
Large Language Models Meet Knowledge Graphs to
Answer Factoid Questions

Mikhail Salnikov1,2 ∗ , Hai Le1 ∗ , Prateek Rajput1, Irina Nikishina5,
Pavel Braslavski3, Valentin Malykh4, and Alexander Panchenko1,2

1Skolkovo Institute of Science and Technology, 2Artificial Intelligence Research Institute,
3Nazarbayev University, 4ISP RAS Research Center for Trusted AI, 5Universität Hamburg

{mikhail.salnikov, hai.le, a.panchenko}@skol.tech

Abstract

Recently, it has been shown that the incorpora-
tion of structured knowledge into Large Lan-
guage Models significantly improves the results
for a variety of NLP tasks. In this paper, we pro-
pose a method for exploring pre-trained Text-
to-Text Language Models enriched with ad-
ditional information from Knowledge Graphs
for answering factoid questions. More specifi-
cally, we propose an algorithm for subgraphs
extraction from a Knowledge Graph based
on question entities and answer candidates.
Then, we procure easily interpreted informa-
tion with Transformer-based models through
the linearization of the extracted subgraphs. Fi-
nal re-ranking of the answer candidates with
the extracted information boosts Hits@1 scores
of the pre-trained text-to-text language models
by 4− 6%.

1 Introduction

Answering factoid questions without access to a
Knowledge Graph (KG) can be challenging. The
corresponding answers to these factoid questions
refer to an invented or assumed statement presented
as a fact, or a true but brief or trivial item of news
or information. While language models can pro-
vide answers (Sen et al., 2022; Dubey et al., 2019),
the quality may not be optimal. Therefore, the
base approach for this task relies on a structured
knowledge source, such as DBPedia (Auer et al.,
2007), Wikidata (Vrandečić and Krötzsch, 2014),
or NELL (Mitchell et al., 2018). Given a natural
language question and a corresponding KG, the
goal is to predict the answer based on the analysis
of the question in the context of KG. An example
of how KGs could be used for answering factoid
questions is presented in Figure 1.

It has been shown that incorporation of the KG
information into Large Language Models (LLM)
significantly improves the results for various NLP

*These authors contributed equally to this work.

Input Question

Pre-trained
LLM

Model

Answer

Knowledge Graph

Figure 1: Example of using Knowledge Graphs for
answering factoid questions.

tasks (Zhang et al., 2020). At the same time,
state-of-the-art Knowledge Graph Question An-
swering (KGQA) systems perform poorly on com-
plex datasets (Sen et al., 2022).

In this paper, we propose a new method for
KGQA based on retrieving and ranking subgraphs
containing candidate answers. First, we gener-
ate answer candidates with an LLM and extract
entities from the initial question. Then, using a
structured knowledge base, Wikidata, we construct
the subgraphs containing those question entities
and generated answer candidates. Finally, we rank
these subgraphs using the linearization of the sub-
graphs and raw subgraphs themselves via Trans-
former Encoder models. The overall pipeline can
be seen in Figure 2. This approach is similar to how
we browse knowledge bases such as Wikipedia or
Wikidata when searching for information. Using
the relevant part of the massive knowledge base
graph, we “walk" from the question entities to the
potential answer and determine whether the poten-
tial answer is plausible by observing connections
between them.

Our contributions are as follows:

1. We propose a new method for KGQA by ex-
panding and ranking answer candidates re-
turned by a pre-trained sequence-to-sequence

mailto:mikhail.salnikov@skol.tech

language model using question entities’ neigh-
bourhood.

2. We present an algorithm for extraction of sub-
graphs corresponding to candidate answers
and their subsequent ranking using Trans-
former Encoders.

We also publish the code, the fine-tuned models,
and the subgraphs dataset on GitHub1.

2 Related Work

There exist two main approaches to KGQA: se-
mantic parsing (translating the question to an ex-
ecutable logical form) and retrieval-based meth-
ods (infer answers from a Knowledge Graph).
Chakraborty et al. (2021); Lan et al. (2021); Pereira
et al. (2022); Zhang et al. (2021) provide a detailed
overview of both research directions. Therefore,
we focus our attention on recent works that are
1) related to our approach or 2) trained and vali-
dated on the Mintaka dataset – our chosen complex
dataset.

