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Abstract

The Korean language has been largely studied
recently owing to the active development of
Korean-specific language models and the dis-
closure of natural language processing (NLP)
benchmarks that followed. Such alignment
of technological advances and the proposal of
challenging datasets is common in the progress
of artificial intelligence research; each affects
one another, driving new approaches from the
other side, driving the trend. In this paper,
we remind how recent achievements in Korean
NLP relate to corpus studies so far. Along with
a comprehensive diachronic overview, we see
how downstream tasks correspond with the ad-
vent of modern NLP techniques, at the same
time discussing the change of trend in volume,
task type, and topic.

1 Introduction

The importance of data and scale in modern natural
language processing (NLP) has become an essen-
tial issue. Advances in computing devices and engi-
neering methodologies have guaranteed sufficient
scalability in NLP systems, especially those that
use machine learning (ML)-based methods.

However, the complexity and difficulty of tasks
for model evaluation are also aligned with such
developments. Accordingly, the struggle regarding
data construction to reproduce performance under
experimental conditions or in the real world has
become more visible than before. The direction
of corpus building has also been expanded from
unannotated text (Francis and Kucera, 1967) and
treebanks (Marcus et al., 1993) – that are mainly
used in structural or syntactic analysis of human
language, to comparatively purpose-specified or
semantic-level tasks such as sentiment analysis
(Maas et al., 2011) and question answering (Ra-
jpurkar et al., 2016). It also includes transitioning
from the rule and dictionary-based early-stage NLP
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to those with more learning-based methodologies
(Manning and Schutze, 1999).

This alignment of technological advance and
evaluation schemes has been mainly observed in
English, the lingua franca – for instance the ad-
vent of comprehensive benchmarks such as general
language understanding evaluation (GLUE) (Wang
et al., 2018) and architectures like BERT (Devlin
et al., 2019) and ULMFiT (Howard and Ruder,
2018), and occurred more accessibly in other Indo-
European languages that are relatively easy to ex-
tend evolving methodologies. From that point of
view, even though Korean is a solitary language
concerning linguistic typology, modern techniques
have been quickly applied to it (Yang, 2021), and
corresponding benchmarks were actively suggested
as in Park et al. (2021) and Jang et al. (2022).

This trend has been significant in recent years,
and we look through the data construction trend and
ongoing studies in Korean NLP. In addition, we ex-
amine which factors have influenced this trend, dis-
cuss what this phenomenon in the Korean language
means, and how the case study can be expanded to
other languages or domains.

2 Korean NLP Studies

Background include surveys of Korean corpora,
Korean NLP model development, and all related
works by academia, industry, or government.

2.1 Korean Corpora

Research on Korean corpora includes survey stud-
ies such as Park et al. (2016), Cho et al. (2020),
several blog articles1, and Github reports2. These
materials each has their own purpose (curation,
classification, recommendation, etc.) and allows
researchers to recognize and access datasets of di-
verse topics. Among them, we try to refer to our

1https://littlefoxdiary.tistory.com/42
2https://github.com/datanada/

Awesome-Korean-NLP
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previous work (Cho et al., 2020) covering 62 docu-
mented open corpora, and especially more than 50
written corpora among them.

2.2 Korean NLP Paradigm

The development of Korean NLP largely follows
approaches from classical computational linguis-
tics. An example that a similar approach was bor-
rowed in Korean as it was motivated is Treebank
(Choi et al., 1994; Han et al., 2001), which was first
established in English (Marcus et al., 1993). Along
with this, baseline models were also adopted, and
the direction of research has been aligned at the
implementation level (Han et al., 2002). However,
as in any other multilingual study, Korean is sig-
nificantly distinguishable from English studies in
several areas.

First of all, the spacing and agglutinativeness of
scriptio continua are combined, and the tokeniza-
tion scheme has a great impact on the task. As there
are research papers on this topic (Park et al., 2020b)
and modeling papers suggest performance changes
accordingly (Park et al., 2021), the unit of word,
morpheme, and token in Korean is a highly con-
troversial and frequently studied topic. In addition,
modern written Korean is recorded with unique
symbols (Hangul Jamo) used only in the Koreanic
language (Lee, 2009), which do not include sym-
bols that appear comprehensively in worldwide
articles such as the Latin alphabet or CJK ideo-
graph (except some use cases in code-switching
manner). This adds challenges to applying transfer
learning methods when jointly pretrained with or
transferred from any neighboring languages, which
can be seen as one of the factors that motivated the
independent development of Korean.

