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Abstract

Retrieval-based question answering (QA) is the
problem of answering a question from a large
corpus. Here, we tackle cross-domain retrieval
QA (ReQA); a sentence-level retrieval for QA
in which a model is trained in a general cor-
pus and used in private settings to deal with
private documents (e.g., personal e-mails and
confidential documents). This task requires a
model that has domain robustness and works
in real-time on resource-constrained devices
(e.g., mobiles). The current accurate neural
ReQA models, however, require GPUs for real-
time processing and work poorly on domains
other than the domains used to train the models.
In this study, aiming to address the two chal-
lenges, we improve the out-of-domain perfor-
mance of the index-based efficient sparse neu-
ral ReQA model. The proposed model replaces
the embedding matrix with those trained in the
target domain to improve the performance on
the user’s corpus and has a learnable sparsity
parameter to tune the sparsity of the output
vectors. To evaluate the cross-domain ReQA,
we revise the MultiReQA dataset to estimate
the model performance correctly. Experimen-
tal results showed that SPARC improves both
in-domain and out-of-domain performance by
considering the token importance in the target
corpus.

1 Introduction

There is an increasing interest in answering user’s
questions written in natural language by leverag-
ing documents stored on the user’s own device
(e.g., project documents). Hence, retrieval-based
question answering (QA), which is the problem of
answering a question via a large corpus (Voorhees
and Tice, 2000; Chen et al., 2017), has attracted
attention. Recently, Ahmad et al. (2019) proposed
retrieval QA (ReQA) as one of retrieval-based QA
tasks, in which the model does not generate or
extract a concise answer but instead retrieves a sen-
tence mentioning the answer directly from a cor-
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Figure 1: Overview of our model, which is based on
a sparse neural retrieval model that encodes a text as a
sparse vector. We introduce a learnable sparsity param-
eter and replacement of the embedding matrix with one
trained in the target domain.

pus. Although retrieval-based QA has been studied
in various settings that differ in the granularity of
outputs (namely, documents, paragraphs, and ulti-
mately sentences), sentence-level retrieval becomes
popular since it subsumes the other settings and is
most useful.

In this paper, we focus on the cross-domain
application of sentence-level retrieval QA, (cross-
domain ReQA), in which models are evaluated on
out-of-domain datasets, by developing quick and
lightweight unsupervised adaptation of a trained
ReQA model. This task comprises a realistic set-
ting in which users must process their corpora,
which may include personal information or inter-
nal company information, on their own devices be-
cause of security and privacy concerns. Hence, we
assume that a service provider trains a QA model
on GPUs without any information on the target
domain, after which users deploy the model for
inference. This task involves desktop search. Such
cross-domain ReQA faces two challenges. First,
the model must work in a user’s computer environ-
ment. Second, there are discrepancies in the distri-
bution of tokens in the retrieval corpus between the
training and inference phase.

Previous studies tackled the first challenge by



proposing models that encode sentences in a corpus
via scores for all tokens in a vocabulary and then
use part of them as a sparse representation. These
sparse neural retrieval models work efficiently as an
inverted index on a mono-CPU when using search
engines such as Lucene (McCandless et al., 2010).
Unlike bag-of-words models (e.g., BM25 (Robert-
son and Zaragoza, 2009)), these models consider
implicit tokens that do not occur in a sentence
but are related to the sentence, such as synonyms.
Moreover, unlike dense retrieval using a sentence-
level inner product, these models represent the in-
teraction between all the tokens in a query and
in a sentence as a sparse representation. Sparse
neural retrieval models are also suitable for the
cross-domain ReQA. Whereas the model training
requires GPUs, a CPU is sufficient at the inference
phase for the pre-computation of sparse represen-
tations of the sentences in a user’s corpus and real-
time retrieval with the pre-computed inverted index.
In contrast, the second challenge has remained.

Here, to overcome both challenges in cross-
domain ReQA, we propose a sparse neural retrieval
model for cross-domain retrieval (SPARC). Specif-
ically, we introduce two techniques to the sparse
neural retrieval model, as illustrated in Figure 1.
First, we replace the embedding matrix of the
model trained in the source domain with one in
the target domain. Because both sparse neural re-
trieval models and language models are based on
the dot product of hidden states and token embed-
dings, we can share the embedding matrix trained
on the language modeling task in the target domain
to capture the statistics of the corpus in the target
domain. By restricting the trainable parameters and
training steps, we can perform the training of the
embedding matrix in a user’s computer environ-
ment. Second, we integrate a learnable parameter
that makes the model’s output states sparse. This
approach is novel because the previous sparse neu-
ral models achieved sparsity via top-K filtering at
only inference time or an unstable regularization
term that is manually tuned.

