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Abstract
Linguistic structures can implicitly imply di-
verse types of event relations that have been
previously underexplored. For example, the
sentence “John was cooking freshly made noo-
dles for the family gathering” contains no ex-
plicit temporal indicators between the events,
such as before. Despite this, it is easy for hu-
mans to conclude, based on syntax, that the noo-
dles were made before John started cooking,
and that the family gathering starts after John
starts cooking. We introduce Linguistically en-
hanced Event TemporAl relation Framework
(LEAF), a simple and effective approach to ac-
quiring rich temporal knowledge of events from
large-scale corpora. This method improves
pre-trained language models by automatically
extracting temporal relation knowledge from
unannotated corpora using diverse temporal
knowledge patterns. We begin by manually cu-
rating a comprehensive list of atomic patterns
that imply temporal relations between events.
These patterns involve event pairs in which
one event is contained within the argument of
the other. Using transitivity, we discover com-
positional patterns and assign labels to event
pairs involving these patterns. Finally, we make
language models learn the rich knowledge by
pre-training with the acquired temporal rela-
tion supervision. Experiments show that our
method outperforms or rivals previous models
on two event relation datasets: MATRES and
TB-Dense. Our approach is also simpler from
past works and excels at identifying complex
compositional event relations.

1 Introduction

Event temporal relation extraction can help us bet-
ter organize event flow and understand how events
develop. For example, in news articles, understand-
ing the causal relationships between events can
help us better understand why certain events oc-
curred (Tan et al., 2022; Zhang et al., 2023). In
medical records, understanding the temporal rela-
tionships between events can help us better track a

patient’s medical history (Cheng et al., 2013; Lee
et al., 2018).

Recently, there have been works focusing on first
acquiring temporal relation knowledge automati-
cally and then injecting the acquired knowledge via
pre-training. For example, ECONET (Han et al.,
2021b) uses explicit keyword search to retrieve the
sentences that contain temporal indicators such as
before, after, during, and previously as supervi-
sion. However, they do not fully exploit knowledge
from sentence linguistic structures. While Zhou
et al. 2020a make an attempt to utilize linguistic
structures by extracting patterns from semantic role
labeling (SRL) parses (Gardner et al., 2018; Shi
and Lin, 2019), much of the linguistic information
available is under-explored and they only utilize
keywords found in an event’s temporal argument.
Moreover, previous works which utilize linguistic
structure for event relation knowledge do not apply
them to neural networks (D’Souza and Ng, 2013;
Chambers et al., 2014).

We find that there is rich, implicit event knowl-
edge in the linguistic structures that has not been
explicitly leveraged in the past. For example, con-
sider the sentence “John was cooking freshly made
noodles for the family gathering as Adam ar-
rived”. Notice that in this sentence, there is only
one explicit mention of the temporal relationship
between any of the events, which is that John was
cooking as Adam arrived. However, it is possi-
ble to extract five times the number of relations
according to linguistic structures (Figure 1):
Relation 1: The noodles were made before John
started cooking, since adjectives of event objects
all occur before the event occurs.
Relation 2: John started cooking before family
gathering began, since an event always starts be-
fore its purpose event.
Relation 3: The noodles were made before
Adam arrived, since we know from the above re-
lations that the noodles were made before John
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Figure 1: Process of utilizing temporal knowledge patterns to acquire temporal relation supervision for pre-training.
An arrow a –> b indicates that event “a" starts before event “b". We first obtain the SRL annotations for all events
(shown are the annotations for “cooking" and “told"). Then, using a list of atomic patterns, we automatically extract
temporal relationships between a target event and other events in its arguments (shown by the single colored arrows).
Finally, we use transitivity rules to find compositional relations (shown by the arrows with two colors). The table on
the right shows the patterns corresponding to each relation. Note that this figure displays a subset of the entire set of
patterns we use.

started cooking, and Adam arrived as cooking
was started.
Relation 4: The noodles were made before the
family gathering, since we know from the above
relations that the noodles were made before John
began cooking, and John began cooking before
family gathering started.
Relation 5: Adam arrived before family gath-
ering, since we know from the above relations
that Adam arrived as John was cooking, and John
starts cooking before the family gathering.

To this end, we propose LEAF, a Linguistically
enhanced Event temporAl relation Framework.
Our method aims at capturing a diverse set of lin-
guistic structures implicitly indicating temporal re-
lations (a.k.a, temporal knowledge patterns), and
uses them to facilitate language models to learn
richer temporal knowledge. We start by manually
curating a diverse list of atomic patterns that com-
monly imply certain temporal relations (Appendix
A). These patterns involve pairs of events where
one event is contained within the argument struc-
ture of the other. For example, a target event always
starts after events in its prototypical patient (PPT)
argument, and we can use this atomic pattern to
find that cooking starts after made (Figure 1). Our
list encompasses an extension of patterns from pre-

vious works (Zhou et al., 2020a) along with novel
patterns, including the PPT pattern.

