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Abstract

Recently, end-to-end trained models for
multiple-choice commonsense question an-
swering (QA) have delivered promising re-
sults. However, such question-answering sys-
tems cannot be directly applied in real-world
scenarios where answer candidates are not pro-
vided. Hence, a new benchmark challenge
set for open-ended commonsense reasoning
(OpenCSR) has been recently released, which
contains natural science questions without any
predefined choices. On the OpenCSR chal-
lenge set, many questions require implicit
multi-hop reasoning and have a large decision
space, reflecting the difficult nature of this task.
Existing work on OpenCSR sorely focuses on
improving the retrieval process, which extracts
relevant factual sentences from a textual knowl-
edge base, leaving the important and non-trivial
reasoning task outside the scope. In this work,
we extend the scope to include a reasoner that
constructs a question-dependent open knowl-
edge graph based on retrieved supporting facts
and employs a sequential subgraph reasoning
process to predict the answer. The subgraph
itself can be seen as a concise and compact
graphical explanation of the prediction. Experi-
ments on two OpenCSR datasets show that the
proposed model achieves great performance on
benchmark OpenCSR datasets.

1 Introduction

Commonsense reasoning has long been considered
an essential topic in artificial intelligence. Most
approaches work on the setting of multiple-choice
question answering [8, 3], which selects an answer
choice by scoring the question-choice pairs. How-
ever, the multiple-choice setting is not applicable
in many real-world scenarios since many question-
answering tasks do not provide answer candidates.
As a step towards making commonsense reasoning
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research more realistic and useful, open-ended com-
monsense reasoning (OpenCSR) has been intro-
duced [9], which explores a commonsense knowl-
edge corpus to answer commonsense questions.
OpenCSR often requires multi-hop reasoning, i.e.,
the model should conclude the answer by reasoning
over two or more facts from the knowledge corpus,
which makes this task much more challenging. Lin
et al. [9] proposed a retrieval-based method, called
DrFact, by combining the maximum inner product
search and symbolic links between facts. However,
DrFact does not put much effort on the reason-
ing module to re-rank the retrieved facts. To this
end, we proposed an integrated subgraph reason-
ing approach for OpenCSR with end-to-end learn-
ing, which iteratively employs a retriever to extract
question-relevant facts from a knowledge corpus
and a reasoner over the extracted facts. Given a
commonsense question, the proposed approach ap-
plies DPR [6] to extract relevant facts from a textual
knowledge corpus, converts the retrieved natural
language facts into a graph-structured format using
Open Information Annotation (OIA) [10] and per-
forms subgraph reasoning on the constructed joint
OIA-graph using a multi-relational graph attention
network. Specifically, the reasoner first performs
entity linking from the giving question to the joint
OIA-graph. Then it starts from the linked entities
(nodes), and iteratively samples relevant edges with
a pruning procedure to form an enclosing subgraph
around the question. The reasoning procedure takes
into account both structural information, i.e., graph
structure of the joint OIA graph, and semantic infor-
mation, i.e., language representation of questions
and facts. After several rounds of retrieval and
pruning, the model predicts the answer from the
concepts in the subgraph.

Our contributions are as follows: (1) we inves-
tigate how to perform a cooperative retrieval-and-
reasoning in open-ended commonsense question
answering. To the best of our knowledge, our
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Figure 1: (a) The OIA graph of "Plants supply the fungi with carbohydrates, in return, making it a symbiotic
relationship." There are two types of nodes: constant and predicate. Constant nodes are simple nominal phrases
while predicate nodes include simple verbal phrases and prepositional phrases. Edges in OIA graphs are labeled.
pred.arg.n denotes the n-th arguments of a predicate node, mod indicates the modification, and as:pred.arg.n
expresses an reversed relation of pred.arg.n. (b) The joint OIA graph consists of two factoid sentences that share the
concepts "fungi" and "symbiotic relationship".

work is the first retrieve-and-reasoning approach
for OpenCSR. (2) We present experimental re-
sults that show our model achieves great results
on the benchmark OpenCSR dataset with an ab-
lation study demonstrating the performance gain
of integration structural information and semantic
information. (3) The proposed method can poten-
tially homogenize structured, i.e., knowledge base,
and unstructured commonsense knowledge, i.e.,
textual corpus for answering open-ended common-
sense questions since it can unify both knowledge
formats into a graph-structured format.

2 Related Work

Commonsense Reasoning Traditional common-
sense reasoning (CSR) techniques are mainly de-
signed for multiple-choice QA. For instance, to
independently score each decision, KagNet [8] and
MHGRN [3] both leverage external commonsense
knowledge graphs as structural priors. Although ef-
fective in selecting the best response for a multiple-
choice question, these techniques are less useful for
real-world situations because answer candidates are
frequently unavailable. By fine-tuning a text-to-text
transformer, UnifiedQA [7] generated answers to
questions. However, a drawback of multiple-choice
QA models is that they do not provide intermedi-
ate explanations for their answers, making them
less suitable in many real-world scenarios. Lin et
al. [9] introduced the open-ended commonsense
reasoning and proposed DrFact to directly retrieve
relevant facts, and then use the concepts mentioned
in the top-ranked facts as answer predictions.

