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Abstract

Long-range context modeling is crucial to both
dialogue understanding and generation. The
most popular method for dialogue context rep-
resentation is to concatenate the last-k utter-
ances in chronological order. However, this
method may not be ideal for conversations con-
taining long-range dependencies, i.e., when
there is a need to look beyond last-k utter-
ances to generate a meaningful response. In this
work, we propose DialoGen, a novel encoder-
decoder based framework for dialogue genera-
tion with a generalized context representation
that can look beyond the last-k utterances. The
main idea of our approach is to identify and
utilize the most relevant historical utterances
instead of last-k, which also enables the com-
pact representation of dialogue history with
fewer tokens. We study the effectiveness of our
proposed method on both dialogue generation
(open-domain) and understanding (DST). Even
with a compact context representation, Dialo-
Gen performs comparably to the state-of-the-
art models on the open-domain DailyDialog
dataset. We observe a similar behavior on the
DST task of the MultiWOZ dataset when the
proposed context representation is applied to
existing DST models. We also discuss the gen-
eralizability and interpretability of DialoGen
and show that the relevance score of previous
utterances agrees well with human cognition.

1 Introduction

One of the key challenges in dialogue systems is
modeling long-range context (Yan et al., 2022). Hu-
man conversations can be lengthy and may contain
long-range dependencies among turns. While hav-
ing a conversation, we often refer back to names,
topics, or other information that was mentioned
long before the current dialogue turn. For exam-
ple, Table 1 shows an open-domain conversation
from the DailyDialog (Li et al., 2017) dataset. We
can observe that in Turn 11, “it” refers to the word
“hats”, which is mentioned only once in the first

Turn Utterance
1 Oh , so many kinds of winter hats .
2 What is your favorite color , miss ?
3 Red .
4 Here you are. It ’ s very attractive .
5 May I try it on ?
6 Go ahead .
7 Is there a mirror around here ?
8 Right over there .
9 Does it suit me ?
10 Yes , you look very nice .
11 How much is it ?

Table 1: A sample conversation from DailyDialog

turn. Understanding such long-range dependencies
is critical for long-range context modeling, which
can be beneficial for both dialogue generation and
understanding.

The main challenge of dialogue context mod-
eling comes from the fact that conversations can
be arbitrarily long and complex in nature. To
encode arbitrary long conversations, researchers
started adapting a hierarchical recurrent encoder
framework that contains an utterance-level and
a dialogue-level encoder (Sordoni et al., 2015a).
However, this approach cannot fully leverage the
benefits of the utterance level features (discussed in
Section 2.2). After the evolution of Transformers
(Vaswani et al., 2017), the most popular approach
to context modeling is to concatenate the histori-
cal utterances and use a transformer decoder (or
encoder-decoder) model to generate the response.
As the sequence length of a transformer is lim-
ited, people generally use only the last-k utterances
according to memory limit. Despite its simplicity,
this method has produced state-of-the-art results for
almost all kinds of dialogue-related tasks (Zhang
et al., 2020; Heck et al., 2020; Kim et al., 2020a).
Since the existing dialogue datasets have a scarcity
of long-range dependencies among turns, looking
only at last-k turns is enough to generate a good
aggregate-level performance. Although this phe-
nomenon of relying only on recent turns can be



observed in short and simple real-world conversa-
tions, the same cannot be said for more complex
scenarios.

In this work we propose DialoGen1, an open
domain Dialogue system with Generalized context
representation strategy. The primary objective of
DialoGen is to enrich dialogue context modeling
by addressing long-range dependencies such that
arbitrarily long conversations can be handled in
an easy and interpretable way. The central idea
of our approach is to find the relevant historical
utterances along with a vector representation of
the entire context that can guide the generation of
a meaningful response. The main contributions of
our work are as follows:

• We propose DialoGen, a novel dialogue gen-
eration framework with a generalized repre-
sentation for long-range dialogue context.

• The proposed context representation method
can handle arbitrary long conversations and
works even when the context for the current
turn might have been presented much earlier
in the conversation. The relevance scores
over all the previous turns help to understand
the long-range dependencies among dialogue
turns, which enhances the generalization and
interpretability of the context representation.

• DialoGen achieves comparable performance
to state-of-the-art models on dialogue genera-
tion and understanding, even with its short and
compact representation of dialogue history.

• Detailed discussion on the generalizability
and interpretability of the proposed approach,
along with a psycholinguistic perspective.

2 Background and Related Works

The existing neural network approaches for con-
text modeling can be broadly categorized into two
classes: Concatenation-based and Hierarchical.

2.1 Concatenation-based Encoding

In this approach, historical utterances are concate-
nated to represent the context. In pre-Transformer
era, the concatenation-based encoding strategy was
a go-to method to train an RNN based encoder-
decoder (Bahdanau et al., 2015) for dialogue gen-
eration (Sordoni et al., 2015b). A major issue

1Code is available at github.com/SuvodipDey/DialoGen

with this approach is that the concatenated utter-
ances can be very long, depending on the conversa-
tion. Moreover, modeling long-range dependencies
with an RNN/LSTM is difficult. This is why re-
searchers started switching to hierarchical encoders
(Section 2.2) to handle long conversations. How-
ever, concatenation-based encoding again came to
the forefront after the emergence of Transformer
architecture (Vaswani et al., 2017). Most of the
Transformer based dialogue models concatenate
previous utterances and finetune the decoder on
language modeling task (Wolf et al., 2019; Zhang
et al., 2020; Bao et al., 2020; Li et al., 2021; Chen
et al., 2022) to achieve state-of-the-art results on
various dialogue datasets. Note that Transformers
have a limit on maximum sequence length. This is
why all these dialogue models can only take last-k
previous utterances as input based on a pre-defined
maximum sequence length. Hence, they are not
able to look beyond last-k turns and thereby can-
not capture very long-range dependencies among
dialog turns. There are variations of Transformer
(like Big-Bird (Zaheer et al., 2020), Poolingformer
(Zhang et al., 2021) etc.) that reduce computation
complexity of self-attention operation from O(n2)
to O(n), enabling longer sequence length. How-
ever, looking at more context does not necessarily
solve the problem of long-range dependencies, as
there might still exist dependencies beyond the con-
catenated context that could be passed according
to the maximum allowed sequence length.