To start with, many retrieval KGQA methods
solve the task by extracting subgraphs or neighbors
based on question analysis. Then, the correct an-
swer is chosen by searching the candidates within
these subgraphs or neighbors (Sun et al., 2019). For
example, Wang et al. (2023) present an inference
chain-based model which calculates the importance
of different inference chains for the question. Other
models compare entity embeddings from KG with
question embeddings (Saxena et al., 2020) or en-
tity embeddings extracted from the question (Raz-
zhigaev et al., 2023). Some papers present entity
type prediction methods where questions are trans-
formed into templates specifying the entity types in
the input question (Cui et al., 2019) or the answer
type (Perevalov and Both, 2020).

Considering the KGQA approaches to compare
with, we consider the models tested on Mintaka
(Sen et al., 2022). The first one, KVMemNet (Miller
et al., 2016), operates a symbolic memory struc-
tured as key-value pairs, which gives the model a
greater flexibility for encoding knowledge sources.
EmbedKGQA (Saxena et al., 2020) has three modules:
Question Embedding Module, Knowledge Embed-
ding Module, and Answer Selection Module; the
latter selects the final answer based on the first two
modules. Rigel (Saffari et al., 2021) is an end-to-
end QA approach which makes use of RoBERTa

1https://github.com/s-nlp/subgraph_kgqa

for embedding questions and performs both entity
resolution and multi-hop inference.

The approach by Wang et al. (2022) also captures
semantic relatedness between the questions and
the paths from the knowledge base. The authors
extract all paths between topic entities in similar
questions and answers from the train set, and rank
those paths according to their lengths. They imple-
ment an Interactive Convolutional Neural Network
and score answer candidates in relation to ques-
tion and paths features. Another relevant model
is GreaseLM (Zhang et al., 2022), where authors
fuse encoded representations from a pre-trained
Transformer Encoder and a Graph Neural Network
over multiple layers of modality interaction opera-
tions. The process involves obtaining a subgraph
of entities that are related to the question and then
reducing it to a maximum of 200 entities. This re-
duction is based on a relevance score that takes into
account the similarity of the embeddings. In con-
trast to the aforementioned approaches, our model
generates candidates with LLMs and incorporates
graph information into Transformers by graph lin-
earization, which is described in 3.3 in more detail.

2.1 Dataset

For our research, we focus on the Mintaka (Sen
et al., 2022) dataset, which is a large-scale, complex
and natural dataset, that can be used for end-to-end
question-answering models, composed of 20, 000
question-answer pairs. This dataset is annotated
with Wikidata entities and comprises 8 types of
complex questions. These types include:

• Count (e.g., Q: How many astronauts have
been elected to Congress? A: 4).

• Comparative (e.g., Q: Is Mont Blanc taller
than Mount Rainier? A: Yes)

• Superlative (e.g., Q: Who was the youngest
tribute in the Hunger Games? A: Rue)

• Ordinal (e.g., Q: Who was the last Ptolemaic
ruler of Egypt? A: Cleopatra)

• Multi-hop (e.g., Q: Who was the quarterback
of the team that won Super Bowl 50? A: Pey-
ton Manning)

• Intersection (e.g., Q: Which movie was di-
rected by Denis Villeneuve and stars Timothee
Chalamet? A: Dune)

https://github.com/s-nlp/subgraph_kgqa

Wikidata JSON Dump

Question Type
Classifier

Entities
Linking

 Subgraph
Extractor

Q Entity 0
Q Entity 1
 … ...
Q Entity M

Candidate 0
Candidate 1
 … ...
Candidate N

Subgraphs
Ranker

Deterministic
Sequence

Sequence
Ranker

Graphormer

Question

SubgraphsAnswer

LLM

yes/no
&

count

Diverse Beam Search

Figure 2: The proposed pipeline with subgraph extraction & re-ranker. The extracted subgraphs consist of the
shortest paths from the question entities to the candidates and are linearized for further ranking with Transformer
Encoder.

• Difference (e.g., Q: Which Mario Kart game
did Yoshi not appear in? A: Mario Kart Live:
Home Circuit)

• Yes/No (e.g., Q: Has Lady Gaga ever made a
song with Ariana Grande? A: Yes)

• Generic (e.g., Q: Where was Michael Phelps
born? A: Baltimore, Maryland)

Our research methodology centers around predict-
ing entities as answers, with a particular emphasis
on superlative, comparative, intersection, and multi-
hop questions. However, we still compute and eval-
uate the results based on the complete Mintaka
dataset, as our pipeline allows processing any type
of questions and yes/no and count questions re-
ceive special treatment described in detail in Sec-
tion 4.1.

