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Abstract 

During the last few years, the tasks of 

Complex Word Identification (CWI) and 

Lexical Complexity Prediction (LCP) have 

received growing attention from 

researchers who studied the quality of 

complexity estimation with modern 

Transformer-based models in different 

setups and for various languages: English, 

German, French, Spanish, Chinese, 

Japanese, Swedish and Russian. The crucial 

step in creating a large and robust modern 

language model for any language is a 

collection of representative data. 

Supporting the trend of providing the 

researchers with the ability to study the task 

of LCP for various languages and aiming to 

increase the representativity for the Russian 

language, we extend the number of 

available domains with two new ones: 

biomedical and sociopolitical. The data was 

collected and annotated in accordance with 

the original methodology, originally 

described for the CompLex dataset. We 

conduct a comparative study on data from 

both domains and perform a cross-domain 

study. We present the results of experiments 

with the RuBERT-based model in mono-

domain and cross-domain settings for both 

domains. The results of our work are two 

novel corpora consisting of 756 distinct 

words for the biomedical domain with 3050 

contexts and 669 distinct words for the 

sociopolitical domain with 3025 contexts. 

1 Introduction 

The task of Lexical Complexity Prediction (LCP) 

has received growing interest from various 

research groups around the world. Originating 

from works on text readability assessment and text 

simplification with the help of manually created 

formulas and dictionaries, it eventually evolved 

into the task of evaluating word complexity in the 

presence of surrounding context with already well-

established Transformer-based models, as can be 

seen from recent works presenting results of 

experiments conducted with the following models: 

BERT, RoBERTa, DeBERTa, ELECTRA, 

ALBERT, ERNIE (Devlin et al., 2019; Zhuang et 

al., 2019; Lan et al., 2019; Pan et al., 2021; Yaseen 

et al., 2021; Rao et al., 2021).. An important trend 

in modern research is the spreading of the research 

field into previously unexplored setups, such as 

LCP for Arabic, French, Spanish Chinese, 

Japanese, Swedish, Hindu, and Russian languages, 

or estimation of word complexity for multiple 

domains. 

Another essential trend related to word 

complexity estimation is increasing attention to 

problems of representativity. Original works on 

text readability assessment were devoted 

exclusively to performing estimation for students 

studying in 4-12 grades of native English-speaking 

school and college students. More recent works 

presented improved studies on the task of Complex 

Word Identification (CWI), by, firstly, including 

various sources of data employed in collection and 

annotation processes, such as articles from 

Wikipedia, Simple Wikipedia, news articles, 

written by both professional and amateurs, 

abstracts of scientific papers contemporary 

literature, etc., and, secondly, utilizing 

crowdsourcing for data annotation with an 

additional focus on non-native speakers. 

Strongly supporting these trends, we provide a 

basis for future research of a task of LCP for the 

Russian Language by presenting two novel 

datasets in biomedical and sociopolitical domains. 

Our research on the aforementioned domains 

follows the original methodology, initially 

presented for the CompLex dataset (Shardlow et 

al., 2021), and later exploited in works on word 
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complexity estimation for the data from the 

Russian Synodal Bible (Abramov et al., 2022; 

Abramov et al., 2023). We present an analysis of 

collected complexity scores comparing statistics 

for both domains, evaluating statistical 

significance, and exploring intersected words. 

Additionally, we conduct experiments with the 

RuBERT-based (Kuratov and Arkhipov, 2019) 

model in two setups: for experiments within a 

single domain we evaluate Mean Average Error 

and Pearson Correlation Coefficient with cross-

validation on 5 folds; for cross-domain 

experiments, we estimate how well complexity 

estimation ability transfers from one domain to 

another by training on data solely from one domain 

and evaluating on data from another domain. Our 

results demonstrate an influence of domain on 

perceived complexity and a possibility of word 

complexity knowledge transfer between domains. 

By presenting the new dataset we believe to create 

a strong basis for future research on LCP for the 

Russian language, and, hopefully, for multi-

language setups. 