2.2 Hierarchical Encoding

In this strategy, the encoding of arbitrary long con-
versations is achieved through a hierarchical en-
coder. Each utterance is first encoded using an
utterance-level encoder. The encoded utterances
are then fed to a dialogue-level encoder to get the
final context representation. As discussed in Sec-
tion 2.1, vanilla RNN-based encoder-decoder ar-
chitecture cannot handle long conversations. To
address this issue, researchers started adopting hi-
erarchical recurrent encoders where two separate
RNN/LSTM are employed as the utterance-level
and dialogue-level encoders. Models like HRED
(Sordoni et al., 2015a) and VHRED (Serban et al.,
2017) fall under this category. There are few works
that use BERT as an utterance-level encoder (Kim
et al., 2020a). Li et al. (2019) proposed an In-
cremental Transformer for hierarchical recurrent
encoding. DialogBERT (Gu et al., 2021) uses two

https://github.com/SuvodipDey/DialoGen
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Figure 1: Architecture of DialoGen

separate BERT (Devlin et al., 2019) encoders to re-
alize hierarchical encoding. Although DialogBERT
can handle lengthy conversations, theoretically, the
number of turns is limited by the maximum se-
quence length of BERT. The main advantage of
hierarchical encoding is its ease of encoding long
conversations. However, these models depend only
on the final context vector for response generation.
Not considering word/token level features can fail
to capture the complex correlation between all the
words in the input and output sequences, which
may be required for dialogue generation. More-
over, in real-world conversation, we often reuse
words/phrases from past utterances in our replies
for which word/token level features are important.
The decoders of concatenation-based methods put
attention on all the context tokens during response
generation. This is why most of the state-of-the-art
results are reported using concatenation-based en-
coding. Hierarchical encoding-based models like
HRAN (Xing et al., 2018) and ReCoSa (Zhang
et al., 2019) try to address this issue by addi-
tionally considering attention on utterance-level
words/tokens. But doing so makes the dialogue gen-
eration dependent on context length, which again
brings back some of the limitations discussed in
Section 2.1.

3 Methodology

In this section, we describe our proposed dia-
logue generation framework, DialoGen. Let D =
{u1, u2, u3, ...} be a multi-turn conversation where
ui represents the utterance at turn i. The objec-
tive of dialogue generation is to generate ut+1

given D≤t i.e. {u1, u2, u3, ..., ut}. The main idea
of our approach is to combine the advantages of
both concatenation-based and hierarchical encod-

ings and provide a generalized context representa-
tion for dialogue systems that is adaptive to long-
range dependencies. The framework is based on an
encoder-decoder architecture, as shown in Fig. 1.

3.1 Encoder
DialoGen encoder is basically a hierarchical recur-
rent encoder with few added elements. At a given
turn t, the encoder first predicts the encoding of
the next response. This predicted encoding (b′t+1)
is then used to find a relevance score (α(t)) for all
the previous utterances. Finally, α(t) is used to
compute a vector representation (Xt) of the entire
context such that the prediction of ground-truth
words/tokens is maximized.

Hierarchical Encoding: We use BERT (Devlin
et al., 2019) and GRU (Gated Recurrent Unit) (Cho
et al., 2014) as our utterance-level and dialogue-
level encoders respectively. At each turn t, the
utterance-level encoder (fϕ) takes ut as input and
outputs bt. Here fϕ is defined as the mean of all
the tokens of the second-to-last layer of the BERT
model. The utterance-level encoding is then passed
to the stacked GRU (gψ) with l layers to generate
the contextual representation et. The procedure
of obtaining the contextual representation can be
summarized as,

bt = fϕ(ut) ∈ Rd (1)

et, ht = gψ(bt, ht−1) (2)

where d is the dimension of BERT embedding,
et ∈ Rd is the output of the GRU and ht ∈ Rl×d is
the GRU hidden state. The initial hidden state h0
is set to a zero matrix.

Next Utterance Prediction: After hierarchical
encoding, we predict the encoding of the next ut-
terance as b′t+1 = FNN1(et) where FNN1 is a



two-layer feed-forward neural network with layer
normalization (Ba et al., 2016). The key objec-
tive of DialoGen is to find the historical utterances
that are relevant for generating the next utterance.
Clearly, there is a requirement for computing a rel-
evance score for all the previous utterances with
respect to the next response. But to do so, we need
to know the ground-truth response, which is not ac-
cessible during prediction time. For this reason, we
approximate the next utterance using b′t+1. Hence,
we need b′t+1 to be very close to the utterance-level
encoding of the next response i.e. bt+1. To ensure
that, we introduce a prediction loss (Lpred) which
is the L1 loss between b′t+1 and bt+1.

Lpred =
d∑
j=1

|bt+1j − b′t+1j
| (3)

Relevance Score and Context Vector: Next, we
find the relevance scores for all the previous utter-
ances using b′t+1. Let B = {b1, b2, ..., bt} ∈ Rt×d
be all the utterance-level encodings till turn t.
Then we compute the relevance score as α(t) =
att(B, b′t+1) ∈ Rt where att is an additive atten-
tion function (Bahdanau et al., 2015). Finally, we
compute a vector representation of the entire con-
text till turn t as Xt =

∑t
i=1 αibi. To learn a

meaningful representation Xt, we introduce a Bag-
of-Word (BoW) loss defined as,

pt = softmax(FNN2(Xt)) ∈ R|V | (4)

Lbow = −
T∑
j=1

log ptj (5)

where ptj is the probability of predicting the jth

token in ut+1, which is the next utterance in the
ground-truth. T is the total number of tokens in
ut+1, FNN2 is a feed-forward neural network, and
|V | is the vocabulary size of BERT tokens. Note
that Lbow helps to get a meaningful representation
for Xt by actually learning how to combine the
previous contexts. Hence, the BoW loss plays an
important role in learning the relevance score α(t).

