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Abstract

Large-scale transformer models have shown re-
markable performance in language modelling
tasks. However, such models feature billions
of parameters, leading to difficulties in their
deployment and prohibitive training costs from
scratch. To reduce the number of parameters in
the GPT-2 (Radford et al., 2019) architecture,
we replace the matrices of fully-connected lay-
ers with the corresponding Tensor Train Ma-
trix (TTM) (Oseledets, 2010) structure. Finally,
we customize forward and backward operations
through the TTM-based layer for simplicity and
the stability of further training. The resulting
GPT-2-based model stores up to 40% fewer pa-
rameters, showing the perplexity comparable to
the original model. On the downstream tasks,
including language understanding and text sum-
marization, the model performs similarly to
the original GPT-2 model. The proposed ten-
sorized layers can be used to efficiently pre-
train other Transformer models.

1 Introduction

Large language models such as GPT-2, GPT-
3 (Radford et al., 2019; Brown et al., 2020) show
outstanding results in all areas of natural language
processing. However, training and employing mod-
els with a vast number of parameters requires mem-
ory, time, and electricity proportional to model
size.

The goal of our study is to reduce the effective
size of the model (number of parameters) and, as
a result, to reduce the GPU memory used. We
measured the aggregated memory in the different
GPT-2 modules. We saw that the "thickest" mod-
ules are fully connected layers (see Table 1) and
focused on making them more efficient.

To make GPT-2-based models easier to deploy,
we replaced fully connected layers with sequential
TTM (Oseledets, 2010) containers, based on Tensor

∗ Work has been done while at Skoltech. Now with IN-
RIA, University of Bordeaux, France.

Table 1: Size of memory stored in different modules of
Transformer-based architecutre GPT-2.

Module / GPT-2 Small Medium Large

Attention 9.01 MB 16.02 MB 25.02 MB
MLP 18.01 MB 32.02 MB 50.02 MB

Train (TT) (Oseledets, 2011) representation. We
tested several approaches to forward and back prop-
agations of a signal through containers and chose
the most memory-stable and time-optimal pattern.
We train the architecture with custom TTM layers
from scratch and then study the behaviour of the
pre-trained custom model on in-domain and out-
off-domain language modelling tasks and several
downstream tasks.

The contribution of our paper is the following:
(i) We develop a custom TTM-layer that, firstly,
has fewer parameters and, secondly, uses less mem-
ory during forward and backward passes; (ii) We
provide a GPT-based model with up to 40% fewer
parameters showing performance close to the orig-
inal GPT in in-domain and out-of-domain tasks
language modelling, GLUE benchmark, and text
summarization.

The sourse code are available online 1.

2 Related work

Several approaches explore ways to reduce the
size of language models. The distillation mech-
anism (Hinton et al., 2015) was applied to
BERT (Sanh et al., 2019) and GPT-22. The Open
Pre-trained Transformers (OPT) (Zhang et al.,
2022) provide a smaller model that mimics the
behaviour of GPT-3 (Brown et al., 2020). They
employ more efficient training and use particular
datasets to improve generalisation ability.

TT (Tensor Train) is an effective way to obtain
low-rank representations of inner layers and is also

1https://github.com/sayankotor/GreenAI
2https://huggingface.co/distilgpt2

mailto:v.chekalina@skol.tech
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Figure 1: The scheme of 4-cores TTM representation of weight matrix in the GPT-2 small FC layer. The dimentions
of the initial matrix are decomposed into 4 factors. The matrix ia reshaped to these factors. Than axis are permuted
in a way that input and output dimensions are adjacent. Black digits indicate the size of the axes, and light blue -
their number.

used to reduce parameter numbers. (Khrulkov et al.,
2019) and (Yin et al., 2021) reduce the size of the
embedding layer using TT. Novikov et al. (2015)
uses the TT format of linear layers to compress
the computer vision models; however, TT repre-
sentations were not tested before for generative
Transformers.