Subgraph Reasoning Many recent works learn
representations of localized subgraphs. Alsentzer
et al. [1] introduced a subgraph neural network to
learn disentangled subgraph representations using a
novel subgraph routing mechanism. Teru et al. [11]
proposed a graph neural network that reasons over

local subgraph structures and performs inductive
relation predictions. Han et al. [4] developed an
explainable reasoning framework for forecasting
future links on temporal knowledge graphs by em-
ploying a sequential reasoning process over local
subgraphs.

3 Our Approach

Retrieving Relevant Facts Following the dense
passage retrieval work [6], we use a bi-encoder
transformer architecture that learns to maximize
the inner product of the representation of a ques-
tion and the relevant factual sentences from the
knowledge corpus containing correct answers to
the given question.

Constructing Question-dependent Joint OIA-
Graph Following the steps in [10], we convert
each retrieved factual sentence into an OIA-graph
as shown in Figure 1a. For each node in an OIA
graph, we link it with nodes in the OIA graphs of
other sentences that include the same concept. We
label this kind of link as shared concepts. As shown
in Figure 1b, the factoid sentences "Plants supply
the fungi with carbohydrates, in return, making it a
symbiotic relationship." and "Fungi participate in
symbiotic relationships to obtain their food." shares
the same concepts "fungi" and "symbiotic relation-
ship". Then, we construct a joint OIA-graph Gjoint

by linking nodes that share the same concepts in
different OIA graphs.

Subgraph Reasoning on the Joint OIA-Graph
Inspired by [5], we conduct reasoning on a dynami-
cally expanded inference graph Ginf extracted from
the joint OIA-graph. Given a commonsense ques-
tion q, we build an initial inference graph via entity
linking between the question q and the joint OIA-
graph. We find all nodes of Gjoint that share the
same concepts as q includes. We set such OIA-



22

Figure 2: Model Architecture.

nodes to be the initial nodes of the inference graph
Ginf. The inference graph expands by sampling
one-hop neighbors of initial nodes in Gjoint. Be-
sides, we propose a semantic-following operation
to build skip connections between the initial nodes
and their multi-hop neighbors. Taking a node v in
Ginf as an example, we compute the inner-product
similarity between its representation and the rep-
resentation of other nodes in Gjoint obtained by
the retrieval and add the top K nodes into Ginf

by linking them with v. The contribution of the
semantic-following has two folds: 1) It speeds up
the reasoning process and broadens the receptive
field of the subgraph reasoner by adding skip con-
nections between multi-hop neighbors; 2) It allows
the subgraph reasoner to take into account both
semantic-relevant and symbolic-linked nodes re-
garding a given question. Next, we feed Ginf into a
relational graph attention layer that takes node em-
bedding as the input, computes an attention score
for each edge indicating the relevance to the given
question, and produces a question-dependent rep-
resentation for each node using message passing.
Instead of treating all neighbors with equal impor-
tance in the massage passing, we take the question
information into account and assign varying im-
portance levels to each neighbor by calculating the
following question-dependent attention score:

elvu(q, pk) = Wl
s(h

l−1
v ||pl−1

k ||hl−1
q )T

Wl
t(h

l−1
u ||pl−1

k ||hl−1
q ),

(1)

where elvu(q, pk) is the attention score of the edge
(v, pk, u) regarding the question q, pk corresponds
to the edge type between the source node v and the
target node u, Wl

s and Wl
t are two weight matrices

for capturing the dependencies between question
representations and source node features specified
for source node and target node, respectively. pk

is the edge embedding indicating the relationship
between u and v. hl−1

v denotes the hidden represen-
tation of the node v at the (l − 1)th inference step.

When l = 1, i.e., for the first layer, h0
v is the ag-

gregated token representation from Bert. Then, we
compute the normalized attention score αl

vu(q, pk)
using the softmax function. Once obtained, we
aggregate the representations of the sampled neigh-
bors of node v denoted as N̂v and weight them
using the normalized attention scores, which are
written as

hl
v(q) =

∑
u∈N̂v

αl
vu(q, pk)h

l−1
u (q). (2)

Answer Prediction We compute the plausibility
score slv,q of node v to be the answer of question q

at the lth inference step as follows:

slv,q = smips(q, fv)+
∑
u∈N̂ v

∑
pk∈Puv

αl
uv(q, pk)a

l−1
u,q ,

(3)
where smips(q, fv) denotes the relevance score of
the retrieved fact fv, which mentions the node v,
regarding the question q by the maximum inner
product search. Since the same concept may ap-
pear in different nodes in the inference graph, we
aggregate the plausibility score of nodes that share
the same concept to assign each concept a unique
attention score:

slci,q = g(slv,q|v(c) = ci), for v ∈ VGinf , (4)

where slci,q denotes the plausibility score of concept
ci, VGinf is the set of nodes in inference graph Ginf.
v(c) represents the concept included in node v, and
g(·) represents a score aggregation function. Here
we use the maximum function.