We also compile and publish2 the dataset of sub-
graphs for the whole Mintaka dataset (for train,
validation, and test splits separately). Subgraphs
are collected using the pipeline presented above:
we generate candidate answers, we take the true an-
swer and the entities from the question entity neigh-
bors as candidates, and construct subgraphs with
Algorithm 1. As a result, we construct a “correct”
subgraph containing the correct highlighted answer
and several “incorrect” subgraphs from the incor-
rect candidate answers generated by the model. We
present two versions of the dataset with subgraphs:
with candidates generated by T5-Large-SSM and
by T5-XL-SSM models.

2https://github.com/s-nlp/subgraph_kgqa

3 Proposed Approach

We hypothesize that subgraphs containing paths
from question entities to answer candidates pro-
vide valuable information for selecting the correct
answer. Moreover, LLMs may predict an incorrect
answer while still be able to generate an correct
one among top candidates. Thus, we generate a
pool of answer candidates using a pre-trained Text-
to-Text Language Model. With each answer can-
didate, we extract the corresponding subgraph and
re-rank them based on analysis of these extracted
subgraphs. Language Model generates a string as
an answer, and we use Wikidata API3 to link it to
the corresponding Wikidata entity.

Our first task (Subsections 3.1-3.2) is to con-
struct subgraphs for each question-answer candi-
date pair by combining the path of the question
entities to the current answer candidate. The paths
from question entities to answer candidates are ex-
tracted from our chosen knowledge base, Wikidata.
Our second objective is to rank the candidate an-
swers using the extracted subgraphs. To do this,
we compare two approaches: a Transformer-based
Encoder which uses a linearized graph with a high-
lighted answer candidate 3.3-3.4 and a graph Trans-
former model (Graphormer) 3.4.

3.1 Expansion of Generated Candidates

Although most LLM approaches for QA, such as
the one presented by Sen et al. (2022), typically use
Greed Search and evaluate the top-1 answer, it is
important to note that the correct answer may not

3API URI: https://www.wikidata.org/w/api.php,
method: ’wbsearchentities’

https://github.com/s-nlp/subgraph_kgqa
https://www.wikidata.org/w/api.php

Question
Entity 0

Question
Entity 1

Question
Entity 2

Answer
Candidate 0

P0
P4

P6

P5P1

P2

P3

Question
Entity 0

Question
Entity 1

Question
Entity 2

Answer
Candidate 0

Answer
Candidate 0

Answer
Candidate 0

P4 P6

P1 P5

P2 P5

P0

Figure 3: Subgraph Construction Algorithm – Combin-
ing extracted the shortest paths to final subgraph.

always be the top candidate. For example, the fine-
tuned T5-XL-SSM (Roberts et al., 2020) model
achieved higher Mean Reciprocal Rank (MRR)
scores for our task, indicating that re-ranking could
improve the top-1 results. However, even when us-
ing Classical Beam Search, the output is often
minor variations of a single sequence, which may
not generate enough unique answer candidates for
the Question Answering task.

To solve the problem, we apply Diverse Beam
Search (Vijayakumar et al., 2018), which produces
a larger number of candidates and generates them
with higher variance. Diverse Beam Search is
formulated as follows:

Y g
[t] = argmax

yg1 ,...,y
g
B′∈Y

g
t

∑
b∈[B′]

Θ(ygb,[t])︸ ︷︷ ︸
diversity penalty

+

g−1∑
h=1

λg∆(ygb,[t], Y
h
[t])︸ ︷︷ ︸

dissimilarity term

,

(1)

The formula involves splitting the set of beams
at time t into g disjointed subsets Y g

[t], and then
selecting the candidate with the highest diversity
penalty, which is calculated as the sum of a diver-
sity penalty function Θ(ygb,[t]) over all candidates
in the subset. Additionally, a dissimilarity term is
included, which is calculated as the sum of a dis-
similarity function ∆(ygb,[t], Y

h
[t]) over all previous

subsets Y h
[t] up to time g−1. The dissimilarity term

is weighted by a parameter λg. This formula is
used to optimize the selection of answer candidates

in a computationally efficient manner.

3.2 Subgraph Construction Algorithm

For each question-answer candidate pair, the de-
sired subgraph G is mathematically defined as an
induced subgraph of the Wikidata KG. Thus, given
our shortest paths from ei → A, where ei - entity
extracted from question and A - Answer. We can
use the following Algorithm 1 to extract G. Let us
define H as the set of all distinct nodes within our
shortest paths Pi. We want to preserve all edges be-
tween the nodes within H . For all question-answer
pairs, our objective is to retain the relationship be-
tween our question entities E and answer candidate
entity Ai. The process is schematically depicted at
Figure 3.

