additionally, we observed the impact
of using soft labels in this experiment, thus further
emphasizing their effectiveness in addressing label
inconsistencies.

Model Label
NER RE

F1-score F1-score

Pipeline model

PL.Marker gold 69.90 53.20

End-to-End model

SpERT_MTL + soft label variation 70.83 51.31
SpERT.PL gold 70.53 51.25
SpERT_MTL variation 70.61 51.02
SpERT gold 70.30 50.84

Table 6: The comparison of existing methods on the
leaderboard of SciERC, underlined is our method.

4.3 Standard Splitting SciERC

The SciERC benchmark (Luan et al., 2018) con-
sists of two sets: a training set and a testing set.
Among 307 overlapped abstracts, 252 abstracts are
included in the training set (400 abstracts) and 55
in the testing set (100 abstracts). Due to this over-
lap, we were unable to obtain variation labels for
the entire training dataset, which can be considered
as a disadvantage. Using the proposed method, we
trained both the overlapping and non-overlapping
samples using two tasks and two types of annota-
tions. Among the 148 non-overlapping abstracts,
we retained those with medium-level agreement in
the soft labels. The experimental setup was identi-
cal to the one described in section 4.2. The micro
F1-scores for both tasks were calculated based on

the gold label annotations from SciERC.6

Results The performance of the proposed
method on the SciERC leaderboard is presented
in Table 6. The proposed approach surpassed the
state-of-the-art models in entity recognition, thus
achieving an improvement of 0.6–0.8% when com-
pared with the SpERT (Eberts and Ulges, 2019)
model and its variant, i.e., SpERT.PL (Santosh
et al., 2021). The incorporation of diverse entity
annotations, even with minor conflicts, is benefi-
cial for enhancing the accuracy of the NER task.
In the RE task, the proposed method achieved the
highest F1-score among existing end-to-end mod-
els. However, the improvements were limited due
to significant conflicts in the relation annotations
between the two datasets and the testing set as the
gold label of SciERC. Furthermore, the proposed
approach did not outperform a pipeline model (Ye
et al., 2022) in the RE task. Overall, the proposed
method, which utilizes multi-task learning with
soft labels based on the SpERT architecture, en-
hanced the performance of the baseline model in
both tasks.

5 Error Analysis

In this section, we conducted a detailed error analy-
sis to gain insights into the limitations and potential
areas for improvement of the proposed model. Ta-
ble 7 contains three error cases in the testing set. It
should be noted that ScientificIE is a challenging
task, and the proposed model exhibited common
errors, as outlined in Example 1 (wrong entity type
and relation type) or in Example 2 (incorrect spans).
In certain instances, the proposed model success-
fully identified entities indicated in SemEval-2018
and not in SciERC. However, it tended to over-
predict the relationship between these entity pairs
(which is not an inaccurate relationship), as shown
in Example 3. Besides, we observed that the cor-
rect entity predictions were missing in the gold
labels (“learners” in Example 4 , or “post level”
and “blog level” in Example 5). The relations be-
tween entity pairs were then accurately identified.
The proposed model demonstrates the capacity to
cover all entities and their relationships, including
the most challenging and ambiguous cases. In con-
trast, the gold label annotations may not always
capture these complex instances accurately.

6In this experiment, we considered the whole entity and
relation types of both datasets.



(a) Common Error

Example 1

Sci_Task Sci_Task
... whether they believed the sample output to be an expert human translation on a machine translation .

Sci_OST Sci_OST

Conjunction

Compare

Example 2

Sci_Task
We present results on addressee identification in four-participants face-to-face meetings ..

addressee identification in four-participants face-to-face meetings ...
Sci_Task

(b) Redundant Error

Example 3

Sci_Material Sci_Metric Sci_Metric Sci_Metric
Our preliminary experiments on building a paraphrase corpus . ... cost-efficiency , exhaustiveness , and reliability .

Sci_Material
Sem_OST Sem_OST Sem_OST Sem_OST

Conjunction Conjunction

(c) Confusing Label

Example 4

Sci_OST Sci_Metric
Both learners . perform well, yielding similar success rates of approx 90 % .

Sci_Metric
Sem_OST

Evaluate-for

Example 5

Sci_Generic Sci_OST Sci_Material Sci_OST Sci_Material
We consider two groups of indicators . : post level (determined ... blog posts only) and blog level (determined ... blogs ).

Sci_Generic Sci_Material Sci_Material
Sem_OST Sem_OST Sem_OST

Hyponym-of

Hyponym-of

Used-for Used-for

Table 7: The error samples are from the predictions from the proposed method: (a) the common sources of error, (b)
predictions are redundant the relations, and (c) correct predictions are missing in the gold label. [*red] is predictions,
[*green] is the gold label of SciERC, [*blue] is the gold label of SemEval-2018, OST is “OtherScientificTerm”.