3 Singular Value decomposition (SVD)
Layer

We compress the initial model by replacing fully-
connected layers with their SVD analogues.

More precisely, assuming that W is a layer
weight matrix, we define SVD as follows: W =
UΣV T . Then we use truncated products of it
Ur = U [:, : r],Σr = Σ[: r, : r], Vr = V [:, : r]
to define weights for two sequential linear layers,
with which we will replace the current:

W2 = U [:, : r]
√
Σr,W1 =

√
ΣrV

T [: r, :] (1)

As a result, we get an approximation of the linear
matrix W ≈ W2W1 and an approximation of the
initial layer Y ≈ XW T

1 W T
2 + b.

If W have nin, nout shape, the number of param-
eters in the layer before compression is nin × nout,
after representation by truncated SVD, the number
of parameters in the layer is r × (nin + nout).

4 Math Background

Here we provide some mathematical notation
which is used to represent matrix or tensor objects
in the TTM format. This format is used in the TTM
linear-like neural network layers.

We denote vectors as v, matrices as M and ten-
sors of 3-rd order and higher as T .

Tensor contraction. Given two ten-
sors T 1 ∈ RI1×···×IM×S1×···×SK and

T 2 ∈ RS1×···×SK×J1×···×JN the result of ten-
sor contraction along axis s1, . . . , sK is a tensor
T ∈ RI1×···×IM×J1×···×JM , where one element is
computed using formula

Ti1,...,iM ,j1,...,jN =

=
∑

s1,...,sK

T 1
i1,...,iM ,s1,...,sK

T 2
s1,...,sK ,j1,...,jN

and requires O(S1S2 . . . SK) = O

(
K∏
k=1

Sk

)
floating point operations (FLOP). Thus,
number of FLOP to compute tensor T is

O

(
M∏

m=1
Im

N∏
n=1

Jn
K∏
k=1

Sk

)
. For example, a

multiplication of two matrices of shapes (I, S) and
(S, J) can be calculated for O(IJS) operations.

TTM format. We say that a tensor T ∈
RI1×J1×···×IM×JM is represented in Tensor Train
Matrix (TTM) format with rank (R0, R1, . . . , RM )
if each element is computed as

Ti1,j1,...,iM ,jM =∑
r1,...,rM−1

G1
r0,i1,j1,r1 . . .G

M
rM−1,iM ,jM ,rM

,

where Gm ∈ RRm−1×Im×Jm×Rm , m = 1,M are
core tensors (cores) of TTM decomposition. Note
that R0 = RM = 1.

Assume that Rm = R for m = 1,M − 1,
then to represent tensor T with

∏M
m=1 ImJm el-

ements we need to store only R(I1J1 + IMJM ) +
R2

∑M−1
m=2 ImJm parameters of core tensors and

compression rate is:

c_rate =
R(I1J1 + IMJM ) +R2

∑M−1
m=2 ImJm∏M

m=1 ImJm
(2)



5 Efficient TTM Layer

In our paper we focus on replacing linear lay-
ers with TTM layers. In TTM layer the weight
matrix W of shape Din ×Dout is represented as
M -dimensional tensor WM ∈ RI1×J1×···×IM×JM ,

where Im and Jm are such that Din =
M∏

m=1
Im and

Dout =
M∏

m=1
Jm. WM, in turn, is represented as

a set of M cores G, so every element in WM is
enumerated by a 2M-tuple of indices and is defined
as:

WM((i1, j1), . . . , (iM , jM )) =

G1(:, i1, j1, :)G2(:, i2, j2, :)...GM(:, iM , jM , :)

as it is described in Section 4. We call TTM
layer with rank R a TTM-R layer and forward pass
through this layer is described by the formula:

Y(j1, . . . , jM ) =∑
i1,...,iM

WM((i1, j1), . . . , (iM , jM ))X (i1, . . . , iM ),

(3)

So, in Equation 3 we should contract activa-
tion X with sequence (GM , . . . , G1) sequentially.
Please note that we can start with the first core
(G1, ...GM ) or with the last (GM , . . . , G1), in gen-
eral it doesn’t matter.

