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Abstract
The proliferation of word forms in morpholog-
ically rich languages poses a formidable chal-
lenge for neural machine translation (NMT)
models, given their highly sparse vocabular-
ies, which render the atomic treatment of sur-
face word forms impractical. To address this
issue, the common approach involves prepro-
cessing words into subword units and perform-
ing translation at the subword level. However,
this method loses the word boundary informa-
tion and neglects the valuable prior knowledge
of the interrelationship between word stems
and affixes. In this paper, we explore an ap-
proach that segments words into morphemes
and composes word representations from these
morphemes. Specifically, we represent words
by combining the representations of subword
units using a bidirectional GRU. Through exten-
sive experiments on Manipuri-English, Tamil-
English, and Marathi-English translation tasks,
we demonstrate that our model outperforms
baseline subword models in terms of transla-
tion accuracy.

Our findings hold considerable significance,
as they showcase that leveraging the inductive
bias derived from word boundary and the in-
terrelationships between word morphemes can
significantly improve NMT results compared
to approaches that directly translate at the sub-
word level.

1 Introduction

Neural machine translation (NMT) has shown re-
markable performance and is widely recognized
as the dominant approach to machine translation
tasks (Barrault et al., 2020; Akhbardeh et al., 2021;
Kocmi et al., 2022). However, NMT models face
significant challenges when dealing with morpho-
logically rich languages, as such languages possess
highly sparse vocabularies. This sparsity leads to
difficulties in handling unknown words and known
words appearing in rare. Additionally, treating
words as atomic units fails to fully harness the

Word Translation

pu.ba carry
pu.khi carried
pu.sin.khi carried in
pu.sin.ning.khi wanted to carry in
pu.sin.ning.khi.de not wanted to carry in

Table 1: A case study of agglutination in manipuri lan-
guage. The bold part indicates the stem.

valuable subword information encoded in subword
units. To illustrate this morphological complexity,
Table 1 provides an example in Manipuri language.

Subword-level Neural Machine Translation
(NMT) models have emerged as the most preferred
option for translating from Morphological Rich
Languages (MRLs). These models operate by
breaking words into their constituent subwords. To
achieve this, purely statistical models like the byte-
pair encoding (BPE) model (Sennrich et al., 2016)
or linguistically motivated morphological analyz-
ers such as Morfessor (Grönroos et al., 2014) are
employed to preprocess the words. This approach
holds great promise due to its inherent ability to
transform the sparse surface form-based vocabulary
set into a much smaller set of fundamental subunits.
Especially for MRLs, the vocabulary size of sub-
word units is significantly smaller than that of the
word vocabulary set. Consequently, this approach
offers a compelling solution to the challenge of
out-of-vocabulary words, as encountering an un-
known surface form is considerably more likely
than encountering an unknown subunit.

Although the previously mentioned subword
models show promise in enhancing translation qual-
ity, they do present a potential concern when the
translation is done directly at the subword level. In
models like BPE, which are purely statistical, or
linguistically motivated segmentation models like
Morfessor, the NMT model receives subwords in-



Table 2: Illustrating an example sentence at different
granularity level: word and subword levels. The blue
colored words are segmented into morphemes.

Word amuk hanna eihakna degree phang-
basingbu thagatchari

Morfessor amuk hanna eihakna degree phang-
basing bu thagatcha ri

BPE amuk hanna eihakna degree phang
basingbu thagatcha ri

stead of complete words. An example of this is
shown in Table 2, where the orange-colored text
represents complete words, and the blue-colored
text represents segmented subwords. Regrettably, it
may not be the optimal way to learn and represent
source-side information at the subword level. This
method disregards vital word boundary information
and overlooks valuable prior knowledge concern-
ing the interrelationship between word stems and
affixes. Furthermore, the encoder-decoder architec-
ture (Sutskever et al., 2014; Bahdanau et al., 2014;
Vaswani et al., 2017) utilized in NMT was origi-
nally designed to operate at the word level, but now
it is applied to subwords directly. Consequently, the
encoder is made to learn word boundaries and the
interrelationship between word stems and suffixes
on its own.