As illustrated in Figure 1, if we consider only
atomic patterns, many temporal relations are still
overlooked. The events made, gathering, and ar-
rived are not within one another’s arguments, yet
they still hold temporal relations. To capture these
relations, we also gather compositional patterns.
These are connections between two events that are
not directly linked in their argument structures and
are derived by utilizing the transitivity of atomic
patterns. From applying these temporal knowledge
patterns, we are able to extract two more atomic
relations (relations 1-2) and three more composi-
tional relations (relations 3-5) from the example
sentence than knowledge acquisition methods rely-
ing only on temporal indicator word searching.

To deploy temporal knowledge patterns for ob-
taining training supervision at scale, we use Al-
lenNLP’s SRL parser (Gardner et al., 2018; Shi
and Lin, 2019) on raw text. We then search the
collected patterns to determine if any patterns ap-
pear in the SRL annotations of a given sentence.
Once a pattern is found, the corresponding tem-
poral relation of the pattern can then be used as
supervision to further pre-train language models.
With this method, we collect millions of event re-
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lation supervisions for pre-training from the raw
Gigaword headline corpus (Graff et al., 2003; Rush
et al., 2015). This includes around 3.8M atomic
relations and 140K compositional relations.

Our method effectively helps pre-trained lan-
guage models learn rich temporal knowledge.
LEAF demonstrates an improvement of up to 9
F1 over vanilla BERTBASE and RoBERTaBASE

on MATRES (Ning et al., 2018) and TB-Dense
(Cassidy et al., 2014). It also delivers competitive
performance with previous state-of-the-art (SOTA)
methods that use temporal indicators and complex
fine-tuning layers. Moreover, it greatly exceeds
3-shot ChatGPT (OpenAI, 2023) by over 37 F1
points. We also perform ablation studies, which
verify that both types of temporal knowledge pat-
terns contribute to high performance. Finally, with
the aid of acquired atomic and compositional rela-
tion supervision, LEAF shows an increase of up to
6.8 F1 points over baselines on challenging cases
involving compositional relation prediction.

2 Related Work

In the early stages of event relation research, ex-
perts often used traditional machine learning meth-
ods to classify relations (Chklovski and Pantel,
2004; Mani et al., 2006; Pitler and Nenkova, 2009;
Mirza, 2014). These methods required experts
to manually identify features and use external re-
sources, which was time-consuming and labor-
intensive. Recently, there have emerged a great
number of attempts to incorporate temporal relation
knowledge into neural network models (Cheng and
Miyao, 2017; Goyal and Durrett, 2019; Xie et al.,
2022). One branch of this involves incorporating
additional temporal knowledge in the fine-tuning
stage on fully labeled datasets, then evaluating on
the respective dataset. Some add additional param-
eters to train (Tan et al., 2021; Hwang et al., 2022;
Lu et al., 2022; Wen and Ji, 2021), while others
only add objectives during fine-tuning (Wang et al.,
2022a; Zhang et al., 2022).

Another branch called weak supervision is more
closely related to our work. Weak supervision does
not require expensive manually labeled training
data, but instead automatically labels unannotated
corpora (Xie et al., 2022). This allows for greater
transferability of knowledge between tasks, as well
as ease of scalability. There are several popular
methods for extracting event temporal relations us-
ing weakly supervised data. One approach is to

perform a keyword search (Zhao et al., 2021; Han
et al., 2021b). Another approach is to use a teacher
model to label event relations (Ballesteros et al.,
2020). The most closely related to our work is
Zhou et al. 2020a, which uses keywords within a
single SRL semantic tag to extract relational knowl-
edge. However, this is only a small subset of all
available syntactic knowledge. In this work, we
expand the range of syntactic structures used to ex-
tract relation knowledge, enabling language models
to learn more diverse and complex knowledge.

3 Method

3.1 Overview

In this section, we describe our method for extract-
ing temporal relation knowledge from unlabeled
data and continually pre-train a language model
to inject this knowledge. We begin by providing
background on syntactic and semantic terminology
(§3.2). Next, we offer a precise definition of atomic
patterns and expand on the original patterns discov-
ered through our work (§3.3.1). We then discuss
the process of culminating compositional patterns
and their importance (§3.3.2). In §3.4, we detail
how we obtain temporal relation supervision with
our collected patterns. Finally, we show how to
use the relation supervision to pre-train language
models (§3.5).

3.2 Background of Syntactic and Semantic
Terminology

In this section, we introduce background on syntac-
tic and semantic terminology involved in LEAF.

An event refers to a specific occurrence of some-
thing that happens in a certain time and a certain
place involving one or more participants, which
can usually be described as a change of state (Li
et al., 2022). Following previous works, we define
the relation between two events by the occurrence
of their start time (Ning et al., 2018). Consider
the sentence “John was cooking freshly made noo-
dles for the family gathering” and its two events
e1 = cooking and e2 = made. In this sentence,
cooking clearly starts after made, so we would
label the relation between e1 and e2 as “after”.
Specifically, we consider three temporal relation-
ships for the temporal relation supervision in pre-
training stage: before, after, and simultaneous.

