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Abstract

Retrieval using dense representations has
shown great capacity in capturing semantic
similarities of the texts, but relies on high-
quality selection of hard negatives for training
(Karpukhin et al., 2020). This paper proposes
a new hard negative mining strategy, called
passage-based BM25 (PassageBM25), to im-
prove the performance of dense retrieval mod-
els. PassageBM25 is a new static hard nega-
tives mining strategy that selects negative pas-
sages based on their similarity to the positive
passage instead of the query. Empirical stud-
ies on ZAC2022, a Vietnamese question an-
swering dataset, show that this approach is ef-
fective in such low-resource language and out-
performs both the vanilla BM25 and dense re-
triever trained with conventional query-based
BM25 method in terms of top-k retrieval accu-
racy. Furthermore, hard negatives mined with
our proposed method can be used as a supple-
ment to query-based BM25 hard negatives to
enhance the retrieval performance, both in re-
triever only and retriever-reranker settings.

1 Introduction

Dense retrieval (Karpukhin et al., 2020; Qu et al.,
2021) has emerged as a highly effective method for
retrieving documents based on their semantic sim-
ilarities. This method has been widely applied to
various tasks such as web search, question answer-
ing, and fact verification. The reason for its success
lies in its ability to capture the underlying mean-
ing of text, which is often missed by traditional
keyword-based search engines.

Researchers have proposed several methods
to enhance the efficacy of dense retrieval mod-
els. These methods include distillation, retrieval-
oriented pre-training, and negative mining. Distil-
lation involves training a smaller model to repli-
cate the behavior of a larger model, while retrieval-
oriented pre-training entails training a language
model on specialized tasks to enhance the vector

space of text representations. Negative mining, on
the other hand, involves selecting irrelevant doc-
uments, along with relevant ones, to provide the
model with the most informative data for training.

One of the most significant challenges in dense
retrieval models is the selection of high-quality
hard negative documents. These documents have
high similarity with the query but do not contain
the answer to it. Random selection of these doc-
uments can lead to poor performance (Karpukhin
et al., 2020). Meanwhile, one of the most pop-
ular static hard negatives is query-based BM25
(QueryBM25) method (Zhao et al., 2022), which is
fast to compute and gives reasonable performance.
Although more advanced methods, often refered as
dynamic hard negatives mining, can theoretically
select optimal hard negatives, they require periodic
index updates, which can be time-consuming and
computationally expensive.

In the same line with the static hard negatives
mining strategies like QueryBM25 approach, we
propose the passage-based BM25 (PassageBM25)
method, that provides a simple and effective hard
negative mining strategy that can improve the per-
formance of dense retrieval models. Our method
involves selecting negative passages based on their
similarity to the positive passage, rather than the
query. Empirical studies have demonstrated that
this approach is effective in low-resource language
settings such as Vietnamese and outperforms the
conventional static method query-based BM25
without requiring expensive periodic index updates.
Additionally, it has been shown that using hard neg-
atives from our proposed strategy as a supplement
to query-based BM25 hard negatives can further
improve the performance of dense retrieval.

2 Related Work

Dense Retrieval The pretrained language models
using Transformer architecture (Liu et al., 2019;
Devlin et al., 2019) have shown the effectiveness



in understanding natural language. Cross-encoder
architecture (Nogueira and Cho, 2020) is an early
adaption of these models for retrieval, which yields
great results but computationally expensive. In
contrast, dense retrieval uses a bi-encoder archi-
tecture which was first proposed by (Reimers and
Gurevych, 2019) and then soon adopted for re-
trieval problems (Karpukhin et al., 2020; Lee et al.,
2019). This method compares encoded query vec-
tors with corpus document vectors using inner prod-
uct. Dense retrieval pre-encodes the corpus into
MIPS index to achieve search latency in millisec-
onds, using software like FAISS, Milvus.

Effective dense retriever Various techniques
are used to improve the performance of dense re-
trievers. One line of works questions the capacity
of single vector representation and proposed to use
multi-vector representation (Khattab and Zaharia,
2020; Zhang et al., 2022). (Izacard and Grave,
2022) uses more sophisticated knowledge distil-
lation technique, involving first training a teacher
model and use its predictions at training time to
optimize the dense retriever. Another approach
attempts to pretrain models tailored for dense re-
trieval, either by adding an auxiliary training objec-
tive (Gao and Callan, 2021) or generating pseudo
labeled data (Xu et al., 2022). In the same line of
work as ours, many research has proposed meth-
ods for carefully selecting sets of negative samples
used for training bi-encoder.