Taking into account the aforementioned short-
comings, we have undertaken an investigation into
an approach encompassing two key aspects: (i)
the segmentation of words into subword units, and
(ii) the subsequent composition of these subword
units back to the word level. In particular, we rep-
resent words by combining the representations of
their subword units using a bidirectional GRU. By
breaking words down into morphemes, this method
effectively addresses the issue of data sparsity and
effectively leverages subword information. More-
over, the approach of composing word representa-
tions from subword representations helps overcome
the word boundary problem.

Our extensive experimentation with Manipuri-
English, Tamil-English, and Marathi-English trans-
lation tasks demonstrates that our model surpasses
baseline subword models in terms of translation
accuracy. These findings hold importance as they
highlight the profound impact of utilizing the in-
ductive bias derived from the word boundary and
the interrelationships between word morphemes. It
is evident that this approach leads to remarkable en-

hancements in Neural Machine Translation (NMT)
results compared to methods that translate directly
at the subword level.

The main contributions of our work can be sum-
marized as follows:

• We explore a method that segments words
into subword units to address data sparsity,
and then recompose these subword units back
to the word level to address word boundary
issue.

• We demonstrated that our method outperforms
baseline subword models through experiments
on multiple language pairs.

2 Background

2.1 Morphological Typology and MT
Morphologically, languages are often characterized
on the basis of two dimensions of morphological
variation. The first dimension concerns the number
of morphemes per word, with isolating languages
like Vietnamese and Cantonese that typically have
one morpheme per word, while polysynthetic lan-
guages like Siberian Yupik can contain numerous
morphemes within a single word, equivalent to an
entire English sentence. The second dimension
revolves around the degree to which morphemes
are segmentable, classified into agglutinative lan-
guages like Manipuri and Tamil, where morphemes
have clear boundaries, and fusion languages like
Hindi and Punjabi, where a single affix can com-
bine multiple morphemes.

Previous studies (Sennrich et al., 2016) have
found that the translation of languages with rich
morphology requires handling structures beyond
the word level. For this reason, modern systems
typically employ subword models such as purely
statistical models like byte-pair encoding (BPE)
model (Sennrich et al., 2016) or linguistically mo-
tivated morphological analyzers such as Morfes-
sor (Grönroos et al., 2014).

2.2 Related Work
The impact of morphology on the architecture and
performance of machine translation models is a
crucial concern, especially when dealing with lan-
guages that possess rich morphology. In this con-
text, two approaches for adjusting the granularity
of translation, subword-based and character-based
Neural Machine Translation (NMT) models, have
shown promise in addressing specific challenges.



Huck et al. (2017) proposed the idea of first
splitting words at morpheme boundaries, such as
prefixes and suffixes, and then performing unsu-
pervised segmentation using Byte-Pair Encoding
(BPE).

Luong and Manning (2016) introduced a hier-
archical model called "back-off revisited." This
model utilizes a word-level model to generate UNK
(unknown token) replacements, which leverages a
character-level model to predict words from UNKs
based on hidden states. The approach offers more
flexibility than dictionary look-up while maintain-
ing efficiency over pure character-level translation.
However, it comes with the drawback of indepen-
dence assumptions between the main and back-off
models.

Character-level output, without word segmenta-
tion on the target side and employing a BPE-level
encoder, has shown excellent results for languages
like EN, DE, CS, RU, and FI. Nonetheless, the
training time is approximately twice as long as the
BPE-level model (Vylomova et al., 2016).

Lee et al. (2016) proposed Fully Character-Level
Neural Machine Translation (NMT) to eliminate
word boundaries using Character-Level Recurrent
Neural Networks (RNNs) on the target side, com-
bined with convolution and max-pooling layers
on the source side. Later, Libovický et al. (2021)
adapted Lee et al. (2016)’s model to the Trans-
former architecture.

Clark et al. (2021) introduced a model in 2021
that compresses character sequences into fewer hid-
den states by employing local self-attention and
strided convolutions.

Tay et al. (2021) proposed Charformer, which
utilizes convolutional operations and merges char-
acter blocks to acquire latent subword representa-
tions.

Additionally, previous work has considered in-
corporating morphological information in NMT.
Sennrich and Haddow (2016) applied morphology
on the source side and utilized word+lemma as
input, enabling the merging of multiple features
conveniently.

Tamchyna et al. (2017) proposed a 2-step trans-
lation approach in NMT, involving predicting inter-
leaved lemmas and morphological categories, en-
abling inflection generation using finite state trans-
ducers.