To evaluate the model on cross-domain ReQA,
we focus on the MultiReQA dataset (Guo et al.,
2021; Zhao et al., 2021), which involves a sentence-
level retrieval-based QA task in multiple domains.

The contributions of this paper are threefold:

• We propose SPARC, which seeks to overcome
the two challenges in cross-domain ReQA by
introducing a learnable parameter to induce

sparsity and replacing the embedding matrix.

• We observed that MultiReQA required further
pre-processing to estimate the model perfor-
mance correctly, and we thus introduce a new
pre-processing method.

• Our experimental results showed that SPARC
improves the retrieval performance on Multi-
ReQA in both in-domain and out-of-domain
settings by overcoming the two challenges.

2 Problem Setting

We define the problem of cross-domain retrieval
QA. We have source and target domains, respec-
tively denoted as Ds and Dt. Given a sentence set
Sd in a domain d ∈ Dt, the goal is to retrieve a
sentence that answers a question q from Sd. First,
a service provider trains a model with the source
domain datasets on GPUs. The provider does not
use any data in the target domain for training. Then,
a user pre-computes the sentences in the target do-
mains on only a CPU. Lastly, the user runs a real-
time QA system on a CPU. This task is not con-
strained to domain-level adaptation but involves
personalization based on a given corpus.

3 Related Work

3.1 Retrieval-Based QA
Open-domain QA is one of the most common prob-
lems in retrieval-based QA (Voorhees and Tice,
2000). The main approach for this task is a two-
stage approach comprising fast retrieval of pas-
sages from a corpus and fine-grained extraction of
an answer from those passages (Chen et al., 2017;
Wang et al., 2018; Nishida et al., 2018).

The first stage of fast retrieval in open-domain
QA can be applied to the ReQA task. For such fast
retrieval, classic non-neural inverted-index meth-
ods are used, such as TF-IDF (Jones, 1972) and
BM25 (Robertson and Zaragoza, 2009). Recently,
approximate nearest neighbor search (ANNS),
which uses dense vectors as keys and queries
(Shrivastava and Li, 2014; Johnson et al., 2017),
was introduced for fast retrieval in open-domain
QA (Xiong et al., 2021; Karpukhin et al., 2020;
Lee et al., 2019; Qu et al., 2021). Such methods
are called dual-encoder models because the ques-
tion and passages are encoded in dense vectors.
The main advantage of dual-encoder models is that
they can benefit from pre-trained language models



(PLMs) (Devlin et al., 2019). However, ANNS
methods often assume multi-threaded computing
with multiple CPUs or even GPUs, whereas tradi-
tional sparse models work well on a mono-CPU
and are computationally efficient (Lassance and
Clinchant, 2022). In addition, dual-encoder models
require encoding of the question with PLM at the
inference phase, which often takes a larger compu-
tation time than the retrieval.

Two sparse neural retrieval models,
SPARTA (Zhao et al., 2021) and SPLADE (Formal
et al., 2021b,a, 2022; Lassance and Clinchant,
2022), combine both lines of work. They obtain
sparse representations comprising the scores of the
relevant tokens to each sentence, and they store
the representations as an inverted index for fast
retrieval while using a PLM. Unlike dual-encoder
models, they can model the interaction between the
tokens in a query and those in a sentence beyond
the dot product of dense vectors (Zhao et al., 2021).
These models can be viewed as performing implicit
document expansion. Lassance and Clinchant
(2022) reported that these models outperformed
previous sparse models using the document
expansion, such as DocT5Query (Nogueira et al.,
2019) and DeepImpact (Mallia et al., 2021). Dai
and Callan (2020) and Bai et al. (2020) also
used PLM to calculate the importance of terms
appearing in the input and expanded context. Here,
we extend these sparse neural retrieval models to
the cross-domain setting.