6 Related Work

ScientificIE systems can be developed using two
main approaches: separate models, where entity
extraction and relation extraction are treated as in-
dependent tasks with separate models trained for
each (Xiao et al., 2020; Zhong and Chen, 2021; Ye
et al., 2022), and joint models (end-to-end mod-
els) that tackle both tasks simultaneously (Eberts
and Ulges, 2019; Luan et al., 2019; Santosh et al.,
2021).

In recent years, various studies have prompted
the community to explore innovative approaches to
data labeling based on label variation (Passonneau
et al., 2010; Plank et al., 2014; Basile et al., 2021;
Gordon et al., 2021; Leonardelli et al., 2021; Prab-
hakaran et al., 2021; Uma et al., 2021a; Bassignana
and Plank, 2022a; Plank, 2022). In this context, the
proposed model leveraged variation labels in Sci-
entificIE, thus demonstrating improved robustness
with respect to label noise, in addition to higher
performances in both tasks. To handle inconsistent
labels and mitigate label noise, soft labeling tech-

niques were introduced, such as the probabilistic
soft labeling framework proposed by Fornaciari
et al. (2021).

7 Conclusion

Label variation in ScientificIE introduces incon-
sistencies and ambiguities to labeled data, thus
posing significant challenges for the training of
accurate and reliable systems in this field. To over-
come these challenges, we propose a multi-task
learning approach that effectively handles label
variations. By incorporating soft labels generated
through multi-level agreements, we observed im-
provements in the performances demonstrated in
entity and relation extraction tasks. The results
indicate that label variations capture rich informa-
tion and exhibit the potential to reduce data size
requirements. Moreover, label variations are effec-
tive in handling ambiguous instances. The findings
emphasize the significance of considering label
variations in ScientificIE, and further promote its
investigation in other domains and tasks.



Limitations

This study acknowledges several limitations that
should be considered. First, the findings are based
on a small dataset comprised of published research
papers, which may limit the generalizability of the
results to a larger population or different contexts.
Second, the generation of accurate and reliable soft
labels remains a challenge, as the manual setting
of probability distributions introduces subjectiv-
ity. Additionally, the evaluation of the experiments
solely relying on the F1-score using gold labels
may be impacted by errors and inconsistencies
within the gold label annotations, as revealed in
the error analysis. Finally, it is essential to note
that this work is primarily focused on the scientific
domain, and the prevalence of conflict cases may
differ in other domains, thus limiting the direct
transferability of the findings.

Future research should address these limitations
by incorporating larger and more diverse datasets,
improving the methodology for generating soft la-
bels, considering multiple evaluation metrics, and
investigating the performances of large language
models in ScientificIE tasks.
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A Label Mapping

The datasets SemEval-2018 Task 7 and SciERC
contain directly corresponding labels, as detailed
in Section 2. To establish this correspondence, we
compared the co-occurrence distribution of related
relation labels between entity pairs in the 307 over-
lapping abstracts. To ensure consistency, we trans-
ferred entity labels with the same boundaries from
SciERC, as SemEval-2018 Task 7 did not release
entity types. With entity types only in SemEval,
we retained type “OtherScientifiTerm_2”. The co-
occurrence score was computed using the following
formula:

O(i, j, k) =
A(e1i , e

2
j )

rk

N1
i +N2

j

(6)

where A(e1i , e
2
j )

rk denotes the number of occur-
rence relations rk between entity pairs e1i and e2j .
N1

i , N
2
j represent the number of occurrences of

entity label i, j was entity 1, 2. The specific com-
parisons and descriptions can be found in Figures
4, 5, 6, 7, and 8. Corresponding relations exhibited
similar co-occurrence distributions, with certain
relations such as “Compare” and “Comparison” ap-
pearing most frequently between entity pairs such
as “Method” and “Method” or “Task” and “Task”.

B Common Relations

Used-for/Usage Evaluate-for/Result Part-of/Part-whole Compare/Comparison Feature-of/Model0

200

400

600

800

1000

1200
SciERC
SemEval

Figure 3: The distribution of common relations in the
overlapped abstracts of the two datasets.

We observed that most relations in both datasets
are labeled as “Used-for/Usage”. However, there
is a notable disparity between the two datasets re-
garding label distribution. Specifically, in SemEval,
labels such as “Model” and “Part-whole” have a
significantly larger number of occurrences when
compared with their counterparts in SciERC.
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Figure 4: The co-occurrence distribution of “Compare/Comparision” in two overlapped corpora.
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Figure 5: The co-occurrence distribution of “Used-for/Usage” in two overlapped corpora.
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Figure 6: The co-occurrence distribution of “Evaluate-for/Result” in two overlapped corpora.
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Figure 7: The co-occurrence distribution of “Feature-of/Model” in two overlapped corpora.
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Figure 8: The co-occurrence distribution of “Part-of/Part-whole” in two overlapped corpora.