We contract X with size (B,Din) to GM with
size (RM−1, IM , JM , 1). As Din =

∏
(I1. . . IM ),

we contract over IM and have a tensor of shapes
(B,RM−1, JM , IM−1, . . . , I1) as a result. Then,
we should contract this tensor with a core GM−1

with shapes

(RM−2, IM−1, JM−1, RM−1)

over dimensions IM−1RM−1. This operation pro-
duces the object of shapes

(B,RM−2, JM , JM−1, IM−2, . . . , I1)

By repeating such operation K times, we obtain
a product with shapes

(B, I1, ..., IK , JK+1, ..., JM , RK)

In the end, we gain the output of sizes
(B, J1, . . . JM ) = (B,Dout). The computational
complexity of this operation is estimated above.

We measure peak memory during one training
iteration in the GPT-2 model with TTM layers

Table 2: Peak memory footprints for signal propagation
in full GPT-2 model with TTM layers with different
ranks. At the rank 16 we have an increment in memory
consumption.

Layer TTM-16 TTM-32 TTM-64 Fully
Type Connected
Memory, GB 75.07 48.7 48.31 48.37

Table 3: Memory footprints for signal propagation in
TTM wiht rank 16 and Fully-Connected Layers. Py-
Torch strategy leads to memory costs for TTM.

Layer TTM-16 TTM-16 Fully
Connected

Backprop Strategy PyTorch Einsum PyTorch
Autodiff Full Matrix Autodiff

Single Layer, Batch 16 1100 MB 294 Mb 395 Mb

with different ranks. Experiments depicted in 3
show that on a rank 16 the TTM layer can be more
memory-consuming than the regular FC layer. The
memory footprint for the FC and TTM layers for
custom-defined and PyTorch signal propagation
strategies (Table 3) confirms this claim.

For a tensor contraction, the PyTorch framework
uses Einstein summation notation. Optimized Ein-
sum library (Smith and Gray, 2018) optimizes the
expression’s contraction order by looking for an
optimal path - a set of strings of the form "ikl,lkj-
>ij". By default optimization, the obtained paths
are time-optimized, not memory-optimized. We
extend existing research by proposing memory-
efficient techniques to compute forward and back-
wards through the TTM layer for a more compre-
hensive description of the proposed methods.

5.1 Forward Pass

Algorithm 1 Forward pass (FC layer). Number of
layer parameters is O(BDinDout). Computational
complexity is O(BDinDout). SavedActivations is
O(BDin).
Input: data X ∈ RB×Din ; parameters W ∈ RDin×Dout ,

b ∈ RDout ;
Output: Y ∈ RB×Dout

Y = XW + b

Fully-connected layer. Given an input
batch X ∈ RB×Din a forward pass through
a fully-connected layer with weight matrix
W ∈ RDin×Dout and bias vector b ∈ RDout re-
sults in the output Y = XW + b ∈ RB×Dout and
requires O(BDinDout) operations.



The schedule of contractions computed during
the forward pass is optimized via opt_einsum
function (Smith and Gray, 2018). This function
optimizes the time of expression contraction in the
BLAS library for common linear algebra opera-
tions. The default optimization strategy provides a
recursive depth-first search over all possible paths,
by pruning candidates that exceed the best time.
Thus, due to some shared intermediate results mem-
ory for saved activations might be optimized.

TTM layer: Fixed Schedule The order of cores
to contract with is fixed in advance, and we do
not optimize it with opt_einsum. In this case,
saved activations usually occupy the same amount
of memory. The fixed scheduler approach is equiv-
alent to sequential forward pass through M linear
layers. The order of contraction in the schedule
might be (M,M − 1, . . . , 1) or (1, 2, . . . ,M −
1,M).