Algorithm 1 Subgraphs Extraction

Require: entities, candidate
for entity in entities do

shortest_paths← get shortest path from en-
tity to candidate
end for
H← set of unique nodes shortest_paths flattened
for unique_node in H do

unique_node_neighbor ← get neighboring
nodes of unique_node

for neigh_node in unique_node_neighbor do
if neigh_node in H then

G← add edge between unique_node
and neigh_node

end if
end for

end for

Algorithm 2 Subgraphs to Sequence

Require: subgraph S
adj_matrix← S to adjacency matrix
for i in adj_matrix do

for j in i do
if j not 0 then

edge_info = edge of node i and j
final_seq← node i label + edge_info

+ node j label
end if

end for
end for

0 1 0
0 0 0
1 0 0

0 1 2

0

1

2

Marxism-Leninism, subclass of, Marxism, Communist Party
of Britain, political ideology, Marxism.

Communist Party of Britain

Marxism-Leninism

Marxism

political ideology

subclass of

2

0

1

Marxism-Leninism, subclass of,
[unused1]Marxism[unused2], Communist Party of Britain,

political ideology, [unused1]Marxism[unused2].

Highlighting answer candidate

0 subclass
of 0

0 0 0
political
ideology 0 0

0 1 2

0

1

2

A A’

Unravel

Figure 4: Subgraph Linearization. Example for question “Which is the main ideology of the communist party of
Britain?” Entity Q1120576 — Communist Party of Britain taken from question.

3.3 Graph Linearization for Sequence
Ranking

To rank the extracted subgraphs, we represent the
subgraphs as linearized natural language sequences,
as depicted in Figure 4. Firstly, to linearize, we con-
vert the subgraph into its binary adjacency matrix
representation, A. Given n nodes in the subgraph,
the resulting matrix’s dimension will be n×n. The
element [i, j] of the matrix represents the existence
of an edge between node with index i to node with
index j. Then, we replace the edges in the matrix
with the edge label and call it A′. Lastly, to pro-
duce our final sequence, we unravel A′ row by row
and add the triple (node_from, edge, node_to) on
to our final sequence. Algorithm 2 summarizes the
aforementioned steps.

As a result of our analysis, we discover that
12.8% of subgraphs in the test split of the dataset
contain the correct answer but are not identified as
potential candidates. To address this issue, we em-
phasize the answer candidate entities. To achieve
this, we include special tokens before and after
the answer candidate’s label in the final linearized
sequence, as shown in Figure 4.

3.4 Ranker Models

With our extracted subgraphs for each respective
question-answer pair, we seek to classify and re-
rank to boost the original Hits@1 scores. To
achieve our objective, we test two graph-based ap-

proaches: the Transformer Encoder based approach
using the linearized representation of the subgrahs
and the Graphormer model using raw subgraphs.
For both methods, we train a regression model with
Mean Square Error (MSE) loss. We assume that
such models will be able to rank the “correct” sub-
graphs (graphs including the correct answer candi-
date) higher than the “incorrect” subgraphs (graphs
including the incorrect answer candidate).

Linearized Sequence Ranker For the first
and main approach of our linearized sequence
representation, we utilize two BERT-like mod-
els: MPNet-base4 (Song et al., 2020) and
DistilBERT-base (Sanh et al., 2019). As in-
put data, we provide Question + [SEP] +
Linearized subgraph with the highlighted can-
didate entity using [SEP] tokens, as it can be seen
in Figure 4.

Graphormer Ranker As an alternative to the
linearized subgraphs, we utilize the raw sub-
graphs to rank our respective answer candi-
dates. Thus, we perform graph ranking exper-
iments using Graphormer (Ying et al., 2021)
– a transformer-based neural network specifi-
cally designed for graphs. We employ the
graphormer-base-pcqm4mv25 model. As input

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5https://huggingface.co/clefourrier/
graphormer-base-pcqm4mv2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2
https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2

data, we encode the structural information of our
subgraphs (natively in NetworkX6). These struc-
tural encoding include centrality (in/out degrees),
spatial (shortest path between node matrices), and
edge encoding in the attention. Unlike our lin-
earized sequences approach, the original questions
are not used.

4 Experimental Design

In this section, we discuss the experimental setup of
our approach, which includes 1) the base Sequence-
to-Sequence model used for answer candidates gen-
eration and 2) dataset used to verify the efficacy of
our hypothesis and approach.

We introduced the additional components for
pieline - Question Type Classifier and Extraction
of Entities from Questions.

