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Abstract

One of the approaches for improving the ro-
bustness of NLP models is adversarial training
by adversarial examples. However, in previ-
ous work on adversarial training, the adversar-
ial examples were not guaranteed to be min-
imally edited and to change the model’s pre-
diction. Our hypothesis is adversarial training
could make models more robust if the adver-
sarial examples were guaranteed to be mini-
mally edited and to change the model’s pre-
diction. We propose Counterfactual Adversar-
ial Training (CAT), which uses counterfactual
explanations to improve the robustness of the
model. Our experiments on Natural Language
Inference and Sentiment Analysis show that
CAT significantly enhances out-of-the-box pre-
trained NLP models on 11 datasets, indicating
that CAT is a promising approach to improve
the robustness of the pre-trained language mod-
els.

1 Introduction

Recent natural language processing (NLP) tech-
niques have achieved high performance on vari-
ous NLP benchmark datasets, primarily due to the
significant improvement of deep learning (Omar
et al., 2022). However, the research community
has demonstrated that the NLP models are vulner-
able to adversarial attacks (Moosavi et al., 2020),
i.e., they are susceptible to adversarial examples
and making incorrect predictions. An adversarial
example is to add some noise to the original input
with the purpose of confusing a deep neural net-
work and causing misclassification in predicting
new instances. Existing pre-trained models still
need to be improved for robustness, the capacity of
a model to generalize successfully on new data and
to handle unforeseen situations.

Adversarial training is one of the promising ap-
proaches for improving the robustness of NLP mod-
els by generating perturbed examples of training
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Generating counterfactual
explanations

Training Data

Input: This movie is insane for me

Predicted Label: Negative

Ouput 2: This movie is good for me

Predicted Label: Positive

Ouput 1: This film is insane for me

Predicted Label: Negative

Ouput 3: This cartoon is good for children

Predicted Label: Positive

Ouput 4: This movie is meh for me

Predicted Label: Positive

Pre-trained model

Ouput 4: This movie is meh for me

Predicted Label: Positive
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Figure 1: An overview of our proposed method.

data and additionally fine-tuning models on the per-
turbed examples (Shafahi et al., 2019; Bai et al.,
2021). However, in previous studies on adversarial
training, the generated perturbed examples were
not guaranteed to be minimally edited from the
original inputs and to change the model’s predic-
tion. Such perturbed examples may not be able to
fool the models, leaving room for better adversarial
training.

We hypothesize that adversarial training may
be more effective in improving robustness when
the perturbed examples are guaranteed to flip the
model’s prediction and to be minimally edited to
change the model’s prediction. In Explainable AI,
such perturbed examples are known as counterfac-
tual explanations.

In this work, we investigate the potential of
Counterfactual Adversarial Training (CAT), which
uses counterfactual explanations for improving the
robustness of NLP models. There are several ex-
isting studies to generate counterfactual explana-



tions (Wu et al., 2021; Elazar et al., 2021), and
we leverage BERT-based Adversarial Examples
(BAE), one of the strong methods of adversarial
attack to find a minimal edit from an input to
change the model’s prediction by a masked lan-
guage model-based perturbation.

To test whether counterfactual explanation helps
improve the model’s robustness, we setup the fol-
lowing pipeline. We first sample training instances
that are considered less confident by a model. We
then generate a set of counterfactual explanations
for these unconfident examples. Finally, we fine-
tune the model on the unconfident examples and
these counterfactual explanations, hoping that these
“edge cases” inform the model more about decision
boundary.

We evaluate CAT on Natural Language Inference
(NLI) and Sentiment Analysis (SA), two represen-
tative NLP tasks, in both in-domain and out-of-
domain settings. Our experiments show that the
model fine-tuned on counterfactual explanations
outperforms the original model in both settings.
Besides, we analyze the fine-tuned model’s behav-
iors in predicting new examples and their coun-
terfactual explanations, then compare them with
the pre-trained model. Overall, the results indicate
that counterfactual explanation-based adversarial
training is a promising approach to improving the
robustness of the pre-trained language models.

Our contributions are summarized as follows:

• We introduce Counterfactual Adversarial
Training (CAT), a new approach to adversarial
training–using counterfactual explanations to
improve the robustness of NLP models (§3).

• We show that CAT improves the robustness of
the original model on the NLI and SA tasks,
two representative NLP tasks (§4.3.1, §4.3.2).

• We provide an in-depth behavior analysis of
CAT (§4.3.1).