Passban et al. (2018a) enhanced the character-
based decoder by incorporating a morphology table

to provide guidance on the morphological struc-
tures of the target language.

Furthermore, Passban et al. (2018b) improved
the existing NMT architecture with a double-
channel encoder and a double-attentive decoder.

Ataman et al. (2019) generated words character
by character through a combination of two latent
representations: a continuous one to capture lexical
semantics and a set of (approximately) discrete
features to capture morphosyntactic function.

2.3 The Transformer

In this study, we apply our approach within the
framework of the Transformer (Vaswani et al.,
2017), which shall be briefly introduced herein.
It is essential to acknowledge that our method can
also be integrated with various other Neural Ma-
chine Translation (NMT) architectures.

Let (x1, . . . ,xJ) represent the input sequence of
symbol representations, (y∗1, . . . , y

∗
K∗) denote the

ground truth sequence, and (y1, . . . , yK) indicate
the translation.

Encoder & Decoder The encoder is composed
of N identical layers, each comprising two sublay-
ers: a multi-head self-attention sublayer and a fully
connected feedforward network. Both sublayers
are succeeded by a residual connection and a layer
normalization operation. To prepare the input se-
quence, it is initially transformed into a sequence of
vectors Ex = [Ex[x1]; . . . ;Ex[xJ]], where Ex[xj]
denotes the sum of the word embedding and the
position embedding of the source word xj. Sub-
sequently, this sequence of vectors is fed into the
encoder, and the output of the N -th layer is denoted
as H , representing the hidden states of the source.

The decoder also comprises identical N layers.
Besides the same sublayers present in the encoder,
each decoder layer includes a cross-attention sub-
layer inserted in between them. This sublayer per-
forms multihead attention over the output of the
encoder. The final output of the N -th layer pro-
vides the target hidden states [s1; . . . ; sK∗ ], where
sk represents the hidden state of the target word
represenation yk.

Objective The primary goal of the model is to
optimize by minimizing the cross-entropy loss con-
cerning the ground-truth:

L = − 1

K

K∑
k=1

log p(y∗k|y<k,x1:J)



Figure 1: Model diagram. We show the procedure of segmentation of words into morphemes and subsequent
composition of these subword units back to word level. A bidirectional GRU reads the morpheme sequence in our
word composition model shown on the top.

where K denotes the length of the target sen-
tence.

3 The Proposed Method

In this section, we first discuss the rationale for
breaking words into morphemes and composing
the word representation back from the morphemes.
Then, we show the detailed workflow of our
method. An overview of how the word compo-
sition module is applied can be found in Figure
1.

3.1 Motivation

The benefits of decomposing words into mor-
phemes and subsequently reassembling them can
be summed up in two points. (1) A word is com-
posed of morphemes, which are recognized as the
smallest units that convey meaning or carry gram-
matical significance in a language. By utilizing
these meaningful morphemes to explicitly generate
word embeddings, we incorporate prior semantic
and grammatical knowledge into the learning pro-
cess. Morphologically similar words often exhibit
semantic connections, and their association can be
facilitated by sharing the same morpheme vector.
(2) Directly translating at the subword level disre-
gards crucial information regarding word bound-
aries and overlooks valuable prior knowledge con-
cerning the interrelationship between word stems
and affixes. Reconstructing word representations
from subword representations addresses the issue

of the word boundary problem and enables a more
comprehensive understanding of word structure.

3.2 Workflow
Our model is an adaptation within the framework
of the Transformer (Vaswani et al., 2017). In Trans-
former, the encoder maps an input sequence of
symbol representations (x1, . . . ,xJ) to a sequence
of continuous representations (z1, . . . , zJ). Given
(z1, . . . , zJ), the decoder then generates an output
sequence (y1, . . . , yK) of symbols one element at
a time. In our method, we compute the representa-
tion x of word x as follows:

x = f(Ws, σ(x)) (1)

where σ is a deterministic function that returns a se-
quence of subword units, Ws is a parameter matrix
of representations for the vocabulary of subword
units, and f is a composition function that takes
σ(x) and Ws as input and returns x.

