
Vocabulary Replacement in SentencePiece for Domain Adaptation

Teruno Kajiura
Japan Women’s University

Tokyo, Japan
m1816023kt@ug.jwu.ac.jp

Shiho Takano
Japan Women’s University

Tokyo, Japan
m1816053ts@ug.jwu.ac.jp

Tatsuya Hiraoka
Tokyo Institute of Technology

Tokyo, Japan
tathi029@gmail.com

Kimio Kuramitsu
Japan Women’s University

Tokyo, Japan
kuramitsuk@fc.jwu.ac.jp

Abstract

Large language models (LLMs) show poor
performance due to excessive subword seg-
mentation. This problem is particularly evi-
dent when the vocabularies of the pretrained
domain differ from the domain of the tar-
get task. Traditionally, researchers extend the
domain-specific vocabulary of the target task
by increasing the LLMs’ vocabulary size. This
approach is problematic because the number
of parameters in the LLMs increases signifi-
cantly. In contrast, we propose a new method
that does not change the vocabulary size, in-
stead replacing it with a domain-specific vo-
cabulary. The vocabulary replacement method
is proposed as follows. First, we select words
that consist of multiple subwords in the vo-
cabulary model. Next, we replace the less
frequently used words with ones from the
domain-specific vocabulary. Finally, we up-
date the vocabulary model. In this study, we
conducted our experiments on the Sentence-
Piece vocabulary model. The vocabulary re-
placement on the Japanese T5 and multilingual
T5 shows that our proposed method produces a
space of 6k ∼ 21k words that can be replaced.
In addition, we also compare the performance
of the LLMs with Python code generation as
the target task. The results showed almost no
performance degradation on the Japanese Gen-
eral Language Understanding Evaluation tasks
and improved performance of the code gener-
ation tasks.

1 Introduction

Recent work has shown that large language mod-
els (LLMs) perform well on tasks requiring gen-
eral knowledge, but have difficulty on domain-
specific tasks (Lee et al., 2020; Ebrahimi and
Kann, 2021; Tanaka and Shinnou, 2022). The to-
kenizer segments text based on a vocabulary con-
structed by extracting words and phrases used in

the pre-training corpus. Therefore, if the vocab-
ulary of the pre-trained domain differs from the
domain of the target task, the tokenizer often per-
forms excessive subword segmentation of words
in the target task (Zhang et al., 2020). One solu-
tion is to expand the vocabulary to include target
task-specific words in the vocabulary (Zhang et al.,
2020; Wang et al., 2020). This approach is supe-
rior for improving the targeted downstream tasks.
However, it has the problem that if the vocabulary
size of the LLMs is increased, the parameters of
LLMs increases and the computational efficiency
decreases.

In contrast, we propose a new method that does
not change the vocabulary size, instead replac-
ing it with a domain-specific vocabulary. The vo-
cabulary replacement method is proposed as fol-
lows. First, we select words that consist of multi-
ple subwords in the vocabulary. Next, we replace
the less frequently used words with ones from the
domain-specific vocabulary. Finally, we update
the vocabulary model. In this paper, we replace
Japanese vocabulary with Python tokens (reserved
words/identifiers) in the Japanese T5 and multi-
lingual T5 (mT5). We confirm the effectiveness
of the proposed method by evaluating it on the
Japanese General Language Understanding Eval-
uation (JGLUE) task and the code generation task.

Our main contributions are as follows:

• We proposed a method for domain adaptation
of the LLM tokenizer through updates by re-
placing its vocabulary.

• We have confirmed that high accuracy can be
maintained even when replacing 10-20% of
the Japanese vocabulary in the LLM.

• Our approach has been empirically proven
to enhance the accuracy of code generation

tasks by up to 7%.

Our method shows high applicability across do-
mains and languages for any LLM using Senten-
cePiece.

2 Related Works

This research is closely related to an approach for
domain adaptation of pretrained language models
and vocabulary expansion.

2.1 Specialized LLM Training

LLMs are often pretrained using large avail-
able corpus in general domains (e.g., Wikipedia).
However, the use of general LLMs in specialized
domains may not be optimal because of differ-
ences in language usage and vocabulary.

The two methods in which domain-specific
LLMs have been developed are (i) pretraining
an LLM from scratch using in-domain data (Lee
et al., 2020; Singhal et al., 2023) or (ii) continu-
ing to train existing general LLMs with in-domain
data (Gururangan et al., 2020).

Method (i) is a straightforward and effective
way to develop domain-specific LLMs, although
it has problems that require significant compu-
tational resources and lacks a corpus in some
domains. Method (ii) modifies these problems
and improves the processing performance of us-
ing domain-specific knowledge (Yu et al., 2021)
and unsupported languages (Chau et al., 2020;
Ebrahimi and Kann, 2021) by adapting LLMs.

2.2 Vocabulary Adaptation

The domain characteristics of an LLM are re-
flected not only in the training sessions (e.g., pre-
training and fine-tuning), but also in the LLM vo-
cabulary. The LLM vocabulary functions to split
the input text into tokens, which is a format that
the LLM can manipulate and understand, and gen-
erate embedded representations. The vocabulary
of LLMs is determined by tokenization algorithms
such as SentencePiece (Kudo and Richardson,
2018) and Byte-Pair-Encoding (Sennrich et al.,
2016), as well as by the corpus used for train-
ing. Specialized documents contain many unique
words.

Vocabulary adaptation to these specialized
words is beneficial as a preliminary step when
adapting the LLM to a target domain through
continued pre-training (method [ii]) (Lamproudis

et al., 2022). Zhang et al. expanded the LLM vo-
cabulary to include common words in the domain
and achieved improved performance on a Q&A
task (Zhang et al., 2020). Additionally, extending
an LLM’s vocabulary to include words in a new
language that it has not previously trained on im-
proves the LLM’s ability to process documents in
a new language (Wang et al., 2020; Imamura and
Sumita, 2022).

3 Proposed Method

In this study, we aim to improve LLM perfor-
mance on domain-specific tasks through domain
adaptation of the vocabulary. We propose a vocab-
ulary replacement method using SentencePiece
as a unigram model. SentencePiece (Kudo and
Richardson, 2018) is a tokenizer that segments
an input string into subwords. It treats high-
frequency words as a single piece and splits low-
frequency words into shorter subword pieces.

3.1 Idea

We propose a new method for the addition of
new words to an LLM’s vocabulary for domain
adaptation. Figure 1 provides an overview of our
proposal. Our method selects some words from
the LLM vocabulary and replaces them with new
words. After the vocabulary update, we continue
pretraining the LLM with a domain-specific cor-
pus in the framework of masked language model-
ing (Raffel et al., 2020). As shown in Figure 2,
the size of the vocabulary increases with each new
word added in the vocabulary extension (Zhang
et al., 2020; Wang et al., 2020), while our method
keeps its size constant.

3.2 Vocabulary Extension

For comparison with our approach, we describe
vocabulary extension as done in a previous study.
Let the vocabulary of LLM’s vocabulary be
V model, the vocabulary added through extension
be V extend, and the new vocabulary to be added
be V new.

The basic vocabulary extension steps are shown
as follows.

1. Resize the vocabulary, encoder, and decoder
to suit |V new |. That is, extend to |V extend| =
|V model|+|V new |.

2. Continue pretraining with monolingual data
of the target language.

Pre-trained LM

Domain-specific
corpus

Tokenizer
+ Domain vocabulary

Continue Pre-training Pre-trained LM

Tokenizer
+ Domain vocabulary

Pre-trained LM

Vocabulary Replacement

Method 1 : Replace Rare words Method 2: Replace Non-subwords

ScoreTokenID

0.0False0

0.0assert1

-3.17TypeError2
-4.53DataFrame3
⋮⋮⋮

-6.53cols2499

-9.79matplotlib2500

ScoreTokenID
0.0<pad>0
0.0</s>1
0.0<unk>2
⋮⋮⋮

-11.542012-10
→ False29500

⋮⋮⋮

-13.58記録を樹⽴
→ cols31998

-13.59周年を迎えた
→matplotlib31999

ScoreTokenId

0.0False0

0.0assert1

-3.17TypeError2
-4.53DataFrame3
⋮⋮⋮

-6.53cols2499

-9.79matplotlib2500

ScoreTokenID
0.0<pad>0
0.0</s>1
0.0<unk>2
⋮⋮⋮

-7.5402012-10
→ False12345

⋮⋮⋮

-13.589記録31998

-13.590周年を迎えた
→matplotlib31999

ReplaceReplace

The domain-specific vocabulary: Vnew The LLM vocabulary : Vmodel The LLM vocabulary : VmodelThe domain-specific vocabulary: Vnew

Figure 1: Vocabulary replacement process

scoretokenid

0.0False0

0.0assert1

-3.172TypeError2
-4.532DataFrame3
⋮⋮⋮

-6.535cols2499

-9.791matplotlib2500

scoretokentypeid
0.0<pad>30
0.0</s>31
0.0<unk>22
⋮⋮⋮⋮

-13.589記録を樹⽴131998
-13.590周年を迎えた131999
0.0False132000
⋮⋮⋮⋮
0.0matplotlib134500

scoretokentypeid
0.0<pad>30
0.0</s>31
0.0<unk>22
⋮⋮⋮⋮

-7.5402012-13
→ False112345

⋮⋮⋮⋮

-13.589記録を樹⽴
→ cols131998

-13.590周年を迎えた
→matplotlib131999

scoretokenid

0.0False0

0.0assert1

-3.172TypeError2
-4.532DataFrame3
⋮⋮⋮

-6.535cols2499

-9.791matplotlib2500

Existing method:
Vocabulary Extension

The LLM vocabulary (i.e.. Vmodel)

The domain-specific vocabulary
(i.e.. Vnew)

The domain-specific vocabulary
(i.e.. Vnew)

The LLM vocabulary (i.e.. Vmodel)

Our method:
Vocabulary Replacement

Figure 2: Comparison of vocabulary expansion from prior research (left) and vocabulary replacement proposed in
this study (right).

3.3 Vocabulary Replacement

Let the vocabulary to be removed by replacement
be V remove and the vocabulary after replacement
be V remove. In our method, vocabulary adaptation
and training goes as follows:

1. Determine the amount of vocabulary to re-
place, denoted as |V new |, using it as a hy-
perparameter. Throughout this paper, we
followed the |V new | of the previous study
(Zhang et al., 2020) and set the sizes to 2.5k
and 5k.

2. In the Vmodel, we define the set Vremove for
replacement, considering the size |Vnew|.

3. Develop a tokenizer by defining V replace

that replaces V remove with V new. That
is, in the vocabulary after replacement, let
V remove=V model + V new − V remove. The
size remains the same, |V model|=|V remove|.

To select V remove, we propose two methods,
the Rare Words method and the Non-subword
method, which are shown in Figure 1.
Rare Words: We define the low-frequency words
in the pre-training corpus as Vremove.
Non-subwords: We define Vremove as the words
that are composed of several subwords and appear
infrequently in the pre-training corpus.

3.4 Vocabulary to be Added

In principle, the new vocabulary V new defined
for tokenizing can contain any word or subword.
However, when choosing V new, it is better to
consider how often the word appears in the new
domain. We generated V new by using the un-
igram language model from SentencePiece on
the domain-specific corpus for additional train-
ing. Our method does not adjust the Sentence-
Piece scores between V remove and V new. We as-
sume that words in both vocabularies are indepen-
dent, and we replace them based on their scores.

4 Which Words to Replace?

This section describes the non-subword method
for selecting replaceable words, separable into
subwords (non-subwords) from the model vocab-
ulary V model generated by SentencePiece.

4.1 Sorting of Non-subwords

Let V = x, y, z be a set of tokens that constitute
the vocabulary of the model. A non-subword is a
word z that has a concatenated relationship with
x and y in the form z = xy, as in cook and ing.
Then, if the relationship between x, y, and z is
x ∈ V and y ∈ V and z ∈ V , then z is considered
a replaceable non-subword.

Vreplace = {xy|x ∈ V ∩ y ∈ V }

We consider z to be replaceable, because even if z
is excluded from V , z appearing in a sentence can
be processed by x and y instead.

SentencePiece adds a score to a word based on
its frequency of appearance in the pretrained cor-
pus when generating the vocabulary model. We
decide whether to replace the word z in the re-
placeable subwords, Vreplace, based on the Senten-
cePiece score p(z). In the non-subword method,
if the relationship between x and y, which are re-
placeable subwords, is p(x)≦ p(y), the word with
the lower score p(x) is replaced with Vnew.

4.2 Replaceable Numerals and Symbols

The vocabulary generated by SentencePiece con-
tains many words with numerals and symbols, as
shown in Table 1. We decided to remove repeated
numeral and symbol tokens for such words as well
as for non-subwords. All numerals are treated as
single character tokens; for example, a word such
as "2021" is treated as four separate tokens: ’2’,
’0’, ’2’, and ’1’. Each symbol is also treated as
a single character token. While numeral process-
ing is still debatable, our treatment conforms to
the vocabulary structure of the latest LLM, PaLM
(Chowdhery et al., 2022).

4.3 Preliminary Experiment

We examined the V model of the mT5 and Japanese
T5 1 to see how many words could be replaced us-
ing the non-subword method. In this study, non-
subwords are selected from Japanese and num-
bers/symbols. Table 1 shows the size of |V model|,

1https://huggingface.co/sonoisa/t5-base-japanese-adapt

the number of Japanese words in V model, the num-
ber of non-subwords in Japanese, and the number
of numerals/symbols.

The mT5 supports 101 languages and has a vo-
cabulary size of 250,000. Focusing on Japanese
alone, the mT5’s V model contains 23,739 words.
In contrast, the vocabulary size of the Japanese
T5 is 32,128, of which 27,704 are Japanese
words. Therefore, the Japanese T5 contains more
Japanese vocabulary than the mT5. Using the non-
subword method, we found that 21,057 words in
the mT5 and 6,228 in Japanese T5 are replaceable.
A breakdown shows that the mT5 contains 3,612
Japanese words and 17,445 numbers and sym-
bols. Additionally, the Japanese T5 contains 5,209
Japanese words and 1,019 numbers and symbols.

5 Experiments

We test whether our proposed vocabulary replace-
ment method improves the domain’s adaptibility
to the task. In this experiment, we evaluate the
performance of the Python language as a domain,
focusing on the following two points.

• The performance of the model is maintained
even when the vocabulary selected by rare
word/non-subword is removed.

• Replacement of rare words/non-subwords
with Python vocabulary improves the accu-
racy of the code generation task.

In this experiment, we first replace the Japanese
vocabulary with special tokens and evaluate them
in JGLUE. JGLUE evaluates the T5’s performance
in understanding Japanese. Next, we evaluate the
effects of replacing the T5 with Python on the ac-
curacy of code generation.

5.1 Setup
Model We use the Japanese T5 and mT5 (Xue
et al., 2021) with different vocabulary V model gen-
erated by SentencePiece. The Japanese T5 is a T5-
adapted language model pre-trained on a Japanese
corpus from Wikipedia, OSCAR and CC-100.
This model has a vocabulary size of |V model| =
32,128 and consists of 250M parameters. The
mT5 is a multilingual T5 pre-trained with the mul-
tilingual web text dataset mC4. The size of its vo-
cabulary is |V model| = 250,000, and the size of the
parameters of the small version is 300M.
Python Dataset After vocabulary replacement in
Python, we use two unlabeled domain-specific

Table 1: Analysis of the vocabulary V model in mT5 and Japanese T5.

Model
Vocabulary size

(V model)
Vocabulary
(Japanese)

Non-subword
(Japanese)

Numerals
& Symbols

Replaceable words

mT5 32,128 27,704 5,209 1,100 6,309
Japanese T5 250,112 23,739 3,612 17,526 21,138

datasets during continual pre-training: Code-
SearchNet (Husain et al., 2019) and CoNaLa (Yin
et al., 2018). Hyperparameters are 3e-4 peak
learning rate and 5 epochs.
Python Vocabulary We add the Python vocab-
ulary as a new vocabulary, Vnew. Specifically,
the Python vocabulary is selected from reserved
words and identifiers 2 as well as vocabulary ap-
pearing in the Python dataset that scores well on
SentencePiece.

5.2 Effect of Removing Words from V model

Our proposed method, by the nature of replacing
existing words with new words, means that there
is a removed vocabulary, V remove, from the origi-
nal vocabulary, V model. Removing V remove from
the Japanese V model renders the contextual knowl-
edge learned with V remove unusable. This process
causes poor performance, especially for Japanese.

We apply two approaches to select V remove:
rare word and non-subwords. We aim to verify
that even after removing V remove, the T5’s perfor-
mance in processing Japanese remains relatively
stable.

We used the JGLUE benchmark3 which in-
cludes the following five datasets. MARC-ja is a
task of classifying product reviews into two cat-
egories: positive or negative. JSTS is a task of
estimating the semantic textual similarity between
two sentences, scored from 0 to 5. JNLI is a
task of categorizing relationships between pairs
of premise and hypothesis sentences into three
classes. JSQuAD is a reading comprehension
task where one reads a document and a related
question, then extracts the answer phrase from
the document. JCommonsenseQA is a question-
answering task based on Japanese commonsense
knowledge, consisting of a question and five word
choices for the answer.

5.3 Effect of Replacing V remove with Python
The purpose of this experiment is to test whether
replacing to a Python vocabulary improves the

2https://docs.python.org/3.10/reference/lexical_analysis.html
3Eval data from the JGLUE dataset is used as test data.

accuracy of the code generation task. We aim
to compare models for vocabulary-based domain
adaptation: a baseline with no changes, one us-
ing the EXTEND method from previous research
(Wang et al., 2020), and our methods for replacing
rare words and non-subwords.

For fine-tuning, we use the code generation
dataset (Obara et al., 2022), which consists of
bilingual Japanese and Python codes. For eval-
uation metrics, we use ExactMatch (EM), which
indicates the percentage of perfect matches be-
tween the correct code and the generated code, and
BLEU score (Papineni et al., 2002), which indi-
cates the degree of similarity. Note that the gener-
ated code is normalized using the code formatter
Black4, so that differences in the code layout, such
as whitespace, do not affect the evaluation. There-
fore, differences in code layout, such as whites-
pace, do not affect the evaluation.

5.4 Results

5.4.1 Evaluation of Removing Vocabulary
Table 2 shows the JGLUE scores for the T5 with-
out vocabulary processing (baseline) and the T5
with two types of our proposed replacement meth-
ods: rare words and the non-subwords. In addi-
tion, we show the Japanese vocabulary size of each
model and the percentage of remaining vocabulary
when compared to the baseline.

In terms of vocabulary changes due to the re-
moval of Japanese vocabulary, the non-subword
method removed more Japanese vocabulary in
both the mT5 and the Japanese T5. We have con-
cluded that the non-subword method is specifi-
cally designed to target and select Japanese words.

The JGLUE score changed due to vocabulary
reduction from the baseline, and scores for the
mT5 and Japanese T5 decreased slightly. We
tested the results of MARC-ja, JSTS, JNLI, and
JCommonsenseQA using the Wilcoxon signed-
rank test, setting the significance level at 0.05. If
the p-value is less than 0.05, there is a statistically
significant difference between the baseline and the

4https://pypi.org/project/black/

Table 2: Evaluation of vocabulary removal methods in the JGLUE benchmark. Results that fall below the baseline
accuracy and show a significant difference (p<0.05) in the prediction are shown in bold.

Model
Total count of

Japanese vocabulary
MARC-ja

(Acc)
JSTS

(Pearson/Spearman)
JNLI
(Acc)

JSQuAD
(EM/F1)

JCommonsenseQA
(Acc)

mT5 Baseline 23,739(100%) 0.938 0.871/0.831 0.882 0.670/0.831 0.546
2.5k Rare words 23,400 (99%) 0.946 0.868/0.832 0.878 0.681/0.831 0.521
5k Rare words 22,923 (97%) 0.951 0.875/0.840 0.880 0.678/0.839 0.530
2.5k Non-subwords 23,199 (98%) 0.947 0.861/0.822 0.878 0.671/0.827 0.513
5k Non-subwords 20,051 (84%) 0.946 0.873/0.842 0.872 0.659/0.812 0.503

Japanese T5 Baseline 27,704(100%) 0.959 0.898/0.870 0.908 0.720/0.866 0.690
2.5k Rare words 25,679 (93%) 0.954 0.891/0.860 0.906 0.724/0.870 0.676
5k Rare words 23,444 (85%) 0.957 0.895/0.866 0.913 0.725/0.871 0.671
2.5k Non-subwords 25,501 (92%) 0.957 0.906/0.874 0.899 0.725/0.871 0.664
5k Non-subwords 22,482 (81%) 0.955 0.906/0.876 0.902 0.705/0.848 0.671

Table 3: Evaluation of Code Generation Tasks from
Japanese to Python. Results better than the baseline
score are shown in bold and the best score is under-
lined.

Model EM BLEU
mT5 Baseline 20.54 57.51

Extend 2.5k words 22.15 57.73
Extend 5k words 24.92 59.19
2.5k Rare words 23.08 58.32
5k Rare words 27.39 61.28
2.5k Non-subwords 23.08 57.58
5k Non-subwords 26.31 61.06

Japanese T5 Baseline 30.69 61.92
Extend 2.5k words 24.31 62.37
Extend 5k words 18.77 61.76
2.5k Rare words 34.46 64.20
5k Rare words 34.54 65.41
2.5k Non-subwords 32.00 63.97
5k Non-subwords 31.69 64.44

reduced model. Because JSQuAD outputs strings,
it was excluded from the test.

The bold texts in Table 2 indicate a statisti-
cally superior decrease in score compared to the
baseline. With the rare words method, there is a
significant decrease in mT5’s JCommonsenseQA
(5,000 words), the Japanese T5’s MARC-ja (2,500
words), and JCommonsenseQA (5,000 words).
With the non-subword method, performance on
the mT5’s JSTS (2,500 words), JNLI (5,000
words), and JCommonsenseQA (5,000 words) de-
creased significantly. However, there were no cor-
responding tasks on the Japanese T5 that showed
showed this decrease. These results reveal that for
mT5, a multilingual model, the rare words method
is the vocabulary selection approach that mini-
mally impacts affects the original model’s per-
formance. Meanwhile, for the Japanese T5, a
model specialized for Japanese, the non-subwords

method is the most optimal.

5.4.2 Evaluation of the Downstream Task
Table 3 shows the results of the model for the code
generation task using the baseline, the extension,
and our proposal.

First, results confirm the effect of increasing
words of the domain in the vocabulary. The extend
and replace methods improved the mT5 score. Our
replace methods also improved performance for
the Japanese T5. In contrast, Extend decreased
EM scores by 6% ∼ 11%. The results suggest
that increasing domain-specific vocabulary is gen-
erally effective in improving task performance.

Next, we compare three vocabulary adaptation
methods. For the mT5 and Japanese T5, mod-
els using the Replace methods score higher than
extend, with rare words having the most effect.
BLEU scores also show the same trend. Even
without focusing on subwords patterns, as in non-
subwords, it is most effective to replace words that
are rare in the corpus, as in rare words.

Then, we confirm the difference by the num-
ber of words to be replaced. In the mT5, accu-
racy tends to increase as more Python tokens are
added. However, extend’s EM score decreased
significantly with extension in the Japanese T5,
decreasing by 6.3% for 2,500 words and by 11.9%
for 5,000 words.

6 Conclusion

In this study, we propose a vocabulary-based
domain adaptation that replaces domain-specific
words to improve performance in the target
domain-specific task. Our method allows the addi-
tion of vocabulary from new domains without in-
creasing the size of the LLM’s vocabulary. For
the addition of domain-specific words by replace-
ment, we remove words from the original LLM

vocabulary. We propose rare words and non-
subwords as candidates for removal, aiming to
minimize the impact on LLM’s performance.

In our experiments, we applied two replacement
methods to the Japanese T5 and the mT5. For the
selection of words to be removed for replacement,
the rare-word method works well for finding less-
used words in multilingual models like the mT5.
On the other hand, the non-subword method keeps
its performance stable when focusing on one lan-
guage. It works especially well for the Japanese
T5. For the effect in the target domain, our method
demonstrated improvements over the baseline ac-
curacy in code generation tasks for the mT5 and
the Japanese T5. Notably, our method showed
significant improvements in code generation tasks
compared to vocabulary extension. This approach
can be applied to any LLM using SentencePiece,
regardless of domain or language.

In the future, we aim to expand this approach to
more domains and explore a more generalizable
approach for domain adaptation.

Acknowledgements

This research was supported by joint research with
NTT Software Innovation Center and JSPS KAK-
ENHI Grant Number 23K11374.

References

Ethan C Chau, Lucy H Lin, and Noah A Smith. 2020.
Parsing with multilingual bert, a small corpus, and a
small treebank. arXiv preprint arXiv:2009.14124.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Abteen Ebrahimi and Katharina Kann. 2021. How to
adapt your pretrained multilingual model to 1600
languages. arXiv preprint arXiv:2106.02124.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Kenji Imamura and Eiichiro Sumita. 2022. Ex-
tending the subwording model of multilingual pre-
trained models for new languages. arXiv preprint
arXiv:2211.15965.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Anastasios Lamproudis, Aron Henriksson, and Her-
cules Dalianis. 2022. Vocabulary modifications
for domain-adaptive pretraining of clinical language
models. In HEALTHINF, pages 180–188.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Momoka Obara, Yuka Akinobu, Teruno Kajiura, Shiho
Takano, and Kimio Kuramitsu. 2022. A preliminary
report on novice programming with natural language
translation. In IFIP WCCE 2022: World Conference
on Computers in Education.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, pages 1–9.

Hirotaka Tanaka and Hiroyuki Shinnou. 2022. Vocabu-
lary expansion of compound words for domain adap-
tation of bert. PACLIC-2022.

Zihan Wang, Stephen Mayhew, Dan Roth, et al. 2020.
Extending multilingual bert to low-resource lan-
guages. arXiv preprint arXiv:2004.13640.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In

Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Tiezheng Yu, Zihan Liu, and Pascale Fung. 2021.
Adaptsum: Towards low-resource domain adapta-
tion for abstractive summarization. arXiv preprint
arXiv:2103.11332.

Rong Zhang, Revanth Gangi Reddy, Md Arafat Sul-
tan, Vittorio Castelli, Anthony Ferritto, Radu Flo-
rian, Efsun Sarioglu Kayi, Salim Roukos, Avirup
Sil, and Todd Ward. 2020. Multi-stage pre-training
for low-resource domain adaptation. arXiv preprint
arXiv:2010.05904.