Verbs are elements that encode events and hold
arguments. For example, in the sentence “John
was cooking freshly made noodles for the family
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gathering as Adam arrived,” the verb cooking
takes four semantic arguments: agent, prototypical
patient (PPT), purpose (PRP), and temporal (TMP)
(Figure 2). “John” is the agent, “freshly made noo-
dles” is the PPT, “for the family gathering” is the
PRP argument, and “as Adam arrived” is the TMP ar-
gument. Arguments are the key components of our
collected temporal knowledge patterns introduced
in §3.3.

3.3 Temporal Knowledge Patterns

Temporal knowledge patterns are linguistic struc-
tures which usually imply certain temporal rela-
tions. The goal in collecting patterns is to extract
rich event temporal knowledge from unlabeled text,
allowing for harvesting of large-scale pre-training
supervision. In this section, we introduce how we
curate a diverse suite of atomic and compositional
patterns, covering a vast range of linguistic infor-
mation.

3.3.1 Atomic Patterns
Atomic patterns involve pairs of events where one
event is contained within the argument structure
of the other. Take the example “John was cooking
freshly made noodles for the family gathering as
Adam arrived.” Since made, gathering, and ar-
rived are all within cooking’s argument, atomic
patterns may underlie the linguistic structures be-
tween cooking and the other three events (Figure
1). To curate atomic patterns that likely indicate
certain temporal relations, we analyze examples
from existing temporal relation datasets (Han et al.,
2021a; Ning et al., 2020; Wang et al., 2022b). A
subset of the atomic pattern list can be found in
Table 1, and the comprehensive list can be found in
Appendix A. Our list of atomic patterns includes
both extensions of patterns explored in previous
works (Zhou et al., 2020a) and novel patterns with
linguistic structures implicitly expressing temporal
relations.

One example of an atomic pattern that does not
make use of any explicit temporal indicators is the
prototypical patient (PPT) modifier pattern. A PPT
is an event argument that undergoes change or is
affected by the target event. We find that events
which modify the PPT of a target event start before
the respective target event. In the sentence previ-
ously mentioned, after observing that the PPT of
cooking is “freshly made noodles,” we can use
this pattern to extract the relation that made starts
before cooking (Figure 2). As events are com-

monly accompanied by PPT arguments in everyday
English, detecting PPT patterns help obtain abun-
dant temporal relation supervision for further pre-
training.

The general PRP tag pattern and the general CAU
tag pattern are two other examples of atomic pat-
terns which do not use explicit temporal indicators.
Both of these require no keyword occurrences and
we can easily detect them with SRL tools. Two
examples are shown in Figure 1.

3.3.2 Compositional Patterns
As displayed in Figure 1, many event pairs do not
appear in each other’s arguments, and thus their
relationships cannot be concluded with just atomic
patterns. For example, in the sentence “John was
cooking freshly made noodles for the family gath-
ering as Adam arrived,” none of made, gathering,
or arrived are in each other’s arguments, yet there
still exists temporal relations between them. Com-
positional patterns involve pairs of such events that
are not in each other’s arguments. These patterns
are higher in difficulty than atomic patterns, as the
events are more loosely connected with each other
according to the syntax. Previous works have ex-
plored only atomic relations between two events
to provide supervision (Zhou et al., 2020a; Han
et al., 2021b), without considering compositional
patterns. We value the importance of composi-
tional temporal relational knowledge and further
leverage it as sources of additional supervision to
better tackle the challenges. This allows us to not
only capture more linguistically complex relations,
but also inter-sentence relations.

Compositional patterns frequently appear under
the following circumstance: consider three events
e1, e2, e3, where e1 is not in e3’s arguments, e3 is
not in e1’s arguments, but e2 is in both e1 and e3’s
arguments. In a scenario where atomic patterns
find that e1 occurs before e2, and e2 occurs before
e3, then we can also utilize transitivity to conclude
e1 occurs before e3 without e3 being in any of e1’s
arguments and e1 being in any of e3’s arguments.

We cumulate a comprehensive list of all possible
compositional patterns that can result from transi-
tivity between two atomic patterns. Then, we use
these compositional patterns to extract composi-
tional relations from SRL annotated text.

3.4 Creating Supervision From Patterns

In this section, we detail the algorithm we deploy
in order to extract temporal relations from raw text.
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Figure 2: Examples to acquire temporal relation supervision via pattern matching. From a single sentence (top-left),
we get the semantic arguments for each event using the SRL parser. The PPT pattern can help extract the relation
that “made” starts before “cooking” (cyan), and the PRP pattern is used to conclude that “cooking” starts before
“gathering” (purple). Finally, we use compositional patterns to gather complex relationships. We use the transitivity
of the two atomic patterns to extract that “made” starts before “gathering” (cyan + purple box).

Names Temporal Relations Example Sentences Explanations

CAU After John cooked noodles [because he was hungry ]. John cooked after he was hungry

PRP Before John cooked noodles [for the family gathering ]. John cooked before the family gathering

PPT After John cooked [freshly made noodles]. The noodles were made before John cooked them

Table 1: Subset of atomic patterns. CAU and PRP correspond to events in the causal and purpose tag, respectively.
The PPT row refers to prototypical patient tags. These patterns indicate that all events in that tag hold the respective
temporal relation to the target event.