Inference Graph Expansion and Pruning After
several iterations of expansion, the inference graph
Ginf would grow rapidly and cover almost all nodes.
To prevent the inference graph from exploding, we
reduce the graph size by pruning the edges with
a small plausibility score and keeping the edges
with K largest contribution scores. After running
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Datasets ARC-Open OBQA-Open

Model H@50 H@100 R@50 R@100 H@50 H@100 R@50 R@100

DPR 68.67 78.62 28.93 38.63 54.47 67.73 15.17 22.34
DrKIT 67.63 77.89 27.57 37.29 61.74 75.92 18.18 27.10
DrFact 71.60 80.38 31.48 40.93 69.01 80.03 21.27 30.32
Our model 72.76 80.38 31.09 40.24 62.30 73.80 18.11 26.83

Table 1: Results of the Hit@K and Rec@K (K=50/100) in % on OpenCSR.

L inference steps, the model selects the concept
with the highest plausibility score in Ginf as the
answer to the given question, where the inference
graph itself serves as a graphical explanation.

Loss Function We use the binary cross-entropy
as the loss function, which is

L = − 1

|Q|
∑
q∈Q

1

|Cinf
q |

∑
ci∈Cinf

q

(yci,q log(
sLci,q∑

cj∈Cinf
q

sLcj ,q
)

+ (1− yci,q) log((1−
sLci,q∑

cj∈Cinf
q

sLcj ,q
))),

where Cinf
q represents the set of concepts in the

inference graph of the question q, yci,q represents
the binary label that indicates whether ci is an an-
swer for q, and Q denotes the question set. sLci,q
denotes the plausibility score of concept ci at the
final inference step.

4 Experiments

Fact corpus and concept vocabulary Following
settings in [9], GenericsKB-Best corpus serves as
the main commonsense knowledge source that con-
tains 1,025,413 unique facts. All sentences in the
corpus are provided with concepts, which are fre-
quent noun chunks, using the spaCy toolkit. There
are 80,524 concepts in total.

Datasets and evaluation metrics We evaluate
our model on two benchmark open-ended com-
monsense reasoning datasets, i.e., ARC-Open and
OBQA-Open [9], that contain 6600 and 5288 ques-
tions, separately. Every question could be an-
swered using various concepts, where the average
answer is 6.8 and 7.7 in ARC-Open and OBQA-
Open. Each dataset provides the set of true answer
concepts for each question. We use two metrics,
Hits@K and Recall@K, where Hits@K denotes
the percentage of times that at least one true con-
cept appears in the top k of ranked concepts.

Experimental Results We compare our model
with DPR [6], DrKIT [2], and DrFact [9]. Recall

that our model applies DPR as the retriever so it
is a straightforward baseline. And DrFact is the
strongest baseline in OpenCSR. As shown in Ta-
ble 1, our model outperforms DPR and DrKIT on
ARC-Open and achieves on-par performance as
DrFact. All results are averaged over three trials.
We provide implementation details in Appendix B
and attach the source code in the supplementary
material.

Datasets ARC-Open

Model H@50 H@100 R@50 R@100

Model w/ SC 72.76 80.38 31.09 40.24
Model w/o SC 71.74 79.65 30.56 39.75

Table 2: Ablation Study on ARC-Open: we investigate
the gain of adding skip connections (SC) to semantically
relevant multi-hop neighbors.

Ablation Study Recall that the proposed sub-
graph reasoner takes into account both the struc-
turally linked one-hop neighbors and semantically
relevant multi-hop neighbors by expanding the in-
ference graph Ginf . Table 2 shows an ablation
study in that we disable the reasoner to add seman-
tically relevant multi-hop neighbors while infer-
ence graph expansion called Model w/o SC, demon-
strating the performance gain of integrating both
structural and semantic information.

5 Conclusion

We present a novel graph-guided neural symbolic
commonsense reasoning approach for the open-
ended commonsense reasoning task. Specifically,
The proposed method integrates both structural de-
pendency information between facts and seman-
tic information by constructing an open informa-
tion annotation graph and employing a semantic-
following operation. The model achieved state-
of-the-art performance on two benchmark datasets
while being more interpretable.
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Limitations

The proposed model performs a sequential reason-
ing process, and thus, may cause long inference
time when answering requires a quite long multi-
hop reasoning chain. Besides, the "share-link",
which connects nodes that share the same concept,
would have a significant amount in some datasets
and make the underlying graph much denser. It
would make it difficult for the model to decide the
expansion direction of the subgraph.
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Appendices

A The license of the Artifacts

The datasets we used in this work are proposed
by Lin et al. [9] which is licensed under the MIT
License.

About the model we proposed in this work, we
will release it and give the license, copyright in-
formation, and terms of use once the paper gets
accepted.

B Implementation

We tune the hyperparameters of our models using
the random search and report the best configuration
in the source code in the supplementary material.
The training costs 73 GPU hours on the ARC-Open
dataset and 50 GPU hours on the OBQA-Open
dataset with NVIDIA A40 instance.