2 Related work

Robustness Recently, there have been several
approaches to improve the models’ robustness.
Moosavi et al. (2020) combine the training set with
their corresponding predicate-argument structures
to make the transformer model understand the im-
portant parts of inputs, improving the robustness
of the models. Data augmentation techniques aim
to increase the diversity of the training set with-

out collecting new data. Feng et al. (2021) con-
duct a comprehensive survey on data augmentation,
including rule-based, example interpolation, and
model-based techniques for enhancing the models’
robustness.

Generating adversarial examples is considered
an effective means to achieve robustness. A method
is proposed to train and evaluate the model adver-
sarially using word substitutions (Jia et al., 2019).
Jin et al. (2020) suggest a simple but strong base-
line to generate adversarial examples, which can
preserve similar meaning to the original input and
lead the model to misclassify.

Counterfactual explanations In previous
work, a counterfactual explanation is expected with
the smallest number of edits in the feature that leads
to the changes in the model’s prediction (Slack
et al., 2021; Barr et al., 2021). There are two main
ways to generate counterfactual explanations: man-
ually and automatically. While handcrafted coun-
terfactual explanations achieve high correctness
in grammar and naturalness, they could be costly.
However, the automatic generation method may
produce inconsistent counterfactual explanations
that can not flip the model’s prediction.

Several methods are proposed to create counter-
factual explanations and focus on explaining the be-
havior of the black-box model. Elazar et al. (2021)
introduce an Amnesic Probing method that feeds
the model with the contextualized representation
of the inputs, then returns the output without some
specific information.

Polyjuice framework (Wu et al., 2021) gener-
ates counterfactual explanations by leveraging the
ability of the large language model GPT-2 (Rad-
ford et al., 2019). They use the prompt format that
concatenates the original input, the control code,
and the masked token ([BLANK]), then fills in the
[BLANK].

Moreover, contrastive explanation is another
form of explanation but much more similar to coun-
terfactual ones. In MiCE work (Ross et al., 2020),
they are to answer why p not q? or which tokens
make the model predict p (q). To generate counter-
factuals, their inputs are masked and flipped labels.
To choose a token to be masked, binary search and
beam search are adopted to track the confidence
of model prediction, then mask those tokens that
cause the highest confidence.

In our work, we leverage counterfactual explana-
tions to improve the robustness of the pre-trained
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Figure 2: The counterfactual explanation and the origi-
nal input are on different sides of the model’s decision
boundary, but on the same side of human’s decision.

models instead of using adversarial examples or
data augmentation methods. We also require mini-
mal edits compared with the original input to gener-
ate counterfactual explanations; however, we mask
the tokens that contribute the most to the predicted
label and replace them with similar semantic ones.
Besides, we sample unconfident instances for gen-
erating new examples and fine-tune the models on
them to improve the robustness of models.

3 Method

An overview of our proposed approach is shown in
Figure 1. The proposed method consists of three
steps: (1) sampling unconfident instances (§3.1),
(2) generating counterfactual explanation (§3.2),
and (3) fine-tuning pre-trained language model to
improve robustness (§3.3).

Formally, we are given (i) a dataset D =
{(x1, y1), ...(xn, yn)}ni=1, (ii) a pre-trained large
language model fθ fine-tuned for an NLP task, and
(iii) a masked language model gϕ. In Step 1, we
sample set O ⊂ D of instances that are considered
less confident by the black-box pre-trained model
fθ (henceforth, unconfident examples). These un-
confident examples stand near the model’s deci-
sion boundary, so the model is easily fooled with
small edits. In Step 2, for each unconfident input
x ∈ O:,1

1, we generate a counterfactual explana-
tion x′, yielding set A of counterfactual explana-
tions. The counterfactual explanation x′ of x is
an example minimally edited from x that flips the
model’s prediction. We expect that these unconfi-

1Following numpy notation, we denote the subscript :,i to
denote a set of i-th element in a tuple.

dent examples and corresponding counterfactual
explanations teach the model how to distinguish
edge cases, which leads to the improvement of the
robustness of the model. In Step 3, we use both O
and A to fine-tune fθ.

3.1 Sampling unconfident instances

In Active Learning, several strategies are proposed
to calculate the confidence score of classification
models. Sampling strategies include various types
of methods. Random sampling is the most com-
mon one that uses a random value as a confidence
score. While it preserves the original distribution
of the dataset, it does not guarantee that the cho-
sen examples will be the most unconfident ones.
Margin sampling calculates the difference between
the top-2 prediction probabilities. Least-confidence
sampling returns the ratio between the most confi-
dent prediction and 1 (100% confidence). Entropy-
based sampling returns the entropy of predicted
probability distribution P (Y |x).