Hard negatives Hard negatives refer to the ir-
relevant texts but having a high semantic similarity
with the query, which has been shown to improve
the bi-encoder’s capacity in discriminating between
relevant and relevant texts. Following (Zhao et al.,
2022), we categorize hard negatives into 2 types:
static and dynamic. Static hard negatives are se-
lected using a fixed negative selector during the
whole training process. A straight forward static
hard negative mining is to sample lexically similar
texts (but does not contain the answer) returned
by BM25, employed by (Karpukhin et al., 2020;
Xiong et al., 2020). This strategy is often fast and
only need to compute once. Later works explores
dynamic hard negative mining techniques, such as
using a learned retriever to mine hard negatives and
re-train another retriever with them. The ANCE
approach (Xiong et al., 2020) proposes to sample
from the top retrieved texts by the optimized re-
triever itself, along with an asynchronous index
refresh mechanism during training, which is very

time-consuming. Another method ADORE (Zhan
et al., 2021), fixes the text encoder and the text
embedding index, and only utilizes an adaptive
query encoder to retrieve top ranked texts as hard
negatives. In general, dynamic negatives can pro-
vide more informative negatives during training at
the cost of periodic indexing. Furthermore, Rock-
etQA (Qu et al., 2021) proposes an optimal pipeline
for training bi-encoder models, which involves in-
crease batch size through in-batch and cross-batch
training and denoise false negative samples.

Our PassageBM25 technique aims to provide a
new static hard negative mining strategy that will
not be computationally prohibitive. The effective-
ness of PassageBM25 when used individually and
when combined with query-based hard negatives
will be shown in experiments.

3 Methodology

3.1 Preliminaries

Dense retrieval is a technique that involves encod-
ing textual data into dense vectors with high dimen-
sionality, and then measuring similarities between
them using basic similarity functions. Pretrained
language models, like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), are the key com-
ponents used to encode texts into dense vectors that
can capture their semantic meaning. During search
time, the relevance scores of a query text with docu-
ments in the corpus can be computed using the dot
product or cosine of their vector representations.
Specifically, given a query q and a document d, two
encoders, Eq and Ed, are utilized to map them to
vectors vq and vd in Rd. The similarity between q
and d is defined as follows:

sim(q, d) = fsim(Eq(q), Ed(d)) (1)

where fsim is dot product or cosine function.
Training a good bi-encoder involves learning

a good vector space such that representations of
semantically similar queries and documents are
clustered close to each other, whereas irrelevant
queries and documents stay distant. The negative
log likelihood of the positive passage is optimized
as the loss function:

L(q, d+) = − log
esim(q,d+)

esim(q,d+) +Σd−∈NP e
sim(q,d−)

(2)



in which, q is a query, d+ is its positive pas-
sage and NP = {d−1 , d

−
2 , . . . , d

−
n } are the negative

passages.
A number of studies (Karpukhin et al., 2020;

Xiong et al., 2020; Qu et al., 2021) have demon-
strated the importance of selecting a high-quality
set of negative passages when training an effec-
tive bi-encoder. Specifically, the inclusion of hard
negatives in the NP set is often desired, as these
are documents that exhibit high similarity with the
query but are ultimately irrelevant.

Various strategies for mining hard negatives have
been developed to improve dense retrieval perfor-
mance. Among them, the most basic approach is to
randomly select passages as hard negatives, but this
method has been shown to be inferior (Karpukhin
et al., 2020). Several studies have used a differ-
ent approach, whereby they sample documents re-
trieved by BM25 that are similar in lexicon to the
query, but do not contain the answers (Karpukhin
et al., 2020; Xiong et al., 2020). For simplic-
ity, we call this approach query-based BM25 or
QueryBM25 for short. A more sophisticated ap-
proach proposed by (Xiong et al., 2020) is to sam-
ple hard negatives from the top retrieved texts by
the optimized retriever itself, which is theoretically
more effective but requires periodic index updates
that are computationally expensive. Each of these
methods has its own tradeoffs in terms of effective-
ness and computational cost that must be carefully
considered.