We begin with the unannotated Gigaword head-
lines corpus1 (Graff et al., 2003; Rush et al., 2015),
which consists of around 3.8M news headline sen-
tences. Then, we obtain SRL annotations of the
headline sentences with SRL parser. The parser
provides all arguments for each event within a head-
line. For example, in the sentence in Figure 2, each
event made, cooking, gathering, and arrived will
have its arguments labeled. Concretely, we use Al-
lenNLP semantic role labeling (SRL) parser (Gard-
ner et al., 2018; Shi and Lin, 2019) to obtain de-
tailed annotation of events and the specific roles of
their arguments.

With each event’s arguments annotated by SRL
tools, we iterate through each event and detect the
existence of temporal knowledge patterns (§3.3) in
each sentence. Specifically, given a target event,
we first examine whether there are any atomic pat-
terns underlying the linguistic structure of the given
texts. If there is, we are able to extract relations
between the target event and the events within its

1https://huggingface.co/datasets/gigaword

arguments. For example, PPT pattern is detected
and helps us extract the relation that made starts
before cooking. The PRP pattern can also be found
to conclude that cooking starts before gathering.
Finally, we use our list of compositional patterns
to extract compositional relations between events
which do not occur within each other’s arguments.
The process of obtaining compositional relations
must also follow the principle of temporal rela-
tion transitivity. A compositional relation that we
extract in the above sentence is that made starts
before gathering, by transitivity of the two atomic
relations above (Figure 2).

In total, we extract 3.8M atomic relations and
140K compositional relations with our collected
temporal knowledge patterns. The extracted rela-
tions are all treated as the temporal relation super-
vision for later pre-training. To verify the accuracy
of the acquired supervision, we got 2 undergrad-
uate students to annotate 50 instances each. We
observe that 86% of the sampled instances are cor-
rect. This indicates the reliability of our process

https://huggingface.co/datasets/gigaword


11

for automatically acquiring supervision.

3.5 Pre-training LMs with Acquired
Temporal Knowledge

In this section, we introduce our pre-training
method to make LMs learn rich temporal knowl-
edge with our acquired relation supervision.

Specifically, we adopt BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as our base
models and initialize the models with their pre-
trained parameters. The masked language model-
ing (MLM) objective is one of our leveraged pre-
training objectives. Suppose that there is an input
sequence X = [x1, x2, ..., xn], where xi indicates
the token at the i-th index. The pre-training objec-
tive is to minimize the negative log-likelihood of
predicting the masked tokens given the contexts.
Thus, LMLM is the cross-entropy loss value of pre-
dicting the masked tokens. We use the traditional
BERT masking technique where 15% of tokens are
either masked, replaced with a random token, or
left unchanged (Devlin et al., 2019). Additionally,
following previous work, we target 25% of event
tokens for one of these transformations (Han et al.,
2021b; Zhou et al., 2020a; Kimura et al., 2022).

Along with the traditional MLM pre-training
objective, to let our models learn the acquired
temporal knowledge, we utilize a temporal rela-
tion prediction objective (Ballesteros et al., 2020;
Wang et al., 2020) as the other pre-training ob-
jective. Consider the contextualized embeddings
H = [h1,h2, ...,hn] obtained from our base mod-
els. Let hi, hj be the contextualized representa-
tions for the tokens of e1 and e2, respectively2, and
let gp, gs be their element-wise Hadamard product
and subtraction (Zhou et al., 2020b; Wang et al.,
2020). We then feed [hi : hj : gp : gs] into a
multi-class classifier, where each class corresponds
to one of the three considered temporal relations
before, after, and simultaneous, to obtain ŷ. We
define the temporal relation objective LREL as:

LREL = − 1

m

m∑
i=1

yi log(softmax(ŷi)), (1)

where y is the one-hot ground-truth vector and m
is the number of training instances.

Our final loss function is thus:

L = LMLM + LREL. (2)
2For events that span multiple tokens, we simply take the

first token of the event as the representation.

4 Experiments

In this section, we present experiments to demon-
strate the effectiveness of LEAF for acquiring rich
temporal relation knowledge. LEAF is capable of
assisting LMs achieve high performance on multi-
ple downstream event relation benchmarks. It facil-
itates base models to perform comparable with pre-
vious SOTA models (Section 4.2). We also verify
the significance of pre-training objectives and data
by conducting ablation studies (Section 4.3). Next,
we reveal our method’s effectiveness at predicting
compositional relations (Section 4.4). Finally, we
perform a case study to analyze LEAF’s effective-
ness at learning patterns that were seen and those
that were unseen during pre-training (Section 4.5).

4.1 Experimental Setup

For our experiments, we pre-train both BERTBASE

and RoBERTaBASE on our extracted data (De-
vlin et al., 2019; Liu et al., 2019). We train
on 4 GeForce GTX 1080 Ti’s for 3 epochs.
For BERTBASE , we use a 1e-4 learning rate,
0.2 dropout rate, and a batch size of 32. For
RoBERTaBASE , we use a 5e-5 learning rate, 0.3
dropout rate, and a batch size of 24.