2 Related works 

The early works related to the area of LCP 

described text simplification or readability 

assessment methods. For the English language, the 

Dave-Chall formula, exploited as a tool for text 

readability assessment, was presented and later 

revised by (Dale and Chall, 1948) and (Chall and 

Dale, 1995). Systems for text simplification used 

the detection of candidates for simplification as a 

part of their pipelines (Devlin, 1998; Caroll et al., 

1998). 

Later the tasks of CWI or LCP were introduced 

as standalone ones. In the Lexical Simplification 

task at SemEval-2012 (Specia et al., 2012) the CWI 

task was presented as a ranking task in which the 

participants were required to build a system for 

ranking words in terms of complexity. In 

(Shardlow, 2013), (Shardlow, 2013), and later in 

CWI-2016 (Paetzold and Specia, 2016) a 

representation of the CWI task evolved into a 

prediction of binary score “not complex”/” 

complex”. In (Shardlow, 2013) authors presented a 

dataset with pairs of “annotated complex word” - 

“simple substitution”. Organizers of CWI-2016 

focused on the representativity of the data by 

presenting a dataset of sentences from Wikipedia, 

annotated by 400 non-native speakers. In CWI-

2018 (Yimam et al., 2018) authors conducted a 

survey on complexity estimation in multi-genre 

and multilingual settings by presenting datasets for 

4 languages: English, German, Spanish, and 

French. An additional dataset of news articles, 

written by professionals, amateurs, and Wikipedia, 

was used to evaluate how well models can estimate 

word complexity for sources with different initial 

implicit complexity. Alongside a track of binary 

complexity estimation, the authors introduced a 

track with probability estimation of a word being 

complex. In LCP-2021 (Shardlow et al., 2021) 

authors eventually addressed the task of word 

complexity estimation as a prediction of 

continuous labels. They presented a multi-genre 

dataset for 3 domains: Bible (Christodouloupoulos 

and Steedman, 2015), biomedical data (Bada et al., 

2012), and sociopolitical data (Koehn, 2005) with 

annotated single nouns and multi-word expressions 

(MWE). A continuous score was calculated as an 

average of the annotator's scores normalized into 

[0,1] intervals. 

Even though the English language is the most 

represented in CWI and LCP tasks, there are 

several works devoted to solving the same problem 

for other languages. In a shared-task ALexS-2020 

(Ortiz-Zambrano and Ráez, 2020) authors 

presented an annotated dataset for the Spanish 

language and required participants to predict binary 

complexity scores. In (Ortiz-Zambrano et al., 

2022) authors studied how well different 

Transformer-based models combined with 

regression algorithms can estimate word 

complexity. For the Chinese language authors (Lee 

and Yeung, 2018) presented a dataset with binary 

complexity scores for 600 words. For the Swedish 

language, the author presented two datasets with 

words annotated with language proficiency levels 

from the Common European Reference 

Framework (CERF) as labels, ranging from A1 to 

C2 (Smolenska, 2018). For the Japanese language 

authors annotated words from the Japanese 

Education Vocabulary List and split them into 3 

categories - easy, medium, and difficult (Maekawa 

et al., 2010). Another work for the Japanese 

language was focused on creating an LCP dataset 

JaLeCoN with single words and MWE taken from 

2 different sources: news and government texts, 

and annotated with a focus on non-native speakers 

with L1 proficiency in Chinese/Korean (Ide et al., 

2023). For the Hindi language, authors collected a 

vast dataset of words from novels and short stories 

and asked annotators with different proficiency 
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levels to annotate them to make the corpus more 

representative (Venugopal et al., 2022). For the 

French language authors of (Billiami et al., 2018) 

presented a dataset of synonyms ranked by 

perceived complexity. In another work dedicated to 

both English and French, the authors created a 

dataset and trained multilingual models to classify 

words according to CERF levels (Aleksandrova 

and Pouliot, 2023). For the Russian language, in 

(Solovyev, 2019) authors studied the readability of 

textbooks for native and non-native speakers to 

determine the differences in estimating lexical 

complexity for both groups. In (Abramov and 

Ivanov, 2022) and (Abramov et al., 2023) authors 

created a dataset of annotated words in the domain 

of the Bible and studied estimation of lexical 

complexity for Russian texts with regression and 

Transformer-based methods. 