Training Objective: We train the encoder to
jointly optimize Lpred and Lbow. So, the final loss
of the encoder (Lenc) is defined as,

Lenc = Lpred + Lbow (6)

3.2 Decoder
The decoder of DialoGen is built on top of pre-
trained GPT-2 (Radford et al., 2018) with a lan-
guage model head. For a given turn t, the decoder

first takes b′t+1, α(t), and Xt as input from the en-
coder and selects the top-k historical utterances
using α(t). Then a unified representation Zt is
computed combining the past (Xt) and predicted
(b′t+1) contexts. Finally, Zt is concatenated with
the encoding of top-k relevant utterances and fed
to GPT-2 to generate the reply.

Construction of Decoder Context: For a given
turn t, we first combine Xt and b′t+1 and compute
the unified representation Zt as,

Zt = FNN3([Xt; b
′
t+1]) ∈ Rd

′
(7)

where FNN3 is a feed-forward neural network with
layer normalization, and d′ is the dimension of
GPT-2 embedding. Similar to the encoder, we in-
troduce a bag-of-word loss (Lbow′) for the decoder
as well. Here, the tokens of ut+1 is predicted con-
ditioned on Zt. We use the same method shown in
Equations 4 and 5 to compute Lbow′ except we use
Zt instead of Xt.

In dialogue systems, there is a need to under-
stand the context with a higher level of abstraction
to generate the next response (Pandey et al., 2020).
In DialoGen, this notion of abstraction is realized
through Zt which is composed of not only histor-
ical context (Xt) but also the prediction of next
utterance (b′t+1). The introduction of bag-of-word
loss (Lbow′) in the decoder helps to learn a mean-
ingful representation for Zt.

To include the relevant utterances in the final
context, we first choose the top-k utterances based
on the relevance scores α(t). Let Rt be the list
of top-k relevant utterances in chronological order.
We tokenize each utterance in Rt and concatenate
them using a special token [EOS] to get token-
level encoding Yt ∈ Rm×d′ where m is the total
number of tokens in Yt. The final context (Ct) is
defined as the concatenation of Zt and Yt.

Ct = [Zt;Yt] ∈ R(m+1)×d′ (8)

Representing the context in this manner enables
to capture not only the entire dialogue history but
also helps to focus on the important portions of
the relevant utterances via self-attention while gen-
erating the response. We consider maximum N
tokens from each utterance in Rt. Hence, m re-
mains upper bounded by kN , where k and N can
be set according to the requirement. On the con-
trary, existing concatenation-based encodings keep
on adding previous utterances until the maximum
token limit is exceeded. In other words, they use



last-k utterances as the context where k may be
different for different samples depending on the
length of the individual utterances. Selection of the
relevant past utterances in Rt and ensuring none
of them is left out while forming the context Ct
makes the proposed method generalized for long-
range context representation.

Training Objective: The GPT-2 model takes
Ct as input and generates the next utterance. The
language modeling loss (LLM ) for generating ut+1

given the context Ct is defined as,

LLM = −
T∑
n=1

log p(ut+1n |ut+1<n , Ct; θ) (9)

where T is the number of tokens in the generated
response ut+1, and θ denotes the parameters of
the GPT-2 with language model head. We train
the decoder to jointly optimize Lbow′ and LLM .
The final loss of the decoder (Ldec) is defined as
follows,

Ldec = LLM + λ ∗ Lbow′ (10)

where λ is a hyper-parameter to set the weightage
of the bag-of-word loss.

4 Experimental Setup

4.1 Dataset
We perform our experiments on DailyDialog (Li
et al., 2017) and MultiWOZ 2.1 (Eric et al., 2020)
for the generation and understanding tasks, respec-
tively. DailyDialog is a popular open-domain con-
versational dataset, whereas MultiWOZ is one of
the largest datasets for Dialogue State Tracking
(DST). Studying the utility of our proposed context
representation requires datasets with long-range
context dependencies where the next utterance of-
ten depends on multiple past utterances in the con-
versation, which may not be consecutive ones. This
is why we use DailyDialog and MultiWOZ, where
long-range dependencies can be easily observed.

4.2 Implementation Details
In the encoder, we use a pre-trained bert-base-
uncased model having embedding dimension d =
768 and a stacked GRU with 2 layers i.e. l = 2.
Parameters of the BERT are not updated during
training. For the decoder, we finetune pre-trained
DialoGPT (Zhang et al., 2020) instead of vanilla
GPT-2. We specifically use DialoGPT-large with
embedding size d′ = 1280. In the decoder objec-

tive, the weight of the bag-of-word loss λ is set to
0.5. For decoding, we use beam search with beam
width 5, maximum sequence length 40, minimum
sequence length 11, and 0.1 length penalty. The
same decoding configuration is used to generate
the results for the baseline models as well. The rest
of the details are provided in Appendix A.4.

Since we are proposing to use top-k relevant ut-
terances, it may happen that the last turn may be
excluded. Let’s say that we are at turn t, and try-
ing to generate the next response for turn (t+ 1).
Then utterance ut may not be part of the top-k rel-
evant utterances. However, even if ut may not be
important content-wise, it is important to maintain
consistency and flow while generating the response.
Moreover, note that we are fine-tuning DialoGPT,
which is trained using the concatenation of last-k
utterances as context. Hence, ut plays a key role
in the generation in DialoGPT. This is why the ex-
clusion of ut can break the consistency and result
in the generation of inconsistent responses. To ad-
dress this issue, we keep the last-m utterances as
part of the context and pick top-k from the remain-
ing previous utterances where k +m = cmax. In
this work, we use cmax = 4, i.e., we restrict our-
selves to using up to 4 previous utterances to gen-
erate the next response. So, m = 0 is equivalent
to using only top-k relevant utterances, whereas
m = cmax means only last-m utterances are used
as context. For simplicity, we call this model vari-
ation as DialoGen with context (top-k + last-m).
The main result is shown using k = 2 and m = 2.