3.2 Passage-based BM25

We provide an additional perspective on the source
of hard negatives that should be considered when
training a retrieval model. Our approach is a sim-
ple and effective strategy that can be used indepen-
dently or as a supplement to existing hard negatives
in training data.

Our approach is based on the hypothesis that
the retrieval models can benefit from the ability to
distinguish the relevant passage to a query among
similar passages. Specifically, given a query q, we
define p+ and p− as its positive and negative pas-
sage, respectively. If p+ and p− are semantically
similar and their nuanced differences can only be
discerned in the context of q, then the ranking abil-
ity of the model can be enhanced by learning to
identify these differences.

In this study, we propose a new method called
PassageBM25, which leverages the lexical overlap

of passages, which are commonly and uniformly
long. Our hypothesis is that if these passages share
a high degree of lexical overlap, they are likely
to be semantically similar as well. Based on this
hypothesis, PassageBM25 involves sampling the
best passages returned by BM25 (that do not con-
tain the answers) using the positive passage as the
query. In comparision, this approach differs from
the conventional use of QueryBM25 in which the
positive passage is used as the query. The detailed
procedure is described in Algorithm 1.

Algorithm 1: PassageBM25
Input: query, positive_psg, answer,

retriever, topk
Output: L = {p1, p2, ..., pk} (topk hard

negative passages)

/* the only difference from
QueryBM25. */

text = positive_psg
C = retriever.retrieve(text)

/* filter out candidates containing
the answer for the query */

cands = [x for x in C if answer not in x]
result = cands[: topk]

return result

Algorithm 1 requires a positive passage
(positive_psg) of a query as input. The short an-
swer (answer) for the query is utilized to exclude
passages that may have the answer. However, in
scenarios where no short answer is annotated, the
entire positive_psg can be used as the answer for
the exclusion filter.

4 Experimental Setup

In this section, we describe the data we used for
experiments and the basic setup.

4.1 Wikipedia Data Pre-processing

We use the Vietnamese Wikipedia dump from June.
20, 2022 as the source documents for answering
questions. The Vietnamese Wikipedia dump was
obtained from the Zalo AI Challenge 2022 com-
petition and was provided in two formats: a raw
dump and a cleaned version that only included text
portions.



We partition each Wiki article into multiple, sep-
arate text blocks with the following procedure.
First, we use the sent_tokenize function pro-
vided by the underthesea python package to split
a wiki document into sentences. These sentences
are then grouped into passages, with each passage
containing no more than 100 words. If a sentence
exceeded this limit, we truncate it accordingly. Ul-
timately, we obtain approximately 3,000,000 pas-
sages, which serve as our basic retrieval units.

4.2 Retrieval Dataset

Zalo End2end Question Answering (ZAC2022)
dataset (zal) was specifically designed for the pur-
pose of building open domain question answering
systems in the ZAC competition. Each of sample
in the dataset includes a question and correspond-
ing context passages that were annotated from the
Vietnamese Wikipedia Corpus, making up 7114
questions and 20857 context passages in total.

Since the original context passages have been
generated differently than passages in our pro-
cessed passage corpus, we match and replace each
gold passage with the corresponding passage in our
corpus. With an input question, we use BM25 to
find a list of the most lexically similar passages
with its gold passage, then select the first one in
this list which contains the short answer to the in-
put question. If no short answer is provided for that
question, we simply select the first one out of the
list. The resulting processed dataset serves as the
only source of data for training retreival model.

Additionally, the bi-encoder model requires each
data sample to include a positive context passage
to calculate the negative log likelihood loss during
training. However this property is not ensured for
the ZAC2022 dataset, as each sample in this dataset
can be categorized into one of three different types.
These include: Type 1 - contains at least one posi-
tive context along with an annotated short answer;
Type 2 - contains at least one positive context, but
there is no annotated short answer; and Type 3 -
contains only negative contexts that do not provide
an answer to the question. Therefore, we can only
make use of Type 1 and Type 2 samples for training.
When conducting k-fold cross-validation (k=5) to
achieve a fair evaluation, we make sure the number
of samples belonging to types (1), (2), and (3) is
equally distributed to each fold, as shown in Table
1.