3.2 Cross-Domain QA

Apart from ReQA, the MRQA dataset (Fisch et al.,
2019) focuses on cross-domain QA for evaluation
of a QA model’s generalization capability on out-
of-domain data. This dataset includes six source
domain datasets (Rajpurkar et al., 2016; Trischler
et al., 2017; Joshi et al., 2017; Dunn et al., 2017;
Yang et al., 2018; Kwiatkowski et al., 2019) and
six target domain datasets (Tsatsaronis et al., 2015;
Dua et al., 2019; Saha et al., 2018; Lai et al., 2017;
Levy et al., 2017; Kembhavi et al., 2017). Guo
et al. (2021) and Zhao et al. (2021) simultaneously
developed the MultiReQA dataset for cross-domain
ReQA by splitting all passages in the dataset into
the sentences and merging them into a sentence set.

A major approach in cross-domain QA is to gen-
erate questions as pseudo training datasets in the
target domain (Golub et al., 2017; Shakeri et al.,
2020; Luo et al., 2022). However, question genera-

tion and training of a PLM on the pseudo dataset
is too computationally expensive to run in user en-
vironments. Also, as in domain adaptation of the
language models in general natural language pro-
cessing tasks (Gururangan et al., 2020), we can
apply masked language models in the target do-
main for question answering (Nishida et al., 2020).
However, that approach assumes that the target do-
main is determined in the training phase; thus, it is
not applicable in a domain-agnostic setting.

4 Baseline Models

We propose SPARC to enable effective execution
of a pre-trained, off-the-shelf ReQA model in a
user environment. In this paper, we implemented
SPARC by extending SPARTA. However, the tech-
nique proposed for SPARC can be applied to other
sparse neural retrieval models such as SPLADE.

4.1 SPARTA
Here, we introduce the SPARTA model (Zhao et al.,
2021). Let H be a sentence encoder, and let
H(s) ∈ Rl×d be contextualized token embeddings
of a sentence s, where l is the token length and d
is the hidden size. f denotes the following token-
to-sequence (tok2seq) matching score function be-
tween s and a token v in a vocabulary V :

f(v, s) = log(ReLU(max
i

H(s)⊤i ev) + 1), (1)

where ev is the 0-th layer embedding of token v in
the encoder H , and H(s)i is the i-th token repre-
sentation of H(s).

Here, the tok2seq matching score f(v, s) can
be decomposed into three functions. First,
{H(s)⊤i ev}1≤i≤l indicates how strongly the in-
put tokens are related to v. Note that this oper-
ation is similar to the masked language model-
ing (Devlin et al., 2019). Second, the max opera-
tion over the input tokens outputs the highest scores.
Third, log(ReLU(·) + 1) outputs a non-negative
score, which is essential for a sparse neural retrieval
model because we expect that most scores are close
to zero.

To retrieve a sentence, we calculate the sequence-
to-sequence (seq2seq) matching score between a
question q and a sentence s:

g(q, s; f) =
∑
v∈q

f(v, s). (2)

At the training phase, following the standard
setting, we sample questions and the correspond-
ing ground-truth and negative sentences from the



source domain. We use the cross-entropy loss to
distinguish ground-truth sentence and in-batch neg-
atives.

At the inference phase, we can pre-compute the
tok2seq matching scores {f(v, s)}v∈V for all sen-
tences s ∈ Sd because f does not depend on the
contextualized information of q. Then, we store
the top-K tokens and their scores as an inverted
index. Finally, we efficiently retrieve a sentence
with respect to g(q, s; f) on a CPU by using the
pre-computed inverted index.

4.2 SPLADE

SPLADE (Formal et al., 2021b,a, 2022; Lassance
and Clinchant, 2022) is another major sparse neural
retrieval model. It computes the tok2seq match-
ing score f(v, q) of a question q in addition to
the tok2seq matching score f(v, s) of a sentence
s. However, f(v, q) cannot be pre-computed, and
SPLADE is thus not suitable for our task setting of
running a real-time QA system in a user’s private
environment with a single CPU for inference.

Lassance and Clinchant (2022) proposed an effi-
cient variant of SPLADE that uses BERT-tiny (Turc
et al., 2019) as the question encoder. However, our
pilot experiments showed that using BERT-tiny de-
graded the performance. The MultiReQA dataset
is small than the MSMARCO dataset (more than
1M questions) (Bajaj et al., 2016), which the au-
thors used, and we consider that the small BERT-
tiny model (total 4.4M parameters, the number of
layers is two, the hidden size is 128) requires a
large dataset to learn retrieval capability. Formal
et al. (2021a) proposed another efficient variant,
SPLADE-doc, which removes the question encoder
from the model. Its seq2seq matching score is
equivalent to that of SPARTA.