In our work, for each input x ∈ O, we use the
Entropy-based Sampling method to calculate the
confidence score of a model. Let Pθ(Y |x) be a
probability distribution over n classes predicted by
fθ (i.e., Y ∈ {1, 2, ..., n}). Entropy is calculated
as follows:

sent(x) = −
n∑

i=1

Pθ(Y = i|x) · log2 Pθ(Y = i|x)

(1)

3.2 Generating counterfactual explanations

Given a model fθ and an input x ∈ O:,1, we gener-
ate counterfactual explanations A by using BERT-
based Adversarial Examples (BAE) (Garg and Ra-
makrishnan, 2020), which automatically generates
adversarial examples using a large language model.

BAE calculates the importance score for every
token of an input with respect to a target model.
For token importance, they follow Jin et al. (2020)
to inspect the difference before and after removing
every token from the original one. Those high-
est tokens are masked, and then they leverage a
large language model (BERT) to replace or insert
other words. If BAE could not find new words that
change the label of the newly generated example,
they choose the ones that decrease the prediction
probability of example the most.

In our work, we use BAE-R, a variant of BAE
using only replacement operations. To obtain better
counterfactual explanations, we make two small



modifications: (i) to ensure replaced tokens have
the same sentiment polarity as that of the original
token, and (ii) to filter out adversarial examples
that cannot change models’ original predictions.

3.2.1 Step 1: Calculating token importance
We first calculate the importance score for every
token of input x and sort them in descending order
into a list. To calculate the importance score, we
leverage the Transformers Interpret tool2, while
BAE uses the average attention that the pre-trained
language model gives to every token from all the
layers.

3.2.2 Step 2: Finding the best perturbation
We perturb the original input x by changing im-
portant tokens one by one until we obtain coun-
terfactual explanations. Each iteration consists of
two processes. Firstly, we replace an important
token w ∈ x with a semantically similar token. We
replace the important token w with [MASK] and
then use a masked language model gϕ (in our ex-
periments, RoBERTa-large (Liu et al., 2019)) to
predict the most-likely alternative token a for w.

To ensure (i) the distance between x and the
perturbed sentence is minimal (shown in Figure 2)
and (ii) the perturbed sentence is grammatically
correct, we enforce the following three constraints
on a candidate alternative token a′:

C1. The sentiment polarity of a′ must be the same
as that of w. We use SentiWordNet3 to search
and calculate sentiment score, which is a lex-
ical resource for opinion mining with three
sentiment aspects: positivity, negativity, and
neutral.

C2. The part-of-speech (POS) of a′ must be the
same as that of w. We leverage nltk4, a natural
language toolkit package, to identify POS.

Secondly, we check if the perturbed sentence x′

is a counterfactual explanation. Specifically, we
check if x′ satisfies the following condition:

• fθ(x
′) ̸= fθ(x), namely x′ must change the

predicted label of the original input x.

If x′ satisfies the condition, we terminate the pro-
cess and generate x′ as a counterfactual explanation.

2https://github.com/cdpierse/
transformers-interpret

3https://github.com/aesuli/
SentiWordNet

4https://www.nltk.org/

Otherwise, we iterate processes Step 1 and Step 2
with the second-most important token. We denote
A as a set of generated counterfactual explanations.

3.3 Finetuning pre-trained Language model
Our final step is to fine-tune the pre-trained lan-
guage model fθ on both O and A.

Note that A does not have a gold label, and it
cannot be used for fine-tuning as they are. To ob-
tain the label of x′ ∈ A, we use the same gold
label of the original input which x′ is generated
from. Formally, we create a new training dataset
C = {(x′, yorigin(x′)) | x′ ∈ A}, where yorigin(x)
is the label of original input used for generating the
counterfactual explanation x′ in O. We then fine-
tune the pre-trained language model fθ on O ∪ C.
We use a standard multi-class cross entropy loss
for fine-tuning the model.

We expect that this can improve the robustness
of the model because this teaches the model how
to solve “edge” cases near the decision boundary:
O contains a set of unconfident examples, and cor-
responding counterfactual explanations A are min-
imally edited examples that can fool the model.