In modern works the authors heavily utilized 

Transformer-based models for estimation of lexical 

complexity, e.g. BERT, RoBERTa, ALBERT, 

ERNIE (Devlin et al., 2019; Zhuang et al., 2019; 

Lan et al., 2019; Pan et al., 2021; Yaseen et al., 

2021; Rao et al., 2021). 

3 Data collection 

An original methodology of data preparation 

presented in (Shardlow et al., 2021) consisted of 

several steps: data collection from open sources, 

such as the Bible, biomedical texts, and Europarl 

data; sampling of words that fall into the set of 

predetermined frequency intervals; data annotation 

with crowdsourcing, where each word was 

annotated using a 5-point Likert scale (1-5). 

Following this methodology we constructed our 

data collection and annotation pipeline similarly: 

firstly, we performed an initial preparation of data 

sources for sampling; secondly, we sampled words 

and corresponding surrounding contexts for 

annotation utilizing a set of predefined frequency 

ranges; thirdly, we employed the crowdsourcing 

platform Yandex.Toloka for data annotation, and, 

finally, we collected annotated data and created a 

full corpus. 

To follow the original methodology as closely as 

possible, we selected the following parallel corpora 

as sources of data: firstly, we chose a part of 

Medline corpus as a source of biomedical data, 

namely, a training set of WMT 2020 with parallel 

English-Russian pairs of abstracts from scientific 

papers (Bawden et al., 2020); and, secondly, we 

utilized a part of United Nations Parallel Corpus as 

a source of sociopolitical data, in particular, parallel 

English-Russian pairs of official records recorded 

in 2014 (Ziemski et al., 2016). 

We have developed several simple heuristics to 

exclude too simple words or too short surrounding 

contexts from being sampled: 

• As the United Nations Parallel Corpus is 

composed of official records, it contains a 

significant number of either very short 

sentences (e.g. headings) or very long 

ones (e.g. lists of countries or very 

detailed explanations). Therefore, we set 

a minimum length of a sampled sentence 

to 15 words, and a maximum length of 30 

words to exclude these sentences and 

provide annotators with reasonably sized 

contexts; 

 

Figure 1: Complexity scores distribution of 

biomedical data. 

 

 

Figure 2: Complexity scores distribution of 

sociopolitical data. 
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•  For both corpora, we set a minimum 

length of a sampled word to 4 letters to 

exclude too short and simple samples; 

•  To ensure the diversity among sampled 

words we constrain a number of possible 

distinct contexts for each sampled lemma 

by 5(max). 

 We exploited the same word frequency ranges 

(ipm, instances per million) to sample words with 

different expected lexical complexity: (2-4), (5-

10), (11-50), (51-250), (251-500), (501-1400), 

(1401-3100). As there are only a few words that fall 

into the minimum and maximum frequency ranges, 

we sampled as many unique lemmas as possible, 

and for the rest frequency intervals, we sampled a 

roughly equal number of unique lemmas. Finally, 

in our work, we did not include any other parts of 

speech and multi-word expressions (MWE), except 

for nouns only. 

For word sampling we utilized the Frequency 

dictionary constructed from the Google Books 

NGram data (Solovyev et al., 2019). As both source 

corpora were created with the help of modern texts, 

we exploited a smaller version constructed from 

the data collected in the period between 1992 and 

2019, instead of a full version with the data from 

the period between 1920 and 2019. 

During the annotation process, each annotator 

was presented with at least 10 different contexts, 

where each context contained only a single 

highlighted word. 

The annotators were provided with the 

following description of complexity levels: 

• Very Easy: the meaning of the highlighted 

word is clear; 

• Easy: the meaning of the highlighted 

word is obvious and the context 

supplements it; 

• Moderate: the meaning of the highlighted 

word is familiar, but it becomes clear only 

after taking the surrounding context into 

account; 

• Difficult: the meaning of the highlighted 

word is not evident, but might be inferred 

after considering the context; 

• Very Difficult: the meaning of the 

highlighted word is unclear or the word 

itself is unfamiliar. 