Note also SPLADE models used the following
FLOPS regularization (Paria et al., 2020):

RFLOPS =
∑
v∈V

 1

B

∑
1≤b≤B

f(v, sb)

2

, (3)

where B is the batch size, and sb is the b-th sen-
tence in a batch. The use of a FLOPS regularizer
in a sparse neural retrieval model has two prob-
lems. First, because the l2 norm reduces the value
but does not cause it to reach zero, the FLOPS
regularizer assumes that any token in a vocabu-
lary is related to one of the sentences in a batch.
This assumption is strong because of the presence

of domain- and language-specific tokens. Second,
the FLOPS regularizer requires the scheduling of
a strength hyperparameter. Formal et al. (2021a)
quadratically increased it until 50k steps and then
kept it as constant. However, we could not re-
produce those results in our experiments on the
MultiReQA dataset.

As a result, we used the SPARTA model, which
is equivalent to SPLADE-doc without FLOPS reg-
ularization, as a baseline. Other SPLADE models
are not comparable with respect to computational
efficiency, or their training were unstable.

5 SPARC

Here, to develop SPARC, we introduce two new
techniques into SPARTA: replacement of the em-
bedding matrix with a domain-specific one, and a
learnable sparsity parameter in the tok2seq score
f(v, s).

5.1 Embedding Matrix Replacement

Generally, to obtain knowledge in a target domain,
the common approach is to apply a masked lan-
guage modeling (MLM) task (Devlin et al., 2019)
in the target domain before fine-tuning in the source
domain (Gururangan et al., 2020). This is because
the model suffers from the catastrophic forgetting
of the capability to solve a downstream task if it is
first trained with the downstream task in the source
domain and then trained with the MLM in the tar-
get domain. However, we are agnostic of the target
domain in the fine-tuning phase and thus cannot
follow this strategy.

Instead, we propose to replace the embedding
matrix with one that is trained with the MLM task
in the target domain after fine-tuning. This fine-
tuning step uses the sentence set of the target do-
main just before the pre-computing of invert in-
dex and does not use any information of questions.
Therefore, this step matches our problem setting.
First, we fine-tune the model in the source domain
while fixing the embedding matrix. Second, to cap-
ture the knowledge in the target domain into the
embedding matrix, we train the original PLM in the
target domain with the MLM task while fixing all
parameters but the embedding matrix. Finally, we
replace the fine-tuned model’s embedding matrix
with one trained with the MLM. A sparse neural
retrieval model solves a task that is similar to the
MLM task, because it maximizes the dot product
of the contextualized embeddings H(s) and the



Figure 2: Graphs of y = log(ReLU(x) + 1) and y =
log(ReLU(x) exp(w) + 1), with exp(w) = 20.

static embedding of related tokens ev. Hence, we
can replace the embedding matrix without perfor-
mance degradation. By restricting the learnable
parameters and the step size, we confirmed that
the training of the embedding matrix in the target
domain works on a CPU.

5.2 Learnable Sparsity Parameter
In our pilot experiments, we observed a problem
with the tok2sec matching score f(v, s) (Eq. 1).
The advantage of using log(ReLU(x) + 1) is that
it sets the score to zero for negative x. Also, it is nat-
ural to use the log function, because Eq. 2 performs
a sum operation over f(v, s), and then the scores
are fed to the loss function as logits. However, the
log activation causes small gradients, which results
in small differences among token scores, as shown
in the top row of Figure 2. Therefore, to obtain a
sufficiently large difference in the seq2seq match-
ing score g(q, s; f) among sentences, many tokens
must have positive values.

Therefore, we introduce a learnable parameter
w as follows:

f(v, s) = log(ReLU(max
i

H(s)⊤i ev)exp(w) + 1).

(4)

We have found that the value of exp(w) is typically

over 20 after training, which shows the importance
of the learnable sparsity parameter. As shown in
the bottom row of Figure 2, this formulation causes
a large difference among token scores; moreover,
the gradient is large in the neighborhood of zero,
which causes sparsity. As a result, SPARC assigns
large values only to important tokens, and zero to
most tokens in Eq. 1.