4.3 Evaluation Metrics
For the generation task, we use five different met-
rics - BLEU (Papineni et al., 2002), NIST (Lin and
Och, 2004), METEOR (Banerjee and Lavie, 2005),
Diversity (Li et al., 2016), and Entropy (Zhang
et al., 2018). In general, these metrics struggle to
evaluate conversational responses because of the
one-to-many nature of dialog (Liu et al., 2016; Yeh
et al., 2021). As a result, dialogue generation has to
still rely on human evaluation. For the understand-
ing task, we use Joint Goal Accuracy (Henderson
et al., 2014; Wu et al., 2019) to evaluate DST.

4.4 Baseline Models
For DailyDialog, we use the large versions of Di-
aloGPT (Zhang et al., 2020), DialoFlow (Li et al.,
2021), and DialogVED (Chen et al., 2022) as base-
lines. Note that DialoGen becomes DialoGPT if we
remove Zt and use only last-k utterances as context.



ID Model Context Bleu-1 Bleu-2 Bleu-3 Bleu-4 Nist-2 Nist-4 Meteor Div-1 Div-2 Entropy
1 DialoGPT last-4 49.03 27.15 16.80 10.94 3.74 3.95 16.32 0.042 0.222 9.83
2 DialoFlow all 48.75 26.73 16.35 10.70 3.76 3.97 16.44 0.039 0.216 9.98
3 DialogVED all 50.50 28.95 18.38 12.29 3.94 4.18 16.90 0.037 0.204 9.82
4 DialoGen (ours) top-2 + last-2 49.13 27.25 16.88 11.07 3.76 3.98 16.40 0.043 0.223 9.88

Ablation Study

5 DialoGen (only Zt, no
historical utterances) - 44.20 21.28 11.48 6.64 2.92 3.02 13.82 0.024 0.111 8.59

6 DialoGen (only histori-
cal utterances, no Zt) top-2 + last-2 48.93 27.04 16.61 10.74 3.72 3.93 16.26 0.042 0.220 9.81

7 DialoGen top-4 48.39 26.51 16.24 10.54 3.65 3.85 16.04 0.041 0.214 9.84
8 DialoGen top-3 + last-1 48.80 27.02 16.70 10.97 3.71 3.93 16.22 0.042 0.218 9.86
9 DialoGen top-2 + last-2 49.13 27.25 16.88 11.07 3.76 3.98 16.40 0.043 0.223 9.88
10 DialoGen top-1 + last-3 48.98 27.09 16.70 10.95 3.72 3.94 16.28 0.041 0.216 9.86
11 DialoGen last-4 48.84 27.10 16.76 11.02 3.73 3.95 16.41 0.043 0.227 9.95
12 DialoGen (L2) top-2 + last-2 49.08 27.15 16.69 10.87 3.74 3.95 16.25 0.041 0.216 9.85
13 DialoGen (Cosine) top-2 + last-2 49.03 27.05 16.51 10.57 3.72 3.92 16.32 0.040 0.211 9.78

Table 2: Dialogue generation result on DailyDialog dataset

This is why we train DialoGPT with last 4 turns as
context in order to study the effect of architectural
changes in DialoGen. However, no such changes
are made in DialoFlow and DialogVED, i.e., both
these models use the entire dialogue history as con-
text (truncated by maximum sequence length). The
dialogue understanding results on MultiWOZ are
shown using SOM-DST (Kim et al., 2020b) and
Trippy (Heck et al., 2020). All the models are
trained using the official codes publicly available.

5 Results

5.1 Dialogue Generation (DailyDialog)
Automated Evaluation: Table 2 shows the results
of dialogue generation. We have the following
observations from the main result (models 1-4).
Firstly, DialoGen outperforms DialoGPT in all the
metrics. This indicates that the add-on contexts
(Zt and top-2 relevant utterances) have success-
fully improved the performance of DialoGPT. Sec-
ondly, DialoGen performs better than DialoFlow
on the BLEU and Diversity but falls short in NIST,
METEOR, and Entropy. Thirdly, DialogVED out-
performs all the models in BLEU, NIST, and ME-
TEOR. However, DialogVED performs worse than
all the models in the Diversity and Entropy metric.
The root cause of this behavior is the prediction
of the next two future tokens while training Di-
alogVED. This results in memorization of n-grams
from training data, which negatively impacts the
diversity scores during the testing phase. Conse-
quently, there is a boost in the performance of n-
gram based metrics at the cost of lexical diversity.
Later, we show that DialogVED loses to Dialo-
Gen on human evaluation, which restates the fact
that automated metrics are not reliable for dialogue
generation.

Next, we analyze the number of tokens required
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Figure 2: Boxplot of the number of tokens required to
represent the dialogue context for different models.

to represent the dialogue context while computing
the results in Table 2. Fig. 2 shows the boxplots of
the number of tokens consumed by different mod-
els. DialoFlow and DialogVED use last-k strategy
and consume an average of 89 (max 511) and 77
(max 498) tokens to represent the dialogue history,
respectively. In contrast, DialoGen relies on rele-
vant utterances and a high-level abstraction of the
entire context (Zt) to meaningfully represent the
long-range context compactly. As a result, it con-
sumes an average of 52 tokens (max 226), as shown
in Fig. 2a. For dialogues with more than four his-
torical utterances/turns in the dataset (around 46%
of the test instances), the average token consump-
tion of DialoFlow, DialogVED, and DialoGen are
143, 125, and 70, respectively (shown in Fig. 2b).
Therefore, although using a short and compact con-
text representation, DialoGen achieves comparable
performance with DialoFlow and DialogVED. This
indicates that DialoGen can obtain a representative
compression of the dialog context, which, when



fed to the decoder, generates responses with simi-
lar quality. Furthermore, this compression results
in a lesser number of tokens to be processed by
the decoder, where each layer spends O(n2) time
for computing self-attention (n being the number
of tokens) - thereby reducing the overall memory,
compute and power requirements.