For example, in sentiment analysis, O ∪ C may
contain the following training instances:

• (This movie is insane for me, NEGATIVE) ∈ O

• (This film is bad for me., NEGATIVE) ∈ C

• (Spielberg’s movie is always exciting., POSI-
TIVE) ∈ O

• (Cameron’s movie is always exciting., POSI-
TIVE) ∈ C

where our sentiment analysis model’s prediction
was NEGATIVE (correct), POSITIVE (wrong), POS-
ITIVE (correct), and NEGATIVE (wrong), respec-
tively. This may be because the model relied on
superficial cues, such as Spielberg → POSITIVE,
changing the word Spielberg to something else
causes a misclassification. Our counterfactual ex-
planations are intended to fix such model’s behav-
iors, having the model pay more attention to other
important clues.

4 Evaluation

Our main hypothesis is that counterfactual explana-
tions could help improve the robustness of the pre-
trained models. Our evaluation aims to explore two
different types of robustness in our expeirments:

https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/aesuli/SentiWordNet
https://github.com/aesuli/SentiWordNet
https://www.nltk.org/


Table 1: In-domain evaluation on the NLI and SA tasks.

Model Accuracy

rb-mnli 90.01
rb-mnli w/ CAT 91.44

rb-tw 74.20
rb-tw w/ CAT 77.15

Table 2: In-domain evaluation on a subset of develop-
ment set (Dev.) and their corresponding adversarial
examples (Adv.).

Model Accuracy
Dev. Adv.

rb-mnli 90.35 9.65
rb-mnli w/ CAT 90.16 15.12
rb-tw 74.36 22.96
rb-tw w/ CAT 75.57 41.92

Do counterfactual explanations help improve the
accuracy of NLP models on unseen data from (i)
the same domain as the training data? and (ii) the
different domain from the training data?

For the first question, we first calculate accuracy
on new unseen data and then analyze the model’s
behaviors to answer if fine-tuning on counterfac-
tual explanations helps improve performance in the
same domain as training data. For the second ques-
tion, we also evaluate the model’s performance on
the data by calculating accuracy in different do-
mains as training data.

4.1 Datasets

We evaluate our hypothesis on Natural Language
Inference (NLI) and Sentiment Analysis (SA), two
representative NLP tasks.

For NLI, we use the training dataset of
MNLI (Williams et al., 2017) as D. For in-
domain evaluation, we randomly sample 550 in-
stances from the validation dataset of MNLI (hence-
forth, Odev). For out-of-domain evaluation, we
evaluate on NLI Diagnostics (Wang et al., 2018),
HANS (McCoy et al., 2019), FEVER-NLI (Thorne
et al., 2018), and ANLI (Nie et al., 2019).

For SA, we use the training dataset of TweetE-
val (Rosenthal et al., 2019) as D. For in-domain
evaluation, we randomly sample 750 instances
from TweetEval development sets (henceforth,
Odev) with the same distribution of each label. For
out-of-domain evaluation, we evaluate on Finan-

Table 3: Sensitivity to adversarial examples.

% flipped ↓

rb-mnli 97.99
rb-mnli w/ CAT 89.75

rb-tw 96.53
rb-tw w/ CAT 59.95

cialPhraseBank (Malo et al., 2014), IMDB (Maas
et al., 2011), FiQA5, StockTweet6, Amazon (Ke-
ung et al., 2020), and Yelp (Zhang et al., 2015).

For both tasks, we sample approximately 1,200
unconfident instances (i.e. O) for CAT. We use
accuracy as an evaluation metric.

4.2 Models

For the pre-trained model fθ, we employed publicly
available RoBERTa-large checkpoints finetuned on
the training portion of MNLI corpus7 (rb-mnli)
and TweetEval dataset8 (rb-tw).

For CAT, we do a pre-processing step by setting
their maximum length to 512, then pad and truncate
if they exceed the limitation setup. We use grid
search to determine the learning rate. For NLI task,
we setup three candidates, 1e-3, 1e-5, and 1e-8, and
choose the one that achieves the best result overall.
For SA task, we setup at 1e-3, 1e-5, and 1e-7.

4.3 Results and discussion

4.3.1 In-domain evaluation
Table 1 shows the result of in-domain evaluation.
The results show that CAT improves the original
models by 1.44% for the NLI task and by 2.95% for
the SA task. This indicates that CAT is a promising
approach to improving the robustness of NLP mod-
els to in-domain unseen inputs. Below, we give
in-depth analyses of the behavior of CAT.