6 Experiments

6.1 Dataset and Metrics

Dataset. We used MultiReQA (Guo et al., 2021;
Zhao et al., 2021) for these experiments. Mul-
tiReQA was created from a cross-domain QA
dataset, MRQA, by splitting passages into sen-
tences. Following Guo et al. (2021), we removed
four domains from the 12 domains in the original
MRQA dataset because most of the questions in
those domains were unclear when detached from
their original passage.

Our pre-processing of MultiReQA. However,
we found that the previously published MultiReQA
underestimated the model performance. For in-
stance, the performance in the biomedical do-
main was reported to be less than 20 points in
MRR@10. We observed that identical questions
(e.g., “Q: What type of enzyme is peroxiredoxin 2
(PRDX2)?”, “A: antioxidant”) tied to different pas-
sages caused the underestimation. Because these
are factoid questions, the answers in all tied pas-
sages should be allowed. Hence, we solved this
problem by merging identical questions and their
answers into an instance. An answer was sampled
at the training phase, and all answers were allowed
at the inference phase. Moreover, we removed
three domains, as follows. HotpotQA (Yang et al.,
2018) requires multi-hop reasoning, and its ques-
tions thus cannot be answered by a single sentence.
TextBookQA (Kembhavi et al., 2017) requires an
understanding of visual elements to answer. Re-
lation Extraction (Levy et al., 2017) is a synthetic
dataset for relation extraction and the scores on that
dataset are saturated.

As a result, our version of MultiReQA had five
domains. Table 1 lists the dataset statistics. We
used the training and evaluation splits of SQuAD
as our training dataset and development dataset.
Then, we used the evaluation splits of the other
datasets as our test dataset.



Metrics. Here, we report the median of MRR
and Recall@1 scores over three runs.

6.2 Implementation

Following Zhao et al. (2021), to encode a sentence,
we used the other sentences in the same passage
as the surrounding context by concatenating the
original sentence and the surrounding context. That
is, an input of the encoder s is ‘<Original Sentence>
[SEP] <Other Sentences>’. This was truncated to
the first 256 tokens. We used the segment ids to
distinguish the sentence and the context.

To train the model with the cross-entropy loss,
we extracted hard-negative sentences for a question.
First, we randomly extracted a sentence from a
passage that included the ground-truth sentence
except for the ground-truth sentence. Second, we
randomly extracted a sentence from the top-100
sentences in the sentence set Sd, whose scores were
calculated with BM25 (Robertson and Zaragoza,
2009). We then removed sentences including the
question’s original answer. Thus, in a batch of size
B, a question had one ground-truth sentence, two
hard-negative sentences, and 3(B − 1) negative
sentences.

We used the pre-trained DistilBERT-base-
uncased model (66M parameters) (Sanh et al.,
2019) as the encoder. Note that we could pre-
compute the sentence score {f(s, v)}v∈V in 0.9s
with DistilBERT on a MacBookAir (M1, 16GB
memory). For implementation, we used PyTorch
(ver. 1.12.1) (Paszke et al., 2019)1 and transform-
ers (ver. 4.21.1) (Wolf et al., 2020).2 The model
was trained for 20 epochs without early stopping.
The Adam optimizer (Kingma and Ba, 2015) was
used with a learning rate of 1e-5, a linear learning-
rate decay, and 500 warmup steps. The learning
rate for the sparsity parameter was 1e-3 to obtain
a sufficiently large value. We used four NVIDIA
Quadro RTX 8000 (48GB) GPUs. The batch size
was 96. Gradient Cache (Luyu Gao and Callan,
2021) was used to backpropagate the gradients of
in-batch negatives in multiple GPUs. Following
Zhao et al. (2021), we set K = 2000. Finally, the
number of steps for pre-training in the target do-
main for embedding matrix replacement was 500.
The batch size is 32. We used the Adam optimizer
with a learning rate of 5e-5. The training took less
than five hours.

1https://pytorch.org/
2https://github.com/huggingface/transformers

6.3 Compared Models

Unsupervised sparse model. We used
BM25 (Robertson and Zaragoza, 2009).

Sparse neural models. We used SPARTA (Zhao
et al., 2021) as the baseline and implemented
SPARC on the basis of SPARTA. The infer-
ence was implemented with SciPy (Virtanen et al.,
2020).