2.3 Past and Ongoing Projects

Despite various limitations, multiple institutes have
invested their resources in research on Korean NLP.
In terms of corpus construction, Sejong Corpus
(Kim, 2006) and ModuCorpus3 led by the govern-
ment (especially National Institute of Korean Lan-
guage4, NIKL (2020)) and ExoBrain5 project led
by Electronics and Telecommunications Research
Institute6 (ETRI) are typical examples, and corpora
of overseas institutes such as Linguistic Data Con-

3https://corpus.korean.go.kr/
4https://www.korean.go.kr/
5http://exobrain.kr/pages/ko/
6https://www.etri.re.kr/intro.html

sortium7 (LDC) were also actively utilized (Cieri
et al., 2022). Recently, attempts to activate the AI
ecosystem through dataset construction and distri-
bution have increased, and NLP datasets of various
topics have been proposed by National Information
Society Agency8 (NIA) and others. In addition,
recently, corpora in small or medium-scale volume
are being disclosed with their building schemes
transparently published, possibly as an academic
contribution at the individual or organization level
(sometimes led by industry) (Cho et al., 2020).

Technological advance, represented by ML mod-
els, is largely aligned with the advent of afore-
mentioned datasets (though not necessarily causal).
The establishment of pretrained language models
(PLMs) such as Word2Vec (Mikolov et al., 2013)
or BERT (Devlin et al., 2019) has been quickly ap-
plied to Korean910 (Al-Rfou et al., 2013; Lee, 2020;
Park, 2020; Kim et al., 2021b), and recent founda-
tion models difficult for individual researchers to
handle, such as GPT-3 (Brown et al., 2020), are pro-
vided as Korean-targeted, like HyperCLOVA (Kim
et al., 2021a) or Polyglot-Ko (Ko et al., 2023), so
that researchers can access them in the form of
APIs or as a checkpoint.

3 Diachronic Overview

We skim over various Korean works introduced
earlier from a diachronic viewpoint. Before and
after the appearance of Sejong corpus (Kim, 2006),
which was the first large-scale corpus available to
the public, visible changes occurred in terms of task
type and data volume. These breakthroughs tend
to originate in the advance in embedding/encoding
methods such as Word2Vec (Mikolov et al., 2013)
or Transformer (Vaswani et al., 2017), and changes
in the volume of pretrained knowledge such as
BERT (Devlin et al., 2019) and GPT (Radford
et al., 2018) that mostly comes from breakthroughs
in training methodology (self-supervised learning,
SSL) and scalability (Kaplan et al., 2020).

3.1 Early Stages
Before the appearance of Sejong Corpus, a large-
scale government-driven digital corpus annotation,
Korean corpus construction was mainly driven by
researchers who handled computational linguistics
and classical NLP pipelines (Tenney et al., 2019).

7https://www.ldc.upenn.edu/
8https://www.nia.or.kr/
9https://word2vec.kr/search/

10https://github.com/Kyubyong/wordvectors
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Most of the corpora for various morphological
properties were disclosed at LDC or established by
Korea Advanced Institute of Science and Technol-
ogy (KAIST) (Choi et al., 1994) and these corpora
could be purchased through a catalog or provided
by submitting an application form.

3.2 Statistical Models and Word2Vec

Classical NLP pipeline studies such as tagging,
parsing, chunking, and relation linking based on the
Sejong Corpus became popular (Kim et al., 2010;
Lee and Kim, 2013; Park et al., 2014), and cor-
respondingly, NLP techniques based on statistical
models were also widely exploited. Studies includ-
ing semantic and pragmatic level ones appeared
more frequently after the advent of Word2Vec, and
this led to further investigation of new datasets
and benchmarks such as sentiment analysis, e.g.,
Naver Sentiment Movie Corpus (NSMC11) which
has long been a representative Korean sentence
classification benchmark.

Word2Vec drove the practical application of dis-
tributional semantics to NLP communities, helping
conventional ML models reach the desired down-
stream task performance with less effort. However,
it did not necessarily bring significant achievement
in performance by parameter training neural net-
work architectures of similar sizes. That is, despite
the major change, the insertion of distributional se-
mantic knowledge in word embedding, the need for
challenging benchmarks was not observed without
fundamental modification in the training scheme
and architecture of ML models.