Algorithm 2 Forward pass (TTM layer, Fixed
Scheduler). The number of layer parameters is

O(
M∑

m=1
Rm−1ImJmRm).

Input: data X ∈ RB×Din ;Din =
M∏

m=1

Im, Dout =
M∏

m=1

Jm;

parameters Gm ∈ RRm−1×Im×Jm×Rm ,m = 1,M ,
R0 = RM = 1;

Output: Y ∈ RB×J1×···×JM

X = Reshape(X) ∈ RB×I1×···×IM

Y0 := X
ContractionSchedule := (1, 2, . . . ,M)
for k in ContractionSchedule do

Yk := einsum(Gk,Yk−1)

▷ FLOPY = O(B
k+1∏
m=1

Jm

M∏
m=k+1

ImRkRk+1)

Y = Yk

▷ MemoryY = O(B
k∏

m=1

Jm

M∏
m=k+1

ImRk)

end for

The forward pass with a Fixed Scheduler ap-
proach is equivalent to a sequential forward pass
through M linear layers. The order of contraction
in the schedule might be either (M,M − 1, . . . , 1)
or (1, 2, . . . ,M − 1,M).

5.2 Backward Pass
While training neural networks, intermediate activa-
tions are saved during the forward pass to compute
gradients during the backward pass.

Fully-connected layer. For the layer y = Wx+
b a derivatives w.r.t. weight is computed as

∂L
∂W

=
∂L
∂y

xT .

Algorithm 3 Forward pass (TTM layer,
Einsum). Number of layer parameters is

O(
M∑

m=1
Rm−1ImJmRm).

Input: data X ∈ RB×Din ;Din =
M∏

m=1

Im, Dout =
M∏

m=1

Jm;

parameters Gm ∈ RRm−1×Im×Jm×Rm ,m = 1,M ,
R0 = RM = 1;

Output: Y ∈ RB×J1×···×JM

X = Reshape(X) ∈ RB×I1×···×IM

Y := einsum(G1, . . .GM ,Y)

TTM layer: Automatic Pytorch differentia-
tion (Autodiff). Automatic Pytorch differentiation
during backpropagation through the TTM layer re-
sults in storing many intermediate activations, as
the TTM layer is considered as a sequence of linear
layers (where the number of layers corresponds to
the number of core tensors).

We propose several ways to perform a backward
pass that require smaller memory consumption.

TTM layer: Full Einsum. In the first approach
for each core tensor Gm we compute gradient of
loss with respect to its parameters:

∂L
∂Gm

=
∂L
∂W

∂W

∂Gm
= XT ∂L

∂Y
∂W

∂Gm
. (4)

As a gradient computation might be considered as
a tensor contraction along the specified axis, the
process includes three main steps.

Firstly, we generate a string-type expression,
which specifies the shapes of input and resulting
tensors (e.g. "ikl,lkj->ij" for performing tensor con-
traction along two axes). Second, the schedule
of contraction is defined (e.g., firstly along axis
’l’ and then along axis ’k’). And thirdly, einsum
computation is performed.

In Full Einsum approaches, the first two steps
(expression generation, contraction scheduling) are
performed independently for all ∂L

∂Gm
. The third

step, in turns, tracks which contractions are com-
puted for different derivatives and allows sharing
of intermediate results. Due to this sharing, we
get memory savings compared to the Autodiff ap-
proach.

TTM layer: Full Matrix. In the Full Matrix
approach, we perform the same three steps as in
the Full Einsum approach. The difference is that as
a first contraction we convolve the tensors X and
∂L
∂Y along the batch axis, and the schedule of the
other contractions is further optimized. This pro-
vides complexity improvements when batch size is



large (which is the case in Transformer-like models,
where batch dimension is the product of batch size
by sequence length).