4.1 Question Type Classifier

Factoid questions can sometimes have answers that
cannot be linked to an entity in knowledge bases
(count and yes/no questions). In order to handle
this edge case, we first train a classifier to cate-
gorize questions into three types: yes/no, count,
and other. For this classification task, we use the
MPNet (all-mpnet-base-v2) (Song et al., 2020)
model with CrossEntropy loss. We perform 5
epochs on the Mintaka train split, with a batch size
of 32, warm-up steps of 500, weight decay of 0.01,
and learning rate of 0.00005. To fit the train data
to the model, we employ the HuggingFace basic
Trainer and add a Weighted Random Sampler.

This pipeline demonstrates 98.29% balanced
accuracy on Mintaka test split. With the pre-
dicted yes/no and count questions, we simply
take the generated top-1 answer candidate by the
pre-trained Text-to-Text Language Model. With the
predicted Other questions, we process according
to the pipeline in Figure 2.

4.2 Extraction of Entities from Questions

With the list of answer candidates, we shift our fo-
cus to extracting the list of question entities. At this
step of the pipeline, any Entity Linker like mGENRE
(Cao et al., 2021) could be applied. However, in
order to evaluate the approach of subgraph genera-
tion and re-ranking which are the main contribution
to the task, during training and evaluation we use
gold entities provided by Mintaka.

6https://networkx.org/

4.3 Base Model

As the first step of our approach, we fine-tune the
T5-SSM models (Roberts et al., 2020) (Large and
XL) on English questions for 10,000 steps, follow-
ing Sen et al. (2022). This model was reported
as the state-of-the-art for the Mintaka dataset. Al-
though we attempted to adhere to the Sen et al.
(2022) model’s fine-tuning protocol, there were
certain aspects that were overlooked, which makes
it unfeasible to replicate the outcome. Despite our
efforts, we were unable to replicate the results as
claimed in (Sen et al., 2022). Thus, in the final
Table 1, we provide their results and ours as re-
implemented. We used Hits@1 metric for compar-
ing our approach with others because it is a famous
metric for KGQA task and many other authors (Sen
et al., 2022; Diefenbach et al., 2017) used only this
one metric, making it easier to compare results.
Additionally, we developed a KGQA system and
were interested in getting the final answer, not a
list of candidates that include the answer on some
position. Therefore, the primary contribution of
our work is the enhancement in quality compared
to our re-implemented model.

With the best fine-tuned T5-SSM-XL (Roberts
et al., 2020) model, we generate our answer can-
didates pool for subgraph extraction and ranking.
However, it can be replaced with any other model
for candidates generation.

5 Results and Discussion

In the following section, we present the results for
the proposed approach in comparison with several
baselines. Table 1 shows that the results for the re-
implemented T5-models are significantly improved
with our suggested approach: 4% for the large
model and 6% for the XL model. We also note
the increase in quality can be achieved with any
Encoder, however, MPNet performs slightly better
than DistilBERT-base. As our re-implemented
T5-models results are significantly lower than pre-
sented in the paper (Hits@1 is equal to 0.25 and
0.32 for large and XL models), we do not outper-
form the reported state-of-the-art, but perform on
par with it. Application of our approach to the ver-
sion trained by Sen et al. (2022) should boost the
scores even more.

Our second approach using Graphormer rank-
ing with solely the raw subgraphs does not im-
prove the results of an LLM. We hypothesize that
re-ranking only operates on structural encodings

https://networkx.org/

Model Hits@1
LANGUAGE MODELS

T5-Large-SSM (Sen et al., 2022) 0.28
T5-Large-SSM (Re-implemented) 0.25
T5-XL-SSM (Sen et al., 2022) 0.38
T5-XL-SSM (Re-implemented) 0.32
ChatGPT (GPT 3.5-turbo-0301) 0.33

KGQA MODELS
KVMemNet (Miller et al., 2016) 0.12
EmbedKGQA (Saxena et al., 2020) 0.18
Rigel (Saffari et al., 2021) 0.20

OUR APPROACH WITH SUBGRAPHS AND RE-RANKING
T5-Large-SSM (Re-implemented) + Linearization + MPNet 0.29
T5-Large-SSM (Re-implemented) + Linearization + DistilBERT 0.27
T5-Large-SSM (Re-implemented) + Graphormer 0.25
T5-XL-SSM (Re-implemented) + Linearization + MPNet 0.38
T5-XL-SSM (Re-implemented) + Linearization + DistilBERT 0.37
T5-XL-SSM (Re-implemented) + Graphormer 0.32

Table 1: Hits@1 for MINTAKA. A comparison between our methodology and SOTA. We show an improvement
over the original language model, Hits@1 from 0.32 to 0.38.

of our subgraphs, which results in a subpar per-
formance. Without information from the question
and a potential answer, the subgraphs cannot pro-
vide a complete and coherent representation of the
question-answer pair.