Fold 0 1 2 3 4
#Type 1 771 771 770 770 770
#Type 2 517 517 517 517 517
#Type 3 136 136 135 135 135

Total 1424 1424 1422 1422 1422

Table 1: Number of sample types in 5-folds

4.3 Machine Reading Comprehension
Dadasets

We are interested in the impact of PassageBM25 on
the end-to-end question-answering system, there-
fore we train an additional reading comprehension
model to complete the pipeline. This model takes
the question and retrieved passages as inputs, and
then extracts spans as the the answers. In the fol-
lowing, we provide details on datasets used for
training that baseline extractive reader. For clarifi-
cation, we do not use training/test splits and corpus
from the following datasets (except for ZAC2022)
for training/testing retrieval models.

In addition to the ZAC2022 dataset, which com-
prises 8487 passages paired with answerable ques-
tions and 12370 passages paired with unanswer-
able questions, we gathered as many Vietnamese
question-answering datasets as possible. These
datasets include:

MLQA (Lewis et al., 2020) was released by
Facebook (Meta) and contains over 5,000 question-
answer pairs in the SQuAD format across seven
different languages, including Vietnamese.

XQUAD consists of 1,190 question-answer pairs
from the SQuAD v1.1 development set (Rajpurkar
et al., 2016), along with their professional transla-
tions into ten languages, including Vietnamese.

UIT ViQuAD 2.0 includes 23,000 question-
answer pairs from UIT-ViQuAD 1.0 (Nguyen et al.,
2020) and over 12,000 unanswerable questions.

We then obtain a joint dataset comprising over
30,000 text passages and nearly 60,000 questions
(both answerable and unanswerable). Number of
questions and context passages in training and test-
ing splits are shown in table 2

#Questions #Contexts
Train 56795 28959
Dev 4208 2493

Table 2: Number of questions and contexts in training
and development splits.



4.4 Compared Systems
In training time, to thoroughly evaluate the effec-
tiveness of our proposed negative sampling strategy,
we experimented bi-encoders and cross-encoders
with three training strategys. The first strategy is
the conventional QueryBM25, while the second
strategy utilized our proposed PassageBM25, en-
abling us to assess the effectiveness of our method
independently. The third strategy combines two
previous approaches: half of the negative samples
were selected from the first strategy, while the other
half were selected from the second strategy. This al-
lowed us to assess the benefits of using our method
as a supplement to existing training data.

During inference phase, we test various configu-
rations of a retrieval pipeline consisting of a first-
stage retriever and a subsequent reranker to identify
the optimal setup. Each configuration is different
in terms of the type of its retriever and reranker,
and the specific details for each configuration can
be found in Table 3.

Table 3: Retrieval pipeline configurations

Retriever Reranker
BM25 -

Bi-encoder -
BM25 Bi-encoder
BM25 Cross-encoder

4.5 Implementation
The Elasticsearch1 software is utilized to im-
plement the BM25 retrieval method in our exper-
iments. We initialize all bi-encoder and cross-
encoder models from the vinai/phobert-base
checkpoint, which is a robust language model for
Vietnamese (Nguyen and Tuan Nguyen, 2020). For
training all bi-encoders, we use the DPR imple-
mentation of the haystack library, enable in-batch
negatives, set the number of hard negatives for each
question to 8, with a batch size of 8. We train for
5 epochs, and for the rest of the hyperparameters,
we adopt the settings used in (Karpukhin et al.,
2020). For training cross-encoders, we use the
transformers library and treat the text ranking
problem as a regression problem with a score of
1.0 for pairs of questions and relevant passages and
a score of 0.0 for the inverse case. For each ques-
tion, we sample 1 positive passage and 29 negative

1https://www.elastic.co/

passages, with a batch size of 16, and train each
cross-encoder for 10 epochs.

For training the reader model, we use xlm-
roberta checkpoint to train for 2 epochs, with
batch size of 32, learning rate 2e-5 and the rest of
the hyperparameters follow (Zhang et al., 2020).
All our experiments were conducted on a single
32GB V100 GPU.