For evaluation, we consider two temporal re-
lation extraction datasets: MATRES (Ning et al.,
2018) and TB-Dense (Cassidy et al., 2014). Details
for the datasets can be found in Appendix B. For
both datasets, we train a new classifier head with
m output dimensions, where m is the number of
labels of the respective dataset. We fine-tune for
10 epochs on both datasets, and following previ-
ous works, we report the micro-F1 score for each
dataset (Wang et al., 2020).

4.2 Comparisons with Existing Systems

We compare our proposed method with two base
models BERT and RoBERTa. We also demonstrate
the effectiveness of LEAF in comparison with pre-
vious SOTA models.

4.2.1 Base-Models: BERT and RoBERTa
To evaluate the effectiveness of our method,
we compare the performance of LEAF-enhanced
BERTBASE and RoBERTaBASE with their respec-
tive vanilla counterparts. The results in Table 2
show that LEAF-enhanced models outperform the
vanilla models on both datasets by a large margin.
In particular, LEAF can bring 9-11 F1 improve-
ment over vanilla RoBERTaBASE . This demon-
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MATRES TB-Dense
BERTBASE 73.7 58.1
+ LEAF 81.3 63.2
RoBERTaBASE 73.1 55.7
+ LEAF 82.1 66.7

ChatGPT(0-shot) 26.2 22.0
ChatGPT(3-shot) 49.2 29.1
Bi-LSTM (Cheng and Miyao, 2017) 59.5 48.4
TacoLM+ (Zhou et al., 2020a) 63.5 40.1
Goyal and Durrett (2019) 68.6 —
BERE-p (Hwang et al., 2022) 71.1 —
EventPlus (Ma et al., 2021) 75.5 64.5
SP+ILP (Ning et al., 2017) 76.3 58.4
Wang et al. (2020) 78.8 —
Poincaré Event Embeddings (Tan et al., 2021) 78.9 —
United-Framework (base) (Huang et al., 2023) 79.3 66.4
ECONET (Han et al., 2021b) 79.3 66.8
HGRU+knowledge (Tan et al., 2021) 80.5 —
Ballesteros et al. (2020) 81.6 —
Wen and Ji (2021) 81.7 —

Table 2: Overall experimental results. Following previ-
ous works, we report micro-F1 score for both datasets.
+ denotes our reproduced results. Note that ECONET
is based on RoBERTaLARGE , which is 3× bigger than
our base models. We still outperform ECONET on MA-
TRES by a large margin.

strates the benefits of pre-training with rich tempo-
ral knowledge acquired with LEAF methods.

4.2.2 Previous SOTA Models
We also compare LEAF method to 12 previous
SOTA models, and find that LEAF leads to com-
petitive performance on both datasets. Along with
being simpler in design, our method requires train-
ing no additional parameters beyond a classifier,
and outperforms other models with over triple the
parameters. This includes outperforming Event-
Plus (Ma et al., 2021), a pipeline which uses twice
the parameters of our model, by 6.6 F1. Wen and Ji
(2021) and ECONET (Han et al., 2021b) are based
on RoBERTaLARGE , which is 3 times larger than
RoBERTaBASE . Nevertheless, RoBERTaBASE +
LEAF surpasses both models as well.

4.2.3 Models Relying Only on Explicit
Temporal Indicators

LEAF focuses on capturing richer temporal knowl-
edge implicitly expressed in texts. In contrast, pre-
vious works about temporal knowledge acquisition
merely utilize explicit indicators when gathering
temporal knowledge from text. In this section, we
verify the importance of implicit indicators by com-
paring our model to those that do not utilize this
extra information when curating temporal patterns.
The two models that we compare with in this sec-
tion are ECONET and TacoLM.

In order to automatically gather temporal in-

formation for supervision, ECONET (Han et al.,
2021b) collects a list of keywords that each imply
a certain temporal relationship. For example, the
words “before, until, and preceding” all imply the
same temporal relation between events. However,
they ignore crucial linguistic information by only
doing keyword search for their patterns, limiting
their scope to explicitly stated temporal relations.
Results in Table 2 show that although the base
model of ECONET is RoBERTaLARGE which is
3× bigger than our base models, LEAF can still
outperform ECONET by 2.8 F1 on MATRES and
achieve nearly the same performance on TB-Dense.

The major limiting factor of TacoLM discussed
in §3.3.1 is that they only use a small subset of
linguistic information to extract their temporal re-
lation knowledge. In particular, they only con-
sider the temporal arguments of events when ac-
quiring temporal relation supervision. We con-
duct experiments to reproduce TacoLM based on
BERTBASE and then evaluate the model on these
two datasets. Results are shown in Table 2. Despite
being trained on ~21M data, TacoLM underper-
forms BERTBASE + LEAF by a large margin.

4.2.4 ChatGPT
In this section, we analyze the performance of Chat-
GPT (gpt-3.5-turbo on 05-20-2023) on the two
downstream datasets. We first design three differ-
ent prompts, and for each prompt, we have a zero-
shot and a three-shot variant, totalling six prompts
per evaluation task (Appendix C). We then eval-
uate ChatGPT on TB-Dense and MATRES. Re-
sults can be found in Table 2. Aligning with past
findings (Kauf et al., 2022; Yuan et al., 2023), we
observe that ChatGPT does poorly at identifying
event temporal relations. Both the 3-shot and the
zero-shot F1 scores are significantly worse than
BERTBASE + LEAF.