Additionally, we evaluate another popular large
language model — ChatGPT with the follow-
ing prompt before each question: “Answer as
briefly as possible. The answer should
be ’Yes’, ’No’ or a number if I am asking
for a quantity of something, if possible,
otherwise just a few words.” The result
of ChatGPT can be comparable to our fine-tuned
T5-XL-SSM, with Hits@1 scores of 0.33 and 0.32
respectively. However, they significantly lag be-
hind our proposed approach, as shown in the final
Table 1.

5.1 Question Type Analysis
In order to understand the efficacy of the pro-
posed approach, we calculate scores for each ques-
tion type in the dataset, which were described
in Section 2.1. The results in Table 2 are based
on the best-performing base model and re-ranker
(T5-XL-SMM + T5-Large-SSM (Re-implemented)
+ Linearization + MPNet). We exclude ques-
tions that do not have answers with the correspond-
ing Wikidata entity (yes/no and count), as the
precision scores remain the same for these ques-
tion types. For all other ComplexityType types of
this dataset, our re-ranker successfully bolsters the

Hits@1 scores.

ComplexityType Original Re-ranked Hits@All
Intersection 0.36 0.53 0.68
Count 0.25 0.25 0.94
Comparative 0.50 0.55 0.96
Yesno 0.62 0.62 1.00
Generic 0.34 0.35 0.65
Ordinal 0.21 0.22 0.59
Multihop 0.14 0.18 0.45
Difference 0.14 0.36 0.45
Superlative 0.28 0.41 0.55
All 0.32 0.38 0.69

Table 2: Hits@1 Results based on ComplexityType.
Hits@All — upper bound.

Upon further inspection, the largest increase
in accuracy (from Hit@1 0.32 to 0.38) is for the
Intersection type of questions (i.e. “What game
was released by Impressions Games and is an ex-
pansion to Pharaoh?”). We hypothesize that the
answer of these Intersection question is con-
nected to all question entities. Thus, the extracted
subgraphs contain more meaningful information,
representative of the relationship between our ques-
tion answer pair. Additionally, Multi-hop and
Difference questions also display a significant
increase in scores. Despite having a minute boost
in other question types, the proposed approach still
aids in performance in all categories. Overall, one
may argue that the re-ranker performs better with
complex questions.

5.2 Extracted Subgraphs Analysis

As shown previously, our proposed approach gener-
ally improves Hits@1 scores for all question types.
We hypothesize that geometry of the extracted sub-
graphs aided in the improved Hits@1 scores. Thus,
to further understand the reasoning behind this
performance boost, we examine the difference be-
tween the extracted subgraphs of the correct and
incorrect question-answer pairs. We assume that
“incorrect” subgraphs tend to be denser (more nodes
and edges); while the “correct” subgraphs tend to
be sparser (fewer nodes and edges). We also as-
sume that this information could be useful for our
Graphomer ranking approach. Despite having no
information regarding the question, we hypothe-
size that our pipeline picked up these differences
between the “correct” vs. “incorrect” subgraphs
via the structural encodings. To verify this hypoth-
esis, we collect different graph metrics for further
analysis.

Complexity Metrics “Correct”
Subgraphs

“Incorrect”
Subgraphs

Number of Nodes 2.98 3.14
Number of Edges 3.31 3.64
Density 0.61 0.63
Number of Simple Cycles 1.04 1.18
Number of Bridges 2.96 3.10

Table 3: Average graph statistics for the generated sub-
graphs: for the “correct” and “incorrect” subgraphs.

Table 3 displays the average of the number of
nodes, edges, density, simple cycles (elementary
circuits), and bridges (isthmus) for the “incorrect”
and “correct” subgraphs. We analyze these metrics
on our subgraph dataset of 13,491 “correct” sub-
graphs and 94,615 “incorrect” subgraphs; which
excludes yes/no and count question types.

The above table confirms our hypothesis that
“incorrect” subgraphs have higher density, larger
number of nodes, edges, simple cycles and bridges.
This might partially explain why the ranker can dif-
ferentiate the “correct” subgraphs from the “incor-
rect” subgraphs. Overall, we hypothesize that the
geometry of the subgraphs themselves contributes
to the boost of our final Hits@1 score.