Ablation Study: We conduct several experi-
ments to study (a) the impact of Zt and relevant
utterances in the final context representation, (b)
the effect of k and m on the automated metrics, and
(c) different types of loss functions for next utter-
ance prediction (Lpred). In Table 2, model 5 shows
the results with context Ct = Zt whereas model 6
indicates the results with only historical utterances,
i.e. Ct = Yt. We can observe that the removal of
either of the features has degraded the performance
of the original model (shown as model 4). This
shows the significance of both Zt and relevant ut-
terances while constructing the decoder context in
Eqn. 8. In turn, it also shows the importance of the
next utterance prediction and the two bag-of-word
losses, which guide the selection of relevant utter-
ances and learning Zt, respectively. Furthermore,
the relevant utterance has a stronger influence than
Zt in the final context representation, which aligns
with the earlier discussion on achieving state-of-
the-art results with concatenation-based encoding.

Next, models 7-11 in Table 2 show the result
of DialoGen (top-k + last-m) with different values
of k and m where k + m = 4. We observe that
including last-m utterances in the relevant set helps
improve the model performance. Also, reducing
the value of k starts degrading the performance
after a certain point. In our case, the best perfor-
mance is achieved using k = 2 and m = 2, which
are used to report the main result of DialoGen as
well as the human evaluation.

Models 12 and 13 show the result with L2 and
Cosine Similarity as the next utterance prediction
loss in the DialoGen encoder, respectively. We
can observe that L1 (model 4) performs better than
both L2 and Cosine Similarity for this purpose.
As discussed earlier, there exists a one-to-many
mapping from context to dialogue response. This
is why L1 is a better loss function for the next
utterance prediction since it is robust to outliers.

Human Evaluation: For human evaluation, we
randomly picked 300 conversations from DailyDi-
alog test data. For each conversation, we again
randomly picked a turn t. We displayed the origi-

Comparison %Win %Lose %Tie %Bad
DialoGen vs DialoGPT 24.3 18.7 43.0 14.0
DialoGen vs DialoFlow 30.7 22.0 35.3 12.0
DialoGen vs DialogVED 31.0 24.3 34.7 10.0

Table 3: Human Evaluation on DailyDialog

nal conversation till turn t and showed generated
responses from two models (A and B) to the evalua-
tor, asking for an overall judgment. The evaluators
were given four options: i) A is better than B, ii)
B is better than A, iii) Both are equally good, and
iv) Both are equally bad. We performed this ex-
periment to compare DialoGen with all the other
baselines on the same 300 conversations and con-
text points. So, we had a total of 900 response
pairs evaluated by 30 humans with moderate inter-
annotator agreement (Fleiss’ kappa (Fleiss, 1971)
score 0.51). Table 3 shows the results of human
evaluation. We can observe that DialoGen has a
clear edge on human evaluation in comparison to
the other baselines.

5.2 Dialogue Understanding (MultiWOZ)
For the dialogue understanding task, we study the
effect of utilizing relevant utterances as context
in existing Dialogue State Tracking (DST) mod-
els. To do so, we first train our DialoGen encoder
on the MultiWOZ 2.1 (Eric et al., 2020) dataset
for DST. Next, we use the relevance score to com-
pute the context as (top-2 and last-2) and feed it to
existing DST models as dialogue history. We ex-
periment with Trippy (Heck et al., 2020) and SOM-
DST (Kim et al., 2020b), which are BERT-based
DST models having concatenation-based context
encoding. We use the official code along with the
default settings to train both models and take the
average of five runs to report the joint accuracies.
Table 4 shows that (top-2+last-2) strategy performs
better than last-4 for both models. Moreover, the
performance of (top-2+last-2) is close to the perfor-
mance with all the previous utterances as dialogue
history, which correlates with the earlier observa-
tions from Table 2. Hence, the utilization of rele-
vant utterances can help in dialogue understanding
tasks as well.

ID Model Context Strategy Joint Acc.
1 Trippy all 52.97%
2 Trippy last-4 51.91%
3 Trippy top-2 + last-2 52.67%
4 SOM-DST all 53.01%
5 SOM-DST last-4 52.39%
6 SOM-DST top-2 + last-2 52.82%

Table 4: Impact of relevant context on DST



Turn Utterance α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 Model Generated Response

1 oh , so many kinds of winter
hats . 1.00 - - - - - - - - - - - yes , there are so many styles

of winter hats .

2 what is your favorite color ,
miss ? 0.28 0.72 - - - - - - - - - - i like red , yellow , blue ,

black and white .

3 red . 0.57 0.27 0.16 - - - - - - - - - red is a very nice color . i
like it too .

4 here you are . it ’s very at-
tractive . 0.21 0.01 0.18 0.60 - - - - - - - - thank you . it ’s very kind of

you .

5 may I try it on ? 0.00 0.00 0.00 0.00 1.00 - - - - - - - go ahead . it fits you well . it
’s very fashionable now .

6 go ahead . 0.49 0.03 0.27 0.16 0.04 0.01 - - - - - - it fits me very well . i like it
very much .

7 is there a mirror around here
? 0.19 0.17 0.01 0.03 0.14 0.00 0.46 - - - - - i ’m sorry . there is n’t one

right now .

8 right over there . 0.39 0.05 0.18 0.20 0.05 0.01 0.05 0.07 - - - - oh , i see it now . thank you
very much .