4.3 Ablations

Ablation study for pre-training objectives. To
verify the significance of our pre-training objec-
tives towards the better model performance, we
conduct ablation studies to examine the effect of re-
moving MLM and temporal relationship prediction
objectives. Results can be found in Table 3. We
find that for both datasets, removing either MLM
or temporal relationship prediction objective leads
to a worse performance than pre-training with both
objectives. This indicates that both objectives are
crucial in allowing the model to learn temporal
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MATRES TB-Dense

BERTBASE 73.7 58.1
+ LEAF 81.3 63.2

- TMP REL 80.2 62.0
- MLM 56.6 29.7
- Atomic 79.6 60.7
- Compositional 79.9 59.9

Table 3: Ablation studies of the training objectives and
patterns. The addition of LEAF improves the perfor-
mance of BERTBASE on each dataset. The combination
of the two training objectives is effective, as removing
either one lowers performance on the two datasets. The
combination of both types of temporal knowledge pat-
terns also proves to be crucial, as removing either one
also lowers performance on both datasets.

knowledge and generalize to downstream tasks.

Ablation study for pre-training data. To ver-
ify the value of both atomic and compositional
relations, we pre-train BERTBASE without atomic
and compositional relations acquired by LEAF. Re-
sults can be found in the Table 3. We find that
for both datasets, removing either atomic or com-
positional relations in the pre-training stage leads
to worse performance than training with both rela-
tions. Especially, we find that although there are
only 140K acquired compositional relations, train-
ing with these 140K relations performs on par with
training with 3.8M atomic relations. This further
emphasizes the contribution of considering compo-
sitional relations to temporal relation tasks.

4.4 Predicting Compositional Relations
It is intuitive that correctly extracting composi-
tional relations is more challenging than identifying
atomic relations. In this section, we explore the ca-
pability of our model to extract challenging compo-
sitional relations. We take the subset of MATRES
and TB-Dense that contain compositional relations,
and evaluate both base models BERTBASE and
RoBERTaBASE and their LEAF-enhanced counter-
parts. Results are displayed in Table 4. We observe
that further pre-training with the relation supervi-
sion derived from LEAF enhances base models at
identifying compositional relations. This is likely
due to us giving explicit compositional relation
supervision during pre-training.

We also perform ablation studies to evaluate
the impact of atomic and composition relations
acquired by LEAF on the subsets MATRES-C and
TB-Dense-C. As shown in Table 4, we find that

MATRES-C TB-Dense-C

BERTBASE 72.8 53.2
+ LEAF 78.5 57.0

- Atomic 81.0† 60.1†

- Compositional 75.1 53.1

RoBERTaBASE 74.6 55.2
+ LEAF 81.1 62.0

Table 4: Results on the instances involving composi-
tional relations in MATRES and TB-Dense. -C denotes
the dataset subset with only compositional relations.
For both subsets, the addition of LEAF significantly
increases F1 score. Although the performance marked
with † is better than BERTBASE + LEAF, the overall
performance of the corresponding baseline is lower than
BERTBASE + LEAF 1.4 and 3.3 F1 on MATRES and
TB-Dense.

BERTBASE trained with only compositional re-
lations performs better on both datasets than the
model trained with only atomic relations. It even
surpasses BERTBASE + LEAF, which is trained
with the whole set of acquired relation supervision.
This verifies that the compositional relations ex-
tracted are effective at assisting the model in tack-
ling challenging compositional relation extraction.
However, as shown in Table 3, training with the
mere compositional relations does not bring better
overall performance on MATRES and TB-Dense.
Overall, training with all the relations obtained by
LEAF is a better solution that achieves competitive
overall extraction performance and predicts chal-
lenging temporal relations with greater accuracy.

4.5 Case Study

In this section, we examine specific instances
where the model demonstrates an ability to grasp
patterns that were not seen during pre-training as
well as instances which display the model’s capac-
ity to effectively learn atomic and compositional
patterns.

We present cases that confirm the effectiveness
of exposing the model to out extracted patterns pat-
terns during pre-training. In Figure 3, we observe
examples where the model learns to correctly iden-
tify atomic and compositional relations after pre-
training. These are examples in which the model
fails to identify the relationship correctly without
pre-training, and succeeds after pre-training. This
shows the effectiveness of our patterns, equipping
the model with a robust understanding of complex
relations, enhancing its ability to make accurate
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Figure 3: Examples of relations that were learned by pre-training with acquired patterns. These are instances
in which the model labels the relation incorrectly without pre-training, and correctly after pre-training. For the
compositional pattern, we see the event “announced” revealing a relation between “impounded” and “miss” (sentence
3). These otherwise do not have a trivial relation, because “miss” is not in the arguments of “impounded” (sentence
1) and “impounded” is not in the arguments of “miss” (sentence 2). Our model effectively identifies this relation
after pre-training. For the atomic pattern, we see that vanilla RoBERTa fails on atomic relations, while LEAF
can help to capture this case. For the noun-verb relation sentences, we see two examples where the model learns
relations between a noun event (in red) and a verb event (in blue), despite not having seen any during pre-training.

predictions and adapt to new, unseen data.