To ensure diversity and representativity among 

collected complexity scores during the annotation 

process in Yandex.Toloka we created a set of rules 

for annotators to be used in the annotation of both 

corpora: 

• If an annotator has earned more than 0.5$ 

in the last 24 hours, he/she would be 

suspended in the annotation pool for 1 

day; 

• If an annotator has skipped more than 2 

tasks in a row, he/she would be banned 

from the project for 3 days; 

 

Figure 3: Statistics of lexical complexity scores of 

words grouped by their frequency for biomedical 

data. 

 

Figure 4: Statistics of lexical complexity scores of 

words grouped by their frequency for sociopolitical 

data. 
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• If an annotator has spent less than 15 

seconds on the annotation of 2 out of 5 

last tasks, he/she would be banned from 

the project for 7 days; 

• If the answers of an annotator have not 

matched with the answers of at least 5 out 

of 10 annotators in more than 5 out of 10 

last tasks, he/she would be suspended in 

the annotation pool for 1 day. 

As our target auditory, we selected annotators 

from Russia, Ukraine, Belarus, and Kazakhstan, 

who were ranked by Yandex.Toloka to be Top 10%. 

We set the price of 0.1$ per task suite with 10 tasks. 

Our resulting biomedical corpus consisted of 756 

distinct lemmas with 3050 surrounding contexts, 

and the sociopolitical corpus consisted of 669 

distinct lemmas with 3025 surrounding contexts. 

4 Data analysis 

We conducted an analysis of collected complexity 

scores by computing scores statistics, observing 

their distribution, and comparing complexity 

scores for data from the biomedical domain with 

scores for data from the sociopolitical domain. 

Firstly, in order to evaluate whether one domain 

could be considered to be more complex than 

another, we calculated and compared mean values 

and standard deviation for complexity scores: for 

the biomedical domain mean value is 0.218, and 

the standard deviation is 0.139; for sociopolitical 

domain mean value is 0.19 and standard deviation 

is 0.107. The difference between domains can be 

clearly seen from the complexity scores 

distributions in Figure 1 and Figure 2. The 

distribution for the biomedical domain has a 

heavier right tail with several complexity scores 

exceeding 0.8; the distribution of the scores for the 

sociopolitical domain is more concentrated around 

its peak. 

Secondly, we evaluated how complexity scores 

are distributed among selected frequency intervals. 

Figure 3 and Figure 4 highlight the same pattern for 

both domains. Mean complexity and standard 

deviation simultaneously become smaller with the 

growth of word frequency. This observation could 

be explained in the following way - the degree of 

familiarity with simpler words is higher than with 

rare ones, therefore, annotators tend to agree on the 

same score more often. To validate our 

assumptions, we measured a degree of agreement 

between annotators following (Iavarone et al., 

2021), where the degree of agreement is defined as 

the number of annotators who gave a complexity 

score within the range of standard deviation around 

the mean value. Figure 5 and Figure 6 demonstrate 

a slightly lower level of agreement for rare words 

than for the more frequent ones with an inverted 

dependency between ranges of levels of agreement 

and frequency ranges. It is also important to note 

that for all frequency ranges there is a high level of 

agreement among annotators for both domains, 

showing a typical degree of agreement to be in the 

range of 7-9. 

Thirdly, we evaluated how contexts from 

different domains influence perceived complexity. 

We collected 198 words and their corresponding 

contexts that appear in both domains and estimated 

how well their complexity scores correlate. A 

higher degree of correlation would mean a lower 

 

Figure 5: Degrees of agreement for annotated data 

from the biomedical domain. 

 

Figure 6: Degrees of agreement for annotated data 

from the sociopolitical domain. 
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influence of the source domain and the opposite. 

First of all, we computed Pearson Correlation and 

Spearman Correlation Coefficients. They were 

equal to 0.72 and 0.66 respectively with a p-value 

significantly lower than 10-6 for both metrics. As 

both Correlation Coefficients are significantly 

high, but still far below 1.0, it supports previous 

results proving that a major part of word 

complexity is conditioned on the word itself, yet 

context still plays an important part. 