9 does it suit me ? 0.00 0.19 0.00 0.00 0.06 0.00 0.40 0.00 0.35 - - - yes , please sit down . i will
show you the way .

10 yes , you look very nice . 0.30 0.01 0.17 0.18 0.02 0.01 0.01 0.07 0.01 0.22 - - do you have any idea how
much this hat costs ?

11 how much is it ? 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 - it ’s $ 120. but you can get it
cheaper .

12 we ’re having a clearance
sale . $ 4 plus tax . 0.08 0.01 0.06 0.01 0.07 0.01 0.02 0.03 0.03 0.01 0.00 0.67 it ’s too expensive . i ’ll have

to pass .

Table 5: A comprehensive example showing the relevance score and generated response for each turn. The
underlined values indicate the turns that were considered to form the decoder context.

6 Discussions

6.1 Nature of Context Representation
In this section, we discuss the nature of context
representation in DialoGen. Due to the usage of hi-
erarchical encoding on the encoder side, DialoGen
can encode conversations of any length. However,
as discussed earlier, hierarchical encoding has its
own limitations, and because of that, it cannot out-
perform concatenation-based methods. To mitigate
this issue, we introduce the procedure of finding
the previous utterances that are relevant for gener-
ating the next response. Our final context (Eqn. 8)
is represented as the concatenation of the context
vector Zt and encoding of the relevant utterances
(Yt). This strategy of context representation has
several advantages. Firstly, it is capable of han-
dling arbitrary long conversations. Secondly, it
looks only at the exclusive set of relevant turns at
the decoding time, which also resolves the long-
range dependencies in an interpretable way. Due to
this property, it is adaptive to both short and long-
range contexts. Hence, the context representation
of DialoGen has better generalization than the ear-
lier techniques. Thirdly, since we consider only a
limited number of relevant turns, our representa-
tion limits the input sequence length (in number of
tokens) for the decoder. Consequently, DialoGen
can encode conversations of any length compactly
while also keeping a check on the overall compu-
tational cost of the self-attention operations. With
the growing popularity of dialogue systems, we can
anticipate datasets with lengthy conversations and

an abundance of long-range dependencies. Dialo-
Gen is already capable of handling such datasets
due to its generalized context representation.

6.2 Qualitative Analysis and Interpretability

As discussed in Eqn. 8, the final context of Di-
aloGen is formed by concatenating the relevant
utterances with the context vector Zt. The top-k rel-
evant utterances can be interpreted as the extractive
summary of the conversation, whereas the context
vector Zt can be viewed as the abstractive summary.
In contrast, the concatenation-based strategies use
a simple approximation of using only the last-k
turns as relevant context, while hierarchical strate-
gies only rely on the abstractive summary. Hence,
DialoGen delivers a more meaningful context rep-
resentation in comparison to earlier methods. In
addition to that, the relevance scores make the res-
olution of long-range dependencies interpretable
and give insights into the selection of relevant utter-
ances. We also provide a psycholinguistic analysis
of DialoGen architecture in Section 6.3.

Let us now have a closer look at the actual pre-
dictions of DialoGen for a sample conversation.
Table 5 shows the detailed prediction of DialoGen
(top-2 + last-2) on a test instance of the DailyDia-
log dataset. The conversation takes place between
a customer (odd turns) and a hat seller (even turns).
Firstly, we can observe that the model puts more
weight on informative utterances. For example,
while generating the response for Turn 10, maxi-
mum weight is assigned to turns 1, 3, 4, and 10,



which essentially highlights the key dialogues till
Turn 10. Moreover, since Turn 1 is considered
as part of the decoder context, the word “hat” ap-
peared in the generated response, making it mean-
ingful and consistent. Also, the predicted response
expresses the same thing as the actual response
given in Turn 11. In Turns 5 and 11, we can ob-
serve that a question has been asked, i.e., the next
speaker is expected to give an answer to that. The
model is able to capture it by putting maximum
weight (almost 1) on the questions asked at Turns
5 and 11, respectively.

One point to remember is that the relevance
scores are not trained explicitly using annotated
data. Rather, they are learned as part of the training
procedure while maximizing the prediction of bag-
of-words of the next utterance (Eqn. 5). Because
of that, it may not always output the absolute best
scores, but the score could be considered as a soft
indicator of the importance of a given utterance
towards generating the next response.

6.3 Psycholinguistic Analysis of DialoGen

The mechanism through which a human generates
responses in a multi-turn conversation can be di-
vided into three major steps, each of which is a cog-
nitive process: a) perception of the other speaker’s
turn, b) planning of one’s own turn, and c) produc-
tion of the speech or response (Castellucci et al.,
2022). In this sequence, the first process deals
with perception, where we carefully listen to the
other speaker and try to understand the message
with reference to past utterances and other relevant
contexts. The human brain is able to analyze and
connect all the pieces of information very fast us-
ing “quick-and-dirty” shortcuts (Berkum, 2008).
The second process i.e. speech planning, is a mul-
tifaceted process central to response generation
(Castellucci et al., 2022). Studies have indicated
that humans often start planning their responses
while listening to other people (Levinson and Tor-
reira, 2015). In the final process i.e. Generation,
our thoughts are translated into words/sentences to
generate a response based on the speech plan.

Let us now analyze the extent to which DialoGen
matches the above-mentioned procedure of human
conversation. Conceptually, DialoGen contains all
three cognitive processes involved in multi-turn
human conversation. Firstly, the resolution of long-
range dependencies and focusing on the relevant
previous utterances in DialoGen resembles the first

process of understanding and connecting the rele-
vant information. Secondly, DialoGen computes a
high-level abstraction of the conversation context
(Zt) using the understanding of the historical con-
text (Xt) and prediction of the next utterance (b′t+1).
Note that Zt is learned using bag-of-word loss to
predict the words of the next utterance. The final
context is constructed as the concatenation of Zt
and the top-k relevant utterances. This procedure
of context encoding can be perceived as the second
process of speech planning. Finally, DialoGen uses
a language model to generate the response condi-
tioned on the final context, which is similar to the
third process of speech production. Hence, there
exists a certain degree of similarity between the ar-
chitecture of DialoGen and the cognitive procedure
of human conversation.