Because the SRL parser only annotates verb
events during pre-training, our model only sees
verb-verb relations during pre-training. Despite
this fact, LEAF has shown a remarkable ability
to learn noun-verb relations that are not acquired
without the pattern supervision. This is evidenced
by the two examples illustrated in Figure 3. The
model’s ability to grasp these relations suggests
that the patterns we provided during training have
a potential beyond their explicit supervision.

5 Conclusions

In conclusion, our proposed LEAF framework
demonstrates the effectiveness of using diverse lin-
guistic structures to extract rich temporal knowl-
edge of events from large-scale corpora. The ex-
tracted knowledge is able to enhance language mod-
els via a simple pre-training procedure. Our ap-
proach outperforms or rivals previous models on
MATRES and TB-Dense, and excels at identifying
complex compositional event relations.

6 Limitations

Our model’s scope for event relations does not in-
clude all types of events. Specifically, the captured
temporal relationships used for pre-training super-
vision does not cover noun-verb and noun-noun
event pairs. Another limitation is that our model
is only as good as the SRL annotations are. If the
SRL annotations are noisy, then so will be our data.
Also, due to the limits of computation resources,
the scale of our base models are only around 110M
parameters. We hope to extend to larger-scale ex-
periments once better computational resources are
available for use.
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Nelleke Oostdijk, Tadashi Nomoto, Hansi Het-
tiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi
Liza, and Tiancheng Hu. 2022. The causal news cor-
pus: Annotating causal relations in event sentences
from news. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
2298–2310, Marseille, France. European Language
Resources Association.

Xingwei Tan, Gabriele Pergola, and Yulan He. 2021.
Extracting event temporal relations via hyperbolic
geometry. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8065–8077, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020. Joint constrained learning for event-
event relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 696–706, Online.
Association for Computational Linguistics.

Meiguo Wang, Benjamin Yao, Bin Guo, Xiaohu Liu,
Yu Zhang, Tuan-Hung Pham, and Chenlei Guo.
2022a. Joint goal segmentation and goal success pre-
diction on multi-domain conversations. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 505–509, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

https://doi.org/10.1186/s12911-018-0627-5
https://doi.org/10.1186/s12911-018-0627-5
https://doi.org/10.1186/s12911-018-0627-5
http://arxiv.org/abs/2107.02126
http://arxiv.org/abs/2107.02126
http://arxiv.org/abs/2107.02126
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.findings-emnlp.176
https://aclanthology.org/2022.findings-emnlp.176
https://aclanthology.org/2022.findings-emnlp.176
https://doi.org/10.18653/v1/2021.naacl-demos.7
https://doi.org/10.18653/v1/2021.naacl-demos.7
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.3115/v1/P14-3002
https://doi.org/10.3115/v1/P14-3002
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://aclanthology.org/P09-2004
https://aclanthology.org/P09-2004
https://doi.org/10.18653/v1/d15-1044
https://doi.org/10.18653/v1/d15-1044
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255
https://aclanthology.org/2022.lrec-1.246
https://aclanthology.org/2022.lrec-1.246
https://aclanthology.org/2022.lrec-1.246
https://doi.org/10.18653/v1/2021.emnlp-main.636
https://doi.org/10.18653/v1/2021.emnlp-main.636
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://aclanthology.org/2022.coling-1.41
https://aclanthology.org/2022.coling-1.41


17

Xiaozhi Wang, Yulin Chen, Ning Ding, Hao Peng, Zimu
Wang, Yankai Lin, Xu Han, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022b. MAVEN-
ERE: A unified large-scale dataset for event coref-
erence, temporal, causal, and subevent relation ex-
traction. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 926–941, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Haoyang Wen and Heng Ji. 2021. Utilizing relative
event time to enhance event-event temporal relation
extraction. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10431–10437, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

QunLi Xie, JunLan Pan, Tao Liu, BeiBei Qian, Xi-
anChuan Wang, and Xianchao Wang. 2022. A survey
of event relation extraction. In Frontier Computing,
pages 1818–1827, Singapore. Springer Nature Singa-
pore.

Chenhan Yuan, Qianqian Xie, and Sophia Ananiadou.
2023. Zero-shot temporal relation extraction with
chatgpt.

Chong Zhang, Jiagao Lyu, and Ke Xu. 2023. A
storytree-based model for inter-document causal re-
lation extraction from news articles. Knowledge and
Information Systems, 65:827–853.

Shuaicheng Zhang, Qiang Ning, and Lifu Huang.
2022. Extracting temporal event relation with syntax-
guided graph transformer. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 379–390, Seattle, United States. Association
for Computational Linguistics.

Xinyu Zhao, Shih-Ting Lin, and Greg Durrett. 2021.
Effective distant supervision for temporal relation ex-
traction. In Proceedings of the Second Workshop on
Domain Adaptation for NLP, pages 195–203, Kyiv,
Ukraine. Association for Computational Linguistics.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth.
2020a. Temporal common sense acquisition with
minimal supervision. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7579–7589, Online. Association
for Computational Linguistics.