Figure 7 illustrates our findings - as simple 

words have, on average, the same estimated 

complexity, the complexity of harder words tends 

to deviate from the linear trend. It can be noticed 

that words with contents from biomedical data are 

usually perceived as more complex by annotators. 

To make it clear, we denoted words that have 

estimated complexity ≥ 0.3 for both domains. 

To validate our assumptions, we performed two 

paired tests of (non-)equivalence for two 

dependent paired samples with alternative 

hypothesis low ≤ mean ≤ upper, where low and 

upper were equal 0 and 0.1 respectively in our 

settings and mean denotes an average difference 

between complexities of given data of common 

words from biomedical and sociopolitical domains. 

For all 198 common words, the resulting p-value 

for the lower boundary was 0.018 and for the upper 

boundary, the resulting p-value was significantly 

below 10-6, which resulted in an overall p-value of 

0.018. An additional paired test was performed for 

words with perceived complexity ≥ 0.2. For these 

100 words, p-values for the both boundaries were 

lower than 10-6. These results demonstrate that 

even though we are unable to observe statistically 

significant differences in complexity for all 

samples, it begins to appear as words become more 

complex and the significance of the surrounding 

context rises. 

5 Experiments 

For our baseline experiments we employed a pre-

trained RuBERT (Kuratov and Arkhipov, 2019) 

model and trained with the following setting for all 

experiments: batch size of 128, weight decay of 

0.01, the learning rate was 10-5,the optimizer was 

AdamW (Loshchilov and Hutter, 2017), and the 

number of fine-tuning epochs was 20. Freezing 

these parameters allowed us to exclude their 

influence on the final metrics, making them 

dependent completely on the quality of the data. 

Following previous works on LCP, we selected 

Mean Absolute Error (MAE) and Pearson 

Correlation Coefficient (PCC) as metrics. 

Additionally, we performed a hyperparameter 

search with the help of Optuna (Akiba et al., 2019) 

to investigate whether there is a potential for 

improvement of our model's performance. We 

chose 4 hyperparameters to search for learning rate, 

batch size, number of warmup steps, and weight 

decay. The total number of trials was 50; the 

minimized objective for trial evaluation was the 

sum of negative PCC and positive MAE. The exact 

range of values for each parameter was: [10-6; 0.01] 

for learning rate; [16, 32, 64, 128] for batch size, 

[1, 5, 10, 15, 20] for number of warmup steps and 

[10-5; 0.1] for weight decay. 

5.1 Experiments within a single domain 

For our experiments within a single domain, we 

performed cross-validation on 5 folds for each 

 

Figure 7: Degrees of agreement for annotated data 

from the sociopolitical domain. Annotated words 

were translated from Russian to English. 

Metric Baseline Optimal Hyperparameters 

MAE 0.074 0.073 

PCC 0.759 0.775 

Table 1: The results of experiments for 

biomedical domain 

 

 

Metric Baseline Optimal Hyperparameters 

MAE 0.067 0.065 

PCC 0.677 0.714 

Table 2: The results of experiments for 

sociopolitical domain 
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domain. The resulting metrics were computed as an 

average of metrics for each fold. 

Hyperparameter search within a single domain 

was performed in the following way. We selected 

the first 256 samples from the dataset as a small 

training dataset; the validation dataset for the 

search consisted of 256 random samples, chosen 

among those, that were not included into the 

training part. After the searching process was 

completed, we applied found parameters to a 

freshly initialized model for each cross-validation 

fold. We were able to obtain the following optimal 

hyperparameters for biomedical domain: the 

learning rate was 3.53 * 10-5, batch size of 16, the 

number of warmup steps was 20, weight decay of 

1.13 * 10-3; for sociopolitical domain: the learning 

rate was1.99 * 10-5, batch size of 32, the number of 

warmup steps was 1, weight decay of 6.89 * 10-2. 

The results of experiments for both domains 

showed a substantial improvement after 

hyperparameter search. Table 1 and Table 2 

demonstrate the resulting metrics of experiments 

for biomedical and sociopolitical domains 

respectively. 

5.2 Experiments in multi-domain settings 

In addition to experiments within a single domain, 

we validated how well a model can transfer its 

knowledge about word complexity from one 

domain to another domain. We estimated this by 

performing training solely on data from one 

domain and validating data from another domain. 