7 Conclusion

In this work, we analyze the usefulness and limita-
tions of both concatenation-based and hierarchical
context encodings for dialog context representation.
To take advantage of both methods, we propose a
novel conversation generation framework, Dialo-
Gen, with a generalized context representation that
is adaptive to long-range dependencies. We repre-
sent dialogue context as a combination of a context
vector and relevant utterances. DialoGen achieves
comparable performance to state-of-the-art mod-
els on the DailyDialog dataset, regardless of its
short and compact representation of dialogue his-
tory. Furthermore, it shows better performance
than the baseline models in human evaluation. We
also observe similar behavior in DST when rele-
vant dialogue history is applied to existing DST
models. Finally, we discuss the generalizability
and interpretability of the proposed method with
a comprehensive example. We also provide a psy-
cholinguistic analysis of DialoGen. In future work,
we want to explore the application of our proposed
context representation on knowledge or persona-
grounded conversation and other dialogue-related
complex tasks and datasets.
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A Appendix

A.1 Dataset details and pre-processing
The basic statistics of DailyDialog (Li et al., 2017)
and MultiWOZ 2.1 (Eric et al., 2020) datasets are
shown in Table 6. Data pre-processing for both Dai-
lyDialog and MultiWOZ datasets is minimal. All
the dialogues are transformed into lowercase texts.
While tokenizing the utterances for BERT/GPT-2,
we consider a maximum of 64 tokens from each

Dataset Type #Dialogues #Turns Tmax Tmin Tavg

DailyDialog
Train 11118 87170 35 2 7.84
Dev 1000 8069 31 2 8.07
Test 1000 7740 26 2 7.74

MultiWOZ
Train 8420 56668 22 1 6.73
Dev 1000 7374 17 2 7.37
Test 999 7368 18 2 7.37

Table 6: Basic statistics of DailyDialog and MuliWOZ
dataset. Tmax, Tmin, and Tavg indicates maximum, mini-
mum, and average dialogue turns.

tokenized text i.e. tokenized texts having more than
64 tokens are truncated.

A.2 Multi-reference data for DailyDialog

To improve the quality of automatic evaluation for
DailyDialog, Gupta et al. (2019) augmented the
test set of DailyDialog with multiple references.
To be more specific, four reference responses are
augmented in addition to the original response in
the test data. So, all five responses are used as
references during the automatic evaluation.

A.3 Post-processing of generated dialogues

The reference data of DailyDialog follows a spe-
cific format. Table 7 shows the formatting of the
same example shown in Table 1. We can observe
that apart from being lowercase, there are a few
subtle formatting styles that the texts follow. For
example, “,” is both preceded and succeeded by a
space. Similarly, “.” is preceded by a space. More-
over, words like “it ’s”, “do ’nt” have particular
formatting. Note that a space is added before ’,
which is not common. However, most of these
issues are resolved by tokenizing the text using
a word tokenizer followed by concatenating the
tokenized text with spaces. In this work, we use
the NLTK library for this purpose. However, this
simple word tokenization trick is not sufficient to
match the reference format completely. For exam-
ple, the formatting of words like “it ’s” and “do

Turn Utterance
1 oh , so many kinds of winter hats .
2 what is your favorite color , miss ?
3 red .
4 here you are . it ’s very attractive .
5 may i try it on ?
6 go ahead .
7 is there a mirror around here ?
8 right over there .
9 does it suit me ?
10 yes , you look very nice .
11 how much is it ?

Table 7: DailyDialog multi-reference data snippet.
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’nt” cannot be fully achieved using this trick. To ad-
dress the issue, we manually found some frequently
occurring mismatch patterns and applied a regex-
based transformation to further approximate the
reference format. These conversions are applied
for all the generated conversations, including the
baselines. All the automated evaluation results are
computed using the converted texts. Due to this rea-
son, results of the baseline models on DailyDialog
have a minor deviation from the results reported in
the original papers. The post-processing script is
shared with the code.

A.4 Additional Implementation Details

We implemented DialoGen using PyTorch and Hug-
gingface (Wolf et al., 2020) libraries in Python 3.8.
All the experiments are performed on a single de-
vice of Nvidia DGX server with 32GB of mem-
ory. The number of parameters in the encoder and
the decoder is 33M and 840M, respectively. We
use dropout ratio of 0.2 and AdamW (Loshchilov
and Hutter, 2019) optimizer with adam’s epsilon
1e-8. For the encoder, we use a learning rate of
5e-4 and maximum training epochs of 30 while the
same values are set to 1e-5 and 10 respectively for
the decoder. The encoder and decoder are trained
separately as the end-end modeling is not straight-
forward due to the selection of relevant utterances.
The best model is selected based on minimum val-
idation loss. Our current implementation of Di-
aloGen is not parallelizable, so the batch size is
fixed to 1. However, we use gradient accumula-
tion and update the parameters after the training
of every four conversations, which makes the ef-
fective batch size around 28. The average train-
ing time of the encoder and decoder is 2.5 hours
and 24 hours, respectively. As mentioned in Sec-
tion 4.2, we do not update the parameters of the
BERT model. The final layer of a pre-trained BERT
model is biased toward the pre-training tasks. This
is why we consider the second-to-last layer of the
BERT embeddings instead of [CLS], which is a
reasonable sweet spot for using BERT embeddings
without fine-tuning (Devlin et al., 2019).