Algorithm 4 Backward pass (TTM layer, Autod-
iff).
Input: ∂L

∂Y ; saved activations from forward Y1, . . .YM

Output: ∂L
∂X , ∂L

∂G1 , . . . ,
∂L

∂GM

∂L
∂YM

= ∂L
∂Y

for k in {M, . . . , 1} do
∂L
∂Gk = einsum(Yk−1,

∂L
∂Yk )

∂L
∂Yk−1

= einsum( ∂L
∂Yk

,Gk)

end for
∂L
∂X = ∂L

∂Y0

Algorithm 5 Backward pass (TTM layer, Full Ein-
sum).
Input: ∂L

∂Y ; X
Output: ∂L

∂X , ∂L
∂G1 , . . . ,

∂L
∂GM

▷ Results in the below for-cycle are computed only for the
first batch during training and reused for others.
for k in {1, . . . ,M} do

Compose einsumk expression for ∂L
∂Gk

Optimize contraction schedule for composed einsumk

end for
for k in {1, . . . ,M} do

∂L
∂Gk = einsumk(

∂L
∂Y ,G1, . . . ,GM )

end for

Backward with Full Einsum approach in the
worst case has the same complexity as the back-
ward Autodiff.

Algorithm 6 Backward pass (TTM layer, Full Ma-
trix).
Input: ∂L

∂Y ; X
Output: ∂L

∂X , ∂L
∂G1 , . . . ,

∂L
∂GM

∂L
∂W

= einsum( ∂L
∂Y ,X ) ▷ einsum here contracts only

along batch dimension
▷ FLOP ∂L

∂W
= O(BDinDout)

▷ Memory ∂L
∂W

= O(DinDout)

▷ Results in the below for-cycle are computed only for the
first batch during training and reused for others.
for k in {1, . . . ,M} do

Compose einsumk expression for ∂L
∂Gk

Optimize contraction schedule for composed einsumk

end for
for k in {1, . . . ,M} do

∂L
∂Gk = einsumk(

∂L
∂W

,G1, . . . ,GM )

▷ FLOP = O(DinDout max
m

(Im, Jm)(max
m

Rm)2)

end for

6 Experiments: end-to-end training of
GPT-2 with custom layers

We conducted experiments with a GPT-2 generative
model.We replaced the fully connected layers with

the sequence of corresponding TTM containers and
trained the resulting models from scratch on the
task of language modelling (LM). In this section,
we compare the performance of the original model
with our model and a GPT-2 with a fully-connected
layer, replaced with SVD structure (with the same
parameter budget as our model).

The general intuition of TTM layers superiority
w.r.t. SVD is as follows: TTM is proved to be
full-rank (Khrulkov et al., 2019), since the trun-
cated SVD is a low-rank method. Training the
layers from scratch, we find a structure that de-
fines weight matrices. The matrix M ∈ RIJ be-
ing restored from the TTM containers has rank
RTTM = min(I, J). On the contrary, the matrix
assembled from SVD factors has a truncated rank
RSV D < min(I, J)

We can suggest that for matrices with a certain
dimension:

• TTM is seeking a proper weight in a more
comprehensive space by utilizing a set of full-
rank matrices, which are more effective than
a set of matrices with truncated ranks;

• Higher rank matrix can store more informa-
tion than a matrix with the same dimensions
but a lower rank.

7 Inference time, memory requirements
and energy assumption of training loops

Table 5: Memory, needed to provide one forward-
backward operation on an NVIDIA A40 for a GPT-2
model with regular fully-connected, SVD-40 and TTM-
32 layer. The batch size is equal to 1.

Memory / Layers Regular TTM-32 SVD-40

Model + input 487.4 MB 280.7 MB 285.6 MB
After Forward 3020.9 MB 2814.1 MB 2822.7 MB
After Backward 1293.0 MB 878.5 MB 881.3 MB
Peak usage 3376.9 MB 3170.4 MB 3178.14 MB

Table 6: Avaraged inference time and power consump-
tion for a BERT model with regular fully-connected,
SVD-40 and TTM-32 layer. The batch size equals to 1.