5.3 Ablation study

In this section, our objective is to determine the
most crucial component of the proposed ranking
model. To achieve this, we employ the best per-
forming model and train and evaluate it, removing

certain parts of the pipeline.
First, we disable the highlighting feature and

observe that the Hits@1 score on the Mintaka test
part drops from 0.38 to 0.36. Second, we examine
the significance of the proposed subgraph extrac-
tion approach. We train another ranking model that
ranks candidates without subgraphs. As input, we
provide only a question and a candidate label to
the MPNet ranker model in the following format:
question+[SEP]+candidate. The results show
a Hits@1 score of 0.33, which clearly indicates that
the large contribution of the subgraph information
to the final score.

All in all, eliminating both parts of the input
for the ranking model drastically decreases the re-
sults. Candidate highlighting as well as subgraphs
are necessary for choosing the correct candidate
answer.

5.4 Limitations

The main limitation of the proposed system is that it
is tested on the English language only. Mintaka pos-
sesses suites in other languages and our approach
should definitely be tested on them. Moreover,
while Mintaka has proved to be a new challenging
dataset with various type of question, it would be
interesting to test our approach on other datasets,
such as LC-QuAD 2.0 (Dubey et al., 2019) and
RuBQ 2.0 (Rybin et al., 2021). Furthermore, we
have not checked the full pipeline performance as
we do not embed an Entity Linker and test our
model on gold question entities and have not tested
other Generative Transformers.

In terms of computational efficiency, communi-
cation with a Knowledge Graph can be a bottleneck,
as it might be time-consuming for generating sub-
graphs from a KB for all 200 answer candidates.

6 Conclusion

To sum up, in this paper, we have proposed an ap-
proach for improving the output of LLMs for Ques-
tion Answering using additional information from
Knowledge Graphs. We have improved Hits@1 by
4 to 6% by extracting subgraphs relevant to the in-
put question entities and the predicted answer can-
didates; and further ranking the answer candidates
by the extracted subgraphs. Our result analysis
shows that the suggested solution improves scores
for the Intersection questions and has almost
no effect on Comparative questions. The ablation
study proves the efficiency of each pipeline step.

As future work, we plan to extend our approach to
other languages and test the full pipeline with entity
linker and other generative Transformer models.

Acknowledgements

The work of Irina Nikishina was supported by
the DFG through the project “ACQuA: Answering
Comparative Questions with Arguments” (grants
BI 1544/7- 1 and HA 5851/2- 1) as part of the
priority program “RATIO: Robust Argumentation
Machines” (SPP 1999).

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. The
Semantic Web, page 722–735.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel
Artetxe, Naman Goyal, Mikhail Plekhanov, Luke
Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and
Fabio Petroni. 2021. Multilingual autoregressive en-
tity linking.

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Ma-
heshwari, Priyansh Trivedi, Jens Lehmann, and Asja
Fischer. 2021. Introduction to neural network-based
question answering over knowledge graphs. WIREs
Data Mining Knowl. Discov., 11(3).

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu
Song, Seung-won Hwang, and Wei Wang. 2019.
KBQA: learning question answering over QA cor-
pora and knowledge bases. CoRR, abs/1903.02419.

Dennis Diefenbach, Thomas Pellissier Tanon, Ka-
mal Deep Singh, and Pierre Maret. 2017. Question
answering benchmarks for wikidata. In Proceedings
of the ISWC 2017 Posters & Demonstrations and
Industry Tracks co-located with 16th International
Semantic Web Conference (ISWC 2017), Vienna, Aus-
tria, October 23rd - to - 25th, 2017.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: A
large dataset for complex question answering over
wikidata and dbpedia. In The Semantic Web - ISWC
2019 - 18th International Semantic Web Conference,
Auckland, New Zealand, October 26-30, 2019, Pro-
ceedings, Part II, volume 11779 of Lecture Notes in
Computer Science, pages 69–78. Springer.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 4483–4491.
International Joint Conferences on Artificial Intelli-
gence Organization. Survey Track.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409, Austin, Texas. Associ-
ation for Computational Linguistics.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar,
B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gard-
ner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis,
T. Mohamed, N. Nakashole, E. Platanios, A. Rit-
ter, M. Samadi, B. Settles, R. Wang, D. Wijaya,
A. Gupta, X. Chen, A. Saparov, M. Greaves, and
J. Welling. 2018. Never-ending learning. Commun.
ACM, 61(5):103–115.