Guangyu Zhou, Muhao Chen, Chelsea J T Ju, Zheng
Wang, Jyun-Yu Jiang, and Wei Wang. 2020b. Muta-
tion effect estimation on protein–protein interactions
using deep contextualized representation learning.
NAR Genomics and Bioinformatics, 2(2). Lqaa015.

https://aclanthology.org/2022.emnlp-main.60
https://aclanthology.org/2022.emnlp-main.60
https://aclanthology.org/2022.emnlp-main.60
https://aclanthology.org/2022.emnlp-main.60
https://doi.org/10.18653/v1/2021.emnlp-main.815
https://doi.org/10.18653/v1/2021.emnlp-main.815
https://doi.org/10.18653/v1/2021.emnlp-main.815
http://arxiv.org/abs/2304.05454
http://arxiv.org/abs/2304.05454
https://doi.org/10.1007/s10115-022-01781-7
https://doi.org/10.1007/s10115-022-01781-7
https://doi.org/10.1007/s10115-022-01781-7
https://doi.org/10.18653/v1/2022.findings-naacl.29
https://doi.org/10.18653/v1/2022.findings-naacl.29
https://aclanthology.org/2021.adaptnlp-1.20
https://aclanthology.org/2021.adaptnlp-1.20
https://doi.org/10.18653/v1/2020.acl-main.678
https://doi.org/10.18653/v1/2020.acl-main.678
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015


18

Appendix

A List of Atomic Patterns

In Table 5, we provide a comprehensive list of pat-
terns used to extract the data. The top section out-
lines general semantic tag patterns. If a target event
possesses any of these arguments, all argument
events will hold the specified temporal relationship
with the target event. The bottom section includes
tag and beginning word patterns, consisting of a
three-letter capitalized tag followed by a word. If
an argument begins with such a keyword, all events
within the argument will hold the temporal relation
with the target event. The to pattern specifies that
all semantic arguments beginning with to indicate
that the target event occurs before the events in the
tag. Modal verbs indicates that any argumenta-
tive event modified by a modal verb will hold the
designated temporal relationship with the target
event.

B Dataset Statistics

In Table 6, we display the statistics for both
datasets. Both datasets provide gold event labels,
and the task is to predict the temporal relation be-
tween two provided events.

C ChatGPT Prompts

Below are the three ChatGPT prompts that we av-
eraged the performance over. For three-shot, we
simply repeated the prompt four times, with the
first three times also including the answer to the
passage. Note that all examples are the ones we
used for MATRES. For TB-Dense, because there
are more labels, we added more options for Chat-
GPT to choose from. For each example, the exam-
ple sentence replaces {sentence}, and the names
of the left and right event replace {left_event} and
{right_event}.

1. Context: {sentence}
Based on the above paragraph, what can we
conclude about the events “{left_event}" and
“{right_event}"?
Please choose one of the following:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague

2. Read the following and determine the
temporal relationship between the events
“{left_event}" and “{right_event}":
Context: {sentence}
Options:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague

3. Description: Given a passage, and two events
“{left_event}" and “{right_event}", determine
the temporal relationship between the events,
choosing between one of the following
options:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague
Passage: {sentence}
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Names Temporal Relations Example Sentences Explanations

CAU After John cooked noodles [because he was hungry ]. John cooked after he was hungry

PRP Before John cooked noodles [for the family gathering ]. John cooked before the family gathering

PPT After John cooked [freshly made noodles]. The noodles were made before John cooked them

to Before John cooked noodles [to cure his boredom] John cooked before his boredom was cured

TMP when After [When he got hungry ], John cooked noodles. John cooked after he got hungry

TMP following... After John cooked noodles [following a request from
Adam].

John cooked after Adam requested

TMP after... After John cooked noodles [after Adam arrived ]. John cooked after Adam arrived

TMP before... Before John cooked noodles [before Adam arrived ]. John cooked before Adam arrived

TMP during... Simultaneous John cooked noodles[during the storm ]. It stormed while John cooked noodles

TMP while... Simultaneous John cooked noodles [while it was snowing ]. It snowed while John cooked noodles

TMP as... Simultaneous John cooked noodles [as Adam arrived ]. Adam arrived while John cooked noodles

ADV while... Simultaneous John cooked noodles, [while Adam was unamused
by his jokes].

Adam was unamused while John cooked noodles

ADV if... After John cooks noodles [if he is bored ]. John cooks after he is bored

Modal Verbs Before John cooked noodles and [Adam will eat them]. John cooks noodles before Adam eats

Table 5: Full list of atomic patterns. Three letter abbreviations indicate semantic tags. Patterns that only consist of a
tag (e.g., PPT) indicate that all events in that tag hold the respective temporal relation to the target verb. The patterns
that have a tag (e.g., TMP) and a word (e.g., during) indicate the pattern whose semantic tag starts with the word.

Train Validation Test Labels
MATRES 5,036 1,296 827 Vague, before, after, simultaneous
TB-Dense 4,032 629 1,427 Vague, before, after, simultaneous, includes, is_included

Table 6: Statistics for both datasets. Note that TB-Dense has all of the labels of MATRES, plus two additional
labels: includes and is_included.