FC Layers Regular TTM-32 SVD-40

Inference time, ms 9,7 11.7 8.6
Power, kWh∗10−5 1.1 1.2 0.9

In this section we measure memory required for
one training loop of the GPT-2 model with TTM



Table 4: In-domain perplexities for GPT-2 small model, pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 small Wikitext-103 train Wikitext-103 test 124 439 808 100 17.55

GPT-2 small TTM-16 Wikitext-103 train Wikitext-103 test 68 085 504 54 21.33

GPT-2 small TTM-32 Wikitext-103 train Wikitext-103 test 71 756 544 57 21.06
GPT-2 small SVD-40 Wikitext-103 train Wikitext-103 test 71 503 104 57 22.19

GPT-2 small TTM-64 Wikitext-103 train Wikitext-103 test 83 606 784 67 18.08
GPT-2 small SVD-170 Wikitext-103 train Wikitext-103 test 83 483 904 67 20.98

and SVD-based linear layers with ranks 32 and
40, respectively (see Table 4). The results, which
are shown in the Table 5, indicates reduction of
required memory during the training loop in the
case of SVD and TTM-based layers. Moreover,
TTM-based layers require less memory than SVD.

We measure electricity consumption using
Eco2AI library (Budennyy et al., 2023). As it is
depicted in the Table 6, the SVD layers provide a
reduction in inference time and energy consump-
tion. On the contrary, TTM increases energy con-
sumption and inference time. It may be due to the
sequential multiplication of several cores within
the forward function.

7.1 Hyperparameter selection

The proposed layer structure assumes two sets of
hyperparameters - TTM cores shapes and TTM
ranks. The matrix of sizes (I, J) is represented in
cores G ∈ R1,j1,i1,R1 ,G ∈ RR1,j2,i2,R2 , . . . ,G ∈
RRM−1,jM ,iM ,1, where I =

∏M
k=1 ik, J =∏M

k=1 jk, M - number of cores. Assuming the for-
mula 2 for the compression rate in a TTM layer,
we state that for the maximum compression rate,
shapes should be as close to each other as possible.
We choose ik ∗ jk in a way that they are equal to
each other and approximately equal to (I ∗ J)1/M .
Shapes selection is implemented with a custom
algorithm which will be presented in the source
code. In our case, GPT-2 small fully-connected
layers [I, J] is [768, 3072]; 768 = 4 ∗ 6 ∗ 8 ∗ 4
and 3072 = 8 ∗ 8 ∗ 6 ∗ 8; ik ∗ jk are 8*4, 8*6,
6*8, 8*4. Figure 1 presents the scheme of TTM-
based layers and the appropriate matrix of the FC
layer. Purple and blue marks the dimensions of
cores corresponding to the input and output sides
of the initial weight matrix, respectively.

As for the choice of ranks, we choose them based
on the desired compression of the entire model. For
a small GPT, these are from 50% to 90%. For a

medium GPT, the reduction is 40%.

7.2 In-domain language modelling task

To evaluate in-domain performance on the LM task,
we provide training and evaluation on the train
and test partition of the same dataset, respectively.
We replace the fully connected layers of GPT-2-
small with TTM of ranks 16, 32 and 64 as well as
SVD with ranks 40 and 170. We train and validate
the model with block size 512 in the Wikitext-103
dataset (Merity et al., 2016) for 40 epochs using
the AdamW optimizer and the Cosine warm-up
scheduler, increasing the training step from 0 to
2.5e−4. In this and subsequent experiments, we es-
tablished the maximum learning rate point relative
to the total number of training steps. Our goal was
to ensure that the model reached its highest point
and underwent approximately 1/10 of the entire
learning process. Table 4 shows that the result-
ing perplexity is comparable to the original model.
However, model compression has a negligible im-
pact on quality within this domain. For example, a
reduction in parameters of more than 30% only re-
sults in a half-percent decrease in perplexity, while
a reduction of more than 40% leads to a drop in 3%.
TTM-based model shows better results at the same
compression ratio than SVD: so, TTM-64 obtains
perplexity 18.08 while SVD-170 with the same size
obtains 20.98. similarly, GPT-2 small models with
71 mln parameters - TTM-32 and SVD-40 - have
performance of 21.06 and 22.19 respectively.