4.6 Evaluation Metrics
Accuracy@k is a metric used to evaluate the re-
trieval accuracy with a fixed value of k. Given the
the retrieved collection of passages C, it measures
the percentage of questions q (out of all questions)
whose C contains at least one passage containing
the answer to q. For a test set of questions Q, the
retrieval accuracy top-k is calculated as follows:

Accuracy@K(Q) =
1

|Q|

|Q|∑
i=1

hit(qi, Cqi)

where qi is the ith question in Q, Cqi is the set of
K corresponding candidate passages. hit(qi, Cqi)
can take the value of 0 or 1, calculated specifically
as follows:

hit(qi, Cqi) = I{(P+ ∩ C) ̸= ∅}

where P+ is the set of passages that can answer q.
To evaluate the performance of a reader model,

we use the EM and F1 scores. EM measures the
exact match between model and ground truth, while
F1 score measures the balance between precision
and recall.

5 Retrieval Results

In this section, we assess the retrieval performance
of our PassageBM25 negative sampling strategy
on various retrieval settings. All the results pre-
sented in this section are the average of results
from cross-validation with 5 folds. We also con-
duct an analysis to determine how its result differs
from the QueryBM25 approach. Additionally, we
provide information on the runtime efficiency of
each retrieval setting.

Retriever only pipeline. Table 4 presents the
results of the retrieval phase using only retriever.
The retrieval accuracy using only a bi-encoder
is not impressive as expected. Unlike the re-
ported accuracy@20 results of 9% - 19% bet-
ter than BM25 in (Karpukhin et al., 2020), we
trained a bi-encoder with the negative passages



Retrieval phase Accuracy@K
Retriever Reranker 1 3 5 10 20 50 100

BM25 - 24,40 39,01 45,88 54,91 63,15 72,48 78,27
Bi.+strategy_1 - 20,63 34,30 40,81 49,43 56,92 66,95 72,90
Bi.+strategy_2 - 24,67 40,07 46,73 56,11 63,80 73,15 79,10
Bi.+combined - 25,58 41,26 48,71 58,00 65,76 73,83 79,05

Table 4: Accuracy@k of retrieval phase with retriever-only pipeline

Retrieval phase Accuracy@K
Retriever Reranker 1 3 5 10 20 50 100

BM25
Bi.+strategy_1 28,53 47,32 55,43 64,24 71,41 77,26 78,27
Bi.+strategy_2 29,74 48,19 56,11 65,45 72,13 77,04 78,27
Bi.+combined 32,30 51,65 59,37 67,25 73,32 77,26 78,27

BM25
Cross.+strategy_1 36,27 53,35 59,09 65,15 70,76 76,12 78,27
Cross.+strategy_2 35,29 55,38 61,89 68,22 72,84 76,66 78,27
Cross.+combined 37,83 54,61 59,75 65,88 70,32 75,53 78,27

Table 5: Accuracy@k of retrieval phase with retriever-reranker pipeline. Bi. and Cross. denote a bi-encoder and
cross-encoder model, respectively. The hard negative sampling strategies are denoted by strategy_1: QueryBM25
approach, strategy_2: PassageBM25 apprach, combined: combination of QueryBM25 and PassageBM25.

sampled from QueryBM25 (strategy 1), the results
for Accuracy@{1-200} are lower than BM25 by
4% - 10%. We conjecture this difference comes
from the fact that DPR train its model with signifi-
cantly larger batch size (128) compared to ours (8),
plus that we do not use the same starting checkpoint
for training.

However, contrary to the obstacle of limited data,
our bi-encoder model trained with data sampled
from PassageBM25 (strategy 2) consistently gives
results better than query-based BM25 by about
1% on Accuracy@{1-100}. The performance of
the bi-encoder model continues to improve when
using data sampled from combining query-based
and passage-based BM25, with an average increase
of 1% in accuracy for k ∈ {1, 3, 5, 10, 20, 50}.

This suggests that our method enables trained
bi-encoder to perform consistently better than
QueryBM25 under limited Vietnamese training
samples and computation.

Retriever-reranker pipeline. To capture the
strength of both lexical and semantic-based ap-
proaches, we utilized the BM25 retrieval model
as the first-stage retriever, followed by different
rerankers (biencoder or crossencoder), with the
results presented in table 5. Our experiments indi-
cate that reranking the top 100 passages returned
from BM25 yields the best results in most cases,

therefore, we will only include these results in our
reports.