3.2.1 Generating Subword Units
To generate subword units, we define a mapping σ :
V 7→ M+ of a word into a sequence of morphemes,
that is, σ(x) = (m1,m2, ...ml), where xϵV and
miϵM. Therefore, we factor a surface word into
its morphemes.

Suppose that there are |V | individual words. We
first segment each word as a sequence of mor-
phemes using Morfessor tool (Grönroos et al.,
2014). For Morfessor, we use the default param-
eters. To facilitate processing in neural networks,



we truncate morpheme sequences to a fixed length
l (e.g., we set l = 10). For words containing fewer
than l morphemes, we add additional tokens for
padding. For instance, a single-morpheme word is
padded with l − 1 padding morphemes. For words
containing more than l morphemes, we concatenate
the remaining morphemes into a single entity as
the final one. After performing morpheme segmen-
tation, we obtain an l-length morpheme sequence
for each word. The processing could be explained
as follows:

σ(x) =

{
[m1, . . . ,mi, . . . , padn], < l

[m1, . . . , concat(ml, . . .)], > l
(2)

3.2.2 Composing Word Representation
Our composition function is a bidirectional recur-
rent neural network, particularly the gated recur-
rent unit (GRU) variant (Cho et al., 2014), which
is inspired by its successful use in the character-
level model and its widespread adoption in natural
language processing (NLP). Given a morpheme
representation mi and the previous hidden state
hi−1, a GRU computes the following outputs for
the subword at position i:

hi = GRU(mi,hi−1) (3)

In a bi-rnn (Graves and Schmidhuber, 2005), the
final state of an RNN over the input sequence is
combined with the final state of the RNN over the
reversed input sequence. Given the hidden state
produced by the last input of the forward GRU,
h
(f)
l , and the hidden state produced by the last input

of the backward GRU, h(b)
0 , we compute the word

representation x as:

x = Wf · h
(f)
l +Wb · h(b)

0 + b (4)

where Wf , Wb, and b are parameter matrices, and
h
(f)
l and h

(b)
0 are the final forward and backward

GRU states, respectively.

4 Experiments

4.1 Dataset
We evaluate our method on the following three
datasets.

WAT20211 Tamil→English (140K pairs): We
evaluate using WAT2021 validation set and test set
using PMIndia (Haddow and Kirefu, 2020) and
PIB Dataset (Siripragrada et al., 2020).

1http://lotus.kuee.kyoto-u.ac.jp/WAT

Algorithm 1: Training Algorithm
Input :x
Output :x ∈ Rd

1 Procedure WordComposition(x)
2 Generate the morphemes from x:

σ(x) ={
[m1, . . . ,mi, . . . , padn], < l

[m1, . . . , concat(ml, . . .)], > l

3 Take the final hidden states h(f)
l and

h
(b)
0 from passing morpheme sequence

through forward GRU and backward
GRU.

4 Compute the final word representation x
as: x = Wf · h

(f)
l +Wb · h(b)

0 + b

5 End

6 Procedure Training(D)
7 Get word representation sequence from

token sequence using
WordComposition(.)

8 Transformer stack operates on the word
representation instead of subword
sequence.

9 End

Manipuri→English (120K pairs): We use a
training set of 120K parallel sentences from PMIn-
dia (Haddow and Kirefu, 2020; Singh et al., 2021)
and PIB dataset. The validation and test sets consist
of approximately 1k sentence pairs each, sampled
from the corpus.

WAT20211 Marathi→English (132K pairs):
We evaluate using WAT2021 validation set and test
set using PMIndia and PIB Dataset.

To preprocess the data, we segment English
words into subword units using Byte-Pair Encod-
ing(BPE) (Sennrich et al., 2016) with 16,000 merge
operations. Morphemes are split from Manipuri,
Tamil, and Marathi words using the Morfessor Flat-
cat tool (Grönroos et al., 2014). Table 3 summa-
rizes some statistics about our training corpora.

4.2 Settings

We conduct experiments on the following systems.

Byte Pair Encoding (BPE) : This system uti-
lizes a standard transformer model trained on data
segmented with the BPE method (Sennrich et al.,
2016).

http://lotus.kuee.kyoto-u.ac.jp/WAT


Manipuri-English Tamil-English Marathi-English

MNI EN TA EN MR EN

Sentence 119412 119412 148180 148180 142654 142654
Token 1991343 2387089 2560332 3399785 2739815 3354532
Type 161064 90368 232640 124352 187944 120248
TTR 12.36 26.41 11.00 27.34 14.57 27.89
Stem 30800 × 29360 × 32313 ×
Affix 967 × 2032 × 1103 ×
Character 311 246 190 195 191 170

Table 3: Statistics of the corpus including the number of parallel sentences, number of words, number of unique
words, token-to-type ratio(TTR), number of unique stems and affixes and the number of unique characters.