7.3 Out-domain language modelling task

In this setup, we perform validation on the Wikitext-
103 test section while training the model on other
datasets for the same language modelling task.

We train the GPT-TTM architecture on a suf-
ficiently large dataset OpenWebText3, which im-

3http://Skylion007.github.io/
OpenWebTextCorpus

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


Table 7: Out-domain perplexities for GPT-2 Medium, GPT TTM-72 and SVD-50 models, pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 med Webtext Wikitext-103 354 823 168 100 20.56
GPT-2 TTM-72 Openwebtext Wikitext-103 218 303 488 61 30.85
GPT-2 SVD-50 Openwebtext Wikitext-103 220 920 832 62 55.46
Distill GPT-2 Openwebtext Wikitext-103 81 912 576 23 51.45
OPT 350m Openwebtext + BookCorpus Wikitext-103 331 196 416 93 24.75

+ Pile (Gao et al., 2021)

itates the WebText dataset and is publicly avail-
able. We train the model for 10 epochs with a simi-
lar optimizer scheduler with a maximum learning
rate 2.95 exp−5 and global batch size 340. When
reaching the perplexity value of 50, we halved the
batch size. We use an optimizer and scheduler
as in the previous section, sequence length 1024.
The optimal parameters were chosen based on the
perplexity in the validation part of the Wikitext-
103 dataset of a small GPT-2 model with classical
fully connected layers. After obtaining the optimal
parameters for the classical model, the learning set-
tings were fixed. The training process continued
for approximately 20 days on 4 GPUs 3090ti. To
receive a GPT-based model with a compatible size,
we train from scratch under the same conditions
the GPT-2 medium with linear layer replaced with
SVD-structure layers with rank 50. As shown in
Table 7, the best perplexity among the compressed
models is related to OPT (Zhang et al., 2022) with
350 million parameters. Herewith, OPT saves 7%
of the full GPT-2, while TTM-72 saves 40%, and
the perplexity decreases to 31. At the same time, an
SVD-50 of a size similar to TTM-72 has perplexity
55, which is even worse than Distill GPT, the archi-
tecture with the smallest number of parameters.

7.4 Natural Languge Understanding - GLUE
We take a pre-trained GPT TTM-72 model from
the previous section (without fine-tuning) and vali-
date it on a General Language Understanding Eval-
uation (GLUE) benchmark. It is a collection of
nine natural language tasks, including language ac-
ceptability, sentiment analysis, paraphrasing and
natural language inference. The evaluation script is
based on the original Transformer repository (Wolf
et al., 2020). We add a top head compatible with
the given task and run one training epoch. We
choose just one epoch to avoid a situation where
several models, all “large” concerning the num-
ber of tokens in the dataset but of different sizes
relative to each other, converge to approximately

the same loss during the entire training cycle (Ka-
plan et al., 2020). We repeated these experiments 5
times with different random seeds, Table 8 shows
the averaged obtained results with a standard devi-
ation of no more than 0.0008. The classical mod-
els and models with TTM layers show approxi-
mately equal results, periodically overtaking each
other. GPT-2 TTM-72 has a performance decrease
in Acceptability and several Question-Answering
datasets (QNLI, MNLI). The result of SVD-50 is
close to TTM-72.