When using the biencoder reranker trained with
QueryBM25 approach, the Accuracy@k improved
significantly by 4-11% compared to using the bien-
coder as the retriever only. PassageBM25 witnesses
a consistently higher improvement of about 1%
than with QueryBM25. Finally, the best results are
given when using negative samples combined from
both query-based and passage-based BM25. How-
ever, when using cross-encoders, model trained
with PassageBM25 hard negatives achieves the best
result. Cross-encoder, despite having richer inter-
action between query and passage, is outperformed
by bi-encoders with Accuracy@{20, 50, 100}.

These results demonstrate that combining BM25
and biencoder leads to superior results compared
to using either pure BM25 or biencoder. They
also show the effectiveness of our proposed Pas-
sageBm25 approach when used individually and as
a supplement to the conventional QueryBM25.

Runtime Effiency Table 6 demonstrates infer-
ence’s runtime for each query in different retrieval
phase settings. In terms of time, BM25 is the fastest
retrieval method with an average running time of
only 0.81 seconds. On the other hand, retrieving
documents indexed with faiss’s IndexFlatIP
takes much more time, averaging 2.561 seconds.



However, when combining BM25 and biencoder,
the performance is superior and the retrieval speed
is only about 0.02 seconds slower than BM25. Fi-
nally, the re-ranking algorithm using crossencoders
takes more than 4 times longer than BM25.

Retrieval phase Latency
(Unit s)Retriever Reranker

BM25 - 0.081± 0.003
Bi-encoder - 2.561± 0.154

BM25 Bi-encoder 0.104± 0.003
BM25 Cross-encoder 0.374± 0.003

Table 6: Runtime effiency

6 End To End Question Answering
Results On ZAC2022

Our end to end question answering system con-
sists of 2 main phases: retrieval phase and machine
reading comprehension phase. The retrieved doc-
uments from the first phase (20 passages in our
experiments) will be fed into a reader model in the
second phase, with each passage this model will ex-
tract list of candidate spans that may answer to the
initital question. The reader we used is an extrac-
tive reader, trained with the method of Retro-reader
proposed in (Zhang et al., 2020). The EM and F1
scores of this model are shown in the 7. We then
fix this model as our only reader in all experiments
and plug different retriever and reranker for the
retrieval phase.

To evaluate our end-to-end model, we used the
public test set of Zalo AI Challenge which includes
600 questions. However, the evaluation process is
different from usual, as we will submit our results
through the competition’s submission portal and
we do not have access to the specific answers. The
evaluation will be conducted on the competition’s
server-side. Table 8 shows the submission results
of our experiments.

Overall, it can be seen that the end-to-end accu-
racy is proportional to the top 20 retrieval accuracy.
With the retrieval phase consisting of only BM25,
the accuracy is actually quite competitive, reach-
ing 69.83%, while none of the single bi-encoder
models surpass this score. When using a reranker,
the accuracy is significantly improved and reaches
the highest score of 76.17% with the bi-encoder
trained with negative data sampled from strategy
(3).

It is worth to note that the best reported top 20 re-
trieval accuracy in section 5.3 is 73.32%, while the
accuracy of the end-to-end model evaluated on the
public test set is 76.167%. This is unusual because
the reading comprehension phase may not always
extract the exact answer, thus the end-to-end ac-
curacy is usually lower rather than the retrieval
accuracy. However, it can be simply explained
that these results are not evaluated on the same set
of questions. Additionally, when evaluating the
retrieval phase, we only consider one passage as
relevant. In reality, there may be multiple passages
containing the answer in the corpus, so our evalua-
tion metric is more strict than reality.

7 Conclusion

In this work, we demonstrated that passage-based
BM25 has the ability to outperform query-based
BM25. Additionally, it can also supplement query-
based BM25 hard negatives in order to improve the
efficiency of training dense retrieval. As a result
of improved dense retrievers, we obtained the best
performance on the Vietnamese open-domain ques-
tion answering dataset ZAC2022, in terms of both
retrieval accuracy and end-to-end accuracy.
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