3.3 Advent of Transformer and Pretrained
Language Models

What has redefined the direction of natural lan-
guage processing since Word2Vec is undoubt-
edly the emergence of attention mechanism (Bah-
danau et al., 2014), self attention and Transformers
(Vaswani et al., 2017), and the subsequent develop-
ment of various Transformer-based PLMs (Howard
and Ruder, 2018; Radford et al., 2018; Devlin et al.,
2019). SSL and scaling laws (either architecture
or training data) arose as fundamental keys of LM
pretraining and Transformer was a timely archi-
tecture. The resulting models acquire (linguistic)
knowledge to some extent so that even with a rela-
tively small amount of training data, one may ob-
tain downstream performance comparable to train-

11https://github.com/e9t/nsmc

ing a vanilla ML model from scratch. As a result,
model evaluation regarding linguistics, domain, or
commonsense displayed distinguished aspect com-
pared to previous ones. With the advent of large
language models (LLMs), some benchmarks only
accommodate evaluation as a feature12.

4 Discussion

4.1 Trends in Volume: Large-scale, raw text
to small, specific, annotated text

The datasets in the early stages of corpus construc-
tion were used for the purpose of analyzing the cor-
pus itself or, furthermore, investigating the trend of
language use. Brown corpus (Francis and Kucera,
1967) or Corpus of Contemporary American En-
glish (COCA) (Davies, 2009) in English is repre-
sentative, and in Korean, some datasets released for
this purpose were in the LDC catalog, but were not
fully publicly available. In addition, the datasets
released by KAIST or NIKL were the results of
annotating raw text to grammatical or functional
components or properties; semantic or discourse
annotations beyond syntactic properties (e.g. sen-
tence/document level) could be applied in some
modifications, but most approaches were not pub-
lished and done only in-house not to violate the
license of the original text.

However, in order to overcome the bias of dataset
research, recent corpora tend to choose to annotate
a limited amount of raw corpus or to add annota-
tions to already published corpus with open and
redistributable license. The topics covered are not
being limited to general domain or colloquial text,
and increasingly reflecting specified regions (See
Section 4.3).

4.2 Trends in Task Type: Token-annotated to
document-annotated, classification to
span/generation

How the annotated corpus is utilized is mostly up
to the dataset user or the service provider of the
further product.However, in some cases it is neces-
sary to clarify the nature of the benchmark through
the intended use, so an evaluation metric is usually
presented together with a baseline model, which
will inevitably determine the in-out style of the data
(Wang et al., 2018; Park et al., 2021).

In the early stages, the task was dominated by
token-tagging annotation, which mainly deals with

12As in a recent LLM benchmark: https://huggingface.
co/spaces/upstage/open-ko-llm-leaderboard
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syntactic properties such as part-of-speech tag-
ging (Han and Han, 2001), dependency and con-
stituency parsing (Choi et al., 1994; Han et al.,
2001; Park and Kwon, 2008), that sentence-level
analysis was not easily observed or dataset undis-
closed. NSMC, which covers one of the most pop-
ular tasks, sentiment classification, has been the
representative, publicly available sentence-level
classification dataset. It was created for Korean
after the advent of Word2Vec, following Maas et al.
(2011).

Despite that sentence-level classification is a fun-
damental NLP task, not enough datasets that suit
as benchmark have been disclosed. 3i4K (Cho and
Kim, 2022) for single utterance level speech acts,
BEEP! (Moon et al., 2020) for toxic speech, and
YNAT, KLUE benchmark’s topic classification task
(Park et al., 2021), are representative, but in gen-
eral, sentence classification datasets that are built
for a specific purpose are often not disclosed to
the public. One assumption is that, though they
are the most accessible and useful type of corpus
to build in both academia and industry, annotated
corpora usually follow the original license of the
source corpus, which may not permit redistribution
(Moon et al., 2022), or sometimes their disclosure
is prohibited for the security or the interest of the
organization. Also, unlike the current trend where
all the datasets and models used for the experi-
ment should be reported transparently, studies in
the past were often not asked to submit the relevant
materials. These would have prevented the disclo-
sure of NLP datasets used in studies before the
post-Word2Vec era and let researchers rely on few
publicly available annotated corpora. Fortunately,
institutes like NIA are struggling to enlighten the
NLP ecosystem by helping create various topics of
classification benchmarks. However, since those
dataset are usually not open global and the con-
struction process is not peer-reviewed, benchmarks
suitable for the academic purpose is still limited.