Morfessor : This system is trained on data seg-
mented with the Morfessor approach (Grönroos
et al., 2014).

Vanilla Character : In this configuration, the
model is trained on character sequences.

Fully Character-based : This model is based on
the approach used by (Libovický et al., 2021).

In this study, we conducted experiments using
the Transformer(Vaswani et al., 2017) model, while
implementing our models through the adaptation
of the Fairseq-py open source toolkit (Ott et al.,
2019). There are three input and output layers
with embedding dimension of 256, the inner feed-
forward layer dimension of 512, and the number
of heads in the multi-head modules in both the
encoder and decoder layers is 4. For character,
embedding dimension is 64. The training batches
consists of sets of 64 source and target sentences.
The models are trained and evaluated on two Tesla
P100 GPUs. The test set is evaluated using a sin-
gle model obtained by taking the best checkpoint,
which is validated on the development set at each
epoch. The BLEU metric (Papineni et al., 2002) is
used to evaluate the translation performance using
the SacreBLEU (Post, 2018).

4.3 Main Results

Table 4 shows the BLEU scores achieved by vari-
ous models on the translation tasks from Mni→En,
Ta→En, and Mr→En test sets. We compare our
proposed method with several existing approaches,
including BPE (Sennrich et al., 2016), Morfes-
sor (Grönroos et al., 2014), Vanilla Character and
Fully Character-based (Libovický et al., 2021) mod-
els.

Morfessor and Vanilla Character models out-
perform BPE model. Among the baselines, BPE
achieves a BLEU score of 23.00, 19.93, and 21.26
for Mni→En, Ta→En, and Mr→En translation
tasks, respectively. Morfessor performs slightly
better with BLEU scores of 23.74, 21.79, and
22.52 for the respective translation tasks. The
vanilla character-based model exhibits similar per-
formance with BLEU scores of 23.77, 21.70, and
21.81.

Our method outperform BPE, Morfessor and
Vanilla Character models. In contrast, our pro-
posed method, denoted as "Our Method" in the
table, outperforms all the baselines significantly.
It achieves a remarkable BLEU score of 25.61
for Mni→En, 22.56 for Ta→En, and 24.04 for
Mr→En. The average BLEU score across all trans-
lation tasks for our method is 24.07.

The results indicate that our proposed method
surpasses the existing models in translation accu-
racy and demonstrates its effectiveness in handling
multilingual translation tasks. These findings con-
firm the superiority of our approach in capturing
and preserving semantic meaning during transla-
tion.

Our method can handle morphologically
rich languages of different families. We
validated our method on translation datasets
of Manipuri→English, Tamil→English, and
Marathi→English. Our method has been shown
to handle different morphologicaly rich languages
from different families effectively. Marathi belongs
to Indo-Aryan, Tamil belongs to Dravidian, and
Manipuri belongs to Tibeto-Burman language fam-
ilies.



Models BLEU
MNI→EN TA→EN MR→EN AVG

BPE (Sennrich et al., 2016) 23.00 19.93 21.26 21.73
Morfessor (Grönroos et al., 2014) 23.74 21.79 22.52 22.68
Vanilla Character 23.77 21.70 21.81 22.09
Fully Character-based (Libovický et al., 2021) 21.96 21.76 19.61 21.44

Our Method 25.61 22.56 24.04 24.07

Table 4: BLEU scores on Mni→En, Ta→En and Mr→En test sets. "BPE" refers to (Sennrich et al., 2016);
Morfessor refers to (Grönroos et al., 2014); Fully Character-based refers to (Libovický et al., 2021)

4.4 Ablation on Compositionally Derived
Word Representation from Subwords

As our method preserves the word boundary in-
formation, we hope our model can better translate.
In order to gain insights on whether the empirical
usefulness comes from using word representation
derived from morphemes, we perform an ablation
test. For “Fixed,” we composed the higher level
representation in fixed manner, rather than word-
delimited . We take fixed size of 3. Results in
Table 5 shows that the word boundary information
is indeed useful for obtaining a significant improve-
ment.