Arnaldo Pereira, Alina Trifan, Rui Pedro Lopes, and
José Luís Oliveira. 2022. Systematic review of ques-
tion answering over knowledge bases. IET Softw.,
16(1):1–13.

Aleksandr Perevalov and Andreas Both. 2020.
Augmentation-based answer type classification of
the SMART dataset. In Proceedings of the SeMan-
tic AnsweR Type prediction task (SMART) at ISWC
2020 Semantic Web Challenge co-located with the
19th International Semantic Web Conference (ISWC
2020), Virtual Conference, November 5th, 2020, vol-
ume 2774 of CEUR Workshop Proceedings, pages
1–9. CEUR-WS.org.

Anton Razzhigaev, Mikhail Salnikov, Valentin Malykh,
Pavel Braslavski, and Alexander Panchenko. 2023.
A system for answering simple questions in multiple
languages. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 524–537,
Toronto, Canada. Association for Computational Lin-
guistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 5418–5426. Association for
Computational Linguistics.

Ivan Rybin, Vladislav Korablinov, Pavel Efimov, and
Pavel Braslavski. 2021. Rubq 2.0: An innovated
russian question answering dataset. In The Semantic
Web - 18th International Conference, ESWC 2021,
Virtual Event, June 6-10, 2021, Proceedings, volume
12731 of Lecture Notes in Computer Science, pages
532–547. Springer.

Amir Saffari, Armin Oliya, Priyanka Sen, and Tom Ay-
oola. 2021. End-to-end entity resolution and question
answering using differentiable knowledge graphs.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
4193–4200, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/2103.12528
http://arxiv.org/abs/2103.12528
https://doi.org/10.1002/widm.1389
https://doi.org/10.1002/widm.1389
http://arxiv.org/abs/1903.02419
http://arxiv.org/abs/1903.02419
http://ceur-ws.org/Vol-1963/paper555.pdf
http://ceur-ws.org/Vol-1963/paper555.pdf
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.1145/3191513
https://doi.org/10.1049/sfw2.12028
https://doi.org/10.1049/sfw2.12028
https://ceur-ws.org/Vol-2774/paper-01.pdf
https://ceur-ws.org/Vol-2774/paper-01.pdf
https://aclanthology.org/2023.acl-demo.51
https://aclanthology.org/2023.acl-demo.51
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.18653/v1/2021.emnlp-main.345
https://doi.org/10.18653/v1/2021.emnlp-main.345

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4498–
4507, Online. Association for Computational Lin-
guistics.

Priyanka Sen, Alham Fikri Aji, and Amir Saffari.
2022. Mintaka: A complex, natural, and multilin-
gual dataset for end-to-end question answering. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 1604–1619,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R. Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2018. Diverse beam
search: Decoding diverse solutions from neural se-
quence models.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Jingchao Wang, Weimin Li, Yixing Guo, and Xiaokang
Zhou. 2022. Path-aware multi-hop question answer-
ing over knowledge graph embedding. In 2022 IEEE
34th International Conference on Tools with Artificial
Intelligence (ICTAI), pages 459–466.

Jingchao Wang, Weimin Li, Fangfang Liu, Bin Sheng,
Wei Liu, and Qun Jin. 2023. Hic-kgqa: Improving
multi-hop question answering over knowledge graph
via hypergraph and inference chain. Knowledge-
Based Systems, page 110810.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? In Advances in Neural

Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
28877–28888.

Chen Zhang, Yuxuan Lai, Yansong Feng, and Dongyan
Zhao. 2021. A review of deep learning in question
answering over knowledge bases. AI Open, 2:205–
215.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,
and Jure Leskovec. 2022. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing. CoRR, abs/2201.08860.

Zhiyuan Zhang, Xiaoqian Liu, Yi Zhang, Qi Su, Xu Sun,
and Bin He. 2020. Pretrain-kge: Learning knowledge
representation from pretrained language models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online Event, 16-20 Novem-
ber 2020, volume EMNLP 2020 of Findings of ACL,
pages 259–266. Association for Computational Lin-
guistics.

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
https://aclanthology.org/2022.coling-1.138
https://aclanthology.org/2022.coling-1.138
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1109/ICTAI56018.2022.00074
https://doi.org/10.1109/ICTAI56018.2022.00074
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110810
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110810
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110810
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
https://doi.org/10.1016/j.aiopen.2021.12.001
https://doi.org/10.1016/j.aiopen.2021.12.001
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
https://doi.org/10.18653/v1/2020.findings-emnlp.25
https://doi.org/10.18653/v1/2020.findings-emnlp.25