The loss values of the encoder and decoder of
DialoGen are shown in Tables 8 and Table 9, re-
spectively. The automatic metrics for dialogue gen-
eration are computed following the evaluation of
DSTC7 Task 2 1. The end-end modeling of Dialo-

1github.com/mgalley/DSTC7-End-to-End-Conversation-
Modeling/tree/master/evaluation/src

Data Type Total Loss BoW Loss L1 Loss

DailyDialog
Train 4.81 4.61 0.19
Validation 5.55 5.35 0.20
Test 5.57 5.37 0.20

MultiWOZ
Train 4.74 4.58 0.16
Validation 5.01 4.84 0.17
Test 4.98 4.81 0.17

Table 8: Encoder loss on DailyDialog and MultiWOZ
dataset

Type Total Loss LM Loss BoW Loss
Train 4.11 1.31 5.61
Validation 4.98 2.08 5.79
Test 5.00 2.08 5.83

Table 9: Decoder loss on DailyDialog dataset

Gen is not straightforward. This is because of the
relevant context selection step in the decoder. In
this work, we avoided this problem by training the
encoder and decoder separately. However, end-end
modeling will not be a problem if the annotations
of relevant utterances to generate the next response
are already available in the dataset.

A.5 Analysis of Relevance Score on
MultiWOZ datset

In this section, we analyze the relevance score of
the DiaoloGX encoder trained with the MultiWOZ
dataset. Table 10 shows the predicted relevance
score of the encoder on a test instance from the
MultiWOZ dataset. Note that relevance scores pre-
dicted by this DialoGX encoder have been used
to form the (top-2 + last-2) context of model 3
(Trippy) and model 6 (SOM-DST) shown in Ta-
ble 4. The sample conversation shown in Table 10
is basically task-oriented, where a user converses
with the system agent to book a train followed by
a restaurant. In MultiWOZ, dialogue state predic-
tions are made after each user turn. This is why we
show the relevance scores only for the user turns.
The score signifies the importance of the previous
turns to generate the next system response.

Let us now analyze the relevance scores shown in
Table 10. Firstly, we can observe that the relevance
score of the current turn is significant for all the
user turns. This shows that the model is capable of
detecting the importance of the last user turn, which
aligns with the conversations of the MultiWOZ
dataset. Secondly, the model is able to understand
the context switches. In Table 10, there are two
context switches (Turns 7 and 15). In both cases,
the model is able to put approx. 1 weightage on
the current turn and nearly 0 on the rest of the
turns. Thirdly, in turn 11, we can observe that the

https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling/tree/master/evaluation/src
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling/tree/master/evaluation/src


Turn Speaker Utterance α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15

1 User
I need a train to stansted
airport that leaves on Sun-
day.

1.00 - - - - - - - - - - - - - -

2 System
Did you have a time you
would like to arrive or
leave?

- - - - - - - - - - - - - - -

3 User I need to arrive by 14:30. 0.65 0.21 0.14 - - - - - - - - - - - -

4 System
TR1668 will arrive at
14:08, would that work
for you?

- - - - - - - - - - - - - - -

5 User
That is perfect. I would
like to make a booking for
6 people please.

0.02 0.00 0.05 0.53 0.40 - - - - - - - - - -

6 System

Booking was successful,
the total fee is 48.48
GBP payable at the sta-
tion. Your feference num-
ber is HF03UG02. Do
you need assistance with
anything else?

- - - - - - - - - - - - - - -

7 User I need to eat too 0.00 0.00 0.00 0.00 0.00 0.00 1.00 - - - - - - - -

8 System
What type of restaurant
and price range are you
looking for?

- - - - - - - - - - - - - - -

9 User
I’d like Catalan food. It
needs to be in the centre
and be expensive.

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.97 - - - - - -

10 System

I’m sorry, there aren’t
any restaurants like that.
Would you like something
else?

- - - - - - - - - - - - - - -

11 User
What about one that
serves european food in
the same side?

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.09 0.02 0.88 - - - -

12 System

There are three european
restaurants in the center
of town. Would you like
me to pick one?

- - - - - - - - - - - - - - -

13 User

Yes please do and then
make me a reservation for
6 people at 10:15 on a
Sunday.

0.00 0.00 0.02 0.02 0.08 0.01 0.01 0.00 0.04 0.00 0.11 0.08 0.61 - -

14 System

You have a table booked
for Eraina and the
reference number is
T7ZSP58S. Is there
anything else I can do for
you? is there anything
else i can do for you ?

- - - - - - - - - - - - - - -

15 User No, that’s all. Thanks!
Goodbye. 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

16 System Have a great day - - - - - - - - - - - - - - -

Table 10: A comprehensive example from the MultiWOZ dataset showing the relevance score for each user turn. The underlined
values indicate the turns that were considered to form the dialogue history using (top-2 + last-2) strategy.

user is referring to the word “centre” mentioned
in turn 9. The model is able to capture this co-
reference by putting the second highest (0.09) score
on Turn 9. However, we reiterate that the relevance
scores are not trained explicitly using annotated
relevance scores. Due to this reason, it is better to
consider the relevance score as a soft indicator of
the importance of a given utterance in generating
the next response.

A.6 Additional Details on Human Evaluation

We conducted the human evaluation using 30 engi-
neering students proficient in English. The instruc-
tions and a sample of the human evaluation form is
shown in Fig. 3. The source data of the human eval-
uation forms are shared with the code repository.

We asked the evaluators to give an overall judgment
instead of evaluating for different attributes like rel-
evancy, consistency, informativeness, fluency, etc.
Evaluating each dialogue attribute is subjective and
requires strong inter-annotator agreement. Asking
for a single opinion made the human evaluation
process simple, fast, and less confusing, although
restricting the analysis of fine-grained aspects of
generated dialogues. All the generated dialogues
were pretty fluent (due to our usage of strong base-
lines), which was also a general comment from the
human evaluators. Thus, fluency can be ignored as
the deciding attribute in Table 3.



Figure 3: Huaman evaluation form