Model BLEU
MNI→EN TA→EN

Fixed 21.56 19.31
Word-delimited 25.61 22.56

Table 5: We compare " Word-delimited," our word-
delimited composition; and “Fixed,” fixed size delimited
composition.

4.5 Impact of Different Composition
Functions

Table 6 shows an investigation of various com-
position functions for deriving word representa-
tion from the morphemes. We evaluate our word
representation model using a convolutional neural
network (CNN) with max pooling, in addition to
our composition function based on gated recurrent
units (GRU).

4.6 Analysis of Time Consumption and
Parameter Size

Table 7 presents a detailed examination of training
and decoding times, as well as parameter sizes, in
the Mni→En translation models.

Composition Functions BLEU
MNI→EN TA→EN

CNN 24.95 21.86
GRU 25.61 22.56

Table 6: We compare word representation derived using
GRU and CNN("GRU", "CNN").

Models Mni→En
TIME1 TIME2 PARAM

BPE 1.0 1.0 16.4M
Morfessor 0.9 0.9 18.8M
Vanilla Char 3.6 3.6 12.3M
Fully Char-based 2.5 2.5 13.8M
Our Method 1.4 1.4 18.9M

Table 7: Training, test time, and size of the model pa-
rameters in Mni→En translation models. "Time1" de-
notes the training time (in ratio), "Time2" denotes the
decoding time (in ratio), and "Param" denotes the size
of model parameters (M for million).

4.7 Effect of Target Sentence Length
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Figure 2: BLEU Scores over different sentence lengths



[Src] Ishinggi Mamaldi Ishinggi awaba Myoknduna Hingliba Mioiduna Khangi.
[Ref] the value of water is understood by those who face water scarcity.
[BPE] Undestanding the value of water in this water rule is very important
[Our Method] the value of water is understood by people who face water scarcity.

Table 8: Case study of Manipuri-to-English(transliterated) translation generated by BPE model and Our method

We also examined the impact of our method
on Mni→En dataset by dividing test set into four
groups based on the length. The result, shown in
Figure 2, indicated that for longer sentences, our
method had a significant improvement in the BLEU
score compared to the BPE model. The improve-
ment in BLEU score became more pronounced as
the length of target translations increase, indicating
that our method is effective for longer sentences.

4.8 Qualitative Analysis

In the translation example in Table 8, we illus-
trate the effectiveness of our method in compar-
ison to the BPE baseline. Our method is able
to accurately translate "Ishinggi awaba" as "water
scarcity," while the base model fails to capture this
and translates it to "water rule." This is likely due
to the ability of capturing subword morphological
information in our method.

5 Discussion

Our novel method for NMT in morphologically
rich languages differs from previous approaches. It
combines subword segmentation with word bound-
ary info, using bidirectional GRU to retain word-
level context and capture morphological features.
This approach effectively addresses data sparsity
and outperforms BPE and Morfessor-based models,
as shown by improved translation accuracy on mul-
tiple language pairs. Its flexibility and capability to
handle diverse languages highlight its potential for
enhancing NMT in various linguistic settings.

6 Conclusion

In conclusion, we have presented a novel approach
to address the challenges posed by morphologi-
cally rich languages in Neural Machine Transla-
tion (NMT). By combining word segmentation into
subword units with the subsequent composition of
these subword representations back to the word
level, we effectively tackle data sparsity and word
boundary issues. Our extensive experiments on var-
ious language pairs, including Manipuri-English,

Tamil-English, and Marathi-English, have demon-
strated the superiority of our proposed model over
baseline subword-level NMT approaches in terms
of translation accuracy.

The key contribution of our work lies in lever-
aging the inductive bias derived from word bound-
aries and interrelationships between word mor-
phemes. This leads to remarkable enhancements
in translation quality and significantly improves
the performance of NMT for morphologically rich
languages. Our findings emphasize the importance
of harnessing subword information while preserv-
ing word-level knowledge. Moving forward, this
approach opens up exciting avenues for further re-
search and could potentially be extended to other
language processing tasks, driving advancements
in the field of natural language translation and un-
derstanding.
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