7.5 Text Summarization

We also compare the behaviour of the proposed
models in the text summarization task when tuning
on a small amount of data. Based on the pipeline
from (Khandelwal et al., 2019), we trained both
models on 3000 objects from the CNN/Daily Mail
datasets (Hermann et al., 2015; Nallapati et al.,
2016). The obtained ROUGEs are not high (Ta-
ble 9) but match the result from the paper cited
and highlight the similar behaviour of the classical
GPT-2 and TTM-72. SVD-50 shows a bit worse
outcome, except for the ROUGE-L metric. The
DistillGPT gives the expected lowest score; unex-
pectedly, but on the summarization task the OPT-
350m loses to TTM-72 while remaining high only
on the ROUGE-L.

8 Conclusion

We introduced an approach to obtain the com-
pressed version of the GPT-2 model by represent-
ing its layer with its compressed analogue of a
smaller number of parameters. We incorporate cus-
tom TTM layers as Fully Connected layers in a
transformer-based GPT-2 architecture and evaluate
it on Language modelling and Language Under-
standing tasks on English language. This modi-
fication results in a 40% reduction in model size,
while maintaining performance on in-domain tasks
without significant loss in quality. Furthermore, in



Table 8: Performance for GPT-2-based model on GLUE benchmark after one epoch fine-tining.

Model STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI AVG

GPT-2 med 0.76 0.45 0.82 0.78 0.87 0.87 0.53 0.92 0.43 0.74
OPT 350m 0.73 0.32 0.81 0.78 0.88 0.86 0.56 0.92 0.39 0.69
GPT-2 TTM-72 0.77 0.23 0.79 0.80 0.61 0.86 0.47 0.82 0.56 0.66
GPT-2 SVD-50 0.73 0.08 0.78 0.68 0.84 0.84 0.57 0.89 0.43 0.64
DistilGPT 0.18 0.00 0.73 0.70 0.79 0.52 0.57 0.88 0.43 0.64

Table 9: Text summarization results.

Model ROUGE-1 ROUGE-2 ROUGE-L

GPT-2 med 20.5 4.6 10.2
OPT-350m 15.9 3.7 11.5
GPT-2 TTM-72 20.1 4.1 9.9
GPT-2 SVD-50 18.1 2.3 11.3
DistilGPT 12.7 2.3 7.5

out-of-domain tasks, our proposed model outper-
forms similar architectures that use SVD instead of
Fully-Connected layers and training from scratch
under the same conditions.

We compare our method with other approaches
to compressing the effective model size: distilla-
tion (DistillGPT) and training cut version of the ar-
chitechture from scratch (OPT model). Our model
significantly surpasses DistillGPT, but the OPT
model provides the best score. This trend con-
tinues in downstream tasks such as Language Un-
derstanding and Text Summarization, where the
quality of our resulting model is lower than the
original but superior to baseline compressed mod-
els. These results show that in case of training a
compressed or cut version of the given model from
scratch, the dataset and training setup play a more
significant role than the choice of method. Distill-
GPT2 has a week setup; OPT has a strong setup
and well-prepared dataset; our model employs a
regular dataset and mimics the training setup of the
original model.

9 Limitations

The main limitation of this work is that a model
with custom layers must be trained from scratch. It
requires the operation of several industrial GPUs
for several weeks and the necessary equipment, at
least a load-bearing power supply. Such resources
may be limited in the academy. The proposed
model also was not validated on few-shot tasks,
which defines a good generalization ability of the
pre-trained model. It is important to recognize that
training a large model from scratch is a skill that

requires a certain level of expertise. As a result,
the performance of two identical architectures can
vary significantly depending on the specific train-
ing pipeline utilized.

10 Potential Risks and Ethical Statements

On the one hand, this work involves training large
enough models from scratch, which can negatively
affect the environment in terms of wasting re-
sources. On the other hand, the proposed model
has significantly fewer parameters and needs fewer
floating point operations to learn and fine-tune it
up to a given performance. On the other hand, in
the future, this will help reduce the cost of training
models to the desired scores.
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