Dense model. We used Sentence-BERT (S-
BERT)3 (Reimers and Gurevych, 2019) as the dual-
encoder baseline. Although several dense models,
such as DPR (Karpukhin et al., 2020), have the
same architecture as S-BERT, the main differences
among them are the training data and the selection
of negative samples. We selected S-BERT as the
initial point for a fair comparison in terms of the
training data because its pre-training does not use
any QA datasets, and we then trained the model in
our setting. The inference was implemented with
faiss (Johnson et al., 2017).

6.4 Results and Discussion

Does SPARC improve the retrieval perfor-
mance? Table 1 summarizes the main results.
SPARC outperformed SPARTA except on the
biomedical domain. Even without the embedding
replacement, SPARC improved the performance.
We conclude that the learnable sparsity parame-
ter improved the performance by emphasizing the
scores of important tokens and compressing the
scores of unimportant ones.

In particular, we observed that the embedding
matrix replacement improved the performance on
TriviaQA, SearchQA and BioASQ. In contrast, it
decreased the performance on SQuAD and Natural
Questions because SQuAD was used for training,
while the domain of Natural Questions entailed
Wikipedia with a few HTML tags such as ‘<p>’
and ‘<li>’. The embedding matrix replacement
reduced discrepancies between the sentence sets
in the training and inference phases. Therefore, it
would be effective for users to develop retrieval
systems from their own documents in private envi-
ronments.

Regarding the biomedical domain, SPARTA out-
performed SPARC. SPARC increases the sparsity
and improved the performance on the other do-
mains. However, the biomedical domain has a lot

3https://huggingface.co/sentence-transformers/
distilbert-base-nli-mean-tokens

https://pytorch.org/
https://github.com/huggingface/transformers
https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens


SQuAD Natural Questions TriviaQA SearchQA BioASQ Average

Domain Wikipedia HTML Wikipedia Web snippets Web snippets Science articles —
Queries Crowdsourced Search logs Trivia Jeopardy Domain experts —
|Sd| for Train 95658 (448354) (1893673) (3163800) — —
|q| for Train 86355 (104065) (61687) (117219) — —
|Sd| for Eval. 10641 22117 238338 454835 14157 —
|q| for Eval. 10477 4176 7784 16978 223 —

Unsupervised sparse model

BM25 55.44/48.15 27.42/20.45 32.77/24.06 48.61/33.20 41.76/31.70 45.98/36.90

DistilBERT trained on SQuAD

S-BERT 67.30/57.13 27.76/19.19 39.53/27.51 43.74/29.90 51.95/41.07 48.76/38.21
SPARTA 84.31/77.47 42.92/32.70 53.71/40.78 55.52/37.94 75.84/64.73 62.46/50.72
SPARC - Emb.Rep. 84.97/78.12 45.09/34.85 55.11/42.01 57.95/40.28 74.62/62.95 63.55/51.64
SPARC 84.96/78.02 44.97/34.62 55.42/42.57 58.15/40.53 75.10/63.39 63.72/51.83

Table 1: Data statistics and the results of cross-domain evaluation. The neural models were trained on the SQuAD
dataset, and the datasets in parentheses were not used for training. The scores indicate MRR/Recall@1.

SQuAD Natural Questions TriviaQA SearchQA BioASQ Average Std.

SPARTA 5316 3923 4167 5353 5805 4912.8 733.3
SPARC 1246 1120 1108 1189 1087 1150.0 58.9

Table 2: Numbers of non-zero tokens in the sentence vectors generated by each method, reported as the median
among all sentence vectors.

of domain-specific words. We thus consider that
SPARC compressed the scores of important tokens
comprising domain-specific words. Although spar-
sity is effective for computational efficiency and
performance in general domains, there is a trade-
off between sparsity and performance in domains
involving domain-specific words.

SPARC outperformed the sparse non-neural
model BM25 and the dense neural model S-BERT.
This was because it better captured contextual in-
formation and interaction among tokens as com-
pared to BM25 based on the token frequency, and
S-BERT based on a dense representation.

Does the learnable sparsity parameter make the
vectors sparse? To investigate the sparsity of
the sparse neural retrieval models, we counted the
number of non-zero tokens in the sentence vectors
generated by each method. Table 2 lists the re-
sults. Although the learnable sparsity parameter
in Eq. 4 tuned only the scale of the dot product
of H(s)i and ev, SPARC increased the sparsity
of the sentence vectors. Also, we found that the
standard deviation was smaller for SPARC than
for SPARTA. This constant sparsity is one of the
pieces of evidence of the SPARC’s robustness in
out-of-domains. However, we found a large num-
ber of non-zero tokens for SPARTA on the BioASQ

dataset. Because the token distribution and the
sense of tokens in the biomedical domain were dif-
ferent from the other domains, a large number of
nonzero tokens avoid removing important tokens
in the biomedical domain.

Note also that SPARC outperformed SPARTA in
terms of the MRR and Recall@1, even though its
vectors were sparser than those of SPARTA.

Why does the learnable sparsity parameter
make the vectors sparse by tuning the scale?
Next, we investigated the reason for the sparsity.
Figures 3 and 4 show histograms of the values of
maxi(H(s)⊤i ev) exp(w) for all sentence vectors
with SPARTA (without exp(w)) and SPARC, re-
spectively. As seen in these figures, the SPARC
values were larger than those with SPARTA be-
cause of the learnable sparsity parameter. More-
over, we confirmed that the number of positive
values, which were not removed by the ReLU func-
tion, was smaller with SPARC than with SPARTA.
We conclude that, because of the values’ large scale,
the final score (Eq. 2) could distinguish sentence
vectors with small numbers of tokens. SPARC thus
obtained sparse vectors by tuning the scale.

What tokens are removed by the learnable spar-
sity parameter? We next investigated what to-
kens were removed by the learnable sparsity param-



Figure 3: Histogram of the values for all tokens in the
vocabulary of all sentence vectors with SPARTA. The
vertical axis is normalized to the proportion. That is, the
values are divided by |Sd| × |V |.

Figure 4: Histogram of the values for all tokens in the
vocabulary of all sentence vectors with SPARC.

Figure 5: Histogram of the number of sentences in
which each token had a non-zero value with SPARTA
but zero with SPARC. The vertical axis is normalized to
the proportion. That is, the number is divided by |Sd|.

eter. Specifically, we counted the number of sen-
tences in which each token had a positive score with
SPARTA but zero with SPARC. Figure 5 shows a
histogram of the top-20 tokens, with the vertical

MRR Recall@1 Latency[ms]

SPARC (K = 100) 59.48 69.68 0.69
SPARC (K = 500) 83.89 77.96 0.77
SPARC (K = 1000) 84.82 77.99 0.77
SPARC (K = 2000) 84.96 78.02 0.77

S-BERT (d = 768) 67.30 57.13 41.5

Table 3: Retrieval performance and latency. We re-
trieved the top-1000 sentences to calculate the MRR
and latency. The computational cost of SPARTA is the
same as SPARC except for the sparsity.

axis normalized to the proportion with respect to
all sentences.

First, we observed that most of the top 20 tokens
were subwords. We expect that SPARC learned not
to assign scores to all the tokens in a word, which
was effective under the constraint of sparsity.

Second, words indicating presence (e.g., “stand”,
“exist”, “occured”, “am”) were removed. We as-
sume that SPARC reduces the scores of such words
because they infrequently affected the meaning of
a sentence.

How fast does SPARC answer a query? Fi-
nally, Table 3 lists the performance and the la-
tency on SQuAD with DistilBERT on a MacBook
Air. We observed that SPARC outperformed S-
BERT in terms of both retrieval performance and
latency. Although S-BERT is not a state-of-the-
art model and more sophisticated models such
as Poly-Encoder (Humeau et al., 2020) and Col-
BERT (Khattab and Zaharia, 2020) exist, they have
a larger computational cost than the S-BERT model.
Therefore, we confirmed that the sparse neural re-
trieval models have an advantage over the dense
models for the private QA systems targeted here.

7 Conclusion

In this paper, we focused on cross-domain retrieval
question answering (ReQA), which is motivated by
a realistic setting in which users do not have rich
computational resources and cannot submit their
corpora because of privacy concerns. For this pur-
pose, we proposed the SPARC model by incorporat-
ing the replacement of the embedding matrix and a
learnable sparsity parameter in a sparse neural re-
trieval model. We found that SPARC outperformed
the neural retrieval baselines in both in-domain and
out-of-domain settings. In addition to improving
the retrieval performance, SPARC increased the
sparsity of the sentence representation.



SPARC can be used for the personalization of
a QA model, which requires adaptation to a very
large number of target domains (i.e., users). We
believe that this work will contribute to the imple-
mentation of efficient, secure private QA systems.
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