We did not perform any filtering of words that 

appear in both domains since the surrounding 

contexts for them are unique. 

Similarly to the experiments within a single 

domain, we performed a hyperparameter search for 

experiments within multi-domain settings. For 

both small training and validation datasets we 

selected the first 256 samples from each domain. 

The optimal hyperparameters for the model trained 

on biomedical domain: the learning rate was 2.99 * 

10-5, batch size of 32, the number of warmup steps 

was 10, weight decay of 7.34 * 10-3; for the model 

trained on sociopolitical domain: the learning rate 

was 4.55 * 10-5, batch size of 16, the number of 

warmup steps was 1, and weight decay of 1.11 * 

10-5. 

We were able to observe an improvement in 

metrics value after hyperparameter search for 

experiment in multi-domain settings as well. Table 

3 and Table 4 demonstrate the resulting metrics of 

multi-domain experiments after training on 

biomedical and sociopolitical domains 

respectively. 

6 Discussion 

To investigate the reasons for metrics improvement 

in all experiments, we visualized joint distributions 

of ground truth and predicted complexity scores.  

As the datasets for both domains are imbalanced 

the main contribution is conditioned by an 

improvement in complexity estimation for 

relatively simple words. It can be seen in Figure 8  

 

Figure 8: Joint distribution of ground truth and 

predicted scores in mono-domain experiments on 

biomedical data. 

Metric Baseline Optimal Hyperparameters 

MAE 0.076 0.070 

PCC 0.592 0.630 

Table 3:  The results of multi-domain experiments 

with after training on biomedical data. 

Metric Baseline Optimal Hyperparameters 

MAE 0.083 0.080 

PCC 0.662 0.701 

Table 4:  The results of multi-domain experiments 

with after training on sociopolitical data. 
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and Figure 9 for mono-domain experiments, and in 

Figure 10 and Figure 11 for multi-domain 

experiments, that the joint distribution of ground 

truth and predicted complexity scores for words 

with complexity ≤ 0.4 stretches along the main 

diagonal in experiments after the hyperparameters 

search. Nevertheless, there are still many examples 

of the high discrepancy between ground truth and 

predicted scores even for simple words. 

Additionally, it should be noted that in all cases 

joint distributions are slightly shifted towards the 

upper left part of the image, which might indicate 

that the model underestimates the complexity of 

some difficult words. We argue that for the full 

investigation of a model's capabilities in 

complexity estimation, the construction of a more 

balanced dataset is necessary. 

7 Conclusion 

In this paper, we presented two datasets for 

predicting lexical complexity for the Russian 

language with 756 distinct words for the 

biomedical domain with 3050 contexts and 669 

distinct words for the sociopolitical domain with 

3025 contexts. It was constructed following the 

 

Figure 9:  Joint distribution of ground truth and 

predicted scores in mono-domain experiments on 

sociopolitical data. 

 

Figure 10:  Joint distribution of ground truth and 

predicted scores in multi-domain experiments after 

training on biomedical data. 

 

Figure 11:  Joint distribution of ground truth and 

predicted scores in multi-domain experiments after 

training on sociopolitical data. 
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methodology of the CompLex dataset and labeled 

using a crowdsourcing platform Yandex.Toloka. 

We conducted a study on the distribution of 

perceived complexity scores for both domains, 

validated our hypothesis on the dependence 

between annotators agreement and word 

familiarity, and performed a comparison of scores 

for words that appear in both datasets. Additionally, 

we conducted a series of experiments with a 

RuBERT-based model in different setups:  we 

performed a 5-fold cross-validation for 

experiments within a single domain and we 

performed a multi-domain experiment to study the 

possibility of word complexity knowledge transfer, 

which we were able to prove. An additional 

analysis of experiment results demonstrated a 

necessity for more balanced datasets. Our work is 

dedicated to studying the complexity phenomena 

in only two domains within monolingual settings, 

and we aim to conduct an additional comparison 

and analysis in multilingual settings. The presented 

corpus will be freely accessible for the international 

research community in Zenodo repository. 
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