CAT-enhanced models precisely target adversar-
ial examples without hurting the original per-
formance. To analyze the behavior of CAT, we
also evaluate our models on adversarial examples.
We sample 750 and 550 instances from Odev (for
NLI and SA task respectively) and generated adver-

5https://sites.google.com/view/fiqa/
6https://ieee-dataport.org/

open-access/stock-market-tweets-data
7https://huggingface.co/

roberta-large-mnli
8https://huggingface.co/cardiffnlp/

twitter-roberta-base-sentiment

https://sites.google.com/view/fiqa/
https://ieee-dataport.org/open-access/stock-market-tweets-data
https://ieee-dataport.org/open-access/stock-market-tweets-data
https://huggingface.co/roberta-large-mnli
https://huggingface.co/roberta-large-mnli
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment


Table 4: Out-of-domain evaluation on the NLI task.

Model ANLI Diagnostics FEVER HANS

rb-mnli 31.8 66.39 70.7 73.13
rb-mnli w/ CAT 32.37 66.49 70.87 73.75

Table 5: Out-of-domain evaluation on the SA task.

Model IMDB FiQA Stock Yelp FinP Amazon

rb-tw 77.1 76.59 55.15 68.8 67.51 69.38
rb-tw w/ CAT 78.24 78.37 57.84 69.31 69.17 69.98

sarial examples by our counterfactual explanation
method (§3.2). The results are shown in Table 2.

For the NLI task, the difference is not signif-
icant between rb-mnli and the CAT-enhanced
rb-mnli (90.35% and 90.16%). However, for
adversarial examples, the CAT-enhanced model
outperforms rb-mnli by a large margin (5.47%).

For the SA task, we also compare rb-tw with
the CAT-enhanced rb-tw. We found that the CAT-
enhanced model is even over 1% higher on the de-
velopment set. Besides, our CAT-enhanced model
gains an impressive improvement on the adversar-
ial examples, approximately 20% higher than the
original model.

The results imply that our CAT-enhanced models
precisely improve the robustness, while maintain-
ing the in-domain performance.

CAT-enhanced models are more difficult to be
fooled. We also investigate another in-domain ro-
bustness: given a sample x ∈ Odev and its predic-
tion fθ(x), we check if a model flips its prediction
for its adversarial version x′ generated by our coun-
terfactual explanation method, i.e., fθ(x) = fθ(x

′)
or not. Ideally, the model should not flip the pre-
diction, as x′ is generated to maintain its gold label.
The results are shown in Table 3.

Generally, our CAT-enhanced models achieve
much lower flip rates than the original mod-
els. While the CAT-enhanced rb-mnli im-
proves true prediction by more than 8%, the CAT-
enhanced rb-tw decreases false prediction by
around 36.5%.

The results reveal that CAT makes the model not
easily fooled by new counterfactual explanations
and more robust to them.

4.3.2 Out-of-domain evaluation
Tables 4 and 5 show the results of out-of-domain
evaluation for NLI and SA tasks, respectively. For
the NLI task, our CAT-enhanced models gain a
minor improvement (roughly 1%) for all datasets
compared to the original rb-mnli model. Our
CAT-enhanced fine-tuned r-mnli achieves
the best result on the HANS dataset and ANLI
dataset. Besides, it insignificantly improves on the
NLI Diagnostics and Fever NLI dataset.

For the SA task, CAT-enhanced rb-tw gets
better performance (about 2%) for most out-of-
domain datasets compared to the original model.
Our CAT-enhanced rb-tw model performs the
best on financial datasets including Stock Twitter,
FiQA, and Finacial PhraseBank datasets; however,
for review datasets including Yelp, Amazon, and
IMDB review datasets, it achieves smaller improve-
ment (0.6-1.14%).

Overall, the results indicate that CAT-enhanced
models outperform the original models not only in
the same domain but also in the different domain
from training data.

5 Conclusion

To improve the robustness of models, adversarial
training is one of the promising approaches. How-
ever, in previous studies of adversarial training,
the generated adversarial examples were not guar-
anteed to be minimally edited and to change the
model’s prediction from the original inputs. Our
hypothesis is that adversarial training might be
more effective in enhancing robustness if given lim-
itations are addressed. In this work, we leverage
counterfactual explanations to improve the model’s
robustness.



Experimental results demonstrate that our pro-
posed method CAT outperforms the pre-trained
model in both in-domain and out-of-domain set-
tings. We also explore the fine-tuned model’s be-
haviors in its prediction compared with the pre-
trained model. It indicates that counterfactual
explanation-based adversarial training is a promis-
ing approach to improve the robustness of the pre-
trained language models.
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