Document-level tasks have been less frequently
constructed because processing long-length inputs
seemed infeasible until the development of ML
techniques. In addition, document-level annotation
usually requires a larger construction budget com-
pared to sentence-level ones, and the difficulty of
building and publishing such data at the individual
level contributed to its scarcity.

However, as passage-based inference tasks such
as question answering (Yang et al., 2015; Ra-

jpurkar et al., 2016) have gained popularity, more
document-level tasks have been published than be-
fore (Lim et al., 2019; Kim et al., 2019) as well
in Korean (usually driven by industry). In addi-
tion, span tagging, a classic method of question
answering, is theoretically a token classification,
but it can also be seen as an answer generation
process. Therefore, the development of generative
models (Radford et al., 2018; Brown et al., 2020)
has driven the development of decoding strategies,
the development of open domain question answer-
ing (Karpukhin et al., 2020), and the development
of evaluation of generation tasks (Gehrmann et al.,
2021), which is still evolving in Korean but being
recognized as a new direction for future NLP re-
search, for instance in NIKL competition13. Trans-
lation and transliteration have been regarded as typ-
ical examples of such tasks1415 (Park et al., 2016),
but datasets for paraphrasing (Yang et al., 2019;
Cho et al., 2022; Kim, 2022) or summarization 16,
as well as conversation datasets (Lee et al., 2022)
have also been created and published to boost the
studies on rephrasing and generation.

4.3 Trends in Topics: Written or spoken (web)
text to texts in various areas

The last significant change in trend is the increase
in the diversity of corpus topics. The advent of
PLM has brought enhancement of general language
understanding the performance of machine learning
models, and it accordingly, brought demand for
model-based solutions for tasks in domains that
were previously considered unfeasible, e.g. law
(Hwang et al., 2022), cultural heritage (Kim et al.,
2022), non-Seoul Korean dialect (e.g., Jejueo (Park
et al., 2020a)).

The advent of new tasks in some sense means
that the society and community require a new direc-
tion of research that is either necessary or timely,
but also implies that previously addressed topics or
domains are sufficiently handled by state-of-the-art
models. We interpret this phenomenon as having
led to the expansion of benchmark construction,
as seen in the motivation of the development of
KLUE (Park et al., 2021) or KoBEST (Jang et al.,

13https://corpus.korean.go.kr/taskOrdtm/
useTaskOrdtmList.do

14http://semanticweb.kaist.ac.kr/home/index.
php/Evaluateset2

15http://semanticweb.kaist.ac.kr/home/index.
php/Corpus9

16https://github.com/machinereading/
K2NLG-Dataset
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2022) that follows the case of GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019).

5 Conclusion

Through this paper, we skimmed discussions that
provide a diachronic view of the development of
Korean corpora in view of technological develop-
ment. We addressed that there were significant
changes in overall corpus characteristics in terms
of corpus volume, annotation type, and topic. Also,
we qualitatively checked that such changes are also
associated with up-to-date natural language pro-
cessing in lingua franca such as English and the
application of the technologies to Korean.

We have not anticipated that the emergence of
LLM would drive a revitalization of the AI ecosys-
tem, and thus boost the importance of challeng-
ing and evaluation-oriented benchmarks. Similarly,
we cannot ensure the future direction of corpus
construction, or even whether the corpus building
process itself will be meaningful. However, the
high quality corpus has inevitably been accompa-
nied by the development of fine-grained guidelines,
and building such a scheme is essential even in
the contemporary LLM era where the emphasis
is on prompt engineering. In addition, language
model safety related tasks such as detection of hate
speech or bias (Lee et al., 2023b), acceptability
(Lee et al., 2023a), or checking AI reasoning abil-
ity (Dziri et al., 2023), tend to attract attention in
recent periods.

A core limitation of our study is the lack of quan-
tification of the findings. This includes a compre-
hensive organization and arrangement of existing
works, which were not all covered in this research.
In the future, we plan to develop this research to
visualize changes in corpus statistics and figure out
the trends17, where such information can play im-
portant role in the analytics and assuming the next